A survey of dial-a-ride problems: Literature review and

Transportation Research Part B: Methodological 111, 395-421

DOI: 10.1016/j.trb.2018.02.001

Citation Report

#	Article	IF	CITATIONS
1	A scalable non-myopic dynamic dial-a-ride and pricing problem for competitive on-demand mobility systems. Transportation Research Part C: Emerging Technologies, 2018, 91, 192-208.	3.9	37
2	Diversified Bus Services and Enterprise Information System: An Example of Beijing. , 2018, , .		O
3	Pickup and delivery of automobiles from warehouses to dealers. Transportation Research Part B: Methodological, 2018, 117, 412-430.	2.8	9
4	DeepPool: Distributed Model-Free Algorithm for Ride-Sharing Using Deep Reinforcement Learning. IEEE Transactions on Intelligent Transportation Systems, 2019, 20, 4714-4727.	4.7	86
5	A Regional Multi-Objective Tabu Search Algorithm for a Green Heterogeneous Dial-A-Ride Problem. , 2019, , .		1
6	The benefits of introducing meeting points into flex-route transit services. Transportation Research Part C: Emerging Technologies, 2019, 106, 98-112.	3.9	35
7	Customized bus routing problem with time window restrictions: model and case study. Transportmetrica A: Transport Science, 2019, 15, 1804-1824.	1.3	42
8	Reinsertion Algorithm Based on Destroy and Repair Operators for Dynamic Dial a Ride Problems. Lecture Notes in Computer Science, 2019, , 81-95.	1.0	1
9	On the needs for MaaS platforms to handle competition in ridesharing mobility. Transportation Research Part C: Emerging Technologies, 2019, 108, 269-288.	3.9	37
10	A Survey of Taxi Ride Sharing System Architectures. , 2019, , .		5
11	Trajectory analysis for on-demand services: A survey focusing on spatial-temporal demand and supply		
	patterns. Transportation Research Part C: Emerging Technologies, 2019, 108, 74-99.	3.9	31
12	The Value of Prepositioning in Smartphone-Based Vanpool Services under Stochastic Requests and Time-Dependent Travel Times. Transportation Research Record, 2019, 2673, 26-37.	1.0	9
12	The Value of Prepositioning in Smartphone-Based Vanpool Services under Stochastic Requests and		
	The Value of Prepositioning in Smartphone-Based Vanpool Services under Stochastic Requests and Time-Dependent Travel Times. Transportation Research Record, 2019, 2673, 26-37. Applying NSGA-II to a Multiple Objective Dial a Ride Problem. Lecture Notes in Computer Science, 2019, ,	1.0	9
13	The Value of Prepositioning in Smartphone-Based Vanpool Services under Stochastic Requests and Time-Dependent Travel Times. Transportation Research Record, 2019, 2673, 26-37. Applying NSGA-II to a Multiple Objective Dial a Ride Problem. Lecture Notes in Computer Science, 2019, , 55-69. An exact solution method for the capacitated item-sharing and crowdshipping problem. European	1.0	9
13	The Value of Prepositioning in Smartphone-Based Vanpool Services under Stochastic Requests and Time-Dependent Travel Times. Transportation Research Record, 2019, 2673, 26-37. Applying NSGA-II to a Multiple Objective Dial a Ride Problem. Lecture Notes in Computer Science, 2019, , 55-69. An exact solution method for the capacitated item-sharing and crowdshipping problem. European Journal of Operational Research, 2019, 279, 589-604. Neural Network-Based Metaheuristic Parameterization with Application to the Vehicle Matching	1.0 1.0 3.5	9 2 33
13 14 15	The Value of Prepositioning in Smartphone-Based Vanpool Services under Stochastic Requests and Time-Dependent Travel Times. Transportation Research Record, 2019, 2673, 26-37. Applying NSGA-II to a Multiple Objective Dial a Ride Problem. Lecture Notes in Computer Science, 2019, , 55-69. An exact solution method for the capacitated item-sharing and crowdshipping problem. European Journal of Operational Research, 2019, 279, 589-604. Neural Network-Based Metaheuristic Parameterization with Application to the Vehicle Matching Problem in Ride-Hailing Services. Transportation Research Record, 2019, 2673, 311-320. A Hybrid Adaptive Large Neighborhood Heuristic for a Real-Life Dial-a-Ride Problem. Algorithms, 2019,	1.0 1.0 3.5	9 2 33 4

#	Article	IF	CITATIONS
19	Quota Traveling Salesman with Passengers and Collection Time. , 2019, , .		1
20	Data-Oriented Approach for the Dial-A-Ride Problem. , 2019, , .		1
21	Minimizing Latency in Online Pickup and Delivery Problem with Single Pickup Point., 2019, , .		3
22	Operational Design for a Real-Time Flexible Transit System Considering Passenger Demand and Willingness to Pay. IEEE Access, 2019, 7, 180305-180315.	2.6	6
23	Asynchronous Adaptive Large Neighborhood Search Algorithm for Dynamic Matching Problem in Ride Hailing Services. , $2019, \ldots$		5
25	Hybrid adaptive large neighborhood search algorithm for the mixed fleet heterogeneous dial-a-ride problem. Journal of Heuristics, 2020, 26, 83-118.	1.1	21
26	Pickup and delivery problem with incompatibility constraints. Computers and Operations Research, 2020, 113, 104805.	2.4	12
27	Recovery management for a dial-a-ride system with real-time disruptions. European Journal of Operational Research, 2020, 280, 953-969.	3.5	12
28	Solving a dial-a-flight problem using composite variables. Top, 2020, 28, 123-153.	1.1	0
29	OCD: Online Crowdsourced Delivery for On-Demand Food. IEEE Internet of Things Journal, 2020, 7, 6842-6854.	5 . 5	32
30	Mathematical models to improve the current practice in a Home Healthcare Unit. OR Spectrum, 2020, 42, 43-74.	2.1	5
31	Centralized and decentralized autonomous dispatching strategy for dynamic autonomous taxi operation in hybrid request mode. Transportation Research Part C: Emerging Technologies, 2020, 111, 397-420.	3.9	43
32	A two-phase optimization model for the demand-responsive customized bus network design. Transportation Research Part C: Emerging Technologies, 2020, 111, 1-21.	3.9	116
33	Governance models for rural accessible transportation: insights from Atlantic Canada. Disability and Society, 2022, 37, 684-710.	1.4	4
34	Pricing and equilibrium in on-demand ride-pooling markets. Transportation Research Part B: Methodological, 2020, 139, 411-431.	2.8	139
35	Designing High-Freedom Responsive Feeder Transit System with Multitype Vehicles. Journal of Advanced Transportation, 2020, 2020, 1-20.	0.9	3
36	Unreliability in ridesharing systems: Measuring changes in users' times due to new requests. Transportation Research Part C: Emerging Technologies, 2020, 121, 102831.	3.9	18
37	An Improved Variable Neighbourhood Search Algorithm for Selective Dial-a-Ride Problems. , 2020, , .		1

#	ARTICLE	IF	CITATIONS
38	Split Demand One-to-One Pickup and Delivery Problems With the Shortest-Path Transport Along Real-Life Paths. IEEE Access, 2020, 8, 150539-150554.	2.6	4
39	Disruption Management for Dial-A-Ride Systems. IEEE Intelligent Transportation Systems Magazine, 2020, 12, 219-234.	2.6	1
40	On ride-pooling and traffic congestion. Transportation Research Part B: Methodological, 2020, 142, 213-231.	2.8	58
41	A Generic GPU-Accelerated Framework for the Dial-A-Ride Problem. IEEE Transactions on Intelligent Transportation Systems, 2021, 22, 6473-6488.	4.7	3
42	A city-scale IoT-enabled ridesharing platform. Transportation Letters, 2020, 12, 706-712.	1.8	7
43	The multi-mode mobile charging service based on electric vehicle spatiotemporal distribution. Energy, 2020, 198, 117302.	4.5	31
44	An Analytical Model for the Many-to-One Demand Responsive Transit Systems. Sustainability, 2020, 12, 298.	1.6	11
45	Online pickup and delivery problem with constrained capacity to minimize latency. Journal of Combinatorial Optimization, 2022, 43, 974-993.	0.8	3
46	Study on Accessibility of Feeder Lines with Different Geometric Shapes. Journal of Advanced Transportation, 2020, 2020, 1-14.	0.9	2
47	Automated taxis' dial-a-ride problem with ride-sharing considering congestion-based dynamic travel times. Transportation Research Part C: Emerging Technologies, 2020, 112, 260-281.	3.9	69
48	Multi-start heuristic approaches for one-to-one pickup and delivery problems with shortest-path transport along real-life paths. PLoS ONE, 2020, 15, e0227702.	1.1	4
49	Variable Neighborhood Search. Lecture Notes in Computer Science, 2020, , .	1.0	4
50	Quota travelling salesman problem with passengers, incomplete ride and collection time optimization by ant-based algorithms. Computers and Operations Research, 2020, 120, 104950.	2.4	19
51	A heuristic repair method for dial-a-ride problem in intracity logistic based on neighborhood shrinking. Multimedia Tools and Applications, 2020, 80, 30775.	2.6	2
52	Health Care Systems Engineering. Springer Proceedings in Mathematics and Statistics, 2020, , .	0.1	0
53	Wearable Biosensor and Hotspot Analysis–Based Framework to Detect Stress Hotspots for Advancing Elderly's Mobility. Journal of Management in Engineering - ASCE, 2020, 36, .	2.6	36
54	Analyzing the benefits of an integrated mobility system using a matheuristic routing algorithm. European Journal of Operational Research, 2021, 290, 81-98.	3.5	21
55	Synchronizing transportation of people with reduced mobility through airport terminals. Computers and Operations Research, 2021, 125, 105103.	2.4	1

#	Article	IF	CITATIONS
56	"Make no little plans†Impactful research to solve the next generation of transportation problems. Networks, 2021, 77, 269-286.	1.6	20
57	Modeling and solving the multimodal car- and ride-sharing problem. European Journal of Operational Research, 2021, 293, 290-303.	3 . 5	28
58	Mobility-as-a-Service and Demand-Responsive Transport: Practical Implementation in Traditional Forecasting Models. Transportation Research Record, 2021, 2675, 15-24.	1.0	0
59	Customized bus service design for uncertain commuting travel demand. Transportmetrica A: Transport Science, 2021, 17, 1405-1430.	1.3	21
60	A congestion-aware Tabu search heuristic to solve the shared autonomous vehicle routing problem. Journal of Intelligent Transportation Systems: Technology, Planning, and Operations, 2021, 25, 343-355.	2.6	11
61	Vehicle Routing and Scheduling of Flex-Route Transit under a Dynamic Operating Environment. Discrete Dynamics in Nature and Society, 2021, 2021, 1-10.	0.5	3
62	MILP models for the Dial-a-ride problem with transfers. EURO Journal on Transportation and Logistics, 2021, 10, 100037.	1.3	8
63	Bi-objective optimization model for the heterogeneous dynamic dial-a-ride problem with no rejects. Optimization Letters, 2022, 16, 355-374.	0.9	8
64	Integrating vehicle routing into intermodal service network design with stochastic transit times. EURO Journal on Transportation and Logistics, 2021, 10, 100046.	1.3	6
65	Machine Learning Guided Optimization for Demand Responsive Transport Systems. Lecture Notes in Computer Science, 2021, , 420-436.	1.0	0
66	A Distributed Model-Free Ride-Sharing Approach for Joint Matching, Pricing, and Dispatching Using Deep Reinforcement Learning. IEEE Transactions on Intelligent Transportation Systems, 2021, 22, 7931-7942.	4.7	37
67	Analysis of Schedules for Rural First and Last Mile Microtransit Services. Lecture Notes in Computer Science, 2021, , 332-346.	1.0	2
68	Online Bus Services. Advances in Logistics, Operations, and Management Science Book Series, 2021, , 178-188.	0.3	0
69	Patient Transport and Mobile Health Workforce: Framework and Research Perspectives. Lecture Notes in Networks and Systems, 2021, , 530-545.	0.5	0
70	H-TD ² : Hybrid Temporal Difference Learning for Adaptive Urban Taxi Dispatch. IEEE Transactions on Intelligent Transportation Systems, 2022, 23, 10935-10944.	4.7	0
71	Integrating Passenger Incentives to Optimize Routing for Demand-Responsive Customized Bus Systems. IEEE Access, 2021, 9, 21507-21521.	2.6	10
72	The EMS vehicle patient transportation problem during a demand surge. Journal of Global Optimization, 2021, 79, 989-1006.	1.1	7
73	Design and Implementation of Zone-to-Zone Demand Responsive Transportation Systems. Transportation Research Record, 2021, 2675, 275-287.	1.0	13

#	Article	IF	Citations
74	A review of public transport economics. Economics of Transportation, 2021, 25, 100196.	1.1	51
75	The container drayage problem for heterogeneous trucks with multiple loads: A revisit. Transportation Research, Part E: Logistics and Transportation Review, 2021, 147, 102241.	3.7	11
76	All roads lead to the places of your interest: An onâ€demand, rideâ€sharing visitor transport service. International Journal of Tourism Research, 2021, 23, 871-880.	2.1	3
77	Optimizing ride-sharing operations in smart sustainable cities: Challenges and the need for agile algorithms. Computers and Industrial Engineering, 2021, 153, 107080.	3.4	46
78	Multi-Strategy $\langle i \rangle$ MAX-MIN $\langle j \rangle$ Ant System for Solving Quota Traveling Salesman Problem with Passengers, Incomplete Ride and Collection Time. , 0, , .		0
79	On the inefficiency of ride-sourcing services towards urban congestion. Transportation Research Part C: Emerging Technologies, 2021, 124, 102890.	3.9	78
80	Evaluating demand responsive transit services using a density-based trip rate metric. Journal of Transport and Land Use, 2021, 14, 499-519.	0.7	2
81	Implementing Horizontal Cooperation in Public Transport and Parcel Deliveries: The Cooperative Share-A-Ride Problem. Sustainability, 2021, 13, 4362.	1.6	3
82	A Novel Model for Designing a Demand-Responsive Connector (DRC) Transit System With Consideration of Users' Preferred Time Windows. IEEE Transactions on Intelligent Transportation Systems, 2021, 22, 2442-2451.	4.7	7
83	Suburban Demand Responsive Transit Service With Rental Vehicles. IEEE Transactions on Intelligent Transportation Systems, 2021, 22, 2391-2403.	4.7	12
84	A review on the electric vehicle routing problems: Variants and algorithms. Frontiers of Engineering Management, 2021, 8, 370-389.	3.3	47
85	A hybrid algorithm for the multi-depot heterogeneous dial-a-ride problem. Computers and Operations Research, 2021, 129, 105196.	2.4	23
86	Capacitated Location-Allocation-Routing Problem with Time Windows for On-Demand Urban Air Taxi Operation. Transportation Research Record, 2021, 2675, 1092-1114.	1.0	3
87	A dial-a-ride problem with driver preferences. , 2021, , .		2
88	Path-Based Dynamic Vehicle Dispatch Strategy for Demand Responsive Transit Systems. Transportation Research Record, 2021, 2675, 948-959.	1.0	5
89	Optimizing flexible one-to-two matching in ride-hailing systems with boundedly rational users. Transportation Research, Part E: Logistics and Transportation Review, 2021, 150, 102329.	3.7	24
90	Density Based Distribution Model for Repositioning Strategies of Ride Hailing Services. Frontiers in Future Transportation, 2021, 2, .	1.3	4
91	Computationally efficient dynamic assignment for on-demand ridesharing in congested networks. , 2021, , .		1

#	Article	IF	CITATIONS
92	An Improved Biogeography-Based Optimization for the Long-Term Carpooling Problem. Applied Artificial Intelligence, 2021, 35, 745-764.	2.0	5
93	A modified artificial bee colony algorithm for the dynamic ride-hailing sharing problem. Transportation Research, Part E: Logistics and Transportation Review, 2021, 150, 102124.	3.7	20
94	Effectiveness of demand and fulfillment control in dynamic fleet management of rideâ€sharing systems. Networks, 2022, 79, 314-337.	1.6	7
95	The timeâ€consistent dialâ€aâ€ride problem. Networks, 2022, 79, 452-478.	1.6	4
96	An ant colony algorithm with penalties for the dial-a-ride problem with time windows and capacity restriction. , 2021 , , .		1
97	Dynamic Ride-Hailing with Electric Vehicles. Transportation Science, 2022, 56, 775-794.	2.6	33
98	Decomposition algorithm for the multi-trip single vehicle routing problem with AND-type precedence constraints. Operational Research, 0 , 1 .	1.3	0
99	Novel Hierarchical Markov Decision Process Framework to Enable Ridesharing in On-Demand Air Service Operations., 2021, , .		O
100	On-Demand Public Transit: A Markovian Continuous Approximation Model. Transportation Science, 2022, 56, 704-724.	2.6	1
101	A combinatorial auctionâ€based approach for ridesharing in a student transportation system. Networks, 2021, 78, 229-247.	1.6	2
102	Robust matching-integrated vehicle rebalancing in ride-hailing system with uncertain demand. Transportation Research Part B: Methodological, 2021, 150, 161-189.	2.8	33
103	Pickup and delivery problems with autonomous vehicles on rings. European Journal of Operational Research, 2021, , .	3.5	6
104	Zonal-based flexible bus service under elastic stochastic demand. Transportation Research, Part E: Logistics and Transportation Review, 2021, 152, 102367.	3.7	24
105	Proactive shuttle dispatching in large-scale dynamic dial-a-ride systems. Transportation Research Part B: Methodological, 2021, 150, 227-259.	2.8	12
106	A generalized ride-matching approach for sustainable shared mobility. Sustainable Cities and Society, 2022, 76, 103383.	5.1	12
107	Optimal operations planning of electric autonomous vehicles via asynchronous learning in ride-hailing systems. Omega, 2021, 103, 102448.	3.6	9
108	A combined dial-a-ride and fixed schedule ferry service for coastal cities. Transportation Research, Part A: Policy and Practice, 2021, 153, 306-325.	2.0	4
109	Scheduling heterogeneous multi-load AGVs with battery constraints. Computers and Operations Research, 2021, 136, 105517.	2.4	23

#	ARTICLE	IF	CITATIONS
110	Customer-Oriented Dial-A-Ride Problems: A Survey on Relevant Variants, Solution Approaches and Applications. Advances in Science, Technology and Innovation, 2021, , 111-119.	0.2	6
111	Improving Sharing Rates of a Dial-a-Ride Problem implemented for an Austrian Mobility Provider. Transportation Research Procedia, 2021, 52, 525-532.	0.8	3
112	An Iterated Local Search for the Multi-objective Dial-a-Ride Problem. Advances in Intelligent Systems and Computing, 2021, , 1302-1313.	0.5	0
113	Neural Network Based Large Neighborhood Search Algorithm for Ride Hailing Services. Lecture Notes in Computer Science, 2019, , 584-595.	1.0	8
114	A Learning-Based Optimization Approach for Autonomous Ridesharing Platforms with Service-Level Contracts and On-Demand Hiring of Idle Vehicles. Transportation Science, 2022, 56, 677-703.	2.6	10
115	Demand Responsive Service-based Optimization on Flexible Routes and Departure Time of Community Shuttles. Sustainability, 2020, 12, 897.	1.6	6
116	User-Assignment Strategy Considering Future Imbalance Impacts for Ride Hailing., 2021, , .		2
117	The Dial-A-Ride Problem considering the in-vehicle crowding inconvenience due to COVID-19., 2021,,.		2
118	Demand-Driven Optimization Method for Microtransit Services. Transportation Research Record, 2022, 2676, 58-70.	1.0	5
119	The Stochastic and Dynamic Vehicle Routing Problem: A Literature Review. Lecture Notes in Electrical Engineering, 2022, , 344-351.	0.3	1
120	Optimization Methods for the Same-Day Delivery Problem. AIRO Springer Series, 2019, , 335-349.	0.4	1
121	Ridesharing. Proceedings of the VLDB Endowment, 2019, 12, 1085-1098.	2.1	17
122	One-Shot Coordination of Feeder Vehicles for Multi-Modal Transportation. , 2019, , .		1
123	A Threshold Policy for Dispatching Vehicles in Demand-responsive Transit Systems. Promet - Traffic - Traffico, 2019, 31, 387-395.	0.3	3
124	A Comparison of Multiple Objective Algorithms in the Context of a Dial a Ride Problem. Lecture Notes in Computer Science, 2020, , 382-396.	1.0	3
125	Insertion Sequence Variables for Hybrid Routing and Scheduling Problems. Lecture Notes in Computer Science, 2020, , 457-474.	1.0	0
126	A Data-Driven Optimization Approach For the Dynamic Shuttle Dispatching Problem. SSRN Electronic Journal, 0, , .	0.4	0
127	A Hybrid Heuristic Algorithm for the Dial-a-Ride Problem. Lecture Notes in Computer Science, 2020, , 53-66.	1.0	1

#	ARTICLE	IF	CITATIONS
128	Welfare consequences of request stops at transport services with low demand. European Transport Research Review, 2020, 12 , .	2.3	1
129	Designing Zonal-Based Flexible Bus Services Under Stochastic Demand. Transportation Science, 2021, 55, 1280-1299.	2.6	10
130	A Dial-a-Ride Problem Applied to Saharan Countries: The Case of Taxi Woro-Woro. Open Journal of Optimization, 2020, 09, 138-147.	0.3	0
131	Non-emergency Patient Transfer Scheduling and Assignment. Springer Proceedings in Mathematics and Statistics, 2020, , 3-12.	0.1	0
132	Optimizing Operator's and Users' Objectives in Non-emergency Patients Transportation. Springer Proceedings in Mathematics and Statistics, 2020, , 13-23.	0.1	1
133	A Time-Responsive Approach for Sustainable and Flexible Mobility Services. , 2021, , .		0
134	Comparison of anticipatory algorithms for a dial-a-ride problem. European Journal of Operational Research, 2022, 301, 591-608.	3.5	6
135	Last Mile Delivery Considering Time-Dependent Locations. , 2021, , .		2
136	An ALNS algorithm for the static dial-a-ride problem with ride and waiting time minimization. OR Spectrum, 2022, 44, 87-119.	2.1	10
137	Improving the performance of first- and last-mile mobility services through transit coordination, real-time demand prediction, advanced reservations, and trip prioritization. Transportation Research Part C: Emerging Technologies, 2021, 133, 103430.	3.9	12
138	Predicting the matching probability and the expected ride/shared distance for each dynamic ridepooling order: A mathematical modeling approach. Transportation Research Part B: Methodological, 2021, 154, 125-146.	2.8	11
139	Operational analysis of an innovative semi-autonomous on-demand transportation system. Transportation Research Part C: Emerging Technologies, 2021, 132, 103373.	3.9	9
140	Exact Branch-Price-and-Cut for a Hospital Therapist Scheduling Problem with Flexible Service Locations and Time-Dependent Location Capacity. INFORMS Journal on Computing, 2022, 34, 1157-1175.	1.0	4
141	Matching and routing for shared autonomous vehicles in congestible network. Transportation Research, Part E: Logistics and Transportation Review, 2021, 156, 102513.	3.7	12
142	Event-based MILP models for ridepooling applications. European Journal of Operational Research, 2022, 301, 1048-1063.	3.5	6
143	A distributed algorithm for operating large-scale ridesourcing systems. Transportation Research, Part E: Logistics and Transportation Review, 2021, 156, 102487.	3.7	4
145	Near-on-demand mobility. The benefits of user flexibility for ride-pooling services. Transportation Research Part C: Emerging Technologies, 2022, 135, 103530.	3.9	7
146	Charging management of shared taxis: Neighbourhood search for the E-ADARP. , 2020, , .		1

#	Article	IF	Citations
147	A Sample Average Approximation Approach for the Stochastic Dial-A-Ride Problem on a Multigraph with User Satisfaction. European Journal of Operational Research, 2022, 302, 1031-1044.	3.5	4
148	Application of Generative Adversarial Network to Optimize Vehicle Allocation at Dispatch Stations of Paratransit Services. Electronics (Switzerland), 2022, 11, 423.	1.8	0
149	Satisfying user preferences in optimised ridesharing services:. Applied Intelligence, 2022, 52, 11257-11272.	3.3	3
150	Effects and feasibility of shared mobility with shared autonomous vehicles: An investigation based on data-driven modeling approach. Transportation Research, Part A: Policy and Practice, 2022, 156, 206-226.	2.0	8
151	Lagrangian dual decomposition for the ambulance relocation and routing considering stochastic demand with the truncated Poisson. Transportation Research Part B: Methodological, 2022, 157, 1-23.	2.8	14
152	A business class for autonomous mobility-on-demand: Modeling service quality contracts in dynamic ridesharing systems. Transportation Research Part C: Emerging Technologies, 2022, 136, 103520.	3.9	17
153	Interrelated trips in the rural dial-a-ride problem with autonomous vehicles. European Journal of Operational Research, 2022, 303, 201-219.	3. 5	8
154	A survey on demand-responsive public bus systems. Transportation Research Part C: Emerging Technologies, 2022, 137, 103573.	3.9	39
155	Intelligent Shared Mobility Systems: A Survey on Whole System Design Requirements, Challenges and Future Direction. IEEE Access, 2022, 10, 35302-35320.	2.6	6
156	Case study of Dial-a-Ride Problems arising in Austrian rural regions. Transportation Research Procedia, 2022, 62, 197-204.	0.8	3
157	Pricing Method of the Flexible Bus Service Based on Cumulative Prospect Theory. Journal of Advanced Transportation, 2022, 2022, 1-14.	0.9	3
158	The complexity of the unit stop number problem and its implications to other related problems. Theoretical Computer Science, 2022, 919, 36-46.	0.5	2
159	The vehicle routing problem of intercity ride-sharing between two cities. Transportation Research Part B: Methodological, 2022, 158, 113-139.	2.8	9
160	Joint optimization of timetabling, vehicle scheduling, and ride-matching in a flexible multi-type shuttle bus system. Transportation Research Part C: Emerging Technologies, 2022, 139, 103657.	3.9	18
161	A hybrid algorithm for the Vehicle Routing Problem with AND/OR Precedence Constraints and time windows. Computers and Operations Research, 2022, 143, 105766.	2.4	4
162	Solving a hybrid mixed fleet heterogeneous dial-a-ride problem in delay-sensitive container transportation. International Journal of Production Research, 2022, 60, 297-323.	4.9	7
163	A capacity sharing approach to manage jointly transportation and emergency fleets at EMS organisations. International Journal of Production Research, 0, , 1-18.	4.9	0
164	<i>E</i> -Ride: An Adaptive Event-Driven Windowed Matching Framework in Ridesharing. IEEE Access, 2022, 10, 43799-43811.	2.6	0

#	ARTICLE	IF	CITATIONS
165	Developing an optimal algorithm for demand responsive feeder transit service accommodating temporary stops. Journal of Public Transportation, 2022, 24, 100021.	0.3	6
166	A Multi-Stage Optimisation Approach to Design Relocation Strategies in One-Way Car-Sharing Systems With Stackable Cars. IEEE Transactions on Intelligent Transportation Systems, 2022, 23, 17048-17061.	4.7	6
167	Two-Stage Dynamic Optimization on Station-to-Door Delivery with Uncertain Freight Operation Time in Urban Logistics. Journal of the Urban Planning and Development Division, ASCE, 2022, 148, .	0.8	2
169	Unified Route Planning for Shared Mobility: An Insertion-based Framework. ACM Transactions on Database Systems, 2022, 47, 1-48.	1.5	13
170	Optimized Zone Sizes and Headways for Flexible-Route Bus Services — A Two Zone Case. KSCE Journal of Civil Engineering, 0, , .	0.9	0
171	Using decomposition-based multi-objective algorithm to solve Selective Pickup and Delivery Problems with Time Windows. Computers and Operations Research, 2022, 145, 105867.	2.4	7
172	A scalable vehicle assignment and routing strategy for real-time on-demand ridesharing considering endogenous congestion. Transportation Research Part C: Emerging Technologies, 2022, 139, 103658.	3.9	12
173	Analysis of Logistics 4.0 service quality and its sustainability enabler scenarios in emerging economy. Cleaner Logistics and Supply Chain, 2022, 4, 100053.	3.1	14
174	Putting ridesharing to the test: efficient and scalable solutions and the power of dynamic vehicle relocation. Artificial Intelligence Review, 0 , , .	9.7	0
175	A Slack Departure Strategy for Demand Responsive Transit Based on Bounded Rationality. Journal of Advanced Transportation, 2022, 2022, 1-16.	0.9	2
176	Optimization models for fair horizontal collaboration in demand-responsive transportation. Transportation Research Part C: Emerging Technologies, 2022, 140, 103725.	3.9	6
177	Choice-driven dial-a-ride problem for demand responsive mobility service. Transportation Research Part B: Methodological, 2022, 161, 128-149.	2.8	9
179	Urban On-Demand Delivery via Autonomous Aerial Mobility: Formulation and Exact Algorithm. IEEE Transactions on Automation Science and Engineering, 2023, 20, 1675-1689.	3.4	4
180	Hybrid and approximate algorithms for the dial-a-ride problem with adaptive ride times considering different service strategies. Engineering Optimization, 0 , 0 , 1 - 1 5.	1.5	0
181	Smart urban transport and logistics: A business analytics perspective. Production and Operations Management, 2022, 31, 3771-3787.	2.1	11
182	Optimizing first- and last-mile public transit services leveraging transportation network companies (TNC). Transportation, 0, , .	2.1	1
183	Review of shared online hailing and autonomous taxi services. Transportmetrica B, 2023, 11, 486-509.	1.4	6
184	Service Network Design for Same-Day Delivery with Hub Capacity Constraints. Transportation Science, 0, , .	2.6	1

#	Article	IF	CITATIONS
185	Public transport for smart cities: Recent innovations and future challenges. European Journal of Operational Research, 2023, 306, 1001-1026.	3.5	46
186	First-mile logistics parcel pickup: Vehicle routing with packing constraints under disruption. Transportation Research, Part E: Logistics and Transportation Review, 2022, 164, 102812.	3.7	6
187	Clustering-based iterative heuristic framework for a non-emergency patients transportation problem. Journal of Transport and Health, 2022, 26, 101411.	1.1	2
188	The dial-a-ride problem with private fleet and common carrier. Computers and Operations Research, 2022, 147, 105933.	2.4	2
189	The Dial-a-Ride Problem with School Bell Time Adjustment. Transportation Science, 2023, 57, 156-173.	2.6	1
190	Adaptive large neighborhood search for the time-dependent profitable dial-a-ride problem. Computers and Operations Research, 2022, 147, 105938.	2.4	4
191	The real-time on-demand bus routing problem: The cost of dynamic requests. Computers and Operations Research, 2022, 147, 105941.	2.4	6
192	Multi-objective optimization for multi-depot heterogeneous first-mile transportation system considering requests' preference ranks for pick-up stops. Transportmetrica A: Transport Science, 2023, 19, .	1.3	1
193	Survey of charging management and infrastructure planning for electrified demand-responsive transport systems: Methodologies and recent developments. European Transport Research Review, 2022, 14, .	2.3	3
194	A multi-agent approach for on-demand transportation problem in cities. Web Intelligence, 2022, , 1-15.	0.1	0
195	Electric demand-responsive transit routing with opportunity charging strategy. Transportation Research, Part D: Transport and Environment, 2022, 110, 103427.	3.2	13
196	A machine learning-driven two-phase metaheuristic for autonomous ridesharing operations. Transportation Research, Part E: Logistics and Transportation Review, 2022, 165, 102835.	3.7	7
197	Learning to Solve Multiple-TSP With Time Window and Rejections via Deep Reinforcement Learning. IEEE Transactions on Intelligent Transportation Systems, 2023, 24, 1325-1336.	4.7	5
198	A MIP-Based Heuristic forÂPickup andÂDelivery onÂRectilinear Layout. Communications in Computer and Information Science, 2022, , 211-226.	0.4	0
199	Minimizing user inconvenience and operational costs in a dial-a-flight problem for flying safaris. Infor, 2023, 61, 104-140.	0.5	1
200	Demand-Responsive Mobility forÂRural Areas: A Review. Communications in Computer and Information Science, 2022, , 129-140.	0.4	3
201	Sustainable container distribution by alternatively fueled vehicles under customer and technical constraints. IFAC-PapersOnLine, 2022, 55, 836-841.	0.5	0
202	Examining the factors influencing microtransit users' next ride decisions using Bayesian networks. European Transport Research Review, 2022, 14, .	2.3	0

#	Article	IF	CITATIONS
203	Joint optimization of modular vehicle schedule and fair passenger flow control under heterogeneous passenger demand in a rail transit system. Computers and Industrial Engineering, 2022, 173, 108749.	3.4	8
204	Optimization-based Predictive Approach forÂOn-Demand Transportation. Lecture Notes in Computer Science, 2022, , 466-477.	1.0	0
205	Online Order Dispatching and Vacant Vehicles Rebalancing for the First-Mile Ride-Sharing Problem. SSRN Electronic Journal, 0, , .	0.4	0
206	Coordinated Operation of Fixed-Route and Demand-Responsive Feeder Transit Services in a Travel Corridor. Journal of Transportation Engineering Part A: Systems, 2023, 149, .	0.8	0
207	The vehicle routing problem with time windows and flexible delivery locations. European Journal of Operational Research, 2023, 308, 1142-1159.	3.5	7
208	Optimal Paths with Impact on a Constraint System: An Application to the 1-Request Insertion for the Pickup and Delivery Problem with Transfers. SN Computer Science, 2023, 4, .	2.3	0
209	Cooperative Learning for Smart Charging of Shared Autonomous Vehicle Fleets. Transportation Science, 2023, 57, 613-630.	2.6	3
210	Large-scale online ridesharing: the effect of assignment optimality on system performance. Journal of Intelligent Transportation Systems: Technology, Planning, and Operations, 2024, 28, 189-210.	2.6	2
211	The Evolution of the Vehicle Routing Problemâ€"A Survey of VRP Research and Practice from 2005 to 2022. , 2023, , 1-64.		4
212	Flexible vehicle scheduling with precedence constraints for tourists. International Transactions in Operational Research, 2024, 31, 2309-2337.	1.8	0
213	A Recommended System with a Solution Architect in Minimizing the Lead Time of Last Mile LPG Distribution in India., 2022,,.		0
214	Simulative Study of an Innovative On-Demand Transport System Using a Realistic German Urban Scenario. Future Transportation, 2023, 3, 38-56.	1.3	0
215	Online Ridesharing with Meeting Points. Proceedings of the VLDB Endowment, 2022, 15, 3963-3975.	2.1	2
216	Efficient GRASP solution approach for the Prisoner Transportation Problem. Computers and Operations Research, 2023, 153, 106161.	2.4	3
217	Modeling and Solving a Bus University Routing Problem. , 2022, , .		0
218	Two-Phase Model for Demand-Responsive Transit Considering the Cancellation Behavior of Boundedly Rational Passengers. Journal of Transportation Engineering Part A: Systems, 2023, 149, .	0.8	0
219	Environmental impacts of first-mile-last-mile systems with shared autonomous electric vehicles and ridehailing. Transportation Research, Part D: Transport and Environment, 2023, 118, 103677.	3.2	7
220	Real-time ridesharing operations for on-demand capacitated systems considering dynamic travel time information. Transportation Research Part C: Emerging Technologies, 2023, 151, 104115.	3.9	2

#	Article	IF	CITATIONS
221	Reallocation Problems withÂMinimum Completion Time. Lecture Notes in Computer Science, 2022, , 292-304.	1.0	1
222	Tactical Planning of On-Demand and Shared Mobility Services. , 2022, , 517-543.		O
223	A Data-Driven Forecasting and Solution Approach for the Dial-A-Ride Problem with Time Windows. , 2022, , .		0
224	Dynamic vehicle routing problem for flexible buses considering stochastic requests. Transportation Research Part C: Emerging Technologies, 2023, 148, 104030.	3.9	7
225	Optimization of a Semiflexible Demand-Responsive Feeder System in Suburban Areas Using a Memetic Algorithm. Journal of Advanced Transportation, 2023, 2023, 1-18.	0.9	0
226	A deterministic annealing local search for the electric autonomous dial-a-ride problem. European Journal of Operational Research, 2023, 309, 1091-1111.	3.5	6
227	Crowdsourced on-demand food delivery: An order batching and assignment algorithm. Transportation Research Part C: Emerging Technologies, 2023, 149, 104055.	3.9	10
228	Efficient feasibility checks and an adaptive large neighborhood search algorithm for the time-dependent green vehicle routing problem with time windows. European Journal of Operational Research, 2023, 310, 133-155.	3.5	5
229	A Hierarchical Grouping Algorithm for the Multi-Vehicle Dial-a-Ride Problem. Proceedings of the VLDB Endowment, 2023, 16, 1195-1207.	2.1	0
230	Towards a more flexible demand responsive transit service with compensation mechanism considering boundedly rational passengers. IET Intelligent Transport Systems, 2023, 17, 1229-1246.	1.7	1
231	Decentralized multi-agent approach based on A^* algorithm for on-demand transport problem. Web Intelligence, 2023, 21, 1-17.	0.1	0
232	Complexity, algorithmic, and computational aspects of a dial-a-ride type problem. European Journal of Operational Research, 2023, , .	3.5	O
234	Urban Air Mobility., 2023, , 1-5.		0
235	Routing Design and Departure Time Determination of Customized Buses Based on Reserved Trip Request., 2022,,.		0
244	Improving the non-urgent sanitary transportation. , 2023, , .		0
263	A Semi-online Ambulance Routing and Scheduling Problem with Complex Patient-Vehicle Relations. AIRO Springer Series, 2023, , 59-69.	0.4	0
264	A full factorial sensitivity analysis for a capacitated Flex-Route Transit system. , 2023, , .		0
269	Repositioning Fleet Vehicles: A Learning Pipeline. Lecture Notes in Computer Science, 2023, , 301-317.	1.0	0

#	ARTICLE	IF	CITATIONS
274	A Filtering System for the Large-Scale Dial-A-Ride Problem With Shared Autonomous Vehicles. , 2023, , .		0
275	Earliest Deadline First Is aÂ2-Approximation forÂDARP withÂTime Windows. Lecture Notes in Computer Science, 2024, , 97-110.	1.0	1
286	Examining the Online Food Delivery Problem on Starlike Graphs. , 2023, , .		0
292	The Dynamic Vehicle Routing Problem: A Comprehensive Survey. Unsupervised and Semi-supervised Learning, 2024, , 1-36.	0.4	0
294	Algorithms for Future Mobility Society. , 2024, , 173-185.		0