Joint Optic Disc and Cup Segmentation Based on Multi-Transformation

IEEE Transactions on Medical Imaging 37, 1597-1605

DOI: 10.1109/tmi.2018.2791488

Citation Report

#	Article	IF	Citations
1	Segmentation of the Optic Nerve Head Based on Deep Learning to Determine its Hemoglobin Content in Normal and Glaucomatous Subjects. Journal of Clinical & Experimental Ophthalmology, 2018, 09, .	0.1	4
2	Optic Disc Segmentation using Vessel In-painting and Random Walk Algorithm. , 2018, , .		2
3	Retinal Image Synthesis for Glaucoma Assessment Using DCGAN and VAE Models. Lecture Notes in Computer Science, 2018, , 224-232.	1.0	7
4	Optic Disc and Cup Segmentation with Blood Vessel Removal from Fundus Images for Glaucoma Detection. , 2018, 2018, 862-865.		14
5	Automatic Measurement of Cup-to-Disc Ratio for Retinal Images. Lecture Notes in Computer Science, 2018, , 453-465.	1.0	1
6	Optic Disc Segmentation from Retinal Fundus Images via Deep Object Detection Networks. , 2018, 2018, 5954-5957.		20
7	Optic Disc Segmentation Based on Correlation Feature Information. , 2018, , .		1
8	Yanbao: A Mobile App Using the Measurement of Clinical Parameters for Glaucoma Screening. IEEE Access, 2018, 6, 77414-77428.	2.6	35
9	Multi-flow Sub-network and Multiple Connections for Single Shot Detection. Lecture Notes in Computer Science, 2018, , 168-179.	1.0	O
10	A Deep Residual Architecture for Skin Lesion Segmentation. Lecture Notes in Computer Science, 2018, , 277-284.	1.0	38
11	Localizing Optic Disc and Cup for Glaucoma Screening via Deep Object Detection Networks. Lecture Notes in Computer Science, 2018, , 236-244.	1.0	13
13	Multi-resolution Networks for Semantic Segmentation in Whole Slide Images. Lecture Notes in Computer Science, 2018, , 11-18.	1.0	13
14	A Unified Optic Nerve Head and Optic Cup Segmentation Using Unsupervised Neural Networks for Glaucoma Screening., 2018, 2018, 5942-5945.		7
16	DeepDisc: Optic Disc Segmentation Based on Atrous Convolution and Spatial Pyramid Pooling. Lecture Notes in Computer Science, 2018, , 253-260.	1.0	12
17	Automatic Localization of Optic Disc using Modified U-Net. , 2018, , .		5
18	Disc-Aware Ensemble Network for Glaucoma Screening From Fundus Image. IEEE Transactions on Medical Imaging, 2018, 37, 2493-2501.	5.4	264
19	Structure-Preserving Guided Retinal Image Filtering and Its Application for Optic Disk Analysis. IEEE Transactions on Medical Imaging, 2018, 37, 2536-2546.	5.4	45
20	Sparse Range-Constrained Learning and Its Application for Medical Image Grading. IEEE Transactions on Medical Imaging, 2018, 37, 2729-2738.	5.4	12

#	Article	IF	Citations
21	Abnormality Detection in Mammography using Deep Convolutional Neural Networks., 2018,,.		71
22	Ocular disease detection from multiple informatics domains. , 2018, , .		3
23	Ellipse Detection of Optic Disc-and-Cup Boundary in Fundus Images. , 2019, , .		17
24	Optic Disc and Cup Segmentation for Glaucoma Characterization Using Deep Learning. , 2019, , .		22
25	Automatic glaucoma classification using color fundus images based on convolutional neural networks and transfer learning. Biomedical Optics Express, 2019, 10, 892.	1.5	149
26	Medinoid: Computer-Aided Diagnosis and Localization of Glaucoma Using Deep Learning â€. Applied Sciences (Switzerland), 2019, 9, 3064.	1.3	25
27	Predicting lung nodule malignancies by combining deep convolutional neural network and handcrafted features. Physics in Medicine and Biology, 2019, 64, 175012.	1.6	51
28	Two-stage framework for optic disc localization and glaucoma classification in retinal fundus images using deep learning. BMC Medical Informatics and Decision Making, 2019, 19, 136.	1.5	75
29	Adaptive weighted locality-constrained sparse coding for glaucoma diagnosis. Medical and Biological Engineering and Computing, 2019, 57, 2055-2067.	1.6	10
30	Research on the Method of Color Fundus Image Optic Cup Segmentation Based on Deep Learning. Symmetry, 2019, 11, 933.	1.1	8
31	Joint optic disc and cup segmentation using semi-supervised conditional GANs. Computers in Biology and Medicine, 2019, 115, 103485.	3.9	44
32	Glaucoma screening pipeline based on clinical measurements and hidden features. IET Image Processing, 2019, 13, 2213-2223.	1.4	9
33	Automatic segmentation of optic disc and cup for CDR calculation. Optoelectronics Letters, 2019, 15, 381-385.	0.4	1
34	Glaucoma Assessment from OCT images using Capsule Network. , 2019, 2019, 5581-5584.		5
35	A Novel Segmentation Method for Optic Disc and Optic Cup Based on Deformable U-net. , 2019, , .		4
36	Conditional Adversarial Transfer for Glaucoma Diagnosis. , 2019, 2019, 2032-2035.		7
37	Mixed Maximum Loss Design for Optic Disc and Optic Cup Segmentation with Deep Learning from Imbalanced Samples. Sensors, 2019, 19, 4401.	2.1	20
38	Memristive Neural Networks: A Neuromorphic Paradigm for Extreme Learning Machine. IEEE Transactions on Emerging Topics in Computational Intelligence, 2019, 3, 15-23.	3.4	12

#	Article	IF	Citations
39	An automated eye disease prediction system using bag of visual words and support vector machine. Journal of Intelligent and Fuzzy Systems, 2019, 36, 4025-4036.	0.8	7
40	Optic Disc and Cup Segmentation Based on Deep Convolutional Generative Adversarial Networks. IEEE Access, 2019, 7, 64483-64493.	2.6	51
41	Detail preservation and feature refinement for object detection. Neurocomputing, 2019, 359, 209-218.	3.5	12
42	Diagnostic assessment of deep learning algorithms for diabetic retinopathy screening. Information Sciences, 2019, 501, 511-522.	4.0	246
43	DeepAMD: Detect Early Age-Related Macular Degeneration by Applying Deep Learning in a Multiple Instance Learning Framework. Lecture Notes in Computer Science, 2019, , 625-640.	1.0	6
44	Optic Disc and Cup Segmentation Based on Deep Learning. , 2019, , .		13
45	Efficient multi-kernel DCNN with pixel dropout for stroke MRI segmentation. Neurocomputing, 2019, 350, 117-127.	3.5	28
46	CLU-CNNs: Object detection for medical images. Neurocomputing, 2019, 350, 53-59.	3.5	135
47	A Novel Weakly Supervised Multitask Architecture for Retinal Lesions Segmentation on Fundus Images. IEEE Transactions on Medical Imaging, 2019, 38, 2434-2444.	5.4	62
48	CE-Net: Context Encoder Network for 2D Medical Image Segmentation. IEEE Transactions on Medical Imaging, 2019, 38, 2281-2292.	5.4	1,266
49	A Deep Learning System for Automated Angle-Closure Detection in Anterior Segment Optical Coherence Tomography Images. American Journal of Ophthalmology, 2019, 203, 37-45.	1.7	105
50	Automatic optic disk detection and segmentation by variational active contour estimation in retinal fundus images. Signal, Image and Video Processing, 2019, 13, 1191-1198.	1.7	26
51	A coarse-to-fine deep learning framework for optic disc segmentation in fundus images. Biomedical Signal Processing and Control, 2019, 51, 82-89.	3.5	81
52	Fully Convolutional Networks for Monocular Retinal Depth Estimation and Optic Disc-Cup Segmentation. IEEE Journal of Biomedical and Health Informatics, 2019, 23, 1417-1426.	3.9	49
53	Patch-Based Output Space Adversarial Learning for Joint Optic Disc and Cup Segmentation. IEEE Transactions on Medical Imaging, 2019, 38, 2485-2495.	5.4	180
54	A Three Phases Procedure for Optic Disc Segmentation in Retinal Images. , 2019, , .		O
55	Structure-preserving guided retinal image filtering for optic disc analysis., 2019,, 199-221.		5
56	Artificial intelligence and deep learning in retinal image analysis. , 2019, , 379-404.		5

#	Article	IF	CITATIONS
57	Technical and clinical challenges of A.I. in retinal image analysis., 2019, , 445-466.		7
58	Geographic atrophy segmentation in SD-OCT images using synthesized fundus autofluorescence imaging. Computer Methods and Programs in Biomedicine, 2019, 182, 105101.	2.6	15
59	Fault Diagnosis of Rotating Electrical Machines Using Multi-Label Classification. Applied Sciences (Switzerland), 2019, 9, 5086.	1.3	35
60	Optic Disc and Cup Segmentation in Retinal Images for Glaucoma Diagnosis by Locally Statistical Active Contour Model with Structure Prior. Computational and Mathematical Methods in Medicine, 2019, 2019, 1-16.	0.7	24
61	Automatic Determination of Vertical Cup-to-Disc Ratio in Retinal Fundus Images for Glaucoma Screening. IEEE Access, 2019, 7, 8527-8541.	2.6	23
62	Multi-parametric optic disc segmentation using superpixel based feature classification. Expert Systems With Applications, 2019, 120, 461-473.	4.4	46
63	Angle-Closure Detection in Anterior Segment OCT Based on Multilevel Deep Network. IEEE Transactions on Cybernetics, 2020, 50, 3358-3366.	6.2	48
64	Bin loss for hard exudates segmentation in fundus images. Neurocomputing, 2020, 392, 314-324.	3.5	32
65	JointRCNN: A Region-Based Convolutional Neural Network for Optic Disc and Cup Segmentation. IEEE Transactions on Biomedical Engineering, 2020, 67, 335-343.	2.5	75
66	A framework for hierarchical division of retinal vascular networks. Neurocomputing, 2020, 392, 221-232.	3.5	17
67	REFUGEÂChallenge: A unified framework for evaluating automatedÂmethods for glaucomaÂassessment from fundus photographs. Medical Image Analysis, 2020, 59, 101570.	7.0	354
68	Accurate prediction of glaucoma from colour fundus images with a convolutional neural network that relies on active and transfer learning. Acta Ophthalmologica, 2020, 98, e94-e100.	0.6	58
69	Multi-indices quantification of optic nerve head in fundus image via multitask collaborative learning. Medical Image Analysis, 2020, 60, 101593.	7.0	21
70	Clinical Interpretable Deep Learning Model for Glaucoma Diagnosis. IEEE Journal of Biomedical and Health Informatics, 2020, 24, 1405-1412.	3.9	67
71	Dense Dilated Network With Probability Regularized Walk for Vessel Detection. IEEE Transactions on Medical Imaging, 2020, 39, 1392-1403.	5.4	96
72	A new convolutional neural network model for peripapillary atrophy area segmentation from retinal fundus images. Applied Soft Computing Journal, 2020, 86, 105890.	4.1	28
73	U-Net with Dense Encoder, Residual Decoder and Depth-wise Skip Connections., 2020,,.		2
74	Artificial intelligence and deep learning in glaucoma: Current state and future prospects. Progress in Brain Research, 2020, 257, 37-64.	0.9	18

#	Article	IF	Citations
75	Joint disc and cup segmentation based on recurrent fully convolutional network. PLoS ONE, 2020, 15, e0238983.	1.1	16
76	Coronary artery segmentation in angiographic videos utilizing spatial-temporal information. BMC Medical Imaging, 2020, 20, 110.	1.4	15
77	Glaucoma Detection: Joint Segmentation and Classification Framework via Deep Ensemble Network. , 2020, , .		4
78	Detection of Small Aerial Object Using Random Projection Feature With Region Clustering. IEEE Transactions on Cybernetics, 2022, 52, 3957-3970.	6.2	12
79	AGE challenge: Angle Closure Glaucoma Evaluation in Anterior Segment Optical Coherence Tomography. Medical Image Analysis, 2020, 66, 101798.	7.0	35
80	Deep learning segmentation of hyperautofluorescent fleck lesions in Stargardt disease. Scientific Reports, 2020, 10, 16491.	1.6	20
81	A multipleâ€channel and atrous convolution network for ultrasound image segmentation. Medical Physics, 2020, 47, 6270-6285.	1.6	16
82	Optic disc and optic cup segmentation based on anatomy guided cascade network. Computer Methods and Programs in Biomedicine, 2020, 197, 105717.	2.6	29
83	Early Detection of Glaucoma Using Residual Networks. , 2020, , .		15
84	Skin Lesion Segmentation Based on Multi-Scale Attention Convolutional Neural Network. IEEE Access, 2020, 8, 122811-122825.	2.6	22
85	Attention convolutional neural network for accurate segmentation and quantification of lesions in ischemic stroke disease. Medical Image Analysis, 2020, 65, 101791.	7.0	63
86	Applications of deep learning in detection of glaucoma: A systematic review. European Journal of Ophthalmology, 2021, 31, 1618-1642.	0.7	28
87	GlaucoVIZ: Assisting System for Early Glaucoma Detection Using Mask R-CNN., 2020,,.		6
88	DoFE: Domain-Oriented Feature Embedding for Generalizable Fundus Image Segmentation on Unseen Datasets. IEEE Transactions on Medical Imaging, 2020, 39, 4237-4248.	5.4	59
89	Location of Optic Disk in the Fundus Image Based on Visual Attention. , 2020, , .		2
90	A Novel Adaptive Weighted Loss Design in Adversarial Learning for Retinal Nerve Fiber Layer Defect Segmentation. IEEE Access, 2020, 8, 132348-132359.	2.6	3
91	Multi-Receptive-Field CNN for Semantic Segmentation of Medical Images. IEEE Journal of Biomedical and Health Informatics, 2020, 24, 3215-3225.	3.9	58
92	An Efficient Approach to Accomplish Automatic Segmentation of Optic Cup Using Modified U-Net. , 2020, , .		1

#	Article	IF	Citations
93	A Simplified Deep Network Architecture on Optic Cup and Disc Segmentation. , 2020, , .		2
94	G1020: A Benchmark Retinal Fundus Image Dataset for Computer-Aided Glaucoma Detection. , 2020, , .		26
95	MA-Net: A Multi-Scale Attention Network for Liver and Tumor Segmentation. IEEE Access, 2020, 8, 179656-179665.	2.6	175
96	Probability distribution guided optic disc and cup segmentation from fundus images. , 2020, 2020, 1976-1979.		3
97	Triple Multi-scale Adversarial Learning with Self-attention and Quality Loss for Unpaired Fundus Fluorescein Angiography Synthesis., 2020, 2020, 1592-1595.		6
98	Eso-Net: A Novel 2.5D Segmentation Network With the Multi-Structure Response Filter for the Cancerous Esophagus. IEEE Access, 2020, 8, 155548-155562.	2.6	4
99	An Efficient Lens Structures Segmentation Method on AS-OCT Images. , 2020, 2020, 1646-1649.		5
100	Optic Disc Segmentation Using Attention-Based U-Net and the Improved Cross-Entropy Convolutional Neural Network. Entropy, 2020, 22, 844.	1.1	25
101	Adaptive Decision Threshold-Based Extreme Learning Machine for Classifying Imbalanced Multi-label Data. Neural Processing Letters, 2020, 52, 2151-2173.	2.0	10
102	Automated glaucoma screening method based on image segmentation and feature extraction. Medical and Biological Engineering and Computing, 2020, 58, 2567-2586.	1.6	35
103	Kidney and Renal Tumor Segmentation Using a Hybrid V-Net-Based Model. Mathematics, 2020, 8, 1772.	1.1	44
104	Robust retinal optic disc and optic cup segmentation via stationary wavelet transform and maximum vessel pixel sum. IET Image Processing, 2020, 14, 592-602.	1.4	9
105	Multi-Modal Self-Supervised Pre-Training for Joint Optic Disc and Cup Segmentation in Eye Fundus Images. , 2020, , .		19
106	CDED-Net: Joint Segmentation of Optic Disc and Optic Cup for Glaucoma Screening. IEEE Access, 2020, 8, 102733-102747.	2.6	44
107	A Deep Gradient Boosting Network for Optic Disc and Cup Segmentation. , 2020, , .		2
108	Image Segmentation Using Hybrid Representations. , 2020, , .		2
109	Learning to Segment Vessels from Poorly Illuminated Fundus Images. , 2020, , .		5
110	Segmentation of Cell Images Based on Improved Deep Learning Approach. IEEE Access, 2020, 8, 110189-110202.	2.6	10

#	ARTICLE	IF	CITATIONS
111	Channel and Spatial Attention Regression Network for Cup-to-Disc Ratio Estimation. Electronics (Switzerland), 2020, 9, 909.	1.8	3
112	A Lightweight Multi-Label Segmentation Network for Mobile Iris Biometrics. , 2020, , .		9
113	DDeep3M: Docker-powered deep learning for biomedical image segmentation. Journal of Neuroscience Methods, 2020, 342, 108804.	1.3	9
114	Multi-Path Recurrent U-Net Segmentation of Retinal Fundus Image. Applied Sciences (Switzerland), 2020, 10, 3777.	1.3	24
115	Attention-Guided 3D-CNN Framework for Glaucoma Detection and Structural-Functional Association Using Volumetric Images. IEEE Journal of Biomedical and Health Informatics, 2020, 24, 3421-3430.	3.9	30
116	Coronary angiography video segmentation method for assisting cardiovascular disease interventional treatment. BMC Medical Imaging, 2020, 20, 65.	1.4	14
117	Automated segmentation of optic disc using statistical region merging and morphological operations. Physical and Engineering Sciences in Medicine, 2020, 43, 857-869.	1.3	8
118	Lesion-Aware Segmentation Network for Atrophy and Detachment of Pathological Myopia on Fundus Images. , 2020, , .		10
119	A survey on U-shaped networks in medical image segmentations. Neurocomputing, 2020, 409, 244-258.	3.5	157
120	Spatial Enhanced Rotation Aware Network for Breast Mass Segmentation in Digital Mammogram. IEEE Access, 2022, 10, 92559-92570.	2.6	6
121	Optic Disc and Cup Image Segmentation Utilizing Contour-Based Transformation and Sequence Labeling Networks. Journal of Medical Systems, 2020, 44, 96.	2.2	14
122	Automatic Detection of Diabetic Retinopathy: A Review on Datasets, Methods and Evaluation Metrics. IEEE Access, 2020, 8, 48784-48811.	2.6	71
123	A multi-scale recurrent fully convolution neural network for laryngeal leukoplakia segmentation. Biomedical Signal Processing and Control, 2020, 59, 101913.	3. 5	16
124	Two-Stage Mask-RCNN Approach for Detecting and Segmenting the Optic Nerve Head, Optic Disc, and Optic Cup in Fundus Images. Applied Sciences (Switzerland), 2020, 10, 3833.	1.3	38
125	Multi-Organ Segmentation Over Partially Labeled Datasets With Multi-Scale Feature Abstraction. IEEE Transactions on Medical Imaging, 2020, 39, 3619-3629.	5.4	101
126	A Retrospective Comparison of Deep Learning to Manual Annotations for Optic Disc and Optic Cup Segmentation in Fundus Photographs. Translational Vision Science and Technology, 2020, 9, 33.	1.1	11
127	ADRâ€Net: Context extraction network based on Mâ€Net for medical image segmentation. Medical Physics, 2020, 47, 4254-4264.	1.6	8
128	Deep Learning-Based Detection of Pigment Signs for Analysis and Diagnosis of Retinitis Pigmentosa. Sensors, 2020, 20, 3454.	2.1	20

#	Article	IF	Citations
129	Deep Guidance Network for Biomedical Image Segmentation. IEEE Access, 2020, 8, 116106-116116.	2.6	75
130	A review of the application of deep learning in medical image classification and segmentation. Annals of Translational Medicine, 2020, 8, 713-713.	0.7	228
131	Improving the Performance of Convolutional Neural Network for the Segmentation of Optic Disc in Fundus Images Using Attention Gates and Conditional Random Fields. IEEE Access, 2020, 8, 29299-29310.	2.6	31
132	Offline computer-aided diagnosis for Glaucoma detection using fundus images targeted at mobile devices. Computer Methods and Programs in Biomedicine, 2020, 192, 105341.	2.6	61
133	Embracing imperfect datasets: A review of deep learning solutions for medical image segmentation. Medical Image Analysis, 2020, 63, 101693.	7.0	473
134	MDAN-UNet: Multi-Scale and Dual Attention Enhanced Nested U-Net Architecture for Segmentation of Optical Coherence Tomography Images. Algorithms, 2020, 13, 60.	1.2	44
135	Open-Source Automatic Segmentation of Ocular Structures and Biomarkers of Microbial Keratitis on Slit-Lamp Photography Images Using Deep Learning. IEEE Journal of Biomedical and Health Informatics, 2021, 25, 88-99.	3.9	17
136	Optic Disk and Cup Segmentation Through Fuzzy Broad Learning System for Glaucoma Screening. IEEE Transactions on Industrial Informatics, 2021, 17, 2476-2487.	7.2	38
137	Segmentation of cellular patterns in confocal images of melanocytic lesions in vivo via a multiscale encoder-decoder network (MED-Net). Medical Image Analysis, 2021, 67, 101841.	7.0	20
138	A slice classification model-facilitated 3D encoder–decoder network for segmenting organs at risk in head and neck cancer. Journal of Radiation Research, 2021, 62, 94-103.	0.8	12
139	Automatic detection and segmentation of lumbar vertebrae from X-ray images for compression fracture evaluation. Computer Methods and Programs in Biomedicine, 2021, 200, 105833.	2.6	40
140	DRNet: Segmentation and localization of optic disc and Fovea from diabetic retinopathy image. Artificial Intelligence in Medicine, $2021,111,102001$.	3.8	58
141	IOSUDA: an unsupervised domain adaptation with input and output space alignment for joint optic disc and cup segmentation. Applied Intelligence, 2021, 51, 3880-3898.	3.3	14
142	Automatic segmentation of optic disc in retinal fundus images using semi-supervised deep learning. Multimedia Tools and Applications, 2021, 80, 3443-3468.	2.6	19
143	CABNet: Category Attention Block for Imbalanced Diabetic Retinopathy Grading. IEEE Transactions on Medical Imaging, 2021, 40, 143-153.	5 . 4	159
144	Chest disease radiography in twofold: using convolutional neural networks and transfer learning. Evolving Systems, 2021, 12, 567-579.	2.4	19
145	MES-Net: a new network for retinal image segmentation. Multimedia Tools and Applications, 2021, 80, 14767-14788.	2.6	11
146	Granular Multilabel Batch Active Learning With Pairwise Label Correlation. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2022, 52, 3079-3091.	5.9	14

#	Article	IF	CITATIONS
147	CAFR-CNN: coarse-to-fine adaptive faster R-CNN for cross-domain joint optic disc and cup segmentation. Applied Intelligence, 2021, 51, 5701-5725.	3.3	8
148	Deep Neural Architectures for Medical Image Semantic Segmentation: Review. IEEE Access, 2021, 9, 83002-83024.	2.6	53
149	MPG-Net: Multi-Prediction Guided Network for Segmentation of Retinal Layers in OCT Images. , 2021, , .		1
150	AF-Net: A Medical Image Segmentation Network Based on Attention Mechanism and Feature Fusion. Computers, Materials and Continua, 2021, 69, 1877-1891.	1.5	13
151	FFU-Net: Feature Fusion U-Net for Lesion Segmentation of Diabetic Retinopathy. BioMed Research International, 2021, 2021, 1-12.	0.9	23
152	Retinal Image Analysis for Glaucoma Detection Using Transfer Learning. Lecture Notes in Electrical Engineering, 2021, , 235-244.	0.3	3
153	Joint optic disc and cup segmentation based on densely connected depthwise separable convolution deep network. BMC Medical Imaging, 2021, 21, 14.	1.4	14
154	Automatic Diagnosis of Glaucoma on Color Fundus Images Using Adaptive Mask Deep Network. Lecture Notes in Computer Science, 2021, , 99-110.	1.0	5
155	Learn to Segment Retinal Lesions and Beyond. , 2021, , .		14
156	Artificial Intelligence and Glaucoma. Current Practices in Ophthalmology, 2021, , 75-89.	0.1	0
157	Progressive Adversarial Semantic Segmentation. , 2021, , .		1
158	Chicken Image Segmentation via Multi-Scale Attention-Based Deep Convolutional Neural Network. IEEE Access, 2021, 9, 61398-61407.	2.6	7
159	Unsupervised Domain Adaptation Based Image Synthesis and Feature Alignment for Joint Optic Disc and Cup Segmentation. IEEE Journal of Biomedical and Health Informatics, 2022, 26, 90-102.	3.9	23
160	Detection of glaucoma using retinal fundus images: A comprehensive review. Mathematical Biosciences and Engineering, 2021, 18, 2033-2076.	1.0	46
161	Utilizing Transfer Learning and a Customized Loss Function for Optic Disc Segmentation from Retinal Images. Lecture Notes in Computer Science, 2021, , 687-703.	1.0	1
162	SAT-Net: a side attention network for retinal image segmentation. Applied Intelligence, 2021, 51, 5146-5156.	3.3	24
163	Complementary Network for Accurate Amniotic Fluid Segmentation From Ultrasound Images. IEEE Access, 2021, 9, 108223-108235.	2.6	8
164	ALA-Net: Adaptive Lesion-Aware Attention Network for 3D Colorectal Tumor Segmentation. IEEE Transactions on Medical Imaging, 2021, 40, 3627-3640.	5.4	10

#	Article	IF	CITATIONS
165	An O-Shape Neural Network With Attention Modules to Detect Junctions in Biomedical Images Without Segmentation. IEEE Journal of Biomedical and Health Informatics, 2022, 26, 774-785.	3.9	7
166	Multi-modality Images Analysis: A Baseline for Glaucoma Grading via Deep Learning. Lecture Notes in Computer Science, 2021, , 139-147.	1.0	0
167	Adjacent Scale Fusion and Corneal Position Embedding for Corneal Ulcer Segmentation. Lecture Notes in Computer Science, 2021 , , $1-10$.	1.0	2
168	SLOAN: Scale-Adaptive Orientation Attention Network for Scene Text Recognition. IEEE Transactions on Image Processing, 2021, 30, 1687-1701.	6.0	11
169	Inter-Slice Context Residual Learning for 3D Medical Image Segmentation. IEEE Transactions on Medical Imaging, 2021, 40, 661-672.	5.4	66
170	Multi-Scale and Multi-Branch Convolutional Neural Network for Retinal Image Segmentation. Symmetry, 2021, 13, 365.	1.1	11
172	Improved optic disc and cup segmentation in Glaucomatic images using deep learning architecture. Multimedia Tools and Applications, 2021, 80, 30143-30163.	2.6	10
173	Pathological myopia classification with simultaneous lesion segmentation using deep learning. Computer Methods and Programs in Biomedicine, 2021, 199, 105920.	2.6	42
174	A Neural Network Based Optic Disc Segmentation. , 2021, , .		0
176	A multi-scale convolutional neural network with context for joint segmentation of optic disc and cup. Artificial Intelligence in Medicine, 2021, 113, 102035.	3.8	13
177	M-Net with Bidirectional ConvLSTM for Cup and Disc Segmentation in Fundus Images. , 2021, , .		4
178	A hierarchical deep learning approach with transparency and interpretability based on small samples for glaucoma diagnosis. Npj Digital Medicine, 2021, 4, 48.	5.7	19
179	Encoding-decoding Network With Pyramid Self-attention Module For Retinal Vessel Segmentation. International Journal of Automation and Computing, 0 , 1 .	4.5	11
180	Modeling and Enhancing Low-Quality Retinal Fundus Images. IEEE Transactions on Medical Imaging, 2021, 40, 996-1006.	5.4	71
181	Optic Disk and Fovea Localization by Using the Direction of Blood Vessels and Morphology Operation. , 2021, , .		0
182	SCRD-Net: A Deep Convolutional Neural Network Model for Glaucoma Detection in Retina Tomography. Complexity, 2021, 2021, 1-11.	0.9	3
183	Deep learning-based solvability of underdetermined inverse problems in medical imaging. Medical Image Analysis, 2021, 69, 101967.	7.0	19
184	A Decomposition-based Network for Non-uniform Illuminated Retinal Image Enhancement. , 2021, , .		1

#	Article	IF	CITATIONS
185	Automated segmentation of the optic disc from fundus images using an asymmetric deep learning network. Pattern Recognition, 2021, 112, 107810.	5.1	51
186	Automated segmentation of optic disc and optic cup for glaucoma assessment using improved UNET++ architecture. Biocybernetics and Biomedical Engineering, 2021, 41, 819-832.	3.3	32
187	SA-Net: A scale-attention network for medical image segmentation. PLoS ONE, 2021, 16, e0247388.	1.1	37
188	Automatic coronary artery segmentation algorithm based on deep learning and digital image processing. Applied Intelligence, 2021, 51, 8881-8895.	3.3	20
189	Applications of deep learning in fundus images: A review. Medical Image Analysis, 2021, 69, 101971.	7.0	175
190	Modified U-net with Different Attention Mechanisms for Acute Ischemic Stroke Segmentation using Non-Contrast CT., 2021,,.		1
191	SCS-Net: A Scale and Context Sensitive Network for Retinal Vessel Segmentation. Medical Image Analysis, 2021, 70, 102025.	7.0	111
192	Attention-Guided Network with Densely Connected Convolution for Skin Lesion Segmentation. Sensors, 2021, 21, 3462.	2.1	10
193	Joint optic disc and optic cup segmentation based on boundary prior and adversarial learning. International Journal of Computer Assisted Radiology and Surgery, 2021, 16, 905-914.	1.7	10
194	Skin Lesion Segmentation by U-Net with Adaptive Skip Connection and Structural Awareness. Applied Sciences (Switzerland), 2021, 11, 4528.	1.3	24
195	EffUnet-SpaGen: An Efficient and Spatial Generative Approach to Glaucoma Detection. Journal of Imaging, 2021, 7, 92.	1.7	8
196	Glaucoma detection using novel perceptron based convolutional multi-layer neural network classification. Multidimensional Systems and Signal Processing, 2021, 32, 1217-1235.	1.7	8
197	Pathological Myopia Image Recognition Strategy Based on Data Augmentation and Model Fusion. Journal of Healthcare Engineering, 2021, 2021, 1-15.	1.1	6
198	Medical image segmentation based on active fusion-transduction of multi-stream features. Knowledge-Based Systems, 2021, 220, 106950.	4.0	17
199	Artificial intelligence in tumor subregion analysis based on medical imaging: A review. Journal of Applied Clinical Medical Physics, 2021, 22, 10-26.	0.8	15
200	Automatic segmentation of TBM muck images via a deep-learning approach to estimate the size and shape of rock chips. Automation in Construction, 2021, 126, 103685.	4.8	27
201	Glaucoma screening using an attention-guided stereo ensemble network. Methods, 2022, 202, 14-21.	1.9	15
202	GA-UNet: UNet-based framework for segmentation of 2D and 3D medical images applicable on heterogeneous datasets. Neural Computing and Applications, 2021, 33, 14991-15025.	3.2	21

#	Article	IF	CITATIONS
203	Deep Learning on Airborne Radar Echograms for Tracing Snow Accumulation Layers of the Greenland Ice Sheet. Remote Sensing, 2021, 13, 2707.	1.8	5
204	Optic Disc and Optic Cup Segmentation for Glaucoma Detection from Blur Retinal Images Using Improved Mask-RCNN. International Journal of Optics, 2021, 2021, 1-12.	0.6	19
205	Unsupervised Domain Adaptation Based Image Synthesis and Synergistic Adversarial Learning for Optic Disc and Cup Segmentation. , 2021, , .		0
206	Fully automated segmentation of brain tumor from multiparametric MRI using 3D context deep supervised Uâ€Net. Medical Physics, 2021, 48, 4365-4374.	1.6	27
207	Screening Fundus Images to Extract Multiple Ocular Features: A Unified Modeling Approach., 2021,,.		4
208	Cross-attention multi-branch network for fundus diseases classification using SLO images. Medical Image Analysis, 2021, 71, 102031.	7.0	26
209	Simultaneous segmentation and classification of the retinal arteries and veins from color fundus images. Artificial Intelligence in Medicine, 2021, 118, 102116.	3.8	22
210	IBA-U-Net: Attentive BConvLSTM U-Net with Redesigned Inception for medical image segmentation. Computers in Biology and Medicine, 2021, 135, 104551.	3.9	20
211	PyDiNet: Pyramid Dilated Network for medical image segmentation. Neural Networks, 2021, 140, 274-281.	3.3	32
212	MD-UNET: Multi-input dilated U-shape neural network for segmentation of bladder cancer. Computational Biology and Chemistry, 2021, 93, 107510.	1.1	16
213	CLCU-Net: Cross-level connected U-shaped network with selective feature aggregation attention module for brain tumor segmentation. Computer Methods and Programs in Biomedicine, 2021, 207, 106154.	2.6	18
214	Fully Convolutional Network and Visual Saliency-Based Automatic Optic Disc Detection in Retinal Fundus Images. Journal of Healthcare Engineering, 2021, 2021, 1-11.	1.1	3
215	S-CCCapsule: Pneumonia detection in chest X-ray images using skip-connected convolutions and capsule neural network. Journal of Intelligent and Fuzzy Systems, 2021, 41, 757-781.	0.8	1
216	Deep Relation Transformer for Diagnosing Glaucoma With Optical Coherence Tomography and Visual Field Function. IEEE Transactions on Medical Imaging, 2021, 40, 2392-2402.	5.4	23
217	Enhanced glaucoma detection using ensemble based CNN and spatially based ellipse fitting curve model. Journal of Ambient Intelligence and Humanized Computing, 2023, 14, 3303-3314.	3.3	2
218	NENet: Nested EfficientNet and adversarial learning for joint optic disc and cup segmentation. Medical Image Analysis, 2021, 74, 102253.	7.0	24
219	Joint optic disc and cup segmentation based on multi-scale feature analysis and attention pyramid architecture for glaucoma screening. Neural Computing and Applications, 2023, 35, 16129-16142.	3.2	9
220	Optic disc segmentation by U-net and probability bubble in abnormal fundus images. Pattern Recognition, 2021, 117, 107971.	5.1	20

#	Article	IF	CITATIONS
221	GDCSeg-Net: general optic disc and cup segmentation network for multi-device fundus images. Biomedical Optics Express, 2021, 12, 6529.	1.5	12
222	A narrative review of glaucoma screening from fundus images. Annals of Eye Science, 0, 6, 27-27.	1.1	0
223	Towards better semantic consistency of 2D medical image segmentation. Journal of Visual Communication and Image Representation, 2021, 80, 103311.	1.7	3
224	Unsupervised Anomaly Detection for Glaucoma Diagnosis. Wireless Communications and Mobile Computing, 2021, 2021, 1-14.	0.8	2
225	Leveraging Regular Fundus Images for Training UWF Fundus Diagnosis Models via Adversarial Learning and Pseudo-Labeling. IEEE Transactions on Medical Imaging, 2021, 40, 2911-2925.	5.4	30
226	Deep level set learning for optic disc and cup segmentation. Neurocomputing, 2021, 464, 330-341.	3.5	8
227	Automated delineation of corneal layers on OCT images using a boundary-guided CNN. Pattern Recognition, 2021, 120, 108158.	5.1	12
228	Enhanced Detection of Glaucoma on Ensemble Convolutional Neural Network for Clinical Informatics. Computers, Materials and Continua, 2022, 70, 2563-2579.	1.5	17
229	A Gated Recurrent Network With Dual Classification Assistance for Smoke Semantic Segmentation. IEEE Transactions on Image Processing, 2021, 30, 4409-4422.	6.0	42
230	A Review on Glaucoma Disease Detection Using Computerized Techniques. IEEE Access, 2021, 9, 37311-37333.	2.6	33
231	Depth Mapping Hybrid Deep Learning Method for Optic Disc and Cup Segmentation on Stereoscopic Ocular Fundus. Lecture Notes in Computer Science, 2021, , 495-506.	1.0	1
232	The Use of U-Net Lite and Extreme Gradient Boost (XGB) for Glaucoma Detection. IEEE Access, 2021, 9, 47411-47424.	2.6	16
233	Multi-context Deep Network forÂAngle-Closure Glaucoma Screening inÂAnterior Segment OCT. Lecture Notes in Computer Science, 2018, , 356-363.	1.0	25
234	Glaucoma Detection Based on Deep Learning Network in Fundus Image. Advances in Computer Vision and Pattern Recognition, 2019, , 119-137.	0.9	21
235	Boundary and Entropy-Driven Adversarial Learning for Fundus Image Segmentation. Lecture Notes in Computer Science, 2019, , 102-110.	1.0	57
236	PM-Net: Pyramid Multi-label Network for Joint Optic Disc and Cup Segmentation. Lecture Notes in Computer Science, 2019, , 129-137.	1.0	19
237	Multi-index Optic Disc Quantification via MultiTask Ensemble Learning. Lecture Notes in Computer Science, 2019, , 21-29.	1.0	2
238	ET-Net: A Generic Edge-aTtention Guidance Network for Medical Image Segmentation. Lecture Notes in Computer Science, 2019, , 442-450.	1.0	115

#	ARTICLE	IF	CITATIONS
239	Evaluation of Retinal Image Quality Assessment Networks in Different Color-Spaces. Lecture Notes in Computer Science, 2019, , 48-56.	1.0	78
240	Attention Guided Network for Retinal Image Segmentation. Lecture Notes in Computer Science, 2019, , 797-805.	1.0	102
241	SkrGAN: Sketching-Rendering Unconditional Generative Adversarial Networks for Medical Image Synthesis. Lecture Notes in Computer Science, 2019, , 777-785.	1.0	31
242	CFEA: Collaborative Feature Ensembling Adaptation for Domain Adaptation in Unsupervised Optic Disc and Cup Segmentation. Lecture Notes in Computer Science, 2019, , 521-529.	1.0	18
243	EGDCL: An Adaptive Curriculum Learning Framework for Unbiased Glaucoma Diagnosis. Lecture Notes in Computer Science, 2020, , 190-205.	1.0	8
244	Regression of Instance Boundary by Aggregated CNN and GCN. Lecture Notes in Computer Science, 2020, , 190-207.	1.0	14
245	CNN-GCN Aggregation Enabled Boundary Regression for Biomedical Image Segmentation. Lecture Notes in Computer Science, 2020, , 352-362.	1.0	26
246	Retinal Image Segmentation with a Structure-Texture Demixing Network. Lecture Notes in Computer Science, 2020, , 765-774.	1.0	7
247	Two-Stage Method for Segmentation of the Myocardial Scars and Edema on Multi-sequence Cardiac Magnetic Resonance. Lecture Notes in Computer Science, 2020, , 26-36.	1.0	4
250	DC-Gnet for detection of glaucoma in retinal fundus imaging. Machine Vision and Applications, 2020, $31,1.$	1.7	109
251	WGAN domain adaptation for the joint optic disc-and-cup segmentation in fundus images. International Journal of Computer Assisted Radiology and Surgery, 2020, 15, 1205-1213.	1.7	22
252	A Stacked Generalization U-shape network based on zoom strategy and its application in biomedical image segmentation. Computer Methods and Programs in Biomedicine, 2020, 197, 105678.	2.6	22
253	Towards multi-center glaucoma OCT image screening with semi-supervised joint structure and function multi-task learning. Medical Image Analysis, 2020, 63, 101695.	7.0	47
255	Automation of Spine Curve Assessment in Frontal Radiographs Using Deep Learning of Vertebral-Tilt Vector. IEEE Access, 2020, 8, 84618-84630.	2.6	21
256	A Review of Glaucoma Detection from Digital Fundus Images using Machine Learning Techniques. , 2020, , .		7
257	Inf-Net: Automatic COVID-19 Lung Infection Segmentation From CT Images. IEEE Transactions on Medical Imaging, 2020, 39, 2626-2637.	5.4	763
258	Microaneurysms segmentation with a U-Net based on recurrent residual convolutional neural network. Journal of Medical Imaging, 2019, 6, 1.	0.8	39
259	Retinal vessel segmentation using dense U-net with multiscale inputs. Journal of Medical Imaging, 2019, 6, 1.	0.8	21

#	Article	IF	CITATIONS
260	Nul-Go: Recursive Non-Local Encoder-Decoder Network for Retinal Image Non-Uniform Illumination Removal. , 2020, , .		8
261	Automated fundus image quality assessment and segmentation of optic disc using convolutional neural networks. International Journal of Electrical and Computer Engineering, 2020, 10, 816.	0.5	5
262	Region-segmentation strategy for Bruch's membrane opening detection in spectral domain optical coherence tomography images. Biomedical Optics Express, 2019, 10, 526.	1.5	7
263	Fast esophageal layer segmentation in OCT images of guinea pigs based on sparse Bayesian classification and graph search. Biomedical Optics Express, 2019, 10, 978.	1.5	11
264	Graph convolutional network based optic disc and cup segmentation on fundus images. Biomedical Optics Express, 2020, 11, 3043.	1.5	14
265	Automatic optic disc detection in colour fundus images by means of multispectral analysis and information content. PeerJ, 2019, 7, e7119.	0.9	8
266	Al and Glaucoma. , 2021, , 113-125.		0
267	MIA-UNet: Multi-Scale Iterative Aggregation U-Network for Retinal Vessel Segmentation. CMES - Computer Modeling in Engineering and Sciences, 2021, 129, 805-828.	0.8	6
268	Deep level set method for optic disc and cup segmentation on fundus images. Biomedical Optics Express, 2021, 12, 6969.	1.5	7
269	Fundus image segmentation via hierarchical feature learning. Computers in Biology and Medicine, 2021, 138, 104928.	3.9	13
270	Exploring Multi-scale Deep Feature Fusion for Object Detection. Lecture Notes in Computer Science, 2018, , 40-52.	1.0	0
271	Automatic Segmentation of Cortex andÂNucleus in Anterior Segment OCTÂlmages. Lecture Notes in Computer Science, 2018, , 269-276.	1.0	4
274	Automated segmentation of the optic disc using the deep learning. , 2019, , .		5
276	BG-CNN., 2020,,.		2
277	PRNet: polar regression network for medical image segmentation. Visual Computer, 2023, 39, 87-98.	2.5	3
278	CADA: Multi-scale Collaborative Adversarial Domain Adaptation for unsupervised optic disc and cup segmentation. Neurocomputing, 2022, 469, 209-220.	3.5	8
279	Diagnosing glaucoma on imbalanced data with self-ensemble dual-curriculum learning. Medical Image Analysis, 2022, 75, 102295.	7.0	11
280	Enhancing Tiny Tissues Segmentation via Self-Distillation. , 2020, , .		2

#	ARTICLE	IF	CITATIONS
281	A Diversified Supervised based U-shape Colorectal Lesion Segmentor with Meaningful Feature Supplement and Multi-Level Residual Attention Mechanism. , 2020, , .		0
282	An Efficient Weakly-Supervised Learning Method for Optic Disc Segmentation. , 2020, , .		4
283	Attention-based Saliency Hashing for Ophthalmic Image Retrieval. , 2020, , .		11
284	Nuclei Cell Semantic Segmentation Using Deep Learning Unet. , 2020, , .		3
285	EE-Net: An edge-enhanced deep learning network for jointly identifying corneal micro-layers from optical coherence tomography. Biomedical Signal Processing and Control, 2022, 71, 103213.	3.5	6
286	Glaucoma Assessment from Fundus Images with Fundus to OCT Feature Space Mapping. ACM Transactions on Computing for Healthcare, 2022, 3, 1-15.	3.3	3
287	Graph-Based Region and Boundary Aggregation for Biomedical Image Segmentation. IEEE Transactions on Medical Imaging, 2022, 41, 690-701.	5.4	30
288	Encoding Structure-Texture Relation with P-Net for Anomaly Detection in Retinal Images. Lecture Notes in Computer Science, 2020, , 360-377.	1.0	55
289	Multi-level Light U-Net and Atrous Spatial Pyramid Pooling for Optic Disc Segmentation on Fundus Image. Lecture Notes in Computer Science, 2020, , 104-113.	1.0	1
290	Joint Optic Disc and Optic Cup Segmentation Based on New Skip-Link Attention Guidance Network and Polar Transformation. Lecture Notes in Computer Science, 2020, , 399-410.	1.0	1
291	H-OCS: A Hybrid Optic Cup Segmentation of Retinal Images. Lecture Notes in Computer Science, 2021, , 123-134.	1.0	0
292	Every Annotation Counts: Multi-label Deep Supervision for Medical Image Segmentation. , 2021, , .		32
293	Learning Calibrated Medical Image Segmentation via Multi-rater Agreement Modeling. , 2021, , .		62
294	A Novel Context Aware Joint Segmentation and Classification Framework for Glaucoma Detection. Computational and Mathematical Methods in Medicine, 2021, 2021, 1-19.	0.7	13
295	ECSD-Net: A joint optic disc and cup segmentation and glaucoma classification network based on unsupervised domain adaptation. Computer Methods and Programs in Biomedicine, 2022, 213, 106530.	2.6	8
296	MVDI25K: A large-scale dataset of microscopic vaginal discharge images. BenchCouncil Transactions on Benchmarks, Standards and Evaluations, 2021, 1, 100008.	1.5	2
297	Stable Deep Neural Network Architectures for Mitochondria Segmentation on Electron Microscopy Volumes. Neuroinformatics, 2022, 20, 437-450.	1.5	13
298	Effective Tensor Based PCA Machine Learning Techniques for Glaucoma Detection and ASPP – EffUnet Classification. Lecture Notes in Computer Science, 2021, , 181-192.	1.0	2

#	Article	IF	CITATIONS
299	Minimizing-Entropy and Fourier Consistency Network for Domain Adaptation on Optic Disc and Cup Segmentation. IEEE Access, 2021, 9, 153985-153994.	2.6	2
300	Automatic Diagnosis of Different Grades of Diabetic Retinopathy and Diabetic Macular Edema Using 2-D-FBSE-FAWT. IEEE Transactions on Instrumentation and Measurement, 2022, 71, 1-9.	2.4	27
301	Joint DR-DME classification using deep learning-CNN based modified grey-wolf optimizer with variable weights. Biomedical Signal Processing and Control, 2022, 73, 103439.	3.5	9
302	Automatic Counting of Follicles in Neonatal Mice Ovarian Section Images by Using Deeplabv3+. , 2020, , .		0
303	An Exploratory Study for Glaucoma Detection using Densely Connected Neural Networks. , 2020, , .		8
304	AFT-Net: Active Fusion-Transduction for Multi-stream Medical Image Segmentation. , 2020, , .		2
305	Research on Feature Extraction Method of Fundus Image Based on Deep Learning. , 2020, , .		1
306	Full Convolutional Neural Network with Multi-Scale Residual Model for Optic Cup and Disc Segmentation. Journal of Medical Imaging and Health Informatics, 2020, 10, 2733-2738.	0.2	2
307	A Robust Glaucoma Screening Method for Fundus Images Using Deep Learning Technique. , 2020, , .		5
308	Data-Driven Deep Supervision for Medical Image Segmentation. IEEE Transactions on Medical Imaging, 2022, 41, 1560-1574.	5.4	19
309	Automatic early glaucoma detection by extracting parapapillary atrophy and optic disc from fundus image using SVM. Multimedia Tools and Applications, 2022, 81, 13513-13535.	2.6	4
310	Cascaded Triplanar Autoencoder M-Net for Fully Automatic Segmentation of Left Ventricle Myocardial Scar From Three-Dimensional Late Gadolinium-Enhanced MR Images. IEEE Journal of Biomedical and Health Informatics, 2022, 26, 2582-2593.	3.9	13
311	Medical image segmentation using deep learning: A survey. IET Image Processing, 2022, 16, 1243-1267.	1.4	166
312	Segmentation of the optic disc and optic cup using a machine learning-based biregional contour evolution model for the cup-to-disc ratio. Multimedia Tools and Applications, 2022, 81, 36217-36238.	2.6	2
313	Multiscale U-Net with Spatial Positional Attention for Retinal Vessel Segmentation. Journal of Healthcare Engineering, 2022, 2022, 1-10.	1.1	8
314	Challenges for ocular disease identification in the era of artificial intelligence. Neural Computing and Applications, 2023, 35, 22887-22909.	3.2	3
315	A holistic overview of deep learning approach in medical imaging. Multimedia Systems, 2022, 28, 881-914.	3.0	37
316	Deep learning assisted convolutional auto-encoders framework for glaucoma detection and anterior visual pathway recognition from retinal fundus images. Journal of Ambient Intelligence and Humanized Computing, 0, , 1.	3.3	7

#	ARTICLE	IF	CITATIONS
317	FastSurferVINN: Building resolution-independence into deep learning segmentation methodsâ€"A solution for HighRes brain MRI. NeuroImage, 2022, 251, 118933.	2.1	20
318	Generating future fundus images for early age-related macular degeneration based on generative adversarial networks. Computer Methods and Programs in Biomedicine, 2022, 216, 106648.	2.6	14
319	A recurrent skip deep learning network for accurate image segmentation. Biomedical Signal Processing and Control, 2022, 74, 103533.	3.5	4
320	Unified medical image segmentation by learning from uncertainty in an end-to-end manner. Knowledge-Based Systems, 2022, 241, 108215.	4.0	54
321	Performances of Machine Learning in Detecting Glaucoma Using Fundus and Retinal Optical Coherence Tomography Images: A Meta-Analysis. American Journal of Ophthalmology, 2022, 237, 1-12.	1.7	17
322	A Novel Hybrid Approach Based on Deep CNN to Detect Glaucoma Using Fundus Imaging. Electronics (Switzerland), 2022, 11, 26.	1.8	44
323	Understanding the Research Landscape of Deep Learning in Biomedical Science: Scientometric Analysis. Journal of Medical Internet Research, 2022, 24, e28114.	2.1	3
324	GNAS-U ² Net: A New Optic Cup and Optic Disc Segmentation Architecture With Genetic Neural Architecture Search. IEEE Signal Processing Letters, 2022, 29, 697-701.	2.1	11
325	Cross-Mix Monitoring for Medical Image Segmentation With Limited Supervision. IEEE Transactions on Multimedia, 2023, 25, 1700-1712.	5.2	4
326	An Efficient Hierarchical Optic Disc and Cup Segmentation Network Combined with Multi-task Learning and Adversarial Learning. Journal of Digital Imaging, 2022, 35, 638-653.	1.6	3
327	Machine Learning and Deep Learning Techniques for Optic Disc and Cup Segmentation – A Review. Clinical Ophthalmology, 2022, Volume 16, 747-764.	0.9	9
328	LAEDNet: A Lightweight Attention Encoder–Decoder Network for ultrasound medical image segmentation. Computers and Electrical Engineering, 2022, 99, 107777.	3.0	23
329	Weak label based Bayesian U-Net for optic disc segmentation in fundus images. Artificial Intelligence in Medicine, 2022, 126, 102261.	3.8	27
330	Anterior segment optical coherence tomography (AS-OCT) image analysis methods and applications: A systematic review. Computers in Biology and Medicine, 2022, 146, 105471.	3.9	7
331	Polar transform network for prostate ultrasound segmentation with uncertainty estimation. Medical Image Analysis, 2022, 78, 102418.	7.0	13
332	Pixel-wise triplet learning for enhancing boundary discrimination in medical image segmentation. Knowledge-Based Systems, 2022, 243, 108424.	4.0	7
333	BFENet: A two-stream interaction CNN method for multi-label ophthalmic diseases classification with bilateral fundus images. Computer Methods and Programs in Biomedicine, 2022, 219, 106739.	2.6	12
334	CCT-Net: Category-Invariant Cross-Domain Transfer for Medical Single-to-Multiple Disease Diagnosis. , 2021, , .		3

#	Article	IF	Citations
335	Ultrasound Thyroid Nodule Segmentation Based On Multi-branch and Color Space Volume., 2021,,.		O
336	Surgical instrument segmentation based on multi-scale and multi-level feature network., 2021, 2021, 2672-2675.		1
337	Co-optimization Learning Network for MRI Segmentation of Ischemic Penumbra Tissues. Frontiers in Neuroinformatics, 2021, 15, 782262.	1.3	1
338	Disc damage likelihood scale recognition for Glaucoma detection. Journal of Physics: Conference Series, 2021, 2114, 012005.	0.3	0
339	AAU-Net: Attention-Based Asymmetric U-Net for Subject-Sensitive Hashing of Remote Sensing Images. Remote Sensing, 2021, 13, 5109.	1.8	7
340	Multi-Feature Extraction with Ensemble Network for Tracing Chronic Retinal Disorders. , 2021, , .		3
342	An Exploration on Deep Learning Approaches for the Detection of Glaucoma. , 2021, , .		3
343	Compact Scattering Features for Glaucoma Detection. Journal of Physics: Conference Series, 2022, 2253, 012031.	0.3	1
344	Joint optic disk and cup segmentation for glaucoma screening using a region-based deep learning network. Eye, 2022, , .	1.1	3
345	AFENet: Attention Fusion Enhancement Network for Optic Disc Segmentation of Premature Infants. Frontiers in Neuroscience, 2022, 16, 836327.	1.4	3
346	MSFF-Net: Multi-Scale Feature Fusion Network for Gastrointestinal Vessel Segmentation. Journal of Medical and Biological Engineering, 0 , 1 .	1.0	1
347	A novel diabetic retinopathy grading using modified deep neural network with segmentation of blood vessels and retinal abnormalities. Multimedia Tools and Applications, 2022, 81, 39605-39633.	2.6	5
348	Identifying Those at Risk of Glaucoma: A Deep Learning Approach for Optic Disc and Cup Segmentation and Their Boundary Analysis. Diagnostics, 2022, 12, 1063.	1.3	9
349	LLRHNet: Multiple Lesions Segmentation Using Local-Long Range Features. Frontiers in Neuroinformatics, 2022, 16, .	1.3	5
350	PIPE-Net: A pyramidal-input-parallel-encoding network for the segmentation of corneal layer interfaces in OCT images. Computers in Biology and Medicine, 2022, 147, 105595.	3.9	7
351	Effective multiscale deep learning model for COVID19 segmentation tasks: A further step towards helping radiologist. Neurocomputing, 2022, 499, 63-80.	3.5	0
352	End-to-end multi-task learning approaches for the joint epiretinal membrane segmentation and screening in OCT images. Computerized Medical Imaging and Graphics, 2022, 98, 102068.	3.5	10
353	REU-Net: Region-enhanced nuclei segmentation network. Computers in Biology and Medicine, 2022, 146, 105546.	3.9	10

#	Article	IF	Citations
354	High/Low Quality Style Transfer for Mutual Conversion of OCT Images Using Contrastive Unpaired Translation Generative Adversarial Networks. Lecture Notes in Computer Science, 2022, , 210-220.	1.0	1
355	Progressive Multiscale Consistent Network for Multiclass Fundus Lesion Segmentation. IEEE Transactions on Medical Imaging, 2022, 41, 3146-3157.	5.4	10
356	A shape-guided deep residual network for automated CT lung segmentation. Knowledge-Based Systems, 2022, 250, 108981.	4.0	7
357	A Multi-Scale Densely Connected Convolutional Neural Network for Automated Thyroid Nodule Classification. Frontiers in Neuroscience, 2022, 16, .	1.4	1
358	A lightweight deep learning model for automatic segmentation and analysis of ophthalmic images. Scientific Reports, 2022, 12, .	1.6	6
359	Deep sparse autoencoder integrated with threeâ€stage framework for glaucoma diagnosis. International Journal of Intelligent Systems, 2022, 37, 7944-7967.	3.3	2
360	2D–3D cascade network for glioma segmentation in multisequence MRI images using multiscale information. Computer Methods and Programs in Biomedicine, 2022, 221, 106894.	2.6	2
361	Intuitionistic Fuzzy-Based Three-Way Label Enhancement for Multi-Label Classification. Mathematics, 2022, 10, 1847.	1.1	1
362	O-Net: A Novel Framework With Deep Fusion of CNN and Transformer for Simultaneous Segmentation and Classification. Frontiers in Neuroscience, 2022, 16, .	1.4	14
363	MTCLF: A multitask curriculum learning framework for unbiased glaucoma screenings. Computer Methods and Programs in Biomedicine, 2022, 221, 106910.	2.6	0
364	Graph deep network for optic disc and optic cup segmentation for glaucoma disease using retinal imaging. Physical and Engineering Sciences in Medicine, 2022, 45, 847-858.	1.3	3
365	Particle Swarm Optimization-Based Approach for Optic Disc Segmentation. Entropy, 2022, 24, 796.	1.1	3
366	LGMSU-Net: Local Features, Global Features, and Multi-Scale Features Fused the U-Shaped Network for Brain Tumor Segmentation. Electronics (Switzerland), 2022, 11, 1911.	1.8	2
367	SBDF-Net: A versatile dual-branch fusion network for medical image segmentation. Biomedical Signal Processing and Control, 2022, 78, 103928.	3.5	2
368	Multi-Scale U-Net Via Joint Spatial Domains for Rectal Image. SSRN Electronic Journal, 0, , .	0.4	0
369	RFormer: Transformer-Based Generative Adversarial Network for Real Fundus Image Restoration on a New Clinical Benchmark. IEEE Journal of Biomedical and Health Informatics, 2022, 26, 4645-4655.	3.9	24
370	Contrastive and Selective Hidden Embeddings for Medical Image Segmentation. IEEE Transactions on Medical Imaging, 2022, 41, 3398-3410.	5.4	4
371	Multi-Label Out-of-Distribution Detection Via Exploiting Sparsity and Co-Occurrence of Labels. SSRN Electronic Journal, 0, , .	0.4	0

#	Article	IF	CITATIONS
372	Computerized Framework Used to Detect Glaucoma: A Review., 2022,,.		0
373	Systematic Bibliometric and Visualized Analysis of Research Hotspots and Trends on the Application of Artificial Intelligence in Ophthalmic Disease Diagnosis. Frontiers in Pharmacology, 0, 13, .	1.6	4
374	Which Color Channel Is Better for Diagnosing Retinal Diseases Automatically in Color Fundus Photographs?. Life, 2022, 12, 973.	1.1	4
375	TiM-Net: Transformer in M-Net for Retinal Vessel Segmentation. Journal of Healthcare Engineering, 2022, 2022, 1-17.	1.1	4
376	Retinal Glaucoma Public Datasets: What Do We Have and What Is Missing?. Journal of Clinical Medicine, 2022, 11, 3850.	1.0	4
378	Artificial Intelligence-based computer-aided diagnosis of glaucoma using retinal fundus images. Expert Systems With Applications, 2022, 207, 117968.	4.4	20
379	A CNN-Transformer Hybrid Network for Joint Optic Cup and Optic Disc Segmentation in Fundus Images. , 2022, , .		2
380	Practical Application of Artificial Intelligence Technology in Glaucoma Diagnosis. Journal of Ophthalmology, 2022, 2022, 1-12.	0.6	1
381	Multi-task deep learning for glaucoma detection from color fundus images. Scientific Reports, 2022, 12, .	1.6	11
382	C-Net: Cascaded convolutional neural network with global guidance and refinement residuals for breast ultrasound images segmentation. Computer Methods and Programs in Biomedicine, 2022, 225, 107086.	2.6	23
383	IterNet++: An improved model for retinal image segmentation by curvelet enhancing, guided filtering, offline hardâ€sample mining, and testâ€time augmenting. IET Image Processing, 2022, 16, 3617-3633.	1.4	4
384	Detection of infestation by striped stemâ€borer (Chilo suppressalis) in rice based on hyperspectral imaging. Journal of Food Process Engineering, 2022, 45, .	1.5	3
385	Deep learning-based classification of the anterior chamber angle in glaucoma gonioscopy. Biomedical Optics Express, 2022, 13, 4668.	1.5	5
386	Deep Learning and Ensemble Method for Optic Disc and Cup Segmentation. , 2022, , .		0
387	Selective label enhancement for multi-label classification based on three-way decisions. International Journal of Approximate Reasoning, 2022, 150, 172-187.	1.9	9
388	Canal-Net for automatic and robust 3D segmentation of mandibular canals in CBCT images using a continuity-aware contextual network. Scientific Reports, 2022, 12, .	1.6	12
389	A review on the use of deep learning for medical images segmentation. Neurocomputing, 2022, 506, 311-335.	3.5	30
390	GFNet: Automatic segmentation of COVID-19 lung infection regions using CT images based on boundary features. Pattern Recognition, 2022, 132, 108963.	5.1	18

#	Article	IF	CITATIONS
391	MBDSNet: Automatic segmentation of kidney ultrasound images using a multi-branch and deep supervision network., 2022, 130, 103742.		2
392	Multi-label out-of-distribution detection via exploiting sparsity and co-occurrence of labels. Image and Vision Computing, 2022, 126, 104548.	2.7	5
393	Far wall plaque segmentation and area measurement in common and internal carotid artery ultrasound using U-series architectures: An unseen Artificial Intelligence paradigm for stroke risk assessment. Computers in Biology and Medicine, 2022, 149, 106017.	3.9	15
394	Joint optic disc and cup segmentation using feature fusion and attention. Computers in Biology and Medicine, 2022, 150, 106094.	3.9	5
395	Asymmetric U-shaped network with hybrid attention mechanism for kidney ultrasound images segmentation. Expert Systems With Applications, 2023, 212, 118847.	4.4	8
396	AADG: Automatic Augmentation for Domain Generalization on Retinal Image Segmentation. IEEE Transactions on Medical Imaging, 2022, 41, 3699-3711.	5.4	15
397	Dual Consistency Enabled Weakly and Semi-Supervised Optic Disc and Cup Segmentation With Dual Adaptive Graph Convolutional Networks. IEEE Transactions on Medical Imaging, 2023, 42, 416-429.	5.4	4
398	GARDNet: Robust Multi-view Network forÂGlaucoma Classification inÂColor Fundus Images. Lecture Notes in Computer Science, 2022, , 152-161.	1.0	3
399	Feature Modulating Two-Stream Deep Convolutional Neural Network forÂGlaucoma Detection inÂFundus Images. Communications in Computer and Information Science, 2022, , 171-180.	0.4	3
400	MIA-Net: An Improved U-Net for Ammunition Segmentation. Lecture Notes in Computer Science, 2022, , 459-467.	1.0	0
401	Visual Attention-Based Optic Disc Detection System Using Machine Learning Algorithms. Lecture Notes in Networks and Systems, 2022, , 317-326.	0.5	1
402	Shape-Aware Weakly/Semi-Supervised Optic Disc andÂCup Segmentation withÂRegional/Marginal Consistency. Lecture Notes in Computer Science, 2022, , 524-534.	1.0	3
403	A Multilevel Remote Relational Modeling Network for Accurate Segmentation of Fundus Blood Vessels. IEEE Transactions on Instrumentation and Measurement, 2022, 71, 1-14.	2.4	5
404	Denoising forÂRelaxing: Unsupervised Domain Adaptive Fundus Image Segmentation Without Source Data. Lecture Notes in Computer Science, 2022, , 214-224.	1.0	9
405	MS-Net: A CNN Architecture forÂAgriculture Pattern Segmentation inÂAerial Images. Communications in Computer and Information Science, 2022, , 489-500.	0.4	1
406	SeATrans: Learning Segmentation-Assisted Diagnosis Model via Transformer. Lecture Notes in Computer Science, 2022, , 677-687.	1.0	3
407	Towards Semi-Supervised Segmentation of Retinal Fundus Images via Self-Training. , 2022, , .		1
408	Retinal Fundus Image Segmentation Based on Channel-Attention Guided Network. , 2022, , .		1

#	Article	IF	Citations
409	Multiple Preprocessing Hybrid Level Set Model for Optic Disc Segmentation in Fundus Images. Sensors, 2022, 22, 6899.	2.1	2
410	A survey on recent developments in diabetic retinopathy detection through integration of deep learning. Multimedia Tools and Applications, 2023, 82, 17321-17351.	2.6	8
411	Deep learning approaches based improved light weight U-Net with attention module for optic disc segmentation. Physical and Engineering Sciences in Medicine, 2022, 45, 1111-1122.	1.3	2
412	RMSDSCâ€Net: A robust multiscale feature extraction with depthwise separable convolution network for optic disc and cup segmentation. International Journal of Intelligent Systems, 2022, 37, 11482-11505.	3.3	4
414	CSM-Net: Automatic joint segmentation of intima-media complex and lumen in carotid artery ultrasound images. Computers in Biology and Medicine, 2022, 150, 106119.	3.9	11
415	N-Net: A novel dense fully convolutional neural network for thyroid nodule segmentation. Frontiers in Neuroscience, 0, 16 , .	1.4	7
416	Simplified U-Net as a deep learning intelligent medical assistive tool in glaucoma detection. Evolutionary Intelligence, 0, , .	2.3	3
417	H-Net: A dual-decoder enhanced FCNN for automated biomedical image diagnosis. Information Sciences, 2022, 613, 575-590.	4.0	9
418	FBCU-Net: A fine-grained context modeling network using boundary semantic features for medical image segmentation. Computers in Biology and Medicine, 2022, 150, 106161.	3.9	4
419	MLRD-Net: 3D multiscale local cross-channel residual denoising network for MRI-based brain tumor segmentation. Medical and Biological Engineering and Computing, 2022, 60, 3377-3395.	1.6	2
420	SER-UNet: A Network for Gastrointestinal Image Segmentation. , 2022, , .		4
421	Synthesizing realistic high-resolution retina image by style-based generative adversarial network and its utilization. Scientific Reports, 2022, 12, .	1.6	6
422	Multiresolution Mutual Assistance Network for Cardiac Magnetic Resonance Images Segmentation. Journal of Healthcare Engineering, 2022, 2022, 1-10.	1.1	1
423	Glaucoma detection and classification using modified level set segmentation and pattern classification neural network. Multimedia Tools and Applications, 2023, 82, 15797-15815.	2.6	3
424	Recent trends and advances in fundus image analysis: A review. Computers in Biology and Medicine, 2022, 151, 106277.	3.9	24
425	DCNet: Diversity convolutional network for ventricle segmentation on short-axis cardiac magnetic resonance images. Knowledge-Based Systems, 2022, 258, 110033.	4.0	6
426	A Super-resolution Guided Network for Improving Automated Thyroid Nodule Segmentation. Computer Methods and Programs in Biomedicine, 2022, 227, 107186.	2.6	12
427	Leaf vein segmentation with self-supervision. Computers and Electronics in Agriculture, 2022, 203, 107352.	3.7	5

#	Article	IF	CITATIONS
428	A Conv-Transformer network for heart rate estimation using ballistocardiographic signals. Biomedical Signal Processing and Control, 2023, 80, 104302.	3.5	6
429	Automated Optic Disc and Cup Segmentation for Glaucoma Detection from Fundus Images Using the Detectron2's Mask R-CNN., 2022,,.		2
430	LAC-GAN: Lesion attention conditional GAN for Ultra-widefield image synthesis. Neural Networks, 2023, 158, 89-98.	3.3	5
431	An End-to-End Real-Time Lightweight Network for the Joint Segmentation of Optic Disc and Optic Cup on Fundus Images. Mathematics, 2022, 10, 4288.	1.1	0
432	Asynchronous feature regularization and cross-modal distillation for OCT based glaucoma diagnosis. Computers in Biology and Medicine, 2022, , 106283.	3.9	0
433	CDRNet: accurate cup-to-disc ratio measurement with tight bounding box supervision in fundus photography using deep learning. Multimedia Tools and Applications, 0, , .	2.6	0
434	Unsupervised Domain Adaptation with Shape Constraint and Triple Attention for Joint Optic Disc and Cup Segmentation. Sensors, 2022, 22, 8748.	2.1	0
435	Glaucoma Detection with Retinal Fundus Images Using Segmentation and Classification. , 2022, 19, 563-580.		12
436	Part Affinity Fields and CoordConv for Detecting Landmarks of Lumbar Vertebrae and Sacrum in X-ray Images. Sensors, 2022, 22, 8628.	2.1	3
437	An Improved Disc Segmentation Based on U-Net Architecture for Glaucoma Diagnosis. International Journal of Ambient Computing and Intelligence, 2022, 13, 1-18.	0.8	0
438	HRU-Net: A Transfer Learning Method for Carotid Artery Plaque Segmentation in Ultrasound Images. Diagnostics, 2022, 12, 2852.	1.3	1
439	SGC-ARANet: scale-wise global contextual axile reverse attention network for automatic brain tumor segmentation. Applied Intelligence, 2023, 53, 15407-15423.	3.3	1
440	RetiFluidNet: A Self-Adaptive and Multi-Attention Deep Convolutional Network for Retinal OCT Fluid Segmentation. IEEE Transactions on Medical Imaging, 2023, 42, 1413-1423.	5.4	5
441	SPNet: A novel deep neural network for retinal vessel segmentation based on shared decoder and pyramid-like loss. Neurocomputing, 2023, 523, 199-212.	3.5	4
442	BCR-UNet: Bi-directional ConvLSTM residual U-Net for retinal blood vessel segmentation. Frontiers in Public Health, 0, 10, .	1.3	5
443	Screening Retinal Images and Extraction of the Retinal Blood Vessel for Identifying Diseases and Classification of Arteries and Veins by using Deep Learning. Recent Advances in Electrical and Electronic Engineering, 2022, 16 , .	0.2	0
444	MTNet: A combined diagnosis algorithm of vessel segmentation and diabetic retinopathy for retinal images. PLoS ONE, 2022, 17, e0278126.	1.1	5
445	A Data-Driven System Based on Deep Learning for Diagnosis Fetal Cavum Septum Pellucidum in Ultrasound Images. Mathematics, 2022, 10, 4612.	1.1	O

#	Article	IF	Citations
446	RSAP-Net: joint optic disc and cup segmentation with a residual spatial attention path module and MSRCR-PT pre-processing algorithm. BMC Bioinformatics, 2022, 23, .	1.2	2
447	A Systematic Review on Diabetic Retinopathy Detection Using Deep Learning Techniques. Archives of Computational Methods in Engineering, 2023, 30, 2211-2256.	6.0	6
448	Convolutional autoencoder joint boundary and mask adversarial learning for fundus image segmentation. Frontiers in Human Neuroscience, 0, 16 , .	1.0	0
449	Lens structure segmentation from AS-OCT images via shape-based learning. Computer Methods and Programs in Biomedicine, 2023, 230, 107322.	2.6	O
450	Retinal Nerve Fiber Layer Analysis Using Deep Learning to Improve Glaucoma Detection in Eye Disease Assessment. Applied Sciences (Switzerland), 2023, 13, 37.	1.3	6
451	FedMix: Mixed Supervised Federated Learning for Medical Image Segmentation. IEEE Transactions on Medical Imaging, 2023, 42, 1955-1968.	5.4	9
452	UNet Deep Learning Architecture for Segmentation of Vascular and Non-Vascular Images: A Microscopic Look at UNet Components Buffered With Pruning, Explainable Artificial Intelligence, and Bias. IEEE Access, 2023, 11 , 595-645.	2.6	15
453	Segmentation of Clinical Target Volume From CT Images for Cervical Cancer Using Deep Learning. Technology in Cancer Research and Treatment, 2023, 22, 153303382211391.	0.8	2
454	Difference-of-Gaussian generative adversarial network for segmenting breast arterial calcifications in mammograms. Expert Systems With Applications, 2023, 217, 119506.	4.4	3
455	AGIM-net based subject-sensitive hashing algorithm for integrity authentication of HRRS images. Geocarto International, 2023, 38, .	1.7	2
456	Discriminative kernel convolution network for multi-label ophthalmic disease detection on imbalanced fundus image dataset. Computers in Biology and Medicine, 2023, 153, 106519.	3.9	8
457	Orientation and Context Entangled Network for Retinal Vessel Segmentation. Expert Systems With Applications, 2023, 217, 119443.	4.4	8
458	A Survey of Medical Image Processing and its Applications. , 2022, , .		2
459	A Novel Dual-supervised Convolutional Network for Retinal Vessel Segmentation. , 2022, , .		1
460	Polarformer: Optic Disc and Cup Segmentation Using a Hybrid CNN-Transformer and Polar Transformation. Applied Sciences (Switzerland), 2023, 13, 541.	1.3	1
461	Artificial Intelligence System for Classification of Diabetic Retinopathy. , 2022, , .		0
462	Dual Gradient Alignment for Unsupervised Domain Adaptation on Optic Disc and Cup Segmentation. , 2022, , .		1
463	Contour Offset Map: A New Component Designed for Smooth and Robust Optic Disc/Cup Contour Detection. , 2022, , .		0

#	Article	IF	CITATIONS
464	MDANet: Multi-Direction Attention Network for Curvilinear Structure Segmentation of Biomedical Images. , 2022, , .		1
465	Joint Segmentation of Intima-Media Complex and Lumen in Carotid Ultrasound Images. , 2022, , .		1
466	SGU-Net: Shape-Guided Ultralight Network for Abdominal Image Segmentation. IEEE Journal of Biomedical and Health Informatics, 2023, 27, 1431-1442.	3.9	6
467	CUSS-Net: A Cascaded Unsupervised-Based Strategy and Supervised Network for Biomedical Image Diagnosis and Segmentation. IEEE Journal of Biomedical and Health Informatics, 2023, 27, 2444-2455.	3.9	8
468	LogTrans: Providing Efficient Local-Global Fusion with Transformer and CNN Parallel Network for Biomedical Image Segmentation. , 2022, , .		3
469	Reconstruction-Driven Dynamic Refinement Based Unsupervised Domain Adaptation for Joint Optic Disc and Cup Segmentation. IEEE Journal of Biomedical and Health Informatics, 2023, 27, 3537-3548.	3.9	2
470	Robust multi-view approaches for retinal layer segmentation in glaucoma patients via transfer learning. Quantitative Imaging in Medicine and Surgery, 2023, 13, 2846-2859.	1.1	3
471	E-Net: a novel deep learning framework integrating expert knowledge for glaucoma optic disc hemorrhage segmentation. Multimedia Tools and Applications, 0, , .	2.6	0
472	Joint optic disc and cup segmentation based on elliptical-like morphological feature and spatial geometry constraint. Computers in Biology and Medicine, 2023, 158, 106796.	3.9	0
473	PKRT-Net: Prior knowledge-based relation transformer network for optic cup and disc segmentation. Neurocomputing, 2023, 538, 126183.	3.5	5
474	PY-Net: Rethinking segmentation frameworks with dense pyramidal operations for optic disc and cup segmentation from retinal fundus images. Biomedical Signal Processing and Control, 2023, 85, 104895.	3.5	1
475	Towards an extended EfficientNet-based U-Net framework for joint optic disc and cup segmentation in the fundus image. Biomedical Signal Processing and Control, 2023, 85, 104906.	3.5	9
476	MBUTransNet: multi-branch U-shaped network fusion transformer architecture for medical image segmentation. International Journal of Computer Assisted Radiology and Surgery, 0, , .	1.7	1
477	MSCA-Net: Multi-scale contextual attention network for skin lesion segmentation. Pattern Recognition, 2023, 139, 109524.	5.1	9
478	Reduced volume of diabetic pancreatic islets in rodents detected by synchrotron X-ray phase-contrast microtomography and deep learning network. Heliyon, 2023, 9, e13081.	1.4	1
479	Transforming medical imaging with Transformers? A comparative review of key properties, current progresses, and future perspectives. Medical Image Analysis, 2023, 85, 102762.	7.0	53
480	BSG-Net: A Blind Super-resolution Guided Network for Improving Ultrasound Image Segmentation. , 2022, , .		1
481	Featureâ€guided attention network for medical image segmentation. Medical Physics, 2023, 50, 4871-4886.	1.6	1

#	Article	IF	CITATIONS
482	Synthesizing multi-frame high-resolution fluorescein angiography images from retinal fundus images using generative adversarial networks. BioMedical Engineering OnLine, 2023, 22, .	1.3	5
483	Benchmarking State-of-the-Art Methodologies forÂOptic Disc Segmentation. Lecture Notes in Networks and Systems, 2023, , 1-12.	0.5	0
484	Optical Cup and Disc Segmentation using Deep Learning Technique for Glaucoma Detection. International Journal of Next-generation Computing, 0, , .	1.1	0
485	EARDS: EfficientNet and attention-based residual depth-wise separable convolution for joint OD and OC segmentation. Frontiers in Neuroscience, 0, 17 , .	1.4	3
486	Abdominal multi-organ segmentation via UnetR model with multi-scale feature fusion., 2022,,.		0
487	COVID-19 disease identification network based on weakly supervised feature selection. Mathematical Biosciences and Engineering, 2023, 20, 9327-9348.	1.0	0
488	Omni-Seg: A Scale-Aware Dynamic Network for Renal Pathological Image Segmentation. IEEE Transactions on Biomedical Engineering, 2023, , 1-9.	2.5	2
489	SG-Net: A Super-resolution Guided Network for Improving Thyroid Nodule Segmentation. , 2022, , .		2
490	Progress in Deep Learning for Glaucoma Diagnosis Based on Fundus Images., 2022,,.		0
491	DM-Net: A Dual-Model Network forÂAutomated Biomedical Image Diagnosis. Lecture Notes in Computer Science, 2023, , 74-84.	1.0	3
493	H2Former: An Efficient Hierarchical Hybrid Transformer for Medical Image Segmentation. IEEE Transactions on Medical Imaging, 2023, 42, 2763-2775.	5.4	11
494	Performance Analysis of Deep Learning based Segmentation of Retinal Lesions in Fundus Images. , 2023, , .		2
495	Aggregation of Masked Outputs for Improving Accuracy–Cost Trade-Off in Semantic Segmentation. IEEE Access, 2023, 11, 34603-34615.	2.6	0
497	Ultrasound Intima-Media Complex (IMC) Segmentation Using Deep Learning Models. Applied Sciences (Switzerland), 2023, 13, 4821.	1.3	4
498	Multi-scale and local feature guidance network for corneal nerve fiber segmentation. Physics in Medicine and Biology, 0, , .	1.6	0
499	Classification of Glaucoma Using K-Mean Clustering with Optic Disk and Cup Segmentation., 2022,,.		0
500	<mml:math altimg="si35.svg" display="inline" id="d1e2375" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>14</mml:mi></mml:math> -Net: Medical image segmentation using efficient and effective deep supervision. Computers in Biology and Medicine, 2023, 160, 106963.	3.9	10
502	Semantic Segmentation for Various Applications: Research Contribution and Comprehensive Review. , $0, , .$		1

#	Article	IF	CITATIONS
508	Deep Learning Techniques forÂMedical Image Segmentation andÂObject Recognition. Mathematics in Industry, 2023, , 51-99.	0.1	0
509	Artificial Intelligence forÂFetal Ultrasound. Mathematics in Industry, 2023, , 215-281.	0.1	0
517	A Transfer Learning and Image Augmentation Method for Carotid Artery Vulnerable Plaque Segmentation in Ultrasound Images. , 2022, , .		0
523	Machine Learning based Segmentation and Classification Algorithms for Glaucoma Detection. , 2023, , .		0
525	DHA-Net: An encoder-decoder network fusing multi-scale features for optic disc segmentation. , 2023, , .		0
527	Facial Acne Segmentation based on Deep Learning with Center Point Loss. , 2023, , .		1
540	Comparative Deep Learning Architectures to Detect Tiny Features in Ophthalmic Imaging. , 2023, , .		0
543	Denoising Diffusion Probabilistic Model for Retinal Image Generation and Segmentation. , 2023, , .		0
545	GS-Net: Global Self-Attention Guided CNN for Multi-Stage Glaucoma Classification. , 2023, , .		1
548	Multi-relational Graph Convolutional Neural Networks forÂCarotid Artery Stenosis Diagnosis viaÂFundus Images. Lecture Notes in Computer Science, 2023, , 122-131.	1.0	1
551	Retinal Image Segmentation Assisted Diagnosis System based on Django. , 2023, , .		0
553	UG-Net: Unsupervised-Guided Network forÂBiomedical Image Segmentation andÂClassification. Lecture Notes in Computer Science, 2023, , 197-208.	1.0	0
559	Context-Aware Pseudo-label Refinement forÂSource-Free Domain Adaptive Fundus Image Segmentation. Lecture Notes in Computer Science, 2023, , 618-628.	1.0	0
560	Polar-Net: A Clinical-Friendly Model forÂAlzheimer's Disease Detection inÂOCTA Images. Lecture Notes in Computer Science, 2023, , 607-617.	1.0	0
564	Glaucoma Detection Based on Joint Optic Disc and Cup Segmentation Using Dense Prediction Transformer., 2023,,.		0
569	Retinal vessel segmentation via deep hierarchical semantic segmentation and closing operation. , 2023, , .		0
574	An Efficient Deep Learning Framework for Glaucoma Diagnosis Using Convolution Mixed Transformer Network. , 2023, , .		0
575	An Optimized Segmentation of Optic Disc and Optic Cup in Retinal Fundus Images Based on Multimap Localization and Conventional U-Net. , 2023, , .		0

#	Article	IF	CITATIONS
577	Editorial: Artificial intelligence applications in chronic ocular diseases. Frontiers in Cell and Developmental Biology, 0, 11 , .	1.8	0
584	Alzheimer's Together with Mild Cognitive Impairment Screening Using Polar Transformation of Middle Zone of Fundus Images Based Deep Learning. , 2023, , .		0
586	Improved U-Net Performance with Augmentation for Retinal Optic Segmentation. , 2023, , .		0
589	Cup-Disk Ratio Segmentation Joint withÂKey Retinal Vascular Information Under Diagnostic andÂScreening Scenarios. Lecture Notes in Computer Science, 2024, , 313-326.	1.0	0
591	Automated analysis of fundus images for the diagnosis of retinal diseases: a review. Research on Biomedical Engineering, 2024, 40, 225-251.	1.5	0
594	Confidence-Guided Weakly-Supervised Visual Evidence Discovering for Trustworthy Glaucoma Diagnosis., 2023,,.		0
595	Joint Optic Disc and Cup Segmentation with Parallel Cooperative Diffusion Model., 2023,,.		0
596	Multi-Class Eye Disease Classification Using Deep Learning. , 2023, , .		0
598	Glaucoma Fundus Image Recognition Based on Optimal ROI Proportion and VIT-B/16., 2023,,.		0
600	SAM-U: Multi-box Prompts Triggered Uncertainty Estimation forÂReliable SAM inÂMedical Image. Lecture Notes in Computer Science, 2023, , 368-377.	1.0	1