An overview of graphene-based hydroxyapatite compos

Bioactive Materials

3, 1-18

DOI: 10.1016/j.bioactmat.2018.01.001

Citation Report

#	Article	IF	CITATIONS
1	Cisplatin-Loaded Graphene Oxide/Chitosan/Hydroxyapatite Composite as a Promising Tool for Osteosarcoma-Affected Bone Regeneration. ACS Omega, 2018, 3, 14620-14633.	1.6	76
2	Graphene-Based Nanocomposites as Promising Options for Hard Tissue Regeneration. Advances in Experimental Medicine and Biology, 2018, 1078, 103-117.	0.8	12
3	Preparation and characterization of PCL-coated porous hydroxyapatite scaffolds in the presence of MWCNTs and graphene for orthopedic applications. Journal of Porous Materials, 2019, 26, 247-259.	1.3	2
4	Induced Nucleation of Biomimetic Nanoapatites on Exfoliated Graphene Biomolecule Flakes by Vapor Diffusion in Microdroplets. Crystals, 2019, 9, 341.	1.0	3
5	Graphene oxide-based nanocomposites and biomedical applications., 2019,, 305-328.		3
6	The synergistic effects of graphene-contained 3D-printed calcium silicate/poly-ε-caprolactone scaffolds promote FGFR-induced osteogenic/angiogenic differentiation of mesenchymal stem cells. Materials Science and Engineering C, 2019, 104, 109887.	3.8	56
7	Biomimetic Hydroxyapatite on Graphene Supports for Biomedical Applications: A Review. Nanomaterials, 2019, 9, 1435.	1.9	31
8	Preparation of reduced graphene oxide/hydroxyapatite nanocomposite and evaluation of graphene sheets/hydroxyapatite interface. Diamond and Related Materials, 2019, 100, 107561.	1.8	33
10	Micro/nano-structured TiO2 surface with dual-functional antibacterial effects for biomedical applications. Bioactive Materials, 2019, 4, 346-357.	8.6	75
11	Hydroxyapatite for Biomedicine and Drug Delivery. Advanced Structured Materials, 2019, , 85-120.	0.3	14
12	In situ syntheses of hydroxyapatiteâ€grafted graphene oxide composites. Journal of Biomedical Materials Research - Part A, 2019, 107, 2026-2039.	2.1	22
13	Fabrication of Graphene Nanoplatelet-Incorporated Porous Hydroxyapatite Composites: Improved Mechanical and in Vivo Imaging Performances for Emerging Biomedical Applications. ACS Omega, 2019, 4, 7448-7458.	1.6	18
14	Graphene oxide incorporated polycaprolactone/chitosan/collagen electrospun scaffold: Enhanced osteogenic properties for bone tissue engineering. Artificial Organs, 2019, 43, E264-E281.	1.0	69
15	CURRENT DEVELOPMENTS IN SOME APPLICATIONS OF GRAPHENE. , 2019, , 195-272.		1
16	Fabrication of graphene incorporated biphasic calcium phosphate composite and evaluation of impact of graphene in the in-vitro biomineralization process. Materials Chemistry and Physics, 2019, 232, 75-81.	2.0	10
17	Synthetic Biodegradable Aliphatic Polyester Nanocomposites Reinforced with Nanohydroxyapatite and/or Graphene Oxide for Bone Tissue Engineering Applications. Nanomaterials, 2019, 9, 590.	1.9	52
18	Preparation, Mechanical Properties, and Biocompatibility of Graphene Oxide-Reinforced Chitin Monofilament Absorbable Surgical Sutures. Marine Drugs, 2019, 17, 210.	2.2	23
19	Phosphate graphene as an intrinsically osteoinductive scaffold for stem cell-driven bone regeneration. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 4855-4860.	3.3	59

#	Article	IF	Citations
20	Characterization and Photophysical Properties of Tricalcium Phosphates Prepared by Using the Solid-State Reaction Process. Journal of the Korean Physical Society, 2019, 74, 236-240.	0.3	2
21	Preliminary Characterization of Hydrogel Composite Alginate/PVA/r-GO as an Injectable Materials for Medical Applications. Materials Science Forum, 2019, 964, 161-167.	0.3	1
22	A comparative outlook of corrosion behaviour and chlorophyll assisted growth kinetics of various carbon nano-structure reinforced hydroxyapatite-calcium orthophosphate coating synthesized in-situ through pulsed electrochemical deposition. Applied Surface Science, 2019, 475, 28-42.	3.1	17
23	In-vitro investigation of graphene oxide reinforced bioactive glass ceramics composites. Journal of Non-Crystalline Solids, 2019, 505, 122-130.	1.5	18
24	Collagen functionalized graphene sheets decorated with in situ synthesized nano hydroxyapatite electrospun into fibers. Materials Today Communications, 2019, 18, 167-175.	0.9	14
25	Effects of hydrothermal pressure on in situ synthesis of 3D graphene-hydroxyapatite nano structured powders. Ceramics International, 2019, 45, 1761-1769.	2.3	32
26	Strontium incorporated hydroxyapatite/hydrothermally reduced graphene oxide nanocomposite as a cytocompatible material. Ceramics International, 2019, 45, 5475-5485.	2.3	23
27	In situ synthesis of three dimensional graphene-hydroxyapatite nano powders via hydrothermal process. Materials Chemistry and Physics, 2019, 222, 251-255.	2.0	31
28	Graphene Oxides/Carbon Nanotubes–Hydroxyapatite Nanocomposites for Biomedical Applications. Arabian Journal for Science and Engineering, 2020, 45, 219-227.	1.7	21
29	Carbon-based nanomaterials as scaffolds in bone regeneration. Particulate Science and Technology, 2020, 38, 912-921.	1.1	9
30	Artifact expression of polylactic acid/hydroxyapatite/graphene oxide nanocomposite in CBCT: a promising dental material. Clinical Oral Investigations, 2020, 24, 1695-1700.	1.4	6
31	Spark plasma sintered bioceramics – from transparent hydroxyapatite to graphene nanocomposites: a review. Advances in Applied Ceramics, 2020, 119, 57-74.	0.6	8
32	In Vitro Electrochemical Behavior of Solâ€Gel Derived Hydroxyapatite/Graphene Oxide Composite Coatings on 316L SS for Biomedical Applications. ChemistrySelect, 2020, 5, 12140-12147.	0.7	13
33	Comparison of the effect of argon, hydrogen, and nitrogen gases on the reduced graphene oxide-hydroxyapatite nanocomposites characteristics. BMC Chemistry, 2020, 14, 59.	1.6	6
34	Hydroxyapatite powders prepared using two different methods as modifying agents of PVP/collagen composites designed for biomedical applications. International Journal of Polymeric Materials and Polymeric Biomaterials, 2020, , $1-11$.	1.8	0
35	Low temperature consolidation of hydroxyapatite-reduced graphene oxide nano-structured powders. Materials Advances, 2020, 1, 1337-1346.	2.6	7
36	Study of a new nano-hydroxyapatite/basic fibroblast growth factor composite promoting periodontal tissue regeneration. Materials Express, 2020, 10, 1802-1807.	0.2	7
37	Enhancing mechanical properties of hydroxyapatite-reduced graphene oxide nanocomposites by increasing the spark plasma sintering temperature. Inorganic and Nano-Metal Chemistry, 2021, 51, 1580-1590.	0.9	1

3

#	ARTICLE	IF	CITATIONS
38	Characterization of hydroxyapatite-reduced graphene oxide nanocomposites consolidated via high frequency induction heat sintering method. Journal of Asian Ceramic Societies, 2020, 8, 1296-1309.	1.0	7
39	Friction and Wear Behaviors of Reduced Graphene Oxide- and Carbon Nanotube-Reinforced Hydroxyapatite Bioceramics. Frontiers in Materials, 2020, 7, .	1.2	5
40	Silver nanoparticles decorated graphene oxide nanocomposite for bone regeneration applications. Inorganic and Nano-Metal Chemistry, 2021, 51, 1347-1360.	0.9	3
41	Enhanced mechanical properties and hydrophilic behavior of magnesium oxide added hydroxyapatite nanocomposite: A bone substitute material for load bearing applications. Ceramics International, 2020, 46, 16235-16248.	2.3	32
42	Improvement of biomedical functionality of titanium by ultrasound-assisted electrophoretic deposition of hydroxyapatite-graphene oxide nanocomposites. Ceramics International, 2020, 46, 18297-18307.	2.3	30
43	Cicada-inspired fluoridated hydroxyapatite nanostructured surfaces synthesized by electrochemical additive manufacturing. Materials and Design, 2020, 193, 108790.	3.3	36
44	Graphene oxide-coated porous titanium for pulp sealing: an antibacterial and dentino-inductive restorative material. Journal of Materials Chemistry B, 2020, 8, 5606-5619.	2.9	26
45	Enhanced Electrochemical Impedance Spectroscopy Analysis of Microbial Biofilms on an Electrochemically <i>In Situ</i>	4.0	32
46	Controllable phase transformation of fluoridated calcium phosphate ultrathin coatings for biomedical applications. Journal of Alloys and Compounds, 2020, 847, 155920.	2.8	10
47	Enhanced fracture toughness of three dimensional graphene- hydroxyapatite nanocomposites by employing the Taguchi method. Composites Part B: Engineering, 2020, 190, 107928.	5.9	24
48	Nanocomposite chitosan film containing graphene oxide/hydroxyapatite/gold for bone tissue engineering. International Journal of Biological Macromolecules, 2020, 154, 62-71.	3.6	142
49	Enhanced osteogenesis and therapy of osteoporosis using simvastatin loaded hybrid system. Bioactive Materials, 2020, 5, 348-357.	8.6	33
50	Physicochemical properties of a nanocomposite (graphene oxide-hydroxyapatite-cellulose) immobilized by Ag nanoparticles for biomedical applications. Results in Physics, 2020, 16, 102990.	2.0	35
51	Sol–gel synthesis of calcium phosphate-based biomaterials—A review of environmentally benign, simple, and effective synthesis routes. Journal of Sol-Gel Science and Technology, 2020, 94, 551-572.	1.1	52
52	Fabrication and Characterization of Polyetherimide Electrospun Scaffolds Modified with Graphene Nano-Platelets and Hydroxyapatite Nano-Particles. International Journal of Molecular Sciences, 2020, 21, 583.	1.8	13
53	One-step synthesis of nano-hydroxyapatite/graphene nanosheet hybrid coatings on Ti6Al4V alloys by hydrothermal method and their in-vitro corrosion responses. Surface and Coatings Technology, 2020, 394, 125858.	2.2	41
54	Preparation and biological properties of silk fibroin/nano-hydroxyapatite/graphene oxide scaffolds with an oriented channel-like structure. RSC Advances, 2020, 10, 10118-10128.	1.7	32
55	Fiber nanobiocompositions for cranioplasty and other orthopedic applications. , 2020, , 525-558.		2

#	ARTICLE	IF	CITATIONS
56	Synthesis of Graphene Nanoribbons–Hydroxyapatite Nanocomposite Applicable in Biomedicine and Theranostics. Journal of Nanotheranostics, 2020, 1, 6-18.	1.7	8
57	Evaluation of Argon-Gas-Injected Solvothermal Synthesis of Hydroxyapatite Crystals Followed by High-Frequency Induction Heat Sintering. Crystal Growth and Design, 2020, 20, 3182-3189.	1.4	15
58	Photothermal effect of 3D printed hydroxyapatite composite scaffolds incorporated with graphene nanoplatelets. Ceramics International, 2021, 47, 6336-6340.	2.3	17
59	Development of novel multi-functional composite coatings on titanium: Evaluation of structural characteristics, bioactivity and corrosion behaviour. Journal of Alloys and Compounds, 2021, 855, 157290.	2.8	8
60	Nanocomposite powders of hydroxyapatite-graphene oxide for biological applications. Ceramics International, 2021, 47, 7653-7665.	2.3	21
61	Ultrasonic-assisted preparation of reduced graphene oxide-hydroxyapatite nanocomposite for bone remodeling. Materials Letters, 2021, 284, 128990.	1.3	11
62	A multi-functionalized calcitriol sustainable delivery system for promoting osteoporotic bone regeneration both in vitro and in vivo. Applied Materials Today, 2021, 22, 100906.	2.3	12
63	Grapheneâ€Based Biomaterials for Bone Regenerative Engineering: A Comprehensive Review of the Field and Considerations Regarding Biocompatibility and Biodegradation. Advanced Healthcare Materials, 2021, 10, e2001414.	3.9	50
64	Biowasteâ€derived hydroxyapatite reinforced with polyvinyl pyrrolidone/aloevera composite for biomedical applications. International Journal of Applied Ceramic Technology, 2021, 18, 221-234.	1.1	12
65	Preliminary Studies on Graphene-Reinforced 3D Products Obtained by the One-Stage Sacrificial Template Method for Bone Reconstruction Applications. Journal of Functional Biomaterials, 2021, 12, 13.	1.8	5
66	Effect of Hydroxyapatite Composite Nano-Artificial Bone on Treatment and Rehabilitation of Patients with Ankle Joint Injury. Journal of Nanoscience and Nanotechnology, 2021, 21, 1091-1098.	0.9	1
67	Advances in Bacterial Cellulose/Strontium Apatite Composites for Bone Applications. Polymer Reviews, 2021, 61, 736-764.	5. 3	12
68	Characteristics of hydroxyapatite-reduced graphene oxide composite powders synthesized via hydrothermal method in the absence and presence of diethylene glycol. Open Ceramics, 2021, 5, 100067.	1.0	7
69	Graphene/chitosan/Ag+- doped hydroxyapatite triple composite fiber coatings on new generation hybrid titanium composite by electrospinning. Journal of Composite Materials, 0, , 002199832110075.	1.2	7
70	Review of the Applications of Biomedical Compositions Containing Hydroxyapatite and Collagen Modified by Bioactive Components. Materials, 2021, 14, 2096.	1.3	25
71	Improved osteogenesis of human adipose-derived stromal cells on hydroxyapatite-mineralized graphene film. 2D Materials, 2021, 8, 035012.	2.0	3
72	Improved Mechanical Properties of Ultra-High Shear Force Mixed Reduced Graphene Oxide/Hydroxyapatite Nanocomposite Produced Using Spark Plasma Sintering. Nanomaterials, 2021, 11, 986.	1.9	6
7 3	Fiber-Templated 3D Calcium-Phosphate Scaffolds for Biomedical Applications: The Role of the Thermal Treatment Ambient on Physico-Chemical Properties. Materials, 2021, 14, 2198.	1.3	4

#	Article	IF	CITATIONS
74	Influence of TiO2/GO weight ratio on the structure, mechanical, and electrical properties of SiO2â€"Al2O3 glassâ€"ceramics. Journal of Materials Science: Materials in Electronics, 2021, 32, 11092-11106.	1.1	6
75	Effect of Cerium-Containing Hydroxyapatite in Bone Repair in Female Rats with Osteoporosis Induced by Ovariectomy. Minerals (Basel, Switzerland), 2021, 11, 377.	0.8	13
76	Improved nanomechanical and in-vitro biocompatibility of graphene oxide-carbon nanotube hydroxyapatite hybrid composites by synergistic effect. Journal of the Mechanical Behavior of Biomedical Materials, 2021, 117, 104376.	1.5	21
77	Electrolytic deposition of composite coatings on 316L SS and its in vitro corrosion resistive behavior in simulated body fluid solution. Chemical Papers, 2021, 75, 4779.	1.0	4
78	Recent progress on biomedical applications of functionalized hollow hydroxyapatite microspheres. Ceramics International, 2021, 47, 13552-13571.	2.3	14
79	Vapour Diffusion Sitting Drop Method to Induce Nucleation of Calcium Phosphate on Exfoliated Graphene and Graphene Oxide Flakes. Crystals, 2021, 11, 767.	1.0	1
80	3D printing of HAp/xSiO2 ceramic scaffolds for potential bone graft reconstruction. Journal of Physics: Conference Series, 2021, 1948, 012206.	0.3	0
81	Nigella Sativa-Coated Hydroxyapatite Scaffolds: Synergetic Cues to Stimulate Myoblasts Differentiation and Offset Infections. Tissue Engineering and Regenerative Medicine, 2021, 18, 787-795.	1.6	11
82	Bioactive Calcium Phosphate-Based Composites for Bone Regeneration. Journal of Composites Science, 2021, 5, 227.	1.4	46
83	A single-cell transcriptome of mesenchymal stromal cells to fabricate bioactive hydroxyapatite materials for bone regeneration. Bioactive Materials, 2022, 9, 281-298.	8.6	12
84	Mechanical properties, microstructure, and bioactivity of \hat{l}^2 -Si3N4/HA composite ceramics for bone reconstruction. Ceramics International, 2021, 47, 34225-34234.	2.3	4
85	3D-printed composite, calcium silicate ceramic doped with CaSO4·2H2O: Degradation performance and biocompatibility. Journal of the Mechanical Behavior of Biomedical Materials, 2021, 121, 104642.	1.5	18
86	Antibacterial and Cellular Behaviors of Novel Zinc-Doped Hydroxyapatite/Graphene Nanocomposite for Bone Tissue Engineering. International Journal of Molecular Sciences, 2021, 22, 9564.	1.8	40
87	Comparison between hydroxyapatite/soapstone and hydroxyapatite/reduced graphene oxide composite coatings: Synthesis and property improvement. Journal of the Mechanical Behavior of Biomedical Materials, 2021, 121, 104618.	1.5	4
88	Electrochemically functionalized graphene as an anti-corrosion reinforcement in Cu matrix composite thin films. International Journal of Minerals, Metallurgy and Materials, 2021, 28, 1525-1533.	2.4	5
89	Synthesis, characterization and biological performance study of Sr-doped hydroxyapatite/chitosan composite coatings. Materials Chemistry and Physics, 2021, 270, 124752.	2.0	10
90	Surface modification of Ti6Al4V alloy by polydopamine grafted GO/ZnO nanocomposite coating. Surface and Coatings Technology, 2021, 422, 127534.	2.2	9
91	The study of morphological evolution, biocorrosion resistance, and bioactivity of pulse electrochemically deposited Hydroxyapatite/ZnO composite on NiTi superelastic alloy. Surface and Coatings Technology, 2021, 423, 127628.	2.2	9

#	Article	IF	CITATIONS
92	In vitro and in vivo properties of graphene-incorporated scaffolds for bone defect repair. Ceramics International, 2021, 47, 29535-29549.	2.3	17
93	Osteogenic Properties of 3D-Printed Silica-Carbon-Calcite Composite Scaffolds: Novel Approach for Personalized Bone Tissue Regeneration. International Journal of Molecular Sciences, 2021, 22, 475.	1.8	12
94	Clay, Hydroxyapatite and Their Composites—Brief Review. Springer Proceedings in Physics, 2020, , 255-272.	0.1	2
95	Statistical evaluation of nano-structured hydroxyapatite mechanical characteristics by employing the Vickers indentation technique. Ceramics International, 2020, 46, 20081-20087.	2.3	7
96	Freeze-dried multiscale porous nanofibrous three dimensional scaffolds for bone regenerations. BioImpacts, 2020, 10, 73-85.	0.7	27
97	Solid State Chemistry: Computational Chemical Analysis for Materials Science. RSC Theoretical and Computational Chemistry Series, 2020, , 287-334.	0.7	0
98	Electrical Properties of Newly Calcified Tissues on the Surface of Silver Ion Administrated Hydroxyapatite Scaffolds. Journal of Biomaterials and Nanobiotechnology, 2020, 11, 83-100.	1.0	1
99	Advances in Tissue Engineering Approaches for Craniomaxillofacial Bone Reconstruction., 0,,.		0
100	Recent advances in the hybridization of cellulose and carbon nanomaterials: Interactions, structural design, functional tailoring, and applications. Carbohydrate Polymers, 2022, 279, 118947.	5.1	55
101	One-step functionalization of mildly and strongly reduced graphene oxide with maleimide: an experimental and theoretical investigation of the Diels–Alder [4+2] cycloaddition reaction. Physical Chemistry Chemical Physics, 2022, 24, 2491-2503.	1.3	1
102	Computational Study on the Electronic Properties of Graphene/Calcium Oxide Nanocomposite. Egyptian Journal of Chemistry, 2020, .	0.1	0
103	Biomaterials for medical products. , 2022, , 25-62.		0
104	Active Materials for 3D Printing in Small Animals: Current Modalities and Future Directions for Orthopedic Applications. International Journal of Molecular Sciences, 2022, 23, 1045.	1.8	16
105	Carbon-based nanomaterials., 2022,, 213-232.		0
106	Biofunctionalization of graphene and its two-dimensional analogues and synthesis of biomimetic materials: a review. Journal of Materials Science, 2022, 57, 3085-3113.	1.7	8
107	Graphene–Oxide Porous Biopolymer Hybrids Enhance In Vitro Osteogenic Differentiation and Promote Ectopic Osteogenesis In Vivo. International Journal of Molecular Sciences, 2022, 23, 491.	1.8	9
108	A programmed surface on polyetheretherketone for sequentially dictating osteoimmunomodulation and bone regeneration to achieve ameliorative osseointegration under osteoporotic conditions. Bioactive Materials, 2022, 14, 364-376.	8.6	39
109	Permanently polarized hydroxyapatite, an outstanding catalytic material for carbon and nitrogen fixation. Materials Horizons, 2022, 9, 1566-1576.	6.4	7

#	Article	IF	Citations
110	Bioactive surface modifications through thermally sprayed hydroxyapatite composite coatings: a review of selective reinforcements. Biomaterials Science, 2022, 10, 2484-2523.	2.6	22
111	Hydroxyapatite and Er2O3 are embedded within graphene oxide nanosheets for high improvement of their hardness and biological responses. Journal of Inorganic and Organometallic Polymers and Materials, 2022, 32, 2123-2134.	1.9	7
112	Corrosion, mechanical and bioactivity properties of HA-CNT nanocomposite coating on anodized Ti6Al4V alloy. Journal of Materials Science: Materials in Medicine, 2022, 33, 34.	1.7	8
113	In Situ Grown Nanohydroxyapatite Hybridized Graphene Oxide: Enhancing the Strength and Bioactivity of Polymer Scaffolds. ACS Omega, 2022, 7, 12242-12254.	1.6	5
114	Physico-chemical behavior and microstructural manipulation of nanocomposites containing hydroxyapatite, alumina, and graphene oxide. Applied Physics A: Materials Science and Processing, 2022, 128, 1.	1.1	3
115	Two-dimensional nanomaterials-added dynamism in 3D printing and bioprinting of biomedical platforms: Unique opportunities and challenges. Biomaterials, 2022, 284, 121507.	5.7	14
116	3D-printed hydroxyapatite/gelatin bone scaffolds reinforced with graphene oxide: Optimized fabrication and mechanical characterization. Ceramics International, 2022, 48, 10155-10163.	2.3	13
117	Development of a novel smart carrier for drug delivery: Ciprofloxacin loaded vaterite/reduced graphene oxide/PCL composite coating on TiO2 nanotube coated titanium. Ceramics International, 2022, 48, 9579-9594.	2.3	15
118	Repairing rat calvarial defects by adipose mesenchymal stem cells and novel freeze-dried three-dimensional nanofibrous scaffolds. BioImpacts, 2023, 13, 31-42.	0.7	3
119	Binding Peptide-Promoted Biofunctionalization of Graphene Paper with Hydroxyapatite for Stimulating Osteogenic Differentiation of Mesenchymal Stem Cells. ACS Applied Materials & Samp; Interfaces, 2022, 14, 350-360.	4.0	7
120	Biodegradable Silver oxide treated hydroxyapatite nanoparticles (AgO@HA) interlaced Poly (ether-imide)/Poly (methyl-methacrylate) membrane for Blood purification: In-vitro study. Materials Advances, 0, , .	2.6	0
122	Exosomes Derived from Dental Pulp Stem Cells Show Different Angiogenic and Osteogenic Properties in Relation to the Age of the Donor. Pharmaceutics, 2022, 14, 908.	2.0	11
123	Recycling phosphorus and calcium from aquaculture waste as a precursor for hydroxyapatite (HAp) production: a review. Environmental Science and Pollution Research, 2022, 29, 46471-46486.	2.7	8
124	Grafen-Si3N4 Takviyeli Hidroksiapatit Nanokompozitlerin Mekanik ve Yapısal Özellikleri. Journal of the Institute of Science and Technology, 0, , 978-989.	0.3	1
125	Effects of Diatomite Contents on Microstructure, Microhardness, Bioactivity and Biocompatibility of Gradient Bioceramic Coating Prepared by Laser Cladding. Metals, 2022, 12, 931.	1.0	3
126	An effective process to reinforced open cell 316LSS foams with MWCNT for improving biocompatibility. Materials Chemistry and Physics, 2022, 288, 126353.	2.0	4
127	DLP 3D printed silica-doped HAp ceramic scaffolds inspired by the trabecular bone structure. Ceramics International, 2022, 48, 27765-27773.	2.3	14
128	Nanomaterial-reinforced composites for biomedical implant applications: a mini-review. Bioinspired, Biomimetic and Nanobiomaterials, 2022, 11, 34-55.	0.7	0

#	ARTICLE	IF	CITATIONS
129	Impact of residual carbon after DLP and SPS-Sintering on compressive strength and in-VITRO bioactivity of calcium phosphate scaffolds. Open Ceramics, 2022, 11, 100281.	1.0	2
130	Multifunctional Hydroxyapatite Composites for Orthopedic Applications: A Review. ACS Biomaterials Science and Engineering, 2022, 8, 3162-3186.	2.6	52
131	Improvement of medical applicability of hydroxyapatite/graphene oxide nanocomposites via additional yttrium oxide nanoparticles. Advanced Powder Technology, 2022, 33, 103709.	2.0	4
132	O-carboxymethyl chitosan/gelatin/silver-copper hydroxyapatite composite films with enhanced antibacterial and wound healing properties. Journal of Biomaterials Applications, 2022, 37, 773-785.	1.2	1
133	Preparation and characterization of Sr-substituted hydroxyapatite/reduced graphene oxide 3D scaffold as drug carrier for alendronate sodium delivery. Ceramics International, 2022, 48, 36601-36608.	2.3	3
134	The design, construction and application of graphene family composite nanocoating on dental metal surface., 2022, 140, 213087.		4
135	Green synthesized graphene-hydroxyapatite nanocomposites for bioimplant applications. Materials Letters, 2022, 327, 133059.	1.3	3
136	Zinc-doped hydroxyapatite and graphene oxide composites for bone and teeth implants: a theoretical understanding. Materials Advances, 2022, 3, 8323-8331.	2.6	1
137	Improvement of mechanical and antibacterial properties of porous nHA scaffolds by fluorinated graphene oxide. RSC Advances, 2022, 12, 25405-25414.	1.7	1
138	Fucoidan-Incorporated Composite Scaffold Stimulates Osteogenic Differentiation of Mesenchymal Stem Cells for Bone Tissue Engineering. Marine Drugs, 2022, 20, 589.	2.2	5
139	Halogenated thiophenes serve as solvent additives in mediating morphology and achieving efficient organic solar cells. Energy and Environmental Science, 2022, 15, 5137-5148.	15.6	38
140	Influence of graphene oxide and carbon nanotubes on physicochemical properties of bone cements. Materials Chemistry and Physics, 2023, 293, 126961.	2.0	10
141	Synthesis and Characterization of Graphene Oxide from Residual Biomass. , 2022, , .		0
142	Graphene oxide coated three-dimensional printed biphasic calcium phosphate scaffold for angiogenic and osteogenic synergy in repairing critical-size bone defect. Journal of Materials Science and Technology, 2023, 145, 25-39.	5.6	7
143	Frontiers of Hydroxyapatite Composites in Bionic Bone Tissue Engineering. Materials, 2022, 15, 8475.	1.3	9
144	Optimisation of two-step sintering parameters to produce bioactive and dense zirconia-hydroxyapatite composite ceramics. Journal of the European Ceramic Society, 2023, 43, 2222-2233.	2.8	0
145	Silver flowers decorated open cell stainless steel foam for bone scaffold application. Materials Today Communications, 2023, 34, 105392.	0.9	1
146	Green synthesis of graphene-hydroxyapatite nanocomposites with improved mechanical properties for bone implant materials. Materials Chemistry and Physics, 2023, 296, 127331.	2.0	2

#	Article	IF	CITATIONS
147	Inorganic/organic combination: Inorganic particles/polymer composites for tissue engineering applications. Bioactive Materials, 2023, 24, 535-550.	8.6	14
148	Influence of Graphene Nanoplatelets on the Performance of Axial Suspension Plasma-Sprayed Hydroxyapatite Coatings. Bioengineering, 2023, 10, 44.	1.6	1
149	The Cytotoxicity of Carbon Nanotubes and Hydroxyapatite, and Graphene and Hydroxyapatite Nanocomposites against Breast Cancer Cells. Nanomaterials, 2023, 13, 556.	1.9	1
150	Effect of nano-CaO particle on the microstructure, mechanical properties and corrosion behavior of lean Mg-1Zn alloy. Journal of Magnesium and Alloys, 2024, 12, 794-814.	5.5	5
151	A Composite of Hydrogel Alginate/PVA/r-GO for Scaffold Applications with Enhanced Degradation and Biocompatibility Properties. Polymers, 2023, 15, 534.	2.0	1
152	Biocompatibility of Poly-Lactic Acid/Nanohydroxyapatite/Graphene Nanocomposites for Load Bearing Bone Implants. Journal of the Electrochemical Society, 2023, 170, 027502.	1.3	2
153	A Comprehensive Review on Novel Grapheneâ€Hydroxyapatite Nanocomposites For Potential Bioimplant Applications. ChemistrySelect, 2023, 8, .	0.7	4
154	Structural and Functional Adaptive Artificial Bone: Materials, Fabrications, and Properties. Advanced Functional Materials, 2023, 33, .	7.8	53
155	ELECTRODEPOSITED GRAPHENE OXIDE-HYDROXYAPATITE COMPOSITE COATING WITH IMPROVED BONDING STRENGTH FOR BIOMEDICAL APPLICATION. Surface Review and Letters, 0, , .	0.5	0
159	Coating Methods for Hydroxyapatite—A Bioceramic Material. Materials Horizons, 2023, , 279-302.	0.3	2