Fast Automatic Vehicle Annotation for Urban Traffic Su

IEEE Transactions on Intelligent Transportation Systems 19, 1973-1984

DOI: 10.1109/tits.2017.2740303

Citation Report

#	Article	IF	CITATIONS
1	Vehicle Re-Identification by Adversarial Bi-Directional LSTM Network., 2018,,.		38
2	Outlier Detection in Urban Traffic Data. , 2018, , .		19
3	Vehicle target detection methods based on color fusion deformable part model. Eurasip Journal on Wireless Communications and Networking, 2018, 2018, .	1.5	12
4	CMNet: A Connect-and-Merge Convolutional Neural Network for Fast Vehicle Detection in Urban Traffic Surveillance. IEEE Access, 2019, 7, 72660-72671.	2.6	23
5	Eye Fixation Location Recommendation in Advanced Driver Assistance System. Journal of Electrical Engineering and Technology, 2019, 14, 965-978.	1.2	7
6	A Novel Feature Selection in Vehicle Detection Through the Selection of Dominant Patterns of Histograms of Oriented Gradients (DPHOG). IEEE Access, 2019, 7, 20894-20919.	2.6	11
7	An Improved Vehicle Detection Algorithm Based on YOLOV3., 2019,,.		5
8	Distributed Deep Learning Model for Intelligent Video Surveillance Systems with Edge Computing. IEEE Transactions on Industrial Informatics, 2024, , 1-1.	7.2	113
9	A Deep-Learning Model with Task-Specific Bounding Box Regressors and Conditional Back-Propagation for Moving Object Detection in ADAS Applications. Sensors, 2020, 20, 5269.	2.1	7
10	Detection and pose estimation of auto-rickshaws from traffic images. Machine Vision and Applications, 2020, 31, 1.	1.7	1
11	A Robust Vehicle Detection Scheme for Intelligent Traffic Surveillance Systems in Smart Cities. IEEE Access, 2020, 8, 139299-139312.	2.6	25
12	The One-Stage Detector Algorithm Based on Background Prediction and Group Normalization for Vehicle Detection. Applied Sciences (Switzerland), 2020, 10, 5883.	1.3	4
13	Applications of Deep Learning in Intelligent Transportation Systems. Journal of Big Data Analytics in Transportation, 2020, 2, 115-145.	1.4	60
14	VAID: An Aerial Image Dataset for Vehicle Detection and Classification. IEEE Access, 2020, 8, 212209-212219.	2.6	22
15	Lithium-Ion Batteries State of Charge Prediction of Electric Vehicles Using RNNs-CNNs Neural Networks. IEEE Access, 2020, 8, 98168-98180.	2.6	45
16	500-Fps Omnidirectional Visual Tracking Using Three-Axis Active Vision System. IEEE Transactions on Instrumentation and Measurement, 2021, 70, 1-11.	2.4	19
17	Quantization Parameter Cascading for Surveillance Video Coding Considering All Inter Reference Frames. IEEE Transactions on Image Processing, 2021, 30, 5692-5707.	6.0	10
18	Research on intelligent risk early warning of open-pit blasting site based on deep learning. Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 0, , 1-18.	1.2	O

#	Article	IF	CITATIONS
19	Accurate and efficient vehicle detection framework based on SSD algorithm. IET Image Processing, 2021, 15, 3094-3104.	1.4	17
20	A new comparison framework to survey neural networksâ€based vehicle detection and classification approaches. International Journal of Communication Systems, 2021, 34, e4928.	1.6	5
21	Edge computing enabled video segmentation for real-time traffic monitoring in internet of vehicles. Pattern Recognition, 2022, 121, 108146.	5.1	93
22	Hawk-Eye: An Al-Powered Threat Detector for Intelligent Surveillance Cameras. IEEE Access, 2021, 9, 63283-63293.	2.6	34
23	Person Retrieval in Surveillance Videos Via Deep Attribute Mining and Reasoning. IEEE Transactions on Multimedia, 2021, 23, 4376-4387.	5.2	28
24	Vehicle detection based on improved multitask cascaded convolutional neural network and mixed image enhancement. IET Image Processing, 2020, 14, 4621-4632.	1.4	4
25	Analysis of 3D Scene Visual Characteristics Based on Virtual Modeling for Surveillance Sensors Parameters. Studies in Systems, Decision and Control, 2021, , 328-340.	0.8	0
26	Exploring Intermediate Representation for Monocular Vehicle Pose Estimation., 2021,,.		16
27	Performance Evaluation of Convolution Neural Network Based Object Detection Model for Bangladeshi Traffic Vehicle Detection. Lecture Notes on Data Engineering and Communications Technologies, 2022, , 115-128.	0.5	2
28	Vehicle Detection in UAV Aerial Images Based on Improved YOLOv3., 2020,,.		4
29	Pedestrian-Vehicle Detection Model Based on Optimized YOLOv3., 2020,,.		1
30	Motion detection and classification: ultra-fast road user detection. Journal of Big Data, 2022, 9, .	6.9	3
31	Towards the design of vision-based intelligent vehicle system: methodologies and challenges. Evolutionary Intelligence, 2023, 16, 759-800.	2.3	11
32	Anomaly detection using edge computing in video surveillance system: review. International Journal of Multimedia Information Retrieval, 2022, 11, 85-110.	3.6	41
34	Vehicle detection method based on adaptive multi-scale feature fusion network. Journal of Electronic Imaging, 2022, 31, .	0.5	0
35	An Enhanced YOLOv5 Model with Attention Module for Vehicle-Pedestrian Detection., 2022,,.		2
36	Monitoring riverine traffic from space: The untapped potential of remote sensing for measuring human footprint on inland waterways. Science of the Total Environment, 2023, 860, 160363.	3.9	7
37	Target Detection of Pointer Instrument based on Deep Learning. , 0, 24, 182-190.		0

#	Article	IF	CITATIONS
38	Energy-Efficient Edge Intelligence: A Comparative Analysis of AloT Technologies. Mobile Networks and Applications, $0, \ldots$	2.2	4
39	An Energy-Constrained Optimization-Based Structured Pruning Method for Deep Neural Network Compression. , 2022, , .		0