Ultrasmall mesoporous organosilica nanoparticles: Mor redox-responsive biodegradability for tumor-specific d

Biomaterials 161, 292-305

DOI: 10.1016/j.biomaterials.2018.01.046

Citation Report

#	Article	IF	CITATIONS
2	Disulfideâ€Bridged Organosilica Frameworks: Designed, Synthesis, Redoxâ€Triggered Biodegradation, and Nanobiomedical Applications. Advanced Functional Materials, 2018, 28, 1707325.	7.8	150
3	Cancer cell membrane-modified biodegradable mesoporous silica nanocarriers for berberine therapy of liver cancer. RSC Advances, 2018, 8, 40288-40297.	1.7	38
4	Hypoxia-activated prodrugs and redox-responsive nanocarriers. International Journal of Nanomedicine, 2018, Volume 13, 6551-6574.	3.3	56
5	Effective pH-Activated Theranostic Platform for Synchronous Magnetic Resonance Imaging Diagnosis and Chemotherapy. ACS Applied Materials & Interfaces, 2018, 10, 31114-31123.	4.0	36
6	Exploring Factors for the Design of Nanoparticles as Drug Delivery Vectors. ChemPhysChem, 2018, 19, 2810-2828.	1.0	13
7	Redox-responsive nano-carriers as tumor-targeted drug delivery systems. European Journal of Medicinal Chemistry, 2018, 157, 705-715.	2.6	114
8	Mesoporous silica nanoparticles for tissueâ€engineering applications. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2019, 11, e1573.	3.3	87
9	Sizeâ€Optimized Ultrasmall Porous Silica Nanoparticles Depict Vasculatureâ€Based Differential Targeting in Triple Negative Breast Cancer. Small, 2019, 15, e1903747.	5.2	39
10	Gradient Redox-Responsive and Two-Stage Rocket-Mimetic Drug Delivery System for Improved Tumor Accumulation and Safe Chemotherapy. Nano Letters, 2019, 19, 8690-8700.	4.5	60
11	Pluronic F127 self-assembled MoS ₂ nanocomposites as an effective glutathione responsive anticancer drug delivery system. RSC Advances, 2019, 9, 25592-25601.	1.7	11
12	Biodegradable, pH-Sensitive Hollow Mesoporous Organosilica Nanoparticle (HMON) with Controlled Release of Pirfenidone and Ultrasound-Target-Microbubble-Destruction (UTMD) for Pancreatic Cancer Treatment. Theranostics, 2019, 9, 6002-6018.	4.6	61
13	O ₂ -Generating Metal–Organic Framework-Based Hydrophobic Photosensitizer Delivery System for Enhanced Photodynamic Therapy. ACS Applied Materials & Interfaces, 2019, 11, 36347-36358.	4.0	90
14	<p>Biodegradable nanotheranostics with hyperthermia-induced bubble ability for ultrasound imaging–guided chemo-photothermal therapy</p> . International Journal of Nanomedicine, 2019, Volume 14, 7141-7153.	3.3	22
15	Single-micelle-directed synthesis of mesoporous materials. Nature Reviews Materials, 2019, 4, 775-791.	23.3	208
16	Dendritic fibrous nano-particles (DFNPs): rising stars of mesoporous materials. Journal of Materials Chemistry A, 2019, 7, 5111-5152.	5.2	103
17	HAp@GO drug delivery vehicle with dualâ€stimuliâ€triggered drug release property and efficient synergistic therapy function against cancer. Journal of Biomedical Materials Research - Part A, 2019, 107, 2296-2309.	2.1	29
18	Construction of a graphene/polypyrrole composite electrode as an electrochemically controlled release system. RSC Advances, 2019, 9, 12667-12674.	1.7	13
19	Enhanced synergistic effects from multiple iron oxide nanoparticles encapsulated within nitrogen-doped carbon nanocages for simple and label-free visual detection of blood glucose.	1.3	9

#	Article	IF	CITATIONS
20	New insights towards mesoporous silica nanoparticles as a technological platform for chemotherapeutic drugs delivery. International Journal of Pharmaceutics, 2019, 564, 379-409.	2.6	90
21	Tumour microenvironment responsive nanoconstructs for cancer theranostic. Nano Today, 2019, 26, 16-56.	6.2	113
22	Degradable Drug Carriers: Vanishing Mesoporous Silica Nanoparticles. Chemistry of Materials, 2019, 31, 4364-4378.	3.2	95
23	Facile synthesis of organosilica-capped mesoporous silica nanocarriers with selective redox-triggered drug release properties for safe tumor chemotherapy. Biomaterials Science, 2019, 7, 1825-1832.	2.6	28
24	Recent advancements in mesoporous silica nanoparticles towards therapeutic applications for cancer. Acta Biomaterialia, 2019, 89, 1-13.	4.1	156
25	Degradability and Clearance of Inorganic Nanoparticles for Biomedical Applications. Advanced Materials, 2019, 31, e1805730.	11.1	267
26	Mesoporous silica/organosilica nanoparticles: Synthesis, biological effect and biomedical application. Materials Science and Engineering Reports, 2019, 137, 66-105.	14.8	119
27	Enhanced Physiological Stability and Longâ€Term Toxicity/Biodegradation In Vitro/In Vivo of Monodispersed Glycerolphosphateâ€Functionalized Bioactive Glass Nanoparticles. Particle and Particle Systems Characterization, 2019, 36, 1800507.	1.2	26
28	Biodegradability of Disulfide-Organosilica Nanoparticles Evaluated by Soft X-ray Photoelectron Spectroscopy: Cancer Therapy Implications. ACS Applied Nano Materials, 2019, 2, 479-488.	2.4	39
29	Physicalâ€, chemicalâ€, and biologicalâ€responsive nanomedicine for cancer therapy. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2020, 12, e1581.	3.3	44
30	Interfacial effects in hierarchically porous α-MnO2/Mn3O4 heterostructures promote photocatalytic oxidation activity. Applied Catalysis B: Environmental, 2020, 268, 118418.	10.8	100
31	Designing Subâ€2â€nm Organosilica Nanohybrids for Farâ€Field Superâ€Resolution Imaging. Angewandte Chemie, 2020, 132, 756-761.	1.6	3
32	Designing Subâ€2â€nm Organosilica Nanohybrids for Farâ€Field Superâ€Resolution Imaging. Angewandte Chemie - International Edition, 2020, 59, 746-751.	7.2	19
33	Small-sized copolymeric nanoparticles for tumor penetration and intracellular drug release. Chemical Communications, 2020, 56, 2000-2003.	2.2	9
34	A Tumor Microenvironmentâ€Responsive Biodegradable Mesoporous Nanosystem for Antiâ€Inflammation and Cancer Theranostics. Advanced Healthcare Materials, 2020, 9, e1901307.	3.9	33
35	Breaking with Light: Stimuli-Responsive Mesoporous Organosilica Particles. Chemistry of Materials, 2020, 32, 392-399.	3.2	17
36	Biomedical application of mesoporous silica nanoparticles as delivery systems: a biological safety perspective. Journal of Materials Chemistry B, 2020, 8, 9863-9876.	2.9	45
37	Gas-generating mesoporous silica nanoparticles with rapid localized drug release for enhanced chemophotothermal tumor therapy. Biomaterials Science, 2020, 8, 6754-6763.	2.6	11

		CITATION REPORT		
#	Article		IF	CITATIONS
38	Recent advances in nanomaterials for sonodynamic therapy. Nano Research, 2020, 13,	, 2898-2908.	5.8	89
39	Trends in Degradable Mesoporous Organosilica-Based Nanomaterials for Controlling D Mini Review. Materials, 2020, 13, 3668.	rug Delivery: A	1.3	23
40	pH-Responsive and Biodegradable ZnO-Capped Mesoporous Silica Composite Nanopa Delivery. Materials, 2020, 13, 3950.	ticles for Drug	1.3	15
41	Biodegradable Blackâ€Phosphorusâ€Nanosheetâ€Based Nanoagent for Enhanced Che Therapy. Particle and Particle Systems Characterization, 2020, 37, 2000243.	moâ€Photothermal	1.2	8
42	Width-Consistent Mesoporous Silica Nanorods with a Precisely Controlled Aspect Ration Lysosome Dysfunctional Synergistic Chemotherapy/Photothermal Therapy/Starvation Therapy/Oxidative Therapy. ACS Applied Materials & Interfaces, 2020, 12, 24611-	o for 24622.	4.0	27
43	A pH/ROS-responsive, tumor-targeted drug delivery system based on carboxymethyl ch hollow mesoporous silica nanoparticles for anti-tumor chemotherapy. Carbohydrate Po 245, 116493.	iitin gated blymers, 2020,	5.1	48
44	Aza-BODIPY-Based Nanomedicines in Cancer Phototheranostics. ACS Applied Materials 2020, 12, 26914-26925.	s & Interfaces,	4.0	110
45	Recent advances of multi-dimensional porphyrin-based functional materials in photody Coordination Chemistry Reviews, 2020, 420, 213410.	namic therapy.	9.5	191
46	The molecular design of and challenges relating to sensitizers for cancer sonodynamic Materials Chemistry Frontiers, 2020, 4, 2223-2234.	therapy.	3.2	32
47	Controllable synthesis of versatile mesoporous organosilica nanoparticles as precision theranostics. Biomaterials, 2020, 256, 120191.	cancer	5.7	49
48	Anti-vascular nano agents: a promising approach for cancer treatment. Journal of Mate Chemistry B, 2020, 8, 2990-3004.	rials	2.9	32
49	Recent developments of mesoporous silica nanoparticles in biomedicine. Emergent Ma 381-405.	iterials, 2020, 3,	3.2	25
50	Near-infrared photothermal liposomal nanoantagonists for amplified cancer photodyna Journal of Materials Chemistry B, 2020, 8, 7149-7159.	amic therapy.	2.9	26
51	Delivery of drugs, proteins, and nucleic acids using inorganic nanoparticles. Advanced Reviews, 2020, 156, 188-213.	Drug Delivery	6.6	167
52	Calcium-mineralized polypeptide nanoparticle for intracellular drug delivery in osteosar chemotherapy. Bioactive Materials, 2020, 5, 721-731.	rcoma	8.6	44
53	Zwitterionic Polymer Coating of Sulfur Dioxideâ€Releasing Nanosystem Augments Tur and Treatment Efficacy. Advanced Healthcare Materials, 2020, 9, e1901582.	nor Accumulation	3.9	43
54	Virus-mimicking mesoporous organosilica nanocapsules with soft framework and roug enhanced cellular uptake and tumor penetration. Biomaterials Science, 2020, 8, 2227-	h surface for 2233.	2.6	19
55	Dendritic Mesoporous Organosilica Nanoparticles: A pH-Triggered Autocatalytic Fentor System with Self-supplied H ₂ O ₂ for Generation of High Leve Oxygen Species. Langmuir, 2020, 36, 5262-5270.	n Reaction Is of Reactive	1.6	18

#	ARTICLE	IF	CITATIONS
56	Biodegradable hollow mesoporous organosilica-based nanosystems with dual stimuli-responsive drug delivery for efficient tumor inhibition by synergistic chemo- and photothermal therapy. Applied Materials Today, 2020, 19, 100655.	2.3	19
57	Fabrication of biodegradable auto-fluorescent organosilica nanoparticles with dendritic mesoporous structures for pH/redox-responsive drug release. Materials Science and Engineering C, 2020, 112, 110914.	3.8	12
58	Overview of stimuli-responsive mesoporous organosilica nanocarriers for drug delivery. Pharmacological Research, 2020, 155, 104742.	3.1	33
59	A Bioresponsive System Based on Mesoporous Organosilica Nanoparticles for Smart Delivery of Fungicide in Response to Pathogen Presence. ACS Sustainable Chemistry and Engineering, 2020, 8, 5716-5723.	3.2	86
60	Tailored Mesoporous Inorganic Biomaterials: Assembly, Functionalization, and Drug Delivery Engineering. Advanced Materials, 2021, 33, e2005215.	11.1	100
61	Evaluation on redox-triggered degradation of thioether-bridged hybrid mesoporous organosilica nanoparticles. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 608, 125566.	2.3	4
62	Development of mesoporous silica-based nanoprobes for optical bioimaging applications. Biomaterials Science, 2021, 9, 3603-3620.	2.6	23
63	Tumor chemical suffocation therapy by dual respiratory inhibitions. Chemical Science, 2021, 12, 7763-7769.	3.7	14
64	Targeted combination therapy for glioblastoma by co-delivery of doxorubicin, YAP-siRNA and gold nanorods. Journal of Materials Science and Technology, 2021, 63, 81-90.	5.6	7
65	A Virusâ€ S pike Tumorâ€Activatable Pyroptotic Agent. Small, 2021, 17, e2006599.	5.2	42
66	Corrôf "Shall Durania Organopilias Nanonartialas with Controlled Delevity and Owygon Dermashility		
	Langmuir, 2021, 37, 4802-4809.	1.6	1
67	Mesoporous organosilica nanoparticles: Degradation strategies and application in tumor therapy. View, 2021, 2, 20200117.	1.6 2.7	1 21
67	 Coreae Shell Plufolite-Organosilica Nanoparticles with Controlled Polarity and Oxygen Permeability. Langmuir, 2021, 37, 4802-4809. Mesoporous organosilica nanoparticles: Degradation strategies and application in tumor therapy. View, 2021, 2, 20200117. Synthesis and characterization of mesoporous HA/GO nanocomposite in the presence of chitosan as a potential candidate for drug delivery. Chemical Papers, 2021, 75, 4565-4578. 	1.6 2.7 1.0	1 21 6
67 68 69	Correate Shell Pluronic-Organoshica Nanoparticles with Controlled Polarity and Oxygen Permeability. Langmuir, 2021, 37, 4802-4809. Mesoporous organosilica nanoparticles: Degradation strategies and application in tumor therapy. View, 2021, 2, 20200117. Synthesis and characterization of mesoporous HA/GO nanocomposite in the presence of chitosan as a potential candidate for drug delivery. Chemical Papers, 2021, 75, 4565-4578. Twoâ€Dimensional Silicene/Silicon Nanosheets: An Emerging Siliconâ€Composed Nanostructure in Biomedicine. Advanced Materials, 2021, 33, e2008226.	1.6 2.7 1.0 11.1	1 21 6 21
67 68 69 70	Coreae: Shell Philobilic-Organosilica Nanoparticles with Controlled Polarity and Oxygen Perhleability. Langmuir, 2021, 37, 4802-4809. Mesoporous organosilica nanoparticles: Degradation strategies and application in tumor therapy. View, 2021, 2, 20200117. Synthesis and characterization of mesoporous HA/GO nanocomposite in the presence of chitosan as a potential candidate for drug delivery. Chemical Papers, 2021, 75, 4565-4578. Twoâ€Dimensional Silicene/Silicon Nanosheets: An Emerging Siliconâ€Composed Nanostructure in Biomedicine. Advanced Materials, 2021, 33, e2008226. Application of a Reactive Oxygen Species-Responsive Drug-Eluting Coating for Surface Modification of Vascular Stents. ACS Applied Materials & amp; Interfaces, 2021, 13, 35431-35443.	1.6 2.7 1.0 11.1 4.0	1 21 6 21 21
67 68 69 70 71	 Coreae Shell Pluronic-Organosilica Nanoparticles with Controlled Polarity and Oxygen Permeability. Langmuir, 2021, 37, 4802-4809. Mesoporous organosilica nanoparticles: Degradation strategies and application in tumor therapy. View, 2021, 2, 20200117. Synthesis and characterization of mesoporous HA/GO nanocomposite in the presence of chitosan as a potential candidate for drug delivery. Chemical Papers, 2021, 75, 4565-4578. Twoâ&Dimensional Silicene/Silicon Nanosheets: An Emerging Siliconâ&Composed Nanostructure in Biomedicine. Advanced Materials, 2021, 33, e2008226. Application of a Reactive Oxygen Species-Responsive Drug-Eluting Coating for Surface Modification of Vascular Stents. ACS Applied Materials & amp; Interfaces, 2021, 13, 35431-35443. Dual stimuli-responsive fungicide carrier based on hollow mesoporous silica/hydroxypropyl cellulose hybrid nanoparticles. Journal of Hazardous Materials, 2021, 414, 125513. 	1.6 2.7 1.0 11.1 4.0 6.5	1 21 6 21 21 16
 67 68 69 70 71 72 	Coreace Sheir Philodone-Organoshica Nanoparticles with Controlled Polanty and Oxygen Permeability. Langmuir, 2021, 37, 4802-4809. Mesoporous organosilica nanoparticles: Degradation strategies and application in tumor therapy. View, 2021, 2, 20200117. Synthesis and characterization of mesoporous HA/CO nanocomposite in the presence of chitosan as a potential candidate for drug delivery. Chemical Papers, 2021, 75, 4565-4578. Twoâ€Dimensional Silicene/Silicon Nanosheets: An Emerging Siliconâ€Composed Nanostructure in Biomedicine. Advanced Materials, 2021, 33, e2008226. Application of a Reactive Oxygen Species-Responsive Drug-Eluting Coating for Surface Modification of Vascular Stents. ACS Applied Materials & amp; Interfaces, 2021, 13, 35431-35443. Dual stimuli-responsive fungicide carrier based on hollow mesoporous silica/hydroxypropyl cellulose hybrid nanoparticles. Journal of Hazardous Materials, 2021, 414, 125513. Antibody-activated trans-endothelial delivery of mesoporous organosilica nanomedicine augments tumor extravasation and anti-cancer immunotherapy. Bioactive Materials, 2021, 6, 2158-2172.	1.6 2.7 1.0 11.1 4.0 6.5 8.6	1 21 6 21 16 51 12

#	Article	IF	CITATIONS
74	Defect Engineering of Mesoporous Silica Nanoparticles for Biomedical Applications. Accounts of Materials Research, 2021, 2, 581-593.	5.9	20
75	Dendritic mesoporous organosilica nanoparticles (DMONs): Chemical composition, structural architecture, and promising applications. Nano Today, 2021, 39, 101231.	6.2	37
76	Stepwise drug release from a nanoplatform under MR-assisted focused ultrasound stimulation. Chemical Engineering Journal, 2021, 417, 128004.	6.6	4
77	Redox-Responsive Mesoporous Silica Nanoparticles for Cancer Treatment: Recent Updates. Nanomaterials, 2021, 11, 2222.	1.9	20
78	Chitosan-coated organosilica nanoparticles as a dual responsive delivery system of natural fragrance for axillary odor problem. Carbohydrate Polymers, 2021, 269, 118277.	5.1	12
79	pH and charge reversal-driven nanoplatform for efficient delivery of therapeutics. Colloids and Surfaces B: Biointerfaces, 2021, 208, 112106.	2.5	3
80	Glutathione-mediated nanomedicines for cancer diagnosis and therapy. Chemical Engineering Journal, 2021, 426, 128880.	6.6	57
81	Progress in Mesoporous Silica Nanoparticles as Drug Delivery Agents for Cancer Treatment. Pharmaceutics, 2021, 13, 152.	2.0	52
82	Preparation of Mesoporous Organosilica-based Nanosystem for <i>in vitro</i> Synergistic Chemo- and Photothermal Therapy. Wuji Cailiao Xuebao/Journal of Inorganic Materials, 2020, 35, 1365.	0.6	6
83	Peptide Sequence-Dominated Enzyme-Responsive Nanoplatform for Anticancer Drug Delivery. Current Topics in Medicinal Chemistry, 2019, 19, 74-97.	1.0	16
84	Interface-Engineered Paclitaxel-Based Hollow Mesoporous Organosilica Nanoplatforms for Photothermal-Enhanced Chemotherapy of Tumor. Molecular Pharmaceutics, 2021, 18, 4531-4542.	2.3	2
85	Size-dependent chemosensitization of doxorubicin-loaded polymeric nanoparticles for malignant glioma chemotherapy. Bioengineered, 2021, 12, 12263-12273.	1.4	9
86	Stable Encapsulation of Methylene Blue in Polysulfide Organosilica Colloids for Fluorescent Tracking of Nanoparticle Uptake in Cells. ACS Omega, 2021, 6, 32109-32119.	1.6	2
87	cRGD-modified core–shell mesoporous silica@BSA nanoparticles for drug delivery. Polymer Bulletin, 0, , 1.	1.7	3
88	Porphyrinâ€Based Nanostructures for Cancer Theranostics: Chemistry, Fundamentals and Recent Advances. ChemistrySelect, 2021, 6, 14082-14099.	0.7	16
89	Biomimetic Redox-Responsive Mesoporous Organosilica Nanoparticles Enhance Cisplatin-Based Chemotherapy. Frontiers in Bioengineering and Biotechnology, 2022, 10, 860949.	2.0	4
90	A redox-sensitive coating with disulfide bonds is a promising candidate for surface-modified interventional devices. Materials Today Communications, 2022, 31, 103380.	0.9	2
91	Tumor Microenvironment-Responsive Yolk–Shell NaCl@Virus-Inspired Tetrasulfide-Organosilica for Ion-Interference Therapy <i>via</i> Osmolarity Surge and Oxidative Stress Amplification. ACS Nano, 2022, 16, 7380-7397.	7.3	25

#	Article	IF	CITATIONS
92	Cascade-activatable NO release based on GSH-detonated "nanobomb―for multi-pathways cancer therapy. Materials Today Bio, 2022, 14, 100288.	2.6	12
93	Sustainability of in vitro light-dependent NADPH generation by the thylakoid membrane of Synechocystis sp. PCC6803. Microbial Cell Factories, 2022, 21, .	1.9	4
94	Biodegradable Imiquimod-Loaded Mesoporous Organosilica as a Nanocarrier and Adjuvant for Enhanced and Prolonged Immunity against Foot-and-Mouth Disease Virus in Mice. ACS Applied Bio Materials, 2022, 5, 3095-3106.	2.3	8
95	Functionalized Periodic Mesoporous Organosilica Nanoparticles for Combinational Chemo-Photothermal Antitumor Therapy. ACS Applied Nano Materials, 2022, 5, 9646-9656.	2.4	3
96	The recent progress of inorganicâ€based intelligent responsive nanoplatform for tumor theranostics. View, 2022, 3, .	2.7	29
97	Development of Foot-and-Mouth Disease Vaccines in Recent Years. Vaccines, 2022, 10, 1817.	2.1	4
98	A novel pH- and glutathione-responsive drug delivery system based on in situ growth of MOF199 on mesoporous organic silica nanoparticles targeting the hepatocellular carcinoma niche. Cancer Nanotechnology, 2022, 13, .	1.9	1
99	Synthesis of mesoporous organosilica nanoparticles with a high tetrasulphide content and large pores. Microporous and Mesoporous Materials, 2022, 346, 112316.	2.2	2
100	An Implantable Polydopamine Nanoparticleâ€inâ€Nanofiber Device for Synergistic Cancer Photothermal/Chemotherapy. Advanced NanoBiomed Research, 2022, 2, .	1.7	1
101	Ligand-modified nanocarriers for oral drug delivery: Challenges, rational design, and applications. Journal of Controlled Release, 2022, 352, 813-832.	4.8	14
103	Key Parameters for the Rational Design, Synthesis, and Functionalization of Biocompatible Mesoporous Silica Nanoparticles. Pharmaceutics, 2022, 14, 2703.	2.0	17
104	Fibrous dressing containing bioactive glass with combined chemotherapy and wound healing promotion for post-surgical treatment of melanoma. , 2023, 149, 213387.		7
105	Preparation of Magnetic Iron Oxide Incorporated Mesoporous Silica Hybrid Composites for pH and Temperature-Sensitive Drug Delivery. Magnetochemistry, 2023, 9, 81.	1.0	4
106	Mesoporous Organosilica Nanoparticles to Fight Intracellular Staphylococcal Aureus Infections in Macrophages. Pharmaceutics, 2023, 15, 1037.	2.0	2
107	Periodic mesoporous organosilica based sensor for broad range mercury detection by simultaneous downshifting/upconversion luminescence. Journal of Materials Chemistry C, 2023, 11, 5634-5645.	2.7	1
108	Pore-engineered nanoarchitectonics for cancer therapy. NPG Asia Materials, 2023, 15, .	3.8	15
109	Radiosensitizing effects of pyrogallol-loaded mesoporous or-ganosilica nanoparticles on gastric cancer by amplified ferroptosis. Frontiers in Bioengineering and Biotechnology, 0, 11, .	2.0	0
118	Research progress in nucleus-targeted tumor therapy. Biomaterials Science, 2023, 11, 6436-6456.	2.6	Ο