Sodium and Sodiumâ€Ion Batteries: 50 Years of Researce

Advanced Energy Materials 8, 1703137 DOI: 10.1002/aenm.201703137

Citation Report

#	Article	IF	CITATIONS
1	Deciphering the Cathode–Electrolyte Interfacial Chemistry in Sodium Layered Cathode Materials. Advanced Energy Materials, 2018, 8, 1801975.	10.2	111
2	Recent developments of phosphorus-based anodes for sodium ion batteries. Journal of Materials Chemistry A, 2018, 6, 24013-24030.	5.2	69
3	Dandelion-shaped manganese sulfide in ether-based electrolyte for enhanced performance sodium-ion batteries. Communications Chemistry, 2018, 1, .	2.0	37
4	Improving the Electrochemical Properties of the Manganese-Based P3 Phase by Multiphasic Intergrowth. Inorganic Chemistry, 2018, 57, 15584-15591.	1.9	19
5	A Synergistic Naâ€Mnâ€O Composite Cathodes for Highâ€Capacity Naâ€Ion Storage. Advanced Energy Materials, 2018, 8, 1802180.	10.2	21
6	MOF based on a longer linear ligand: electrochemical performance, reaction kinetics, and use as a novel anode material for sodium-ion batteries. Chemical Communications, 2018, 54, 11793-11796.	2.2	32
7	Oxygen Vacancy Engineering in Tin(IV) Oxide Based Anode Materials toward Advanced Sodiumâ€lon Batteries. ChemSusChem, 2018, 11, 3693-3703.	3.6	37
8	An Attempt to Improve Electrochemical Performances of Ligninâ€Based Hard Carbon Microspheres Anodes in Sodiumâ€lon Batteries by Using Hexamethylenetetramine. ChemistrySelect, 2018, 3, 9518-9525.	0.7	11
9	Evaluating the influences of the sulfur content in precursors on the structure and sodium storage performances of carbon materials. Journal of Materials Chemistry A, 2018, 6, 11488-11495.	5.2	27
10	Exploration of the Na _x MoO ₂ phase diagram for low sodium contents (<i>x</i> ≤0.5). Journal of Materials Chemistry A, 2018, 6, 14651-14662.	5.2	4
11	Vapor-Infiltration Approach toward Selenium/Reduced Graphene Oxide Composites Enabling Stable and High-Capacity Sodium Storage. ACS Nano, 2018, 12, 7397-7405.	7.3	60
12	Synergistic coupling of lamellar MoSe2 and SnO2 nanoparticles via chemical bonding at interface for stable and high-power sodium-ion capacitors. Chemical Engineering Journal, 2018, 354, 1164-1173.	6.6	73
13	Compared investigation of carbon-decorated Na3V2(PO4)3 with saccharides of different molecular weights as cathode of sodium ion batteries. Electrochimica Acta, 2018, 286, 231-241.	2.6	37
14	Rational design of metal organic framework-derived FeS ₂ hollow nanocages@reduced graphene oxide for K-ion storage. Nanoscale, 2018, 10, 17092-17098.	2.8	139
15	Adverse effects of interlayer-gliding in layered transition-metal oxides on electrochemical sodium-ion storage. Energy and Environmental Science, 2019, 12, 825-840.	15.6	205
16	A modeling framework to assess specific energy, costs and environmental impacts of Li-ion and Na-ion batteries. Sustainable Energy and Fuels, 2019, 3, 3061-3070.	2.5	36
17	Turbostratic carbon-localised FeS ₂ nanocrystals as anodes for high-performance sodium-ion batteries. Nanoscale, 2019, 11, 15497-15507.	2.8	23
18	First-Principles Investigations on Sodium Superionic Conductor Na ₁₁ Sn ₂ PS ₁₂ . Chemistry of Materials, 2019, 31, 6066-6075.	3.2	23

#	Article	IF	CITATIONS
19	A Versatile Pyramidal Hauerite Anode in Congeniality Diglymeâ€Based Electrolytes for Boosting Performance of Li―and Naâ€Ion Batteries. Advanced Energy Materials, 2019, 9, 1900710.	10.2	29
20	Building highly stable and industrial NaVPO ₄ F/C as bipolar electrodes for high-rate symmetric rechargeable sodium-ion full batteries. Journal of Materials Chemistry A, 2019, 7, 18451-18457.	5.2	39
21	A facile gaseous sulfur treatment strategy for Li-rich and Ni-rich cathode materials with high cycling and rate performance. Nano Energy, 2019, 63, 103887.	8.2	82
22	Understanding intercalation compounds for sodium-ion batteries and beyond. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2019, 377, 20190020.	1.6	33
23	Nanostructured Electrode Materials for Advanced Sodium-Ion Batteries. Matter, 2019, 1, 90-114.	5.0	266
24	Meso-Structure Controlled Synthesis of Sodium Iron-Manganese Oxides Cathode for Low-Cost Na-Ion Batteries. Journal of the Electrochemical Society, 2019, 166, A2528-A2535.	1.3	12
25	A Calcium Organic Salt/rGO composite with Low Solubility and High Conductivity as a Sustainable Anode for Sodiumâ€lon Batteries. ChemSusChem, 2019, 12, 4160-4164.	3.6	12
26	1T′â€ReS ₂ Confined in 2Dâ€Honeycombed Carbon Nanosheets as New Anode Materials for Highâ€Performance Sodiumâ€Ion Batteries. Advanced Energy Materials, 2019, 9, 1901146.	10.2	50
27	Electrodeposition Technologies for Liâ€Based Batteries: New Frontiers of Energy Storage. Advanced Materials, 2020, 32, e1903808.	11.1	70
28	Encapsulating Trogtalite CoSe ₂ Nanobuds into BCN Nanotubes as High Storage Capacity Sodium Ion Battery Anodes. Advanced Energy Materials, 2019, 9, 1901778.	10.2	131
29	Phosphorusâ€Dopingâ€Induced Surface Vacancies of 3D Na ₂ Ti ₃ O ₇ Nanowire Arrays Enabling Highâ€Rate and Longâ€Life Sodium Storage. Chemistry - A European Journal, 2019, 25, 14881-14889.	1.7	19
30	Comparative Life Cycle Assessment of a Novel Al-Ion and a Li-Ion Battery for Stationary Applications. Materials, 2019, 12, 3270.	1.3	18
31	Metallic Nb ₂ S ₂ C Monolayer: A Promising Two-Dimensional Anode Material for Metal-Ion Batteries. Journal of Physical Chemistry C, 2019, 123, 26803-26811.	1.5	49
32	Simultaneous Component Ratio and Particle Size Optimization for Highâ€Performance and High Tap Density P2/P3 Composite Cathode of Sodiumâ€ion Batteries. ChemElectroChem, 2019, 6, 5155-5161.	1.7	20
33	Electrochemically Stable Sodium Metalâ€Tellurium/Carbon Nanorods Batteries. Advanced Energy Materials, 2019, 9, 1903046.	10.2	33
34	Reducing Transformation Strains during Na Intercalation in Olivine FePO ₄ Cathodes by Mn Substitution. ACS Applied Energy Materials, 2019, 2, 8060-8067.	2.5	15
35	Improving the Understanding of the Redox Properties of Fluoranil Derivatives for Cathodes in Sodiumâ€ion Batteries. ChemSusChem, 2019, 12, 4968-4975.	3.6	15
36	An Ordered P2/P3 Composite Layered Oxide Cathode with Long Cycle Life in Sodium-Ion Batteries. , 2019, 1, 573-581.		33

#	Article	IF	CITATIONS
37	Focus on Spinel Li ₄ Ti ₅ O ₁₂ as Insertion Type Anode for Highâ€Performance Naâ€Ion Batteries. Small, 2019, 15, e1904484.	5.2	35
38	Carbon-coated CoSe ₂ nanoparticles confined in N-doped carbon microboxes with enhanced sodium storage properties. Journal of Materials Chemistry A, 2019, 7, 21404-21409.	5.2	52
39	Restraining Oxygen Loss and Suppressing Structural Distortion in a Newly Ti-Substituted Layered Oxide P2-Na _{0.66} Li _{0.22} Ti _{0.15} Mn _{0.63} O ₂ . ACS Energy Letters, 2019, 4, 2409-2417.	8.8	112
40	Synthesis and electrochemical properties of manganese based compounds Na0.6Li0.4Mn0.75O2 and Na0.6Zn0.2Mn0.75O2. Journal of Alloys and Compounds, 2019, 809, 151808.	2.8	2
41	Ti-based electrode materials for electrochemical sodium ion storage and removal. Journal of Materials Chemistry A, 2019, 7, 22163-22188.	5.2	59
42	A paradigm of storage batteries. Energy and Environmental Science, 2019, 12, 3203-3224.	15.6	154
43	Tracing the technological development trajectory in post-lithium-ion battery technologies: A patent-based approach. Journal of Cleaner Production, 2019, 241, 118343.	4.6	56
44	Controlled Synthesis of Na ₃ (VOPO ₄) ₂ F Cathodes with an Ultralong Cycling Performance. ACS Applied Energy Materials, 2019, 2, 7474-7482.	2.5	31
45	Enhanced Electrochemical Performance of Sodium Manganese Ferrocyanide by Na ₃ (VOPO ₄) ₂ F Coating for Sodium-Ion Batteries. ACS Applied Materials & Interfaces, 2019, 11, 37685-37692.	4.0	33
46	Boosting Performance of Na–S Batteries Using Sulfur-Doped Ti ₃ C ₂ T _{<i>x</i>} MXene Nanosheets with a Strong Affinity to Sodium Polysulfides. ACS Nano, 2019, 13, 11500-11509.	7.3	220
47	Boosting Na-ion diffusion by piezoelectric effect induced by alloying reaction of micro red-phosphorus/BaTiO3/graphene composite anode. Nano Energy, 2019, 66, 104136.	8.2	20
48	Resolving local dynamics of dual ions at the nanoscale in electrochemically active materials. Nano Energy, 2019, 66, 104160.	8.2	14
49	Ultrastable Sodium Storage in MoO ₃ Nanotube Arrays Enabled by Surface Phosphorylation. ACS Applied Materials & Interfaces, 2019, 11, 37761-37767.	4.0	29
50	Ultrathin carbon-coated FeS ₂ nanooctahedra for sodium storage with long cycling stability. Inorganic Chemistry Frontiers, 2019, 6, 459-464.	3.0	21
51	Direct conversion of metal-organic frameworks into selenium/selenide/carbon composites with high sodium storage capacity. Nano Energy, 2019, 58, 392-398.	8.2	70
52	Polypyrrole and Carbon Nanotube Co omposited Titania Anodes with Enhanced Sodium Storage Performance in Etherâ€Based Electrolyte. Advanced Sustainable Systems, 2019, 3, 1800154.	2.7	5
53	Construction of Hierarchical K _{1.39} Mn ₃ O ₆ Spheres via AlF ₃ Coating for Highâ€Performance Potassiumâ€Ion Batteries. Advanced Energy Materials, 2019, 9, 1803757.	10.2	83
54	Water-Processable P2-Na _{0.67} Ni _{0.22} Cu _{0.11} Mn _{0.56} Ti _{0.11} O <sub Material for Sodium Ion Batteries. Journal of the Electrochemical Society, 2019, 166. A251-A257.</sub 	>2< ‡s ub>C	ath w de

#	Article	IF	Citations
55	Reduced air sensitivity and improved electrochemical stability of P2–Na2/3Mn1/2Fe1/4Co1/4O2 through atomic layer deposition-assisted Al2O3 coating. Composites Part B: Engineering, 2019, 173, 106913.	5.9	26
56	A Universal Strategy to Fabricate Metal Sulfides@Carbon Fibers As Freestanding and Flexible Anodes for High-Performance Lithium/Sodium Storage. ACS Applied Energy Materials, 2019, 2, 4421-4427.	2.5	17
57	Graphitic Nanocarbon with Engineered Defects for Highâ€Performance Potassiumâ€Ion Battery Anodes. Advanced Functional Materials, 2019, 29, 1903641.	7.8	212
58	A Highâ€Performance Monolithic Solidâ€State Sodium Battery with Ca ²⁺ Doped Na ₃ Zr ₂ Si ₂ PO ₁₂ Electrolyte. Advanced Energy Materials, 2019, 9, 1901205.	10.2	174
59	Novel concentration gradient LiNi0.815Co0.15Al0.035O2 microspheres as cathode material for lithium ion batteries. Ceramics International, 2019, 45, 19420-19428.	2.3	23
60	Na ₄ Co ₃ (PO ₄) ₂ P ₂ O ₇ through Correlative <i>Operando</i> X-ray Diffraction and Electrochemical Impedance Spectroscopy. Chemistry of Materials, 2019, 31, 5152-5159.	3.2	24
61	High-capacity organic sodium ion batteries using a sustainable C4Q/CMK-3/SWCNT electrode. Inorganic Chemistry Frontiers, 2019, 6, 1977-1985.	3.0	37
62	Improved cycle and air stability of P3-Na0.65Mn0.75Ni0.25O2 electrode for sodium-ion batteries coated with metal phosphates. Chemical Engineering Journal, 2019, 372, 1066-1076.	6.6	67
63	Manganeseâ€Based Naâ€Rich Materials Boost Anionic Redox in Highâ€Performance Layered Cathodes for Sodiumâ€Ion Batteries. Advanced Materials, 2019, 31, e1807770.	11.1	113
64	Polyanions Enhance Conversion Reactions for Lithium/Sodiumâ€lon Batteries: The Case of SbVO ₄ Nanoparticles on Reduced Graphene Oxide. Small Methods, 2019, 3, 1900231.	4.6	31
65	Confined annealing-induced transformation of tin oxide into sulfide for sodium storage applications. Journal of Materials Chemistry A, 2019, 7, 11877-11885.	5.2	18
66	Insights into the Function of Electrode and Electrolyte Materials in a Hybrid Lithium–Sodium Ion Cell. Journal of Physical Chemistry C, 2019, 123, 11508-11521.	1.5	16
67	Effects of Different Atmosphere on Electrochemical Performance of Hard Carbon Electrode in Sodium Ion Battery. Electronic Materials Letters, 2019, 15, 428-436.	1.0	13
68	Safety-Enhanced Polymer Electrolytes for Sodium Batteries: Recent Progress and Perspectives. ACS Applied Materials & Interfaces, 2019, 11, 17109-17127.	4.0	100
69	In operando formation of new iron-oxyfluoride host structure for Na-ion storage from NaF–FeO nanocomposite. Energy Storage Materials, 2019, 23, 427-433.	9.5	8
70	Bowl-like double carbon layer architecture of hollow carbon@FePO4@reduced graphene oxide composite as high-performance cathodes for sodium and lithium ion batteries. Journal of Alloys and Compounds, 2019, 795, 34-44.	2.8	22
71	Lath-shaped biomass derived hard carbon as anode materials with super rate capability for sodium-ion batteries. Journal of Electroanalytical Chemistry, 2019, 841, 63-72.	1.9	39
72	Multivalent metal ion hybrid capacitors: a review with a focus on zinc-ion hybrid capacitors. Journal of Materials Chemistry A, 2019, 7, 13810-13832.	5.2	312

#	Article	IF	CITATIONS
73	3D rGO aerogel with superior electrochemical performance for K – Ion battery. Energy Storage Materials, 2019, 19, 306-313.	9.5	70
74	Redox-Driven Spin Transition in a Layered Battery Cathode Material. Chemistry of Materials, 2019, 31, 2358-2365.	3.2	19
75	A Stable Layered Oxide Cathode Material for Highâ€₽erformance Sodiumâ€Ion Battery. Advanced Energy Materials, 2019, 9, 1803978.	10.2	191
76	All-iron sodium-ion full-cells assembled via stable porous goethite nanorods with low strain and fast kinetics. Nano Energy, 2019, 60, 294-304.	8.2	14
77	Recent advances in high energy-density cathode materials for sodium-ion batteries. Sustainable Materials and Technologies, 2019, 21, e00098.	1.7	43
78	Catalytic Synthesis of Hard/Soft Carbon Hybrids with Heteroatom Doping for Enhanced Sodium Storage. ChemistrySelect, 2019, 4, 3551-3558.	0.7	9
79	Potassium Ordering and Structural Phase Stability in Layered K _{<i>x</i>} CoO ₂ . ACS Applied Energy Materials, 2019, 2, 2629-2636.	2.5	29
80	Atomistic Insight into Glide-Driven Phase Transformations in Layered Oxides for Sodium-Ion Batteries: A Case Study on Na <i>_x</i> VO ₂ . ACS Applied Materials & Interfaces, 2019, 11, 12562-12569.	4.0	13
81	Interphases in Electroactive Suspension Systems: Where Chemistry Meets Mesoscale Physics. Batteries and Supercaps, 2019, 2, 579-590.	2.4	9
82	Hollow paramecium-like SnO2/TiO2 heterostructure designed for sodium storage. Journal of Solid State Chemistry, 2019, 274, 176-181.	1.4	13
83	High and intermediate temperature sodium–sulfur batteries for energy storage: development, challenges and perspectives. RSC Advances, 2019, 9, 5649-5673.	1.7	68
84	Multiscale Grapheneâ€Based Materials for Applications in Sodium Ion Batteries. Advanced Energy Materials, 2019, 9, 1803342.	10.2	215
85	Niobiumâ€Based Oxides Toward Advanced Electrochemical Energy Storage: Recent Advances and Challenges. Small, 2019, 15, e1804884.	5.2	130
86	Recent Progress of Layered Transition Metal Oxide Cathodes for Sodiumâ€lon Batteries. Small, 2019, 15, e1805381.	5.2	246
87	Rodâ€Like Sb ₂ MoO ₆ : Structure Evolution and Sodium Storage for Sodiumâ€lon Batteries. Small Methods, 2019, 3, 1800533.	4.6	26
88	Layerâ€Based Heterostructured Cathodes for Lithiumâ€ŀon and Sodiumâ€ŀon Batteries. Advanced Functional Materials, 2019, 29, 1808522.	7.8	82
89	A New P2â€Type Layered Oxide Cathode with Extremely High Energy Density for Sodiumâ€Ion Batteries. Advanced Energy Materials, 2019, 9, 1803346.	10.2	143
90	Lithium versus Mono/Polyvalent Ion Intercalation: Hybrid Metal Ion Systems for Energy Storage. Chemical Record, 2019, 19, 474-501.	2.9	21

#	Article	IF	CITATIONS
91	Evidence of a Pseudoâ€Capacitive Behavior Combined with an Insertion/Extraction Reaction Upon Cycling of the Positive Electrode Material P2â€Na _x Co _{0.9} Ti _{0.1} O ₂ for Sodiumâ€ion Batteries. ChemElectroChem, 2019, 6, 892-903.	1.7	18
92	Exceptionally highly stable cycling performance and facile oxygen-redox of manganese-based cathode materials for rechargeable sodium batteries. Nano Energy, 2019, 59, 197-206.	8.2	100
93	Critical design factors for kinetically favorable P-based compounds toward alloying with Na ions for high-power sodium-ion batteries. Energy and Environmental Science, 2019, 12, 1326-1333.	15.6	58
94	Highly crystalline sodium manganese ferrocyanide microcubes for advanced sodium ion battery cathodes. Journal of Materials Chemistry A, 2019, 7, 22248-22256.	5.2	51
95	Anion amphiprotic ionic liquids as protic electrolyte matrices allowing sodium metal plating. Chemical Communications, 2019, 55, 12523-12526.	2.2	7
96	Advances in sodium secondary batteries utilizing ionic liquid electrolytes. Energy and Environmental Science, 2019, 12, 3247-3287.	15.6	129
97	High Rate Performance for Carbonâ€Coated Na ₃ V ₂ (PO ₄) ₂ F ₃ in Naâ€ion Batteries. Small Methods, 2019, 3, 1800215.	4.6	92
98	ZnSxSe1-x/N-C (x = 0.24) hierarchical nanosphere with improved energy storage capability as sodium-ion battery anode. Journal of Alloys and Compounds, 2019, 771, 147-155.	2.8	20
99	Co-doped 1T-MoS2 nanosheets embedded in N, S-doped carbon nanobowls for high-rate and ultra-stable sodium-ion batteries. Nano Research, 2019, 12, 2218-2223.	5.8	88
100	Synthesis, characterization and electrochemical properties of the layered high capacity sodium ion intercalation cathode material. Journal of Alloys and Compounds, 2019, 780, 170-176.	2.8	11
101	Barium Titanate-Based Porous Ceramic Flexible Membrane as a Separator for Room-Temperature Sodium-Ion Battery. ACS Applied Materials & Interfaces, 2019, 11, 3889-3896.	4.0	36
102	Rambutanâ€Like Hybrid Hollow Spheres of Carbon Confined Co ₃ O ₄ Nanoparticles as Advanced Anode Materials for Sodiumâ€lon Batteries. Advanced Functional Materials, 2019, 29, 1807377.	7.8	89
103	A zero fading sodium ion battery: High compatibility microspherical patronite in ether-based electrolyte. Energy Storage Materials, 2019, 19, 270-280.	9.5	29
104	Analysis of the Solid Electrolyte Interphase on Hard Carbon Electrodes in Sodiumâ€ion Batteries. ChemElectroChem, 2019, 6, 1745-1753.	1.7	57
105	Ni3(BO3)2 as anode material with high capacity and excellent rate performance for sodium-ion batteries. Chemical Engineering Journal, 2019, 363, 285-291.	6.6	26
106	Carbon-Free TiO ₂ Microspheres as Anode Materials for Sodium Ion Batteries. ACS Energy Letters, 2019, 4, 494-501.	8.8	63
107	Concentrated electrolytes unlock the full energy potential of potassium-sulfur battery chemistry. Energy Storage Materials, 2019, 18, 470-475.	9.5	72
108	A cobalt and nickel co-modified layered P2-Na2/3Mn1/2Fe1/2O2 with excellent cycle stability for high-energy density sodium-ion batteries. Journal of Alloys and Compounds, 2019, 775, 383-392.	2.8	36

#	Article	IF	CITATIONS
109	The novel P3-type layered Na0.65Mn0.75Ni0.25O2 oxides doped by non-metallic elements for high performance sodium-ion batteries. Chemical Engineering Journal, 2019, 360, 139-147.	6.6	67
110	Rational design and synthesis of advanced Na3·32Fe2·34(P2O7)2 cathode with multiple-dimensional N-doped carbon matrix. Journal of Power Sources, 2019, 412, 350-358.	4.0	18
111	O3-type NaNi0.5Mn0.5O2 hollow microbars with exposed {0 1 0} facets as high performance cathode materials for sodium-ion batteries. Chemical Engineering Journal, 2020, 382, 122978.	6.6	54
112	Preparation of porous FeS2-C/RG composite for sodium ion batteries. Chemical Engineering Journal, 2020, 380, 122549.	6.6	42
113	The effects of dual modification on structure and performance of P2-type layered oxide cathode for sodium-ion batteries. Chemical Engineering Journal, 2020, 384, 123234.	6.6	48
114	Design Strategies to Enable the Efficient Use of Sodium Metal Anodes in Highâ€Energy Batteries. Advanced Materials, 2020, 32, e1903891.	11.1	173
115	Formation of hierarchical Fe7Se8 nanorod bundles with enhanced sodium storage properties. Journal of Energy Chemistry, 2020, 44, 97-105.	7.1	32
116	Manipulating 2D Few‣ayer Metal Sulfides as Anode Towards Enhanced Sodiumâ€ŀon Batteries. Batteries and Supercaps, 2020, 3, 236-253.	2.4	16
117	Revealing the Critical Factor in Metal Sulfide Anode Performance in Sodiumâ€lon Batteries: An Investigation of Polysulfide Shuttling Issues. Small Methods, 2020, 4, 1900673.	4.6	47
118	Enhancing the interfacial stability of P2-type cathodes by polydopamine-derived carbon coating for achieving performance improvement. Carbon, 2020, 157, 693-702.	5.4	41
119	Towards stable Na-rich layered transition metal oxides for high energy density sodium-ion batteries. Energy Storage Materials, 2020, 25, 62-69.	9.5	27
120	Bimetal Synergistic Effect Induced High Reversibility of Conversion-Type Ni@NiCo ₂ S ₄ as a Free-Standing Anode for Sodium Ion Batteries. Journal of Physical Chemistry Letters, 2020, 11, 1435-1442.	2.1	54
121	Flexible 3D carbon cloth as a high-performing electrode for energy storage and conversion. Nanoscale, 2020, 12, 5261-5285.	2.8	81
122	Highly dispersed oleic-induced nanometric C@Na3V2(PO4)2F3 composites for efficient Na-ion batteries. Electrochimica Acta, 2020, 332, 135502.	2.6	29
123	Flexible sodium-ion based energy storage devices: Recent progress and challenges. Energy Storage Materials, 2020, 26, 83-104.	9.5	100
124	Improving the cyclic stability of MoO2 anode for sodium ion batteries via film-forming electrolyte additive. Journal of Alloys and Compounds, 2020, 822, 153530.	2.8	12
125	Hierarchical architecture of polyaniline nanoneedle arrays on electrochemically exfoliated graphene for supercapacitors and sodium batteries cathode. Materials and Design, 2020, 188, 108440.	3.3	36
126	Optimizing the Void Size of Yolk–Shell Bi@Void@C Nanospheres for High-Power-Density Sodium-Ion Batteries. Nano Letters, 2020, 20, 758-767.	4.5	129

#	Article	IF	CITATIONS
127	Effect of Sodium Content on the Electrochemical Performance of Li-Substituted, Manganese-Based, Sodium-Ion Layered Oxide Cathodes. ACS Applied Materials & Interfaces, 2020, 12, 2191-2198.	4.0	18
128	Chalcopyrite-Derived Na <i>_x</i> MO ₂ (M = Cu, Fe, Mn) Cathode: Tuning Impurities for Self-Doping. ACS Applied Materials & Interfaces, 2020, 12, 2432-2444.	4.0	41
129	Sodium battery nanomaterials. , 2020, , 115-160.		1
130	Enabling rapid polysulfide conversion kinetics by using functionalized carbon nanosheets as metal-free electrocatalysts in durable lithium-sulfur batteries. Chemical Engineering Journal, 2020, 385, 123840.	6.6	36
131	Identifying Anionic Redox Activity within the Related O3- and P2-Type Cathodes for Sodium-Ion Battery. ACS Applied Materials & Interfaces, 2020, 12, 851-857.	4.0	28
132	Insight into the capacity decay of layered sodium nickel manganese oxide cathodes in sodium ion batteries. Journal of Alloys and Compounds, 2020, 820, 153093.	2.8	9
133	Electrode Engineering by Atomic Layer Deposition for Sodiumâ€Ion Batteries: From Traditional to Advanced Batteries. Advanced Functional Materials, 2020, 30, 1906890.	7.8	36
134	Effect of chromium doping on Na3V2(PO4)2F3@C as promising positive electrode for sodium-ion batteries. Journal of Electroanalytical Chemistry, 2020, 856, 113694.	1.9	39
135	Three-dimensional biomass derived hard carbon with reconstructed surface as a free-standing anode for sodium-ion batteries. Journal of Colloid and Interface Science, 2020, 561, 203-210.	5.0	47
136	Na ₇ V ₃ (P ₂ O ₇ (sub>4as a high voltage electrode material for Na-ion batteries: crystal structure and mechanism of Na ⁺ extraction/insertion by <i>operando</i> X-ray diffraction. Journal of Materials Chemistry A, 2020. 8, 21110-21121.	5.2	13
137	Graphene and Lithium-Based Battery Electrodes: A Review of Recent Literature. Energies, 2020, 13, 4867.	1.6	33
138	A P2@Tunnel Heterostructure Cathode for Highâ€Performance Sodiumâ€Ion Batteries. ChemElectroChem, 2020, 7, 4383-4389.	1.7	11
139	Approaching the theoretical capacity limit of Na2FeSiO4-based cathodes with fully reversible two-electron redox reaction for sodium-ion battery. Materials Today Nano, 2020, 12, 100098.	2.3	8
140	A Combined Operando Synchrotron X-ray Absorption Spectroscopy and First-Principles Density Functional Theory Study to Unravel the Vanadium Redox Paradox in the Na ₃ V ₂ (PO ₄) ₂ F ₃ –Na ₃ V _{2 Compositions, Journal of Physical Chemistry C, 2020, 124, 23511-23522}	(PC	19) ₄
141	Insights into the Li incorporation effect in Ni/Co-free P2-type Na _{0.6} Mn _{0.8} Cu _{0.2} O ₂ for sodium-ion batteries. Journal of Materials Chemistry A, 2020, 8, 22346-22355.	5.2	10
142	Industrialization of Layered Oxide Cathodes for Lithiumâ€lon and Sodiumâ€lon Batteries: A Comparative Perspective. Energy Technology, 2020, 8, 2000723.	1.8	36
143	Beryllene: A Promising Anode Material for Na- and K-Ion Batteries with Ultrafast Charge/Discharge and High Specific Capacity. Journal of Physical Chemistry Letters, 2020, 11, 9051-9056.	2.1	78
144	Metallic Monolayer Ta ₂ CS ₂ : An Anode Candidate for Li ⁺ , Na ⁺ , K ⁺ , and Ca ²⁺ Ion Batteries. ACS Applied Energy Materials, 2020, 3, 10695-10701.	2.5	23

#	Article	IF	CITATIONS
145	Synthesis of polyanionic anthraquinones as new insoluble organic cathodes for organic Na-ion batteries. International Journal of Hydrogen Energy, 2020, 45, 24573-24581.	3.8	15
146	Ionicâ€Conducting and Robust Multilayered Solid Electrolyte Interphases for Greatly Improved Rate and Cycling Capabilities of Sodium Ion Full Cells. Advanced Energy Materials, 2020, 10, 2001418.	10.2	44
147	Structural and Electrochemical Consequences of Sodium in the Transition-Metal Layer of O′3-Na ₃ Ni _{1.5} TeO ₆ . Chemistry of Materials, 2020, 32, 10035-10044.	3.2	14
148	Probing the charged state of layered positive electrodes in sodium-ion batteries: reaction pathways, stability and opportunities. Journal of Materials Chemistry A, 2020, 8, 24833-24867.	5.2	29
149	Investigation of the Inorganic Compounds NaMV2(PO4)3 (M = Fe, Co, Ni) as Anode Materials for Sodium-Ion Batteries. ACS Omega, 2020, 5, 30799-30807.	1.6	4
150	Balancing Gravimetric and Volumetric Performances of Microsized Bi/Graphene Anode toward Practical Sodium Ion Storage. ACS Sustainable Chemistry and Engineering, 2020, 8, 17327-17334.	3.2	4
151	Hard carbon derived from waste tea biomass as high-performance anode material for sodium-ion batteries. Ionics, 2020, 26, 5535-5542.	1.2	39
152	Influence of Cosurfactant on the Synthesis of Surfaceâ€Modified Na 2/3 Ni 1/3 Mn 2/3 O 2 as a Cathode for Sodiumâ€lon Batteries. ChemElectroChem, 2020, 7, 3528-3534.	1.7	5
153	Understanding the Capacity Fading Mechanisms of O3â€Type Na[Ni _{0.5} Mn _{0.5}]O ₂ Cathode for Sodiumâ€Ion Batteries. Advanced Energy Materials, 2020, 10, 2001609.	10.2	59
154	Perspectives for electrochemical capacitors and related devices. Nature Materials, 2020, 19, 1151-1163.	13.3	1,187
155	N-doped carbon-coated ultrasmall Nb ₂ O ₅ nanocomposite with excellent long cyclability for sodium storage. Nanoscale, 2020, 12, 18673-18681.	2.8	18
156	From Liâ€lon Batteries toward Naâ€lon Chemistries: Challenges and Opportunities. Advanced Energy Materials, 2020, 10, 2001310.	10.2	269
157	KTiOPO4-structured electrode materials for metal-ion batteries: A review. Journal of Power Sources, 2020, 480, 228840.	4.0	38
158	Remarkable microstructural reversibility of antimony in sodium ion battery anodes. Journal of Materials Chemistry A, 2020, 8, 22620-22625.	5.2	12
159	Multifunctionalities of Graphene for Exploiting a Facile Conversion Reaction Route of Perovskite CoSnO ₃ for Highly Reversible Na Ion Storage. Journal of Physical Chemistry Letters, 2020, 11, 7988-7995.	2.1	5
160	Design, characterization, and application of elemental 2D materials for electrochemical energy storage, sensing, and catalysis. Materials Advances, 2020, 1, 2562-2591.	2.6	21
161	Effect of Microstructure on Ionic Transport in Silica-Based Sodium Containing Nanoconfined Systems and Their Electrochemical Performance as Electrodes. Journal of Physical Chemistry C, 2020, 124, 21155-21169.	1.5	11
162	Anion–Cation Synergetic Contribution to High Capacity, Structurally Stable Cathode Materials for Sodiumâ€ion Batteries. Advanced Functional Materials, 2020, 30, 2005164.	7.8	45

#	Article	IF	CITATIONS
163	High-performance sodium-ion storage: multi-channel carbon nanofiber freestanding anode contrived via ingenious solvent-induced phase separation. Journal of Materials Chemistry A, 2020, 8, 19898-19907.	5.2	23
164	Pseudocapacitive Vanadiumâ€based Materials toward Highâ€Rate Sodiumâ€ion Storage. Energy and Environmental Materials, 2020, 3, 221-234.	7.3	95
165	Tin Nanodots Derived From Sn 2+ /Graphene Quantum Dot Complex as Pillars into Graphene Blocks for Ultrafast and Ultrastable Sodiumâ€ion Storage. Small, 2020, 16, 2003557.	5.2	22
166	First-principles study of Na insertion at TiO ₂ anatase surfaces: new hints for Na-ion battery design. Nanoscale Advances, 2020, 2, 2745-2751.	2.2	75
167	Freestanding Na ₃ V ₂ O ₂ (PO ₄) ₂ F/Graphene Aerogels as High-Performance Cathodes of Sodium-Ion Full Batteries. ACS Applied Materials & Interfaces, 2020, 12, 41419-41428.	4.0	33
168	Improving the Electrochemical Performance of Na ₃ V ₂ (PO ₄) ₃ Cathode in Na-Ion Batteries by Si-Doping. ACS Applied Energy Materials, 2020, 3, 12054-12065.	2.5	39
169	Aliovalent-doped sodium chromium oxide (Na0.9Cr0.9Sn0.1O2 and Na0.8Cr0.9Sb0.1O2) for sodium-ion battery cathodes with high-voltage characteristics. RSC Advances, 2020, 10, 43273-43281.	1.7	9
170	Two-Phase Electrochemical Proton Transport and Storage in α-MoO3 for Proton Batteries. Cell Reports Physical Science, 2020, 1, 100225.	2.8	40
171	Construction of nitrogenâ€ʻsulfur co-doped porous carbon to boost, integrate Li/Na/K ion storage. Solid State Ionics, 2020, 356, 115451.	1.3	7
172	Spongy <i>p</i> -Toluenesulfonic Acid-doped Polypyrrole with Extraordinary Rate Performance as Durable Anodes of Sodium-Ion Batteries at Different Temperatures. Langmuir, 2020, 36, 15075-15081.	1.6	7
173	Side by Side Battery Technologies with Lithiumâ€lon Based Batteries. Advanced Energy Materials, 2020, 10, 2000089.	10.2	127
174	Super-Expansion of Assembled Reduced Graphene Oxide Interlayers by Segregation of Al Nanoparticle Pillars for High-Capacity Na-Ion Battery Anodes. ACS Applied Materials & Interfaces, 2020, 12, 23781-23788.	4.0	16
175	Review of the Design of Current Collectors for Improving the Battery Performance in Lithium-Ion and Post-Lithium-Ion Batteries. Electrochem, 2020, 1, 124-159.	1.7	53
176	Highâ€Voltage Oxygenâ€Redoxâ€Based Cathode for Rechargeable Sodiumâ€Ion Batteries. Advanced Energy Materials, 2020, 10, 2001111.	10.2	72
177	Dealloyed Nanoporous Materials for Rechargeable Post‣ithium Batteries. ChemSusChem, 2020, 13, 3376-3390.	3.6	20
178	Exploration of Energy Storage Materials for Water Desalination via Next-Generation Capacitive Deionization. Frontiers in Chemistry, 2020, 8, 415.	1.8	19
179	Nature-inspired Cu2O@CoO tree-like architecture for robust storage of sodium. Journal of Materials Science and Technology, 2020, 53, 126-131.	5.6	16
180	First-Principles Prediction of Na Diffusivity in Doped NaCrO ₂ Layered Cathode Materials with van der Waals Interactions. Journal of Physical Chemistry C, 2020, 124, 12239-12248.	1.5	5

#	Article	IF	CITATIONS
181	Cathode Architectures for Rechargeable Ion Batteries: Progress and Perspectives. Advanced Materials, 2020, 32, e2000288.	11.1	55
182	B ₂ P ₆ : A Two-Dimensional Anisotropic Janus Material with Potential in Photocatalytic Water Splitting and Metal-Ion Batteries. Chemistry of Materials, 2020, 32, 4795-4800.	3.2	142
183	Minerals to Functional Materials: Characterization of Structural Phase Transitions and Raman Analysis of a Superionic Phase in Na ₆ Co(SO ₄) ₄ . Inorganic Chemistry, 2020, 59, 8424-8431.	1.9	3
184	Na-Ion storage in iron hydroxide phosphate hydrate through a reversible crystalline-to-amorphous phase transition. Nanoscale, 2020, 12, 12824-12830.	2.8	3
185	Flexible electrode constructed by encapsulating ultrafine VSe2 in carbon fiber for quasi-solid-state sodium ion batteries. Journal of Power Sources, 2020, 470, 228438.	4.0	25
186	NiCo2S4-based nanocomposites for energy storage in supercapacitors and batteries. Nano Today, 2020, 33, 100894.	6.2	152
187	Adsorption and diffusion of lithium and sodium on the silicon nanowire with substrate for energy storage application: A first principles study. Materials Chemistry and Physics, 2020, 253, 123243.	2.0	15
188	Doping Induced Hierarchical Lattice Expansion of Cobalt Diselenide/Carbon Nanosheet Hybrid for Fast and Stable Sodium Storage. Cell Reports Physical Science, 2020, 1, 100082.	2.8	7
189	Electrochemical performance and structural stability of air-stable Na0.67Ni0.33Mn0.67-xTixO2 cathode materials for high-performance sodium-ion batteries. Chemical Engineering Journal, 2020, 399, 125725.	6.6	43
190	Recent progress in plant-derived hard carbon anode materials for sodium-ion batteries: a review. Rare Metals, 2020, 39, 1019-1033.	3.6	119
191	FeSe2 microspheres coated with carbon layers as anode materials for sodium-ion batteries. Journal of Alloys and Compounds, 2020, 842, 155888.	2.8	28
192	Exploration of Advanced Electrode Materials for Approaching Highâ€Performance Nickelâ€Based Superbatteries. Small, 2020, 16, e2001340.	5.2	26
193	Electrode Design for High-Performance Sodium-Ion Batteries: Coupling Nanorod-Assembled Na ₃ V ₂ (PO ₄) ₃ @C Microspheres with a 3D Conductive Charge Transport Network. ACS Applied Materials & Interfaces, 2020, 12, 13869-13877.	4.0	49
194	2D honeycomb borophene oxide: a promising anode material offering super high capacity for Li/Na-ion batteries. Journal of Physics Condensed Matter, 2020, 32, 065001.	0.7	16
195	Designing High Ionic Conducting NASICON-type Na ₃ Zr ₂ Si ₂ PO ₁₂ Solid-Electrolytes for Na-Ion Batteries. Journal of Physical Chemistry C, 2020, 124, 9161-9169.	1.5	55
196	Polyanion-type cathode materials for sodium-ion batteries. Chemical Society Reviews, 2020, 49, 2342-2377.	18.7	422
197	Lithium–Oxygen Batteries and Related Systems: Potential, Status, and Future. Chemical Reviews, 2020, 120, 6626-6683.	23.0	593
198	Manganeseâ€based layered oxide cathodes for sodium ion batteries. Nano Select, 2020, 1, 200-225.	1.9	25

#	Article	IF	CITATIONS
199	Dendrite-Free Sodium Metal Batteries Enabled by the Release of Contact Strain on Flexible and Sodiophilic Matrix. Nano Letters, 2020, 20, 6112-6119.	4.5	42
200	Co/Ni-MOF-74-derived CoNi ₂ S ₄ nanoparticles embedded in porous carbon as a high performance anode material for sodium ion batteries. New Journal of Chemistry, 2020, 44, 13141-13147.	1.4	10
201	Ordering and Structural Transformations in Layered K _{<i>x</i>} CrO ₂ for K-Ion Batteries. Chemistry of Materials, 2020, 32, 6392-6400.	3.2	13
202	Strain engineering by atomic lattice locking in P2-type layered oxide cathode for high-voltage sodium-ion batteries. Nano Energy, 2020, 76, 105061.	8.2	25
203	Durian-Inspired Design of Bismuth–Antimony Alloy Arrays for Robust Sodium Storage. ACS Nano, 2020, 14, 9117-9124.	7.3	71
204	Mg-doped Na[Ni1/3Fe1/3Mn1/3]O2 with enhanced cycle stability as a cathode material for sodium-ion batteries. Solid State Sciences, 2020, 106, 106334.	1.5	17
205	Sodiumâ€lon Batteries Paving the Way for Grid Energy Storage. Advanced Energy Materials, 2020, 10, 2001274.	10.2	265
206	Construction of the Na0.92Li0.40Ni0.73Mn0.24Co0.12O2 sodium-ion cathode with balanced high-power/energy-densities. Energy Storage Materials, 2020, 27, 252-260.	9.5	22
207	Stabilizing Reversible Oxygen Redox Chemistry in Layered Oxides for Sodiumâ€lon Batteries. Advanced Energy Materials, 2020, 10, 1903785.	10.2	87
208	The sodium-ion battery: Study of alternative current conduction mechanisms on the Na3PO4 - Based solid electrolyte. Physica E: Low-Dimensional Systems and Nanostructures, 2020, 120, 114032.	1.3	22
209	xmlns:mml="http://www.w3.org/1998/Math/MathML"> < mml:mrow> < mml:mi>S < mml:mo> = two-dimensional square-lattice antimonate < mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> < mml:mrow> < mml:mi> NaMnSb < mml:msub> < mml:mi> NaMnSb < mml:msub> < mml:mi> < mml:msub> < mml:mrow> < mml:mrow> < mml:mrow> < mml:mrow> < mml:mi> NaMnSb < mml:msub> < mml:msub> < mml:mrow> < m	· < mml:mn 111 1mil:mi	1>54
210	Physical Review B, 2020, 101 Simultaneously formed and embedding-type ternary MoSe ₂ /MoO ₂ /nitrogen-doped carbon for fast and stable Na-ion storage. Nanoscale Advances, 2020, 2, 1878-1885.	2.2	9
211	Ultralow‣train Zn‣ubstituted Layered Oxide Cathode with Suppressed P2–O2 Transition for Stable Sodium Ion Storage. Advanced Functional Materials, 2020, 30, 1910327.	7.8	110
212	Transient modeling and simulation of a nonisothermal sodium–sulfur cell. Journal of Power Sources, 2020, 453, 227849.	4.0	8
213	The Cathode Choice for Commercialization of Sodiumâ€lon Batteries: Layered Transition Metal Oxides versus Prussian Blue Analogs. Advanced Functional Materials, 2020, 30, 1909530.	7.8	276
214	Reversible structural evolution of sodium-rich rhombohedral Prussian blue for sodium-ion batteries. Nature Communications, 2020, 11, 980.	5.8	283
215	Highly oriented β″-alumina ceramics with excellent ionic conductivity and mechanical performance obtained by spark plasma sintering technique. Journal of Materials Science, 2020, 55, 8435-8443.	1.7	11
216	A novel Mn-based P2/tunnel/O3′ tri-phase composite cathode with enhanced sodium storage properties. Chemical Communications, 2020, 56, 2921-2924.	2.2	20

#	Article	IF	CITATIONS
217	Longâ€lifespan Polyanionic Organic Cathodes for Highly Efficient Organic Sodiumâ€ion Batteries. ChemSusChem, 2020, 13, 1991-1996.	3.6	26
218	Superior Ionic Transferring Polymer with Silicon Dioxide Composite Membrane via Phase Inversion Method Designed for High Performance Sodium-Ion Battery. Polymers, 2020, 12, 405.	2.0	11
219	An oxygen-deficient vanadium oxide@N-doped carbon heterostructure for sodium-ion batteries: insights into the charge storage mechanism and enhanced reaction kinetics. Journal of Materials Chemistry A, 2020, 8, 3450-3458.	5.2	81
220	Dualâ€Role Surface Modification of Layered Oxide Cathodes for Highâ€Power Sodiumâ€lon Batteries. ChemElectroChem, 2020, 7, 691-696.	1.7	12
221	Self-assembled N-doped MoS2/carbon spheres by naturally occurring acid-catalyzed reaction for improved sodium-ion batteries. Chemical Engineering Journal, 2020, 387, 124144.	6.6	62
222	Synthesis of nano-Na3V2(PO4)2F3 cathodes with excess Na+ intercalation for enhanced capacity. Applied Materials Today, 2020, 19, 100554.	2.3	5
223	A Low ost Durable Naâ€FeCl ₂ Battery with Ultrahigh Rate Capability. Advanced Energy Materials, 2020, 10, 1903472.	10.2	30
224	A fundamental understanding of the Fe/Ti doping induced structure formation process to realize controlled synthesis of layer-tunnel Na0.6MnO2 cathode. Nano Energy, 2020, 70, 104539.	8.2	26
225	Advantageous Functional Integration of Adsorptionâ€Intercalationâ€Conversion Hybrid Mechanisms in 3D Flexible Nb ₂ O ₅ @Hard Carbon@MoS ₂ @Soft Carbon Fiber Paper Anodes for Ultrafast and Superâ€Stable Sodium Storage. Advanced Functional Materials, 2020, 30, 1908665.	7.8	67
226	Longâ€Life Sodium Metal Anodes Achieved by Cuprous Oxide–Modified Ni Foam Host. Energy Technology, 2020, 8, 1901250.	1.8	22
227	A Perspective: the Technical Barriers of Zn Metal Batteries. Chemical Research in Chinese Universities, 2020, 36, 55-60.	1.3	16
228	Narrow band-gap cathode Fe3(PO4)2 for sodium-ion battery with enhanced sodium storage. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 591, 124561.	2.3	22
229	Chemomechanical Design Factors for High Performance in Manganese-Based Spinel Cathode Materials for Advanced Sodium-Ion Batteries. ACS Applied Materials & Interfaces, 2020, 12, 22789-22797.	4.0	15
230	Improving the structural and cyclic stabilities of P2-type Na _{0.67} MnO ₂ cathode material <i>via</i> Cu and Ti co-substitution for sodium ion batteries. Chemical Communications, 2020, 56, 6293-6296.	2.2	21
231	Engineering of Polyanion Type Cathode Materials for Sodiumâ€Ion Batteries: Toward Higher Energy/Power Density. Advanced Functional Materials, 2020, 30, 2000473.	7.8	117
232	Layered Oxide Cathodes Promoted by Structure Modulation Technology for Sodiumâ€lon Batteries. Advanced Functional Materials, 2020, 30, 2001334.	7.8	142
233	Al-doped walnut-shell-like P2-type Na2/3Ni1/3Co(1/3-x)Mn1/3AlxO2 as advanced sodium ion battery cathode materials with enhanced rate and cycling performance. Electrochimica Acta, 2020, 349, 136347.	2.6	12
234	PbTe nanodots confined on ternary B2O3/BC2O/C nanosheets as electrode for efficient sodium storage. Journal of Power Sources, 2020, 461, 228110.	4.0	16

#	Article	IF	CITATIONS
235	Hard Carbon Nanosheets with Uniform Ultramicropores and Accessible Functional Groups Showing High Realistic Capacity and Superior Rate Performance for Sodiumâ€Ion Storage. Advanced Materials, 2020, 32, e2000447.	11.1	189
236	Toward Green Battery Cells: Perspective on Materials and Technologies. Small Methods, 2020, 4, 200039.	4.6	177
237	Rigid-Flexible Coupling Carbon Skeleton and Potassium-Carbonate-Dominated Solid Electrolyte Interface Achieving Superior Potassium-Ion Storage. ACS Nano, 2020, 14, 4938-4949.	7.3	67
238	Highly microporous SbPO ₄ /BC _{<i>x</i>} hybrid anodes for sodium-ion batteries. Materials Advances, 2020, 1, 206-214.	2.6	12
239	The Use of Phosphorus in Sodium-Ion Batteries (A Review). Russian Journal of Electrochemistry, 2020, 56, 1-17.	0.3	13
240	Anodes and Sodiumâ€Free Cathodes in Sodium Ion Batteries. Advanced Energy Materials, 2020, 10, 2000288.	10.2	89
241	Full pseudocapacitive behavior hypoxic graphene for ultrafast and ultrastable sodium storage. Journal of Materials Chemistry A, 2020, 8, 9911-9918.	5.2	5
242	Ultrahigh capacity 2D anode materials for lithium/sodium-ion batteries: an entirely planar B ₇ P ₂ monolayer with suitable pore size and distribution. Journal of Materials Chemistry A, 2020, 8, 10301-10309.	5.2	44
243	Heterostructure SnSe ₂ /ZnSe@PDA Nanobox for Stable and Highly Efficient Sodiumâ€lon Storage. Advanced Energy Materials, 2020, 10, 2000741.	10.2	212
244	A High-Rate Lithium Manganese Oxide-Hydrogen Battery. Nano Letters, 2020, 20, 3278-3283.	4.5	30
245	Trace Nb-doped Na0.7Ni0.3Co0.1Mn0.6O2 with suppressed voltage decay and enhanced low temperature performance. Chinese Chemical Letters, 2021, 32, 849-853.	4.8	17
246	Core–shell structured SnSe@C microrod for Na-ion battery anode. Journal of Energy Chemistry, 2021, 55, 256-264.	7.1	61
247	Facile self-templating synthesis of layered carbon with N, S dual doping for highly efficient sodium storage. Carbon, 2021, 173, 31-40.	5.4	107
248	Vanadium-based polyanionic compounds as cathode materials for sodium-ion batteries: Toward high-power applications. Journal of Energy Chemistry, 2021, 55, 361-390.	7.1	79
249	Energizing Fe2O3-based supercapacitors with tunable surface pseudocapacitance via physical spatial-confining strategy. Chemical Engineering Journal, 2021, 406, 126875.	6.6	63
250	Challenges of today for Na-based batteries of the future: From materials to cell metrics. Journal of Power Sources, 2021, 482, 228872.	4.0	169
251	Multiple effects of Mg1–xNixO coating on P2-type Na0.67Ni0.33Mn0.67O2 to generate highly stable cathodes for sodium-ion batteries. Journal of Alloys and Compounds, 2021, 856, 157294.	2.8	18
252	Recent progress of phosphorus composite anodes for sodium/potassium ion batteries. Energy Storage Materials, 2021, 34, 436-460.	9.5	61

253Facle synthesis of hierarchical porous Na3V2(POH3)C composites with high-performance Na storage4.09.1254Areview of Modification Methods of Solid Electrolytes for AllsE-Bold3-Getats Sodium3-Gon Batteries.1.810255Internchically nitrogen-doped carbon weapped Nisub3-0.6/slub3-Fetsub3-0.4-(slub3-Setsub3-0.2-(slub3-2-(slu	#	Article	IF	CITATIONS
249 A Review of Modification Methods of Solid Electrolytes for AllaGEDIdGEETate Sodium3Gen Batteries. 1.8 19 258 binary Technology, 2021, 9, 2000682. 5.2 52 258 binary metal selenic anoncubes with extroordinary rate performance and high peudocapatives. 5.2 52 269 Multiple Active Sites Carbonaceanas Anodes for Na coups - claup. Storage Synthesis, Electrochemical 7.8 29 267 Unraveling the role of LIODFB salt as a SEl-forming additive for sodium-ion battery. Ionics, 2021, 27, 12 1.2 11 268 Recont advances in lithum based batteries using metal organic frameworks as electrode materials. 2.3 73 269 Mixed Polyanion Naä-MiAéVAEP Classäe*Ceramic Cathode Network: Improved Electrochemical Performance 1.8 14 260 Nived Polyanion Naä-MiAéVAEP Classäe*Ceramic Cathode Network: Improved Electrochemical Performance 1.8 4 261 Design principles of MOF-related materials for highly stable metal anodes in secondary metal-based 2.6 30 262 Institu constructing a supersodiephile fluffy surface layer on a CU foam host for stable Na metal 2.8 20 263 Design principles of MOF-related materials of highly stable metal anodes in secondary metal-based 2.6 30 264	253	Facile synthesis of hierarchical porous Na3V2(PO4)3/C composites with high-performance Na storage properties. Journal of Power Sources, 2021, 481, 228828.	4.0	31
1256Hierarchically nitrogen-doped carbon wrapped Nixub D.6.(slub) Fe (slub) O.4.(slub) Se (slub) 2.(slub) be udocapacitive control of the state of the state performance and high pseudocapacitive control of the state of the	254	A Review of Modification Methods of Solid Electrolytes for Allâ€Solidâ€State Sodiumâ€Ion Batteries. Energy Technology, 2021, 9, 2000682.	1.8	19
250Multiple Active Sites Carbonaceous Anodes for Narsup>+(sup>Storage: Synthesis, Electrochemical Properties and Reaction Mechanism Analysis. Advanced Functional Materials, 2021, 31, 2007247.7.829257Unraveling the role of LIODFB salt as a SEl-forming additive for sodium-ion battery. Ionics, 2021, 27, 683-691.1.211258Recent advances in Infhum-based batteries using metal organic frameworks as electrode materials.2.375259Mixed Polyanion Na&Mn&Q&PC Class&CCeranic Cathode Network: Improved Electrochemical Performance and Stability. Energy Technology, 2021, 9, 2000845.1.814260Narody a Greener and Scalable Synthesis of Narsub:22(sub):Ticsub;6(sub):Ocsub:13(sub) 	255	Hierarchically nitrogen-doped carbon wrapped Ni _{0.6} Fe _{0.4} Se ₂ binary-metal selenide nanocubes with extraordinary rate performance and high pseudocapacitive contribution for sodium-ion anodes. Journal of Materials Chemistry A, 2021, 9, 1610-1622.	5.2	52
257Unraweling the role of LIODFB salt as a SElforming additive for sodium-ion battery. Ionics, 2021, 27, 683-691.1.211258Recent advances in lithium-based batteries using metal organic frameworks as electrode materials. Electrochemistry Communications, 2021, 122, 106881.2.375259Mixed Polyanion Naä6Mnä6Vä&P Classä6" Ceramic Cathode Network: Improved Electrochemical Performance and Stability. Energy Technology, 2021, 9, 2000845.1.81.4260Towards a Greener and Scalable Synthesis of Na csub>2/sub>Ti/sub>6/sub>Cosub>13/sub> Nanorods and Their Application as Anodes in Batteries for Grida6Level Energy Storage. Energy Technology, 2021, 9, 2000856.1.84261Design principles of MOF-related materials for highly stable metal anodes in secondary metal-based andes. Journal of Aloys and Compounds, 2021, 853, 157371.2.815262In-situ constructing a supersodiophilic fluffy surface layer on a Cu foam host for stable Na metal 	256	Multiple Active Sites Carbonaceous Anodes for Na ⁺ Storage: Synthesis, Electrochemical Properties and Reaction Mechanism Analysis. Advanced Functional Materials, 2021, 31, 2007247.	7.8	29
258Recent advances in lithium-based batteries using metal organic frameworks as electrode materials.2.375259Mixed Polyanion NaãéMnãéVãéP Glassãé" Ceramic Cathode Network: Improved Electrochemical Performance and Stability. Energy Technology, 2021, 9, 2000845.1.814260Towards a Greener and Scalable Synthesis of Naxeub>22 (sub>Tricsub>6 (sub> 0 csub>13 (sub> Nanorods and Ther Application as Anodes in Batteries for GridáéLevel Energy Storage. Energy Technology, 2021, 9, 2000856.1.84261Design principles of MOF-related materials for highly stable metal anodes in secondary metal-based batteries. Materials Today Energy, 2021, 19, 100608.2.530262In-situ constructing a supersodiophilic fluffy surface layer on a Cu foam host for stable Na metal anodes. Journal of Alloys and Compounds, 2021, 853, 157371.2.82.82.9264A novel membrane based on cellulose acetate nanofibers with a ZrO2 reinforcement layer for advanced sodium-ion batteries. Journal of Alloys and Compounds, 2021, 620, 118917.4.118265An indicator of designing layered sodium-ion oxide materials. Science Bulletin, 2021, 66, 753-754.4.36266ShapeåEnduced Kinetics Enhancement in Layered 224Na csub>0.677 (sub>0.677 (sub>0.677 (sub>0.674 (sub>0.744 (sto-463.))2.419267A novel vanadium-mediated MoS2 with metallic behavior for sodium ion batteries. Achieving fast Na+ diffusion to enhance electrochemical kinetics. Chemical Engineering Journal, 2021, 417, 128107.6.627268UquidáéEtate Templates for Constructing B, N, CoáéDoping Porous Carbons with a Boosting of Lossiuma Rob Storage Performance. Advanced Energy M	257	Unraveling the role of LiODFB salt as a SEI-forming additive for sodium-ion battery. Ionics, 2021, 27, 683-691.	1.2	11
259Mxed Polyanion NašćMnžeVšćP Glassäć" Ceramic Cathode Network: Improved Electrochemical Performance1.814260Towards a Greener and Scalable Synthesis of Narsub>24 (sub>Trisub>64 (sub>Osub) 134 (sub> Nanorods and Their Application as Anodes in Batteries for Gridä£Level Energy Storage. Energy1.84261Design principles of MOF-related materials for highly stable metal anodes in secondary metal-based2.530262In-situ constructing a supersodiophilic fluffy surface layer on a Cu foam host for stable Na metal anodes. Journal of Alloys and Compounds, 2021, 853, 157371.2.815263Spherical-graphite/nano-Mn2O3 composites as advanced anode materials for lithium half/full2.820264A novel membrane based on cellulose acetate nanofibers with a ZrO2 reinforcement layer for advanced sodium-ion batteries. Journal of Membrane Science, 2021, 620, 118917.4.36265Shapeä&Hoduced Kinetics Enhancement in Layer and Enables High Energy/Rower Sodium-ion oxide materials. Science Bulletin, 2021, 67, 573-754.4.36266Shapeä&Hoduced Kinetics Enhancement in Layer Materials. Science Bulletin, 2021, 4, 456-463.2.419267Anovel vanadlum-mediated MoS2 with metallic behavior for sodium ion batteries: Achieving fast Na+ diffusion to enhance electrochemical Bin Fuergy Borous Carbons with a Boosting of Protassium 460n. Storage Performance. Advanced Energy Materials, 2021, 11, 2003215.10.299	258	Recent advances in lithium-based batteries using metal organic frameworks as electrode materials. Electrochemistry Communications, 2021, 122, 106881.	2.3	75
200Towards a Greener and Scalable Synthesis of Na _{24(sub>Ti_{64(sub>O4sub>134(sub>) 201, 9, 2000856.1.84261Design principles of MOF-related materials for highly stable metal anodes in secondary metal-based batteries. Materials Today Energy, 2021, 19, 100608.2.530262In-situ constructing a supersodiophill: fluffy surface layer on a Cu foam host for stable Na metal anodes. Journal of Alloys and Compounds, 2021, 853, 157371.2.815263Spherical-graphite/nano-Mn2O3 composites as advanced anode materials for lithium half/full batteries. Journal of Alloys and Compounds, 2021, 853, 157109.2.820264A novel membrane based on cellulose acetate nanofibers with a ZrO2 reinforcement layer for advanced sodium-ion batteries. Journal of Membrane Science, 2021, 620, 118917.4.118265An indicator of designing layered sodium-ion oxide materials. Science Bulletin, 2021, 66, 753-754.4.36266Shapeå€Hnduced Kinetics Enhancement in Layered P224€Na_{0.677(sub>0.677(sub>0.532), 4, 456-463.2.419267Anovel vanadium-mediated MoS2 with metallic behavior for sodium ion batteries: Achieving fast Na+ diffusion to enhance electrochemical kinetics. Chemical Engineering Journal, 2021, 417, 128107.6.627268Liquidå€Etate Templates for Constructing B, N, Coå€Doping Porous Carbons with a Boosting of Potassiumå€On Storage Performance. Advanced Energy Materials, 2021, 11, 2003215.10.299}</br>}}	259	Mixed Polyanion Naâ€Mnâ€Vâ€P Glass–Ceramic Cathode Network: Improved Electrochemical Performance and Stability. Energy Technology, 2021, 9, 2000845.	1.8	14
261Design principles of MOF-related materials for highly stable metal anodes in secondary metal-based2.530262In-situ constructing a supersodiophilic fluffy surface layer on a Cu foam host for stable Na metal anodes. Journal of Alloys and Compounds, 2021, 853, 157371.2.815263Spherical-graphite/nano-Mn2O3 composites as advanced anode materials for lithium half/full batteries. Journal of Alloys and Compounds, 2021, 853, 157109.2.820264A novel membrane based on cellulose acetate nanofibers with a ZrO2 reinforcement layer for advanced sodium-ion batteries. Journal of Membrane Science, 2021, 620, 118917.4.118265An indicator of designing layered sodium-ion oxide materials. Science Bulletin, 2021, 66, 753-754.4.36266P2aéKha _{O.67 Sub> Mir.sub>O.67 Sub> Porous Microcuboids Enables High Energy/Power Sodiumácon Full Battery. Batteries and Supercaps, 2021, 417, 128107.6.627265UiquidáéEtate Templates for Constructing B, N. CoáéEDoping Porous Carbons with a Boosting of Portassiumáchon Storage Performance. Advanced Energy Materials, 2021, 11, 2003215.10.299</br>}	260	Towards a Greener and Scalable Synthesis of Na ₂ Ti ₆ O ₁₃ Nanorods and Their Application as Anodes in Batteries for Gridâ€Level Energy Storage. Energy Technology, 2021, 9, 2000856.	1.8	4
262In-situ constructing a supersodiophilic fluffy surface layer on a Cu foam host for stable Na metal anodes. Journal of Alloys and Compounds, 2021, 853, 157371.2.815263Spherical-graphite/nano-Mn2O3 composites as advanced anode materials for lithium half/full batteries. Journal of Alloys and Compounds, 2021, 853, 157109.2.820264A novel membrane based on cellulose acetate nanofibers with a ZrO2 reinforcement layer for advanced sodium-ion batteries. Journal of Membrane Science, 2021, 620, 118917.4.118265An indicator of designing layered sodium-ion oxide materials. Science Bulletin, 2021, 66, 753-754.4.36266Shapeā&Enduced Kinetics Enhancement in Layered P2ā&ENa'sub>0.67Ni/sub>0.67Ni/sub>0.67Octowsb>2 Porous Microcuboids Enables High Energy/Power Sodiumā@on Full Battery. Batteries and Supercaps, 2021, 4, 456-463.2.419267A novel vanadium-mediated MoS2 with metallic behavior for sodium ion batteries: Achieving fast Na+ diffusion to enhance electrochemical kinetics. Chemical Engineering Journal, 2021, 417, 128107.6.627268Liquidã&Estate Templates for Constructing B, N, Coã&Doping Porous Carbons with a Boosting of 	261	Design principles of MOF-related materials for highly stable metal anodes in secondary metal-based batteries. Materials Today Energy, 2021, 19, 100608.	2.5	30
263Spherical-graphite/nano-Mn2O3 composites as advanced anode materials for lithium half/full2.820264A novel membrane based on cellulose acetate nanofibers with a ZrO2 reinforcement layer for advanced sodium-ion batteries. Journal of Membrane Science, 2021, 620, 118917.4.118265An indicator of designing layered sodium-ion oxide materials. Science Bulletin, 2021, 66, 753-754.4.36266Shapeâ€knduced Kinetics Enhancement in Layered P2â€kha _{0.67} Ni _{0.67} O ₂ Porous Microcuboids Enables High Energy/Power Sodiumãetion Full Battery. Batteries and Supercaps, 2021, 44, 456-463.2.419267Anovel vanadium-mediated MoS2 with metallic behavior for sodium ion batteries: Achieving fast Na+ diffusion to enhance electrochemical kinetics. Chemical Engineering Journal, 2021, 417, 128107.6.627268Liquidã€Estate Templates for Constructing B, N, Coã€Doping Porous Carbons with a Boosting of Potassiumã€hon Storage Performance. Advanced Energy Materials, 2021, 11, 2003215.10.299	262	In-situ constructing a supersodiophilic fluffy surface layer on a Cu foam host for stable Na metal anodes. Journal of Alloys and Compounds, 2021, 853, 157371.	2.8	15
264A novel membrane based on cellulose acetate nanofibers with a ZrO2 reinforcement layer for advanced sodium-ion batteries. Journal of Membrane Science, 2021, 620, 118917.4.118265An indicator of designing layered sodium-ion oxide materials. Science Bulletin, 2021, 66, 753-754.4.36266Shapeâ&Hoduced Kinetics Enhancement in Layered P2å&Aa sub>0.67Ni _{0.67} O ₂ Porous Microcuboids Enables High Energy/Power Sodiuma&on Full Battery. Batteries and Supercaps, 2021, 4, 456-463.2.419267A novel vanadium-mediated MoS2 with metallic behavior for sodium ion batteries: Achieving fast Na+ diffusion to enhance electrochemical kinetics. Chemical Engineering Journal, 2021, 417, 128107.6.627268Liquida&Estate Templates for Constructing B, N, Coa&Doping Porous Carbons with a Boosting of Potassiuma&Ion Storage Performance. Advanced Energy Materials, 2021, 11, 2003215.10.299	263	Spherical-graphite/nano-Mn2O3 composites as advanced anode materials for lithium half/full batteries. Journal of Alloys and Compounds, 2021, 853, 157109.	2.8	20
265An indicator of designing layered sodium-ion oxide materials. Science Bulletin, 2021, 66, 753-754.4.36266Shapeâ€Induced Kinetics Enhancement in Layered P2â€Na _{0.67} Ni _{0.67} Ocsub>2 Porous Microcuboids Enables High Energy/Power Sodiumâ€ion Full Battery. Batteries and Supercaps, 2021, 4, 456-463.2.419267A novel vanadium-mediated MoS2 with metallic behavior for sodium ion batteries: Achieving fast Na+ diffusion to enhance electrochemical kinetics. Chemical Engineering Journal, 2021, 417, 128107.6.627268Liquidâ€State Templates for Constructing B, N, Coâ€Doping Porous Carbons with a Boosting of Potassiumâ€ion Storage Performance. Advanced Energy Materials, 2021, 11, 2003215.10.299	264	A novel membrane based on cellulose acetate nanofibers with a ZrO2 reinforcement layer for advanced sodium-ion batteries. Journal of Membrane Science, 2021, 620, 118917.	4.1	18
266Shapeâ€Induced Kinetics Enhancement in Layered P2â€Na _{0.67} O.67O ₂ Porous Microcuboids Enables High Energy/Power Sodiumâ€ion Full Battery. Batteries and Supercaps, 2021, 4, 456-463.2.419267A novel vanadium-mediated MoS2 with metallic behavior for sodium ion batteries: Achieving fast Na+ diffusion to enhance electrochemical kinetics. Chemical Engineering Journal, 2021, 417, 128107.6.627268Liquidâ€6tate Templates for Constructing B, N, Coâ€Doping Porous Carbons with a Boosting of Potassiumâ€ion Storage Performance. Advanced Energy Materials, 2021, 11, 2003215.10.299	265	An indicator of designing layered sodium-ion oxide materials. Science Bulletin, 2021, 66, 753-754.	4.3	6
267A novel vanadium-mediated MoS2 with metallic behavior for sodium ion batteries: Achieving fast Na+ diffusion to enhance electrochemical kinetics. Chemical Engineering Journal, 2021, 417, 128107.6.627268Liquidâ€6tate Templates for Constructing B, N, Coâ€Doping Porous Carbons with a Boosting of Potassiumâ€ion Storage Performance. Advanced Energy Materials, 2021, 11, 2003215.10.299	266	Shapeâ€Induced Kinetics Enhancement in Layered P2â€Na _{0.67} Ni _{0.33} Mn _{0.67} O ₂ Porous Microcuboids Enables High Energy/Power Sodiumâ€Ion Full Battery. Batteries and Supercaps, 2021, 4, 456-463.	2.4	19
Liquidâ€State Templates for Constructing B, N, Coâ€Doping Porous Carbons with a Boosting of 10.2 99 Potassiumâ€Ion Storage Performance. Advanced Energy Materials, 2021, 11, 2003215.	267	A novel vanadium-mediated MoS2 with metallic behavior for sodium ion batteries: Achieving fast Na+ diffusion to enhance electrochemical kinetics. Chemical Engineering Journal, 2021, 417, 128107.	6.6	27
	268	Liquidâ€State Templates for Constructing B, N, Coâ€Doping Porous Carbons with a Boosting of Potassiumâ€Ion Storage Performance. Advanced Energy Materials, 2021, 11, 2003215.	10.2	99
Nitroaromatics as Highâ \in Energy Organic Cathode Materials for Rechargeable Alkaliâ \in Ion (Li < sup > + ,) Tj ETQ 0 0 rg BT /Overlocher 10.2 0 rg BT /Overloch	269	Nitroaromatics as Highâ€Energy Organic Cathode Materials for Rechargeable Alkaliâ€Ion (Li ⁺ ,) Tj E	ГQ <u>q8,9</u> 0	rgBT /Overloc

270Revealing sodium-ion diffusion in alluaudite-type Na4â€"2M1+(MoO4)3 (M = Mg, Zn, Cd) from 23Na MAS
NMR and ab initio studies. Journal of Solid State Chemistry, 2021, 293, 121800.1.45

#	Article	IF	CITATIONS
271	Sodium transition metal oxides: the preferred cathode choice for future sodium-ion batteries?. Energy and Environmental Science, 2021, 14, 158-179.	15.6	224
272	Electrolytic alloy-type anodes for metal-ion batteries. Rare Metals, 2021, 40, 329-352.	3.6	45
273	Operando EPR and EPR Imaging Study on a NaCrO ₂ Cathode: Electronic Property and Structural Degradation with Cr Dissolution. Journal of Physical Chemistry Letters, 2021, 12, 781-786.	2.1	19
274	A vacancy-rich perovskite fluoride K _{0.79} Ni _{0.25} Co _{0.36} Mn _{0.39} F _{2.83} @rGO anode for advanced Na-based dual-ion batteries. Chemical Communications, 2021, 57, 5830-5833.	2.2	12
275	A vanadium-based oxide-phosphate-pyrophosphate framework as a 4 V electrode material for K-ion batteries. Chemical Science, 2021, 12, 12383-12390.	3.7	10
276	Understanding the discharge behavior of an ultra-high-purity Mg anode for Mg–air primary batteries. Journal of Materials Chemistry A, 2021, 9, 21387-21401.	5.2	27
277	Hysteresis abated P2-type NaCoO ₂ cathode reveals highly reversible multiple phase transitions for high-rate sodium-ion batteries. Sustainable Energy and Fuels, 2021, 5, 3219-3228.	2.5	17
278	A dual vanadium substitution strategy for improving NASICON-type cathode materials for Na-ion batteries. Sustainable Energy and Fuels, 2021, 5, 4095-4103.	2.5	2
279	Pillar-beam structures prevent layered cathode materials from destructive phase transitions. Nature Communications, 2021, 12, 13.	5.8	85
280	A Queueâ€Ordered Layered Mnâ€Based Oxides with Al Substitution as Highâ€Rate and Highâ€Stabilized Cathode for Sodiumâ€Ion Batteries. Small, 2021, 17, e2006259.	5.2	22
281	Recent progress in biomass-derived carbon materials used for secondary batteries. Sustainable Energy and Fuels, 2021, 5, 3017-3038.	2.5	36
282	Chalcogenide-based inorganic sodium solid electrolytes. Journal of Materials Chemistry A, 2021, 9, 5134-5148.	5.2	23
283	Recent Advances in Heterostructured Anode Materials with Multiple Anions for Advanced Alkaliâ€ion Batteries. Advanced Energy Materials, 2021, 11, 2003058.	10.2	60
284	Advanced <i>in situ</i> technology for Li/Na metal anodes: an in-depth mechanistic understanding. Energy and Environmental Science, 2021, 14, 3872-3911.	15.6	27
285	Niobium pentoxide based materials for high rate rechargeable electrochemical energy storage. Materials Horizons, 2021, 8, 1130-1152.	6.4	51
286	Improvement of Electrochemical Stability Using the Eutectic Composition of a Ternary Molten Salt System for Highly Concentrated Electrolytes for Na-Ion Batteries. ACS Applied Materials & Interfaces, 2021, 13, 2538-2546.	4.0	13
287	Insights on Electrochemical Behaviors of Sodium Peroxide as a Sacrificial Cathode Additive for Boosting Energy Density of Na-Ion Battery. ACS Applied Materials & Interfaces, 2021, 13, 2772-2778.	4.0	25
288	Mitigating the P2–O2 transition and Na ⁺ /vacancy ordering in Na _{2/3} Ni _{1/3} Mn _{2/3} O ₂ by anion/cation dual-doping for fast and stable Na ⁺ insertion/extraction. Journal of Materials Chemistry A, 2021, 9, 10803-10811.	5.2	23

ARTICLE IF CITATIONS First-principles study of the structural and electrochemical properties of Na_xTi₂O₄ (0 a‰¤ti>x</i> a‰¤) with tunnel structure for anode 1.3 1 applications in alkali-ion batteries. Physical Chemistry Chemical Physics, 2021, 23, 8456-8465. Monoclinic and Orthorhombic NaMnO2 for Secondary Batteries: A Comparative Study. Energies, 2021, 1.6 19 14, 1230. Fe₂VO₄ Nanoparticles Anchored on Ordered Mesoporous Carbon with Pseudocapacitive Behaviors for Efficient Sodium Storage. Advanced Functional Materials, 2021, 31, 46 7.8 2009756. Synergistic Dualâ€Additive Electrolyte for Interphase Modification to Boost Cyclability of Layered Cathode for Sodium Ion Batteries. Ádvanced Functional Materials, 2021, 31, 2010500. NASICONâ€Type Na₃Zr₂Si₂PO₁₂ Solidâ€State Electrolytes 1.7 68 for Sodium Batteries**. ChemElectroChem, 2021, 8, 1035-1047. Highly Efficient Na+ Storage in Uniform Thorn Ball-Like α-MnSe/C Nanospheres. Acta Metallurgica Sinica (English Letters), 2021, 34, 373-382. 1.5 Interlayer Spacing-Controlled Na_{0.71}Co_{0.96}O₂ with High 2.5 6 Pseudocapacitance for Enhanced Sodium Storage. Energy & amp; Fuels, 2021, 35, 3479-3489. Exceptional Sodium-Ion Storage by an Aza-Covalent Organic Framework for High Energy and Power 4.0 67 Density Sodium-Ion Batteries. ACS Applied Materials & amp; Interfaces, 2021, 13, 15083-15091. Controlling the Formation of Sodium/Black Phosphorus IntercalationCompounds Towards High 2.4 3 Sodium Content. Batteries and Supercaps, 2021, 4, 1304-1309. The IEEE IES Technical Committee Cluster of Energy: Promoting Innovative Research Activities in the 2.3 Energy Field. IEEE Industrial Electronics Magazine, 2021, 15, 89-103. Learning from biology: biomimetic carbon cells promote high-power potassium ion batteries. National 4 4.6 Science Review, 2021, 8, nwab043. A Review of Compact Carbon Design for Supercapacitors with High Volumetric Performance. Small, 5.2 2021, 17, e2007548. Facile synthesis of hollow Cu3P for sodium-ion batteries anode. Rare Metals, 2021, 40, 3460-3465. 3.6 26 Degradation Mechanism of O3-Type NaŇi_{1/3}Fe_{1/3}Mn_{1/3}O₂ Cathode Materials During 2.5 Ambient Storage and Their In Situ Regeneration. ACS Applied Energy Materials, 2021, 4, 2061-2067. ²³Na Solidâ€State NMR Analyses for Naâ€Ion Batteries and Materials. Batteries and Supercaps, 12 2.4 2021, 4, 1267-1278. FeBO3 as a low cost and high-performance anode material for sodium-ion batteries. Chinese Chemical 4.8 Letters, 2021, 32, 3113-3117 Additive Manufacturing of Electrochemical Energy Storage Systems Electrodes. Advanced Energy and 2.8 15 Sustainability Research, 2021, 2, 2000111.

CITATION REPORT

306Low temperature hydrothermal synthesis of Na3Fe2(PO4)2F3 and its cathode electrochemistry in Na-
and Li-ion batteries. Journal of Solid State Chemistry, 2021, 295, 121922.1.411

#

289

290

291

293

294

295

296

297

299

301

303

304

#	Article	IF	Citations
307	Carbon-Reinforced Nb ₂ CT _x MXene/MoS ₂ Nanosheets as a Superior Rate and High-Capacity Anode for Sodium-Ion Batteries. ACS Nano, 2021, 15, 7439-7450.	7.3	203
308	Unravelling the Fast Alkaliâ€Ion Dynamics in Paramagnetic Battery Materials Combined with NMR and Deepâ€Potential Molecular Dynamics Simulation. Angewandte Chemie - International Edition, 2021, 60, 12547-12553.	7.2	16
309	Stabilization of High-Energy Cathode Materials of Metal-Ion Batteries: Control Strategies and Synthesis Protocols. Energy & amp; Fuels, 2021, 35, 7511-7527.	2.5	11
310	Novel Solid-State Sodium-Ion Battery with Wide Band Gap NaTi ₂ (PO ₄) ₃ Nanocrystal Electrolyte. ACS Omega, 2021, 6, 11537-11544.	1.6	1
311	Unravelling the Fast Alkaliâ€lon Dynamics in Paramagnetic Battery Materials Combined with NMR and Deepâ€Potential Molecular Dynamics Simulation. Angewandte Chemie, 2021, 133, 12655-12661.	1.6	0
312	Engineering hard carbon with high initial coulomb efficiency for practical sodium-ion batteries. Journal of Power Sources, 2021, 492, 229656.	4.0	49
313	Sodium de-insertion processes in single Na TMO2 particles studied by an electrochemical collision method: O3 phases versus P2 phases. Electrochemistry Communications, 2021, 125, 107000.	2.3	3
314	Effect of the Mn/V ratio to optimize the kinetic properties of Na3+xMnxV1-xCr(PO4)3 positive electrode for sodium-ion batteries. Electrochimica Acta, 2021, 375, 137982.	2.6	15
315	Challenges and future perspectives on sodium and potassium ion batteries for grid-scale energy storage. Materials Today, 2021, 50, 400-417.	8.3	161
316	Antiphase boundary migration as a diffusion mechanism in a P3 sodium layered oxide. Physical Review Materials, 2021, 5, .	0.9	5
317	Nitrogen/oxygen dual-doped hierarchically porous carbon/graphene composite as high-performance anode for potassium storage. Electrochimica Acta, 2021, 377, 138093.	2.6	9
318	A Li-substituted hydrostable layered oxide cathode material with oriented stacking nanoplate structure for high-performance sodium-ion battery. Chemical Engineering Journal, 2021, 412, 128719.	6.6	24
319	Unlocking the potential of P3 structure for practical Sodium-ion batteries by fabricating zero strain framework for Na+ intercalation. Energy Storage Materials, 2021, 37, 354-362.	9.5	47
320	Two-dimensional metallic BP as anode material for lithium-ion and sodium-ion batteries with unprecedented performance. Journal of Materials Science, 2021, 56, 13763-13771.	1.7	12
321	Manganeseâ€Based Materials for Rechargeable Batteries beyond Lithiumâ€lon. Advanced Energy Materials, 2021, 11, 2100867.	10.2	95
322	Sustainability of Battery Technologies: Today and Tomorrow. ACS Sustainable Chemistry and Engineering, 2021, 9, 6507-6509.	3.2	16
323	Enhanced electrochemical behavior of Na0.66Li0.22Ti0.78O2/C layered P2-type composite anode material for Na-ion batteries. Composites Part B: Engineering, 2021, 213, 108729.	5.9	8
324	Engineering pseudocapacitive MnMoO4@C microrods for high energy sodium ion hybrid capacitors. Electrochimica Acta, 2021, 379, 138185.	2.6	34

#	Article	IF	CITATIONS
325	Structural Origins of Voltage Hysteresis in the Na-Ion Cathode P2–Na _{0.67} [Mg _{0.28} Mn _{0.72}]O ₂ : A Combined Spectroscopic and Density Functional Theory Study. Chemistry of Materials, 2021, 33, 4890-4906.	3.2	24
326	Preparation of β"-Al2O3 electrolytes by freeze-drying and SPS. Ceramics International, 2021, 47, 15017-15022.	2.3	6
327	Polyvinylpyrrolidone assisted synthesized ultra-small Na4Fe3(PO4)2(P2O7) particles embedded in 1D carbon nanoribbons with enhanced room and low temperature sodium storage performance. Journal of Power Sources, 2021, 498, 229907.	4.0	22
328	Mechanism of Na-Ion Conduction in the Highly Efficient Layered Battery Material Na ₂ Mn ₃ O ₇ . ACS Applied Energy Materials, 2021, 4, 6040-6054.	2.5	13
329	Solid-state fabrication of CNT-threaded Fe1-S@N-doped carbon composite as high-rate anodes for sodium-ion batteries and hybrid capacitors. Journal of Alloys and Compounds, 2021, 869, 159303.	2.8	8
330	Spartina alterniflora-derived porous carbon using as anode material for sodium-ion battery. Science of the Total Environment, 2021, 777, 146120.	3.9	13
331	2021 roadmap for sodium-ion batteries. JPhys Energy, 2021, 3, 031503.	2.3	125
332	Lithium and Sodium Ion Binding Mechanisms and Diffusion Rates in Lignin-Based Hard Carbon Models. ACS Omega, 2021, 6, 19883-19892.	1.6	20
333	O3-NaFe _(1/3–<i>x</i>) Ni _{1/3} Mn _{1/3} Al <i>_x</i> O _{2Cathodes with Improved Air Stability for Na-Ion Batteries. ACS Applied Materials & Interfaces, 2021, 13, 33015-33023.}	b> 4.0	31
334	Revisit Electrolyte Chemistry of Hard Carbon in Ether for Na Storage. Jacs Au, 2021, 1, 1208-1216.	3.6	28
335	Engineering Ultramicroporous Carbon with Abundant Câ•O as Extended "Slope-Dominated―Sodium Ion Battery Anodes. ACS Sustainable Chemistry and Engineering, 2021, 9, 9727-9739.	3.2	27
336	Self-Template Synthesis of Prussian Blue Analogue Hollow Polyhedrons as Superior Sodium Storage Cathodes. ACS Applied Materials & Interfaces, 2021, 13, 37187-37193.	4.0	26
337	Nanostructured MoS ₂ â€, SnS ₂ â€, and WS ₂ â€Based Anode Materials for Highâ€Performance Sodiumâ€ion Batteries via Chemical Methods: A Review Article. Energy Technology, 2021, 9, 2100179.	1.8	9
338	Computational investigation of 2D 3d/4d hexagonal transition metal borides for metal-ion batteries. Electrochimica Acta, 2021, 384, 138404.	2.6	16
339	Architecting core-shell nanosheets of MoS2-polypyrrole on carbon cloth as a robust sodium anode. Sustainable Materials and Technologies, 2021, 28, e00255.	1.7	5
340	A Partial Sulfuration Strategy Derived Multiâ€Yolk–Shell Structure for Ultraâ€Stable K/Na/Liâ€ion Storage. Advanced Materials, 2021, 33, e2100837.	11.1	45
341	Selection of Sodium Salt Electrolyte Compatible with Na _{0.67} Ni _{0.15} Fe _{0.2} Mn _{0.65} O ₂ Cathode for Sodiumâ€kon Batteries. Energy Technology, 2021, 9, 2100190.	1.8	10
342	Matching Poly(vinylidene fluoride) and β″-Al ₂ O ₃ for Hybrid Electrolyte Membrane for Advanced Solid-State Sodium Batteries. Journal of the Electrochemical Society, 2021, 168, 080541.	1.3	4

#	Article	IF	CITATIONS
343	Reactive pathways toward parasitic release of singlet oxygen in metal-air batteries. Npj Computational Materials, 2021, 7, .	3.5	14
344	Promises and Challenges of <scp>Snâ€Based</scp> Anodes for <scp>Sodiumâ€lon</scp> Batteries ^{â€} . Chinese Journal of Chemistry, 2021, 39, 2931-2942.	2.6	11
345	Ironâ€Based Layered Cathodes for Sodiumâ€lon Batteries. Batteries and Supercaps, 2021, 4, 1657-1679.	2.4	19
346	Integrated titanium-substituted air stable O3 sodium layered oxide electrode via a complexant assisted route for high capacity sodium-ion battery. Electrochimica Acta, 2021, 388, 138561.	2.6	13
347	Growth, characterization and performance of bulk and nanoengineered molybdenum oxides for electrochemical energy storage and conversion. Progress in Crystal Growth and Characterization of Materials, 2021, 67, 100533.	1.8	15
348	Constructing Highâ€Performance Liâ€ion Capacitors via Cobalt Fluoride with Excellent Cyclic Stability as Anode and Coconut Shell Biomassâ€Derived Carbon as Cathode Materials. ChemistrySelect, 2021, 6, 8349-8360.	0.7	6
349	Elucidating the Factors That Cause Cation Diffusion Shutdown in Spinel-Based Electrodes. Chemistry of Materials, 2021, 33, 6421-6432.	3.2	18
350	Two-Phase Transition Induced Amorphous Metal Phosphides Enabling Rapid, Reversible Alkali-Metal Ion Storage. ACS Nano, 2021, 15, 13486-13494.	7.3	23
351	Regulating Deposition Behavior of Sodium Ions for Dendriteâ€Free Sodiumâ€Metal Anode. Advanced Energy Materials, 2021, 11, 2101976.	10.2	51
352	Hierarchical Bismuth–Carbon Microfoam Hybrid Structure Achieves Superior Sodium-Ion Storage. ACS Applied Energy Materials, 2021, 4, 8285-8293.	2.5	3
353	Tavorite-like orthorhombic AVPO4F (A = Li, Na) for novel high-voltage cathodes in rechargeable batteries. Journal of Alloys and Compounds, 2021, 875, 159963.	2.8	5
354	Ab initio study of the structural and electronic properties of Al/Mg-doped NaMO2 (M = V, Cr and Ni) for sodium-ion batteries application. Theoretical Chemistry Accounts, 2021, 140, 1.	0.5	3
355	Research progress on preparation and purification of fluorine-containing chemicals in lithium-ion batteries. Chinese Journal of Chemical Engineering, 2022, 41, 73-84.	1.7	7
356	A Cation Chelation and Reassembly Route to Synthesize a P2â€ŧype Na 0.67 Ni 0.26 Mn 0.67 Mg 0.07 O 2 Cathode Material for Highâ€performance Sodium Storage. ChemNanoMat, 0, , .	1.5	1
357	Electrochemical Overview: A Summary of ACo <i>_x</i> Mn <i>_y</i> Ni <i>_z</i> O ₂ and Metal Oxides as Versatile Cathode Materials for Metalâ€lon Batteries. Advanced Functional Materials, 2021, 31, 2107761.	7.8	13
358	Construction of AIF3 layer to improve Na3.12Fe2.44(P2O7)2 interfacial stability for high temperature stable cycling. Chemical Engineering Journal, 2022, 430, 132708.	6.6	10
359	Understanding the Structural Evolution and Storage Mechanism of NASICON-Structure Mg _{0.5} Ti ₂ (PO ₄) ₃ for Li-Ion and Na-Ion Batteries. ACS Sustainable Chemistry and Engineering, 2021, 9, 13414-13423.	3.2	5
360	Ultra-High-Rate Na3V(PO3)3N Cathode with Superior Stability for Fast-Charging Sodium-Ion Batteries. ACS Applied Energy Materials, 2021, 4, 10136-10144.	2.5	14

#	ARTICLE	IF	CITATIONS
361	P2–Na2/3Mg1/4Mn7/12Co1/6O2 cathode material based on oxygen redox activity with improved first-cycle voltage hysteresis. Journal of Power Sources, 2021, 506, 230104.	4.0	8
362	Pseudocapacitance enhanced by N-defects in Na3MnTi(PO4)3/N-doped carbon composite for symmetric full sodium-ion batteries. Materials Today Energy, 2021, 21, 100754.	2.5	23
363	Na2/3MnO2 nanoplates with exposed active planes as superior electrochemical performance sodium-ion batteries. Ionics, 2021, 27, 5187-5196.	1.2	6
364	Effective enhancement of the electrochemical properties for Na2FeP2O7/C cathode materials by boron doping. Chinese Journal of Chemical Engineering, 2021, 39, 277-285.	1.7	4
365	Layered NaxCoO2-based cathodes for advanced Na-ion batteries: review on challenges and advancements. Ionics, 2021, 27, 4549-4572.	1.2	11
366	A Titanium and Tantalum Phosphate LiNaTiTa ₂ P ₂ O ₁₃ with An Open Framework hosting Li and Na Ions. Chemistry - A European Journal, 2021, 27, 15479-15483.	1.7	2
367	Protic ionic liquids in energy storage devices: past, present and future perspective. Energy Storage Materials, 2021, 40, 402-414.	9.5	80
368	Covalently binding ultrafine MoS2 particles to N, S co-doped carbon renders excellent Na storage performances. Carbon, 2021, 184, 177-185.	5.4	20
369	A highly-stable layered Fe/Mn-based cathode with ultralow strain for advanced sodium-ion batteries. Nano Energy, 2021, 88, 106206.	8.2	32
370	Environmental implications of the ongoing electrification of the UK light duty vehicle fleet. Resources, Conservation and Recycling, 2021, 174, 105818.	5.3	9
371	New insights into carbon-based and MXene anodes for Na and K-ion storage: A review. Journal of Energy Chemistry, 2021, 62, 660-691.	7.1	56
372	Mixed polyoxyanion cathode materials. Energy Storage Materials, 2021, 42, 570-593.	9.5	7
373	Manipulating free-standing, flexible and scalable microfiber carbon papers unlocking ultra-high initial Coulombic efficiency and storage sodium behavior. Chemical Engineering Journal, 2021, 425, 131656.	6.6	22
374	A vacancy-free sodium manganese hexacyanoferrate as cathode for sodium-ion battery by high-salt-concentration preparation. Journal of Alloys and Compounds, 2021, 887, 161388.	2.8	10
375	Strategies to improve the performance of phosphide anodes in sodium-ion batteries. Nano Energy, 2021, 90, 106475.	8.2	45
376	Flexible Sb/Sb2O3-C nanofibers as binder-free anodes for high-performance and stable sodium-ion batteries. Journal of Alloys and Compounds, 2022, 890, 161913.	2.8	16
377	Composites of NiSe2@C hollow nanospheres wrapped with Ti3C2Tx MXene for synergistic enhanced sodium storage. Chemical Engineering Journal, 2022, 429, 132394.	6.6	42
378	Temperature-regulated biomass-derived hard carbon as a superior anode for sodium-ion batteries. Materials Chemistry Frontiers, 2021, 5, 7595-7605.	3.2	11

#	Article	IF	CITATIONS
379	Polyoxometalates (POMs): from electroactive clusters to energy materials. Energy and Environmental Science, 2021, 14, 1652-1700.	15.6	184
380	Pulsed Laser Deposition as a Tool for the Development of All Solidâ€State Microbatteries. Helvetica Chimica Acta, 2021, 104, e2000203.	1.0	14
381	Enhanced electrode kinetics and properties via anionic regulation in polyanionic Na3+xV2(PO4)3â^'x(P2O7)x cathode material. Green Energy and Environment, 2022, 7, 763-771.	4.7	47
382	Sodium-ion diffusion in alluaudite Na5In(MoO4)4. Solid State Ionics, 2020, 351, 115328.	1.3	9
383	Synthesis of micro-sized porous antimony via vapor dealloying for high-performance Na-ion battery anode. Solid State Ionics, 2020, 352, 115365.	1.3	7
384	From Lithium to Sodium and Potassium Batteries. , 2019, , 181-219.		1
385	Understanding the sodium storage mechanisms of organic electrodes in sodium ion batteries: issues and solutions. Energy and Environmental Science, 2020, 13, 1568-1592.	15.6	140
386	<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mi>Na</mml:mi><mml:r phase stability and hierarchical orderings in the O3/P3 structure family. Physical Review Materials, 2019. 3</mml:r </mml:msub></mml:mrow></mml:math 	ni>x<∕mm∣	l:mjչ
387	Review—Open-Framework Structure Based Cathode Materials Coupled with Metallic Anodes for Rechargeable Multivalent Ion Batteries. Journal of the Electrochemical Society, 2020, 167, 160530.	1.3	4
388	High-Capacity P2-Type Na _x Li _{0.25} Mn _{0.75} O ₂ Cathode Enabled by Anionic Oxygen Redox. Journal of the Electrochemical Society, 2019, 166, A4136-A4140.	1.3	18
389	Sodium-Based Batteries: In Search of the Best Compromise Between Sustainability and Maximization of Electric Performance. Frontiers in Energy Research, 2020, 8, .	1.2	26
390	Binders for sodium-ion batteries: progress, challenges and strategies. Chemical Communications, 2021, 57, 12406-12416.	2.2	26
391	Spinel/Post-spinel engineering on layered oxide cathodes for sodium-ion batteries. EScience, 2021, 1, 13-27.	25.0	194
392	Hierarchically pyridinic-nitrogen enriched porous carbon for advanced sodium-ion and lithium-sulfur batteries: Electrochemical performance and in situ Raman spectroscopy investigations. Applied Surface Science, 2022, 574, 151559.	3.1	20
393	Revealing the Fast and Durable Na ⁺ Insertion Reactions in a Layered Na ₃ Fe ₃ (PO ₄) ₄ Anode for Aqueous Na-Ion Batteries. ACS Materials Au, 2022, 2, 63-71.	2.6	7
394	Sodium-Ion Battery Anode Construction with SnP <i> _x </i> Crystal Domain in Amorphous Phosphorus Matrix. Energy Material Advances, 2021, 2021, .	4.7	8
395	Preparation and sodium ions storage performance of vanadium pentoxide/titanium dioxide composite. Ionics, 2021, 27, 5179.	1.2	1
396	Recent Advanced Development of Artificial Interphase Engineering for Stable Sodium Metal Anodes. Small, 2022, 18, e2102250.	5.2	46

#	Article	IF	CITATIONS
397	Atomic layer deposition of alumina onto yolk-shell FeS/MoS2 as universal anodes for Li/Na/K-Ion batteries. Electrochimica Acta, 2022, 402, 139471.	2.6	12
398	Ultrastable Na-TiS2 battery enabled by in situ construction of gel polymer electrolyte. Journal of Power Sources, 2021, 516, 230653.	4.0	4
399	Thermal management of a high temperature sodium sulphur battery stack. International Journal of Heat and Mass Transfer, 2021, 181, 122025.	2.5	8
400	A symmetric sodium-ion battery based on P2-Na0.67[ZnMn1-]O2 as both positive and negative electrode materials. Electrochimica Acta, 2021, 399, 139421.	2.6	8
401	Chapter 3. Intercalation-based Layered Materials for Rechargeable Sodium-ion Batteries. RSC Smart Materials, 2019, , 71-94.	0.1	0
402	Localized introduction of zirconium in P2 sodium layered oxide electrode for high capacity sodium-ion battery. Journal of Alloys and Compounds, 2022, 895, 162483.	2.8	3
403	Hollow nanotubes carbon@tellurium for high-performance Al-Te batteries. Electrochimica Acta, 2022, 401, 139498.	2.6	2
404	Review of Multivalent Metal Ion Transport in Inorganic and Solid Polymer Electrolytes. Batteries, 2021, 7, 3.	2.1	17
405	MOFs and their derivatives as Sn-based anode materials for lithium/sodium ion batteries. Journal of Materials Chemistry A, 2021, 9, 27234-27251.	5.2	33
406	Developing the processing stages of carbon fiber composite paper as efficient materials for energy conversion, storage, and conservation. , 2022, , 399-440.		1
407	Pseudocapacitance-boosted ultrafast and stable Na-storage in NiTe ₂ coupled with N-doped carbon nanosheets for advanced sodium-ion half/full batteries. Dalton Transactions, 2021, 50, 17241-17248.	1.6	4
409	Nickel Fluoride Nanorods as Anode Materials for Li-Ion Hybrid Capacitors. ACS Applied Nano Materials, 2021, 4, 11601-11610.	2.4	8
410	Dynamic structural evolution and controllable redox potential for abnormal high-voltage sodium layered oxide cathodes. Cell Reports Physical Science, 2021, 2, 100631.	2.8	19
411	Mitigating the voltage fading and air sensitivity of O3-type NaNi0.4Mn0.4Cu0.1Ti0.1O2 cathode material via La doping. Chemical Engineering Journal, 2022, 431, 133456.	6.6	10
412	A novel Fe-defect induced pure-phase Na4Fe2.91(PO4)2P2O7 cathode material with high capacity and ultra-long lifetime for low-cost sodium-ion batteries. Nano Energy, 2022, 91, 106680.	8.2	67
413	Phase transformation induced benzene rings activation in a metal–organic framework to boost sodium storage performance. Chemical Engineering Journal, 2022, 433, 133508.	6.6	2
414	Liquid Phaseâ€Induced Solid Solution Phase Mechanisms for Highly Stable and Ultrafast Energy Storage. Advanced Energy Materials, 2021, 11, 2102342.	10.2	6
415	Theoretical study on stability and ion transport property with halide doping of Na ₃ SbS ₄ electrolyte for all-solid-state batteries. Journal of Materials Chemistry A, 2022, 10, 2235-2248.	5.2	17

#	Article	IF	CITATIONS
416	Dense SnS ₂ nanoplates vertically anchored on a graphene aerogel for pseudocapacitive sodium storage. Materials Chemistry Frontiers, 2022, 6, 325-332.	3.2	22
417	An Adsorptionâ€Insertion Mechanism of Potassium in Soft Carbon. Small, 2022, 18, e2105275.	5.2	14
418	Covalently Induced Grafting of C ₂ N Nanoflakes onto Reduced Graphene Oxide with Dominant Pseudocapacitive Behaviors for a High-Rate Sodium-Ion Battery Anode. ACS Sustainable Chemistry and Engineering, 2021, 9, 15946-15956.	3.2	4
419	Coaxial 3D-printing constructing all-in-one fibrous lithium-, sodium-, and zinc-ion batteries. Chemical Engineering Journal, 2022, 433, 133815.	6.6	13
420	Implications of Na-ion solvation on Na anode–electrolyte interphase. Trends in Chemistry, 2022, 4, 48-59.	4.4	26
421	Joint Enhancement in the Electrochemical Reversibility and Cycle Lives for Copper Sulfide for Sodium- and Potassium-Ion Storage via Selenium Substitution. ACS Applied Materials & Interfaces, 2021, , .	4.0	8
422	Elucidating the Influence of Structure and Ag ⁺ -Na ⁺ Ion-Exchange on Crack-Resistance and Ionic Conductivity of Na ₃ Al _{1.8} Si _{1.65} P _{1.8} O ₁₂ Glass Electrolyte. SSRN Electronic Journal, 0, , .	0.4	0
423	Ion dynamics in PEO/PVP blend added with sodium triflouromethane sulphonate. Materials Today: Proceedings, 2022, , .	0.9	3
424	Improving Structural and Moisture Stability of P2-Layered Cathode Materials for Sodium-Ion Batteries. ACS Applied Energy Materials, 2022, 5, 1252-1261.	2.5	21
425	Free-Standing Petal-Shaped Metallic 1T-Phase Molybdenum Sulfide Anchored on a Nitrogen-Doped Carbon Cloth for High Rate Na-Ion Batteries. ACS Applied Energy Materials, 2022, 5, 1106-1113.	2.5	3
426	In Situ Carbon-coated Ni0.85Se@C Composite with High Performance for Sodium-ion Batteries. Chemistry Letters, 2022, 51, 221-223.	0.7	0
427	Nonaqueous rechargeable aluminum batteries. Joule, 2022, 6, 134-170.	11.7	54
428	Recent progress in the development of glass and glass-ceramic cathode/solid electrolyte materials for next-generation high capacity all-solid-state sodium-ion batteries: A review. Journal of Power Sources, 2022, 521, 230930.	4.0	35
429	Ultrastable sodium metal plating/striping by engineering heterogeneous nucleation on TiO2 nanotube arrays. Chemical Engineering Journal, 2022, 431, 134272.	6.6	8
430	3D printed high-performance sodium ion and zinc ion full batteries. Journal of Alloys and Compounds, 2022, 900, 163394.	2.8	8
431	Review—Nanomaterials Green Synthesis for High-Performance Secondary Rechargeable Batteries: Approaches, Challenges, and Perspectives. Journal of the Electrochemical Society, 2022, 169, 010534.	1.3	4
432	Yolk–Shell Antimony/Carbon: Scalable Synthesis and Structural Stability Study in Sodium Ion Batteries. Advanced Functional Materials, 2022, 32, .	7.8	14
433	Progress and Trends in Nonaqueous Rechargeable Aluminum Batteries. Advanced Sustainable Systems, 2022, 6, .	2.7	9

#	Article	IF	CITATIONS
434	Iron anodeâ€based aqueous electrochemical energy storage devices: Recent advances and future perspectives. , 2022, 1, 116-139.		73
435	Long-enduring oxygen redox enabling robust layered cathodes for sodium-ion batteries. Chemical Engineering Journal, 2022, 435, 134944.	6.6	11
436	The advent of manganese-substituted sodium vanadium phosphate-based cathodes for sodium-ion batteries and their current progress: a focused review. Journal of Materials Chemistry A, 2022, 10, 1022-1046.	5.2	26
437	Lithium-ion batteries under pulsed current operation to stabilize future grids. Cell Reports Physical Science, 2022, 3, 100708.	2.8	19
438	Surface organic nitrogen-doping disordered biomass carbon materials with superior cycle stability in the sodium-ion batteries. Journal of Power Sources, 2022, 522, 230994.	4.0	54
439	Application of Guar Gum and its Derivatives as Green Binder/Separator for Advanced Lithiumâ€lon Batteries. ChemistryOpen, 2022, 11, e202100209.	0.9	10
440	Artificial Heterogeneous Interphase Layer with Boosted Ion Affinity and Diffusion for Na/Kâ€Metal Batteries. Advanced Materials, 2022, 34, e2109439.	11.1	73
441	Cation Diffusion Facilitated by Antiphase Boundaries in Layered Intercalation Compounds. Chemistry of Materials, 2022, 34, 1889-1896.	3.2	7
442	Electronic transport properties of NASICON structured NaFe2(PO4)(SO4)2: A potential cathode material for Na-ion batteries, synthesized using ultrasound-assisted, indirect microwave heating technique. Materials Letters, 2022, 313, 131763.	1.3	3
443	Low-cost layered oxide cathode involving cationic and anionic redox with a complete solid-solution sodium-storage behavior. Energy Storage Materials, 2022, 47, 44-50.	9.5	39
444	Room-temperature liquid metal engineered iron current collector enables stable and dendrite-free sodium metal batteries in carbonate electrolytes. Journal of Materials Science and Technology, 2022, 115, 156-165.	5.6	18
445	ElucidatingÂthe influence of structure and Ag+-Na+Âion-exchange on crack-resistance and ionic conductivity of Na3Al1.8Si1.65P1.8O12Âglass electrolyte. Acta Materialia, 2022, 227, 117745.	3.8	6
446	Tungsten Nanoparticles Accelerate Polysulfides Conversion: A Viable Route toward Stable Roomâ€Temperature Sodium–Sulfur Batteries. Advanced Science, 2022, 9, e2105544.	5.6	18
447	Understanding the Design of Cathode Materials for Na-Ion Batteries. ACS Omega, 2022, 7, 5605-5614.	1.6	50
448	Understanding the Structural Phase Transitions in Na ₃ V ₂ (PO ₄) ₃ Symmetrical Sodiumâ€ion Batteries Using Synchrotronâ€Based Xâ€Ray Techniques. Small Methods, 2022, 6, e2100888.	4.6	10
449	A Reanalysis of the Diverse Sodium Species in Carbon Anodes for Sodium Ion Batteries: A Thermodynamic View. Advanced Energy Materials, 2021, 11, .	10.2	32
450	Engineering Hierarchical Structure and Surface of Na4mnv(Po4)3 for Ultrafast Sodium Storage by a Scalable Ball Milling Approach. SSRN Electronic Journal, 0, , .	0.4	0
451	Status of Li(Na)-based anionic redox materials for better batteries. , 2023, , 6-45.		4

#	Article	IF	CITATIONS
452	A Sodium Liquid Metal Battery Based on the Multi-Cationic Electrolyte for Grid Energy Storage. SSRN Electronic Journal, 0, , .	0.4	0
453	Structure Engineering of Vanadium Tetrasulfides for Highâ€Capacity and Highâ€Rate Sodium Storage. Small, 2022, 18, e2107058.	5.2	17
454	Electrochemical Properties of Layered Na _{<i>x</i>} Ni _{<i>x</i> /2} Mn _{1â^² <i>x</i> /2} O ₂ (0.5 â‰≇€‰ <i>x</i> â‰≇€‰1.1) with P3 Structure as Cathode Batteries. Energy Technology, 2022, 10, 2101121.	fo t.8 odiu	mâ £ ion
455	N/O Coâ€Doped Hard Carbon Derived from Cocklebur Fruit for Sodiumâ€lon Storage. ChemElectroChem, 2022, 9, .	1.7	8
456	Anionic Redox and Electrochemical Kinetics of the Na ₂ Mn ₃ O ₇ Cathode Material for Sodium-Ion Batteries. Energy & Fuels, 2022, 36, 4015-4025.	2.5	11
457	Investigation of the enhanced sodium ion storage properties of sphere-like NiS in ethers-based electrolyte. Ionics, 2022, 28, 2267.	1.2	3
458	An all Prussian blue analogâ€based aprotic sodiumâ€ion battery. , 2022, 1, .		13
459	Solidâ€State Na Metal Batteries with Superior Cycling Stability Enabled by Ferroelectric Enhanced Na/Na ₃ Zr ₂ Si ₂ PO ₁₂ Interface. Small, 2022, 18, e2200716.	5.2	24
460	Strain-induced earthquake. Nature Energy, 2022, 7, 306-307.	19.8	1
461	Intrinsic Carbon Defects Induced Reversible Antimony Chemistry for Highâ€Energy Aqueous Alkaline Batteries. Advanced Materials, 2022, 34, e2200085.	11.1	13
462	Compact Sn/C composite realizes long-life sodium-ion batteries. Nano Research, 2023, 16, 3804-3813.	5.8	11
463	Tetrahedral Alignment and Covalent Bonding Enable Fast Sodium Conduction in Na ₃ XS ₄ (X = P, V). Journal of Physical Chemistry C, 2022, 126, 6161-6170.	1.5	3
464	Ionogelâ€Based Membranes for Safe Lithium/Sodium Batteries. Advanced Materials, 2022, 34, e2200945.	11.1	41
465	Rational Design of Mixed Polyanion Electrodes Na _{<i>x</i>} V ₂ P _{3–<i>i</i>} (Si/S) _{<i>i</i>} O ₁₂ for Sodium Batteries. Chemistry of Materials, 2022, 34, 3373-3382.	3.2	16
466	Integrating Superlattice to Regulate P2â€O2 Phase Transition and Improve Cycling Stability in Sodiumâ€lon Batteries. Batteries and Supercaps, 2022, 5, .	2.4	1
467	Disrupting Sodium Ordering and Phase Transitions in a Layered Oxide Cathode. Journal of the Electrochemical Society, 2022, 169, 040504.	1.3	1
468	SiCN Ceramics as Electrode Materials for Sodium/Sodium Ion Cells – Insights from ²³ Na Inâ€6itu Solidâ€6tate NMR. Batteries and Supercaps, 2022, 5, .	2.4	9
469	Computationally assisted design and prediction of remarkably boosted NLO response of organoimidoâ€substituted hexamolybdates. Journal of Physical Organic Chemistry, 2022, 35, .	0.9	3

#	Article	IF	CITATIONS
470	A review of analytical and optimization methodologies for transitions in multi-scale energy systems. Renewable and Sustainable Energy Reviews, 2022, 160, 112277.	8.2	12
471	Carbon Nanotube Based Metal–Organic Framework Hybrids From Fundamentals Toward Applications. Small, 2022, 18, e2104628.	5.2	33
472	Design Principles of Bifunctional Electrocatalysts for Engineered Interfaces in Na–S Batteries. ACS Catalysis, 2021, 11, 15149-15161.	5.5	24
473	A Strategic Co-doping Approach Using Sc ³⁺ and Ce ⁴⁺ toward Enhanced Conductivity in NASICON-Type Na ₃ Zr ₂ Si ₂ PO ₁₂ . Journal of Physical Chemistry C, 2021, 125, 27723-27735.	1.5	17
474	Symmetric Aqueous Batteries of Titanium Hexacyanoferrate in Na+, K+, and Mg2+ Media. Batteries, 2022, 8, 1.	2.1	3
475	Hard Carbon Anode with a Sodium Carborane Electrolyte for Fast-Charging All-Solid-State Sodium-Ion Batteries. ACS Energy Letters, 2022, 7, 145-149.	8.8	22
476	Achieving High Stability and Performance in P2â€Type Mnâ€Based Layered Oxides with Tetravalent Cations for Sodiumâ€Ion Batteries. Small, 2022, 18, e2201086.	5.2	25
477	Electronic structure, sodium diffusion and redox potentials of <scp>lowâ€symmetry Na</scp> <i>M</i> <scp>Fe</scp> (<scp> MoO ₄ </scp>) ₃ (<i>M</i> Â=ÂMg, Ni). Journal of Computational Chemistry, 2022, 43, 953-960.	1.5	2
478	Suppressing the Irreversible Phase Transition in Sodium Layered Cathode Via Integrating P2 and O3-Type Structures. SSRN Electronic Journal, 0, , .	0.4	0
479	Realizing outstanding electrochemical performance with Na ₃ V ₂ (PO ₄) ₂ F ₃ modified with an ionic liquid for sodium-ion batteries. RSC Advances, 2022, 12, 14007-14017.	1.7	8
480	Advanced Dualâ€Ion Batteries with Highâ€Capacity Negative Electrodes Incorporating Black Phosphorus. Advanced Science, 2022, , 2201116.	5.6	11
481	Homologous Strategy: Fabrication of a High-Performance Dual-Carbon Potassium Ion Hybrid Capacitor. ACS Applied Energy Materials, 2022, 5, 5766-5773.	2.5	5
482	Hardâ€Carbon Anodes for Sodiumâ€Ion Batteries: Recent Status and Challenging Perspectives. Advanced Energy and Sustainability Research, 2022, 3, .	2.8	27
483	Enabling <scp>Highâ€Performance</scp> Sodium Battery Anodes by Complete Reduction of Graphene Oxide and Cooperative In‣itu Crystallization of Ultrafine <scp>SnO₂</scp> Nanocrystals. Energy and Environmental Materials, 2023, 6, .	7.3	6
484	Recent Advances in Stabilization of Sodium Metal Anode in Contact with Organic Liquid and Solidâ \in State Electrolytes. Energy Technology, 2022, 10, .	1.8	11
485	Gradient Supramolecular Preorganization Endows the Derived N/P Dual-Doped Carbon Nanosheets with Tunable Storage Performance toward Sodium-Ion Batteries. Industrial & Engineering Chemistry Research, 2022, 61, 6997-7008.	1.8	4
486	Structural and Electrochemical Properties of Layered P2-Na0.8Co0.8Ti0.2O2 Cathode in Sodium-Ion Batteries. Energies, 2022, 15, 3371.	1.6	3
487	Unusual Mesoporous Titanium Niobium Oxides Realizing Sodiumâ€ŀon Batteries Operated at â^'40°C. Advanced Materials, 2022, 34, e2202873.	11.1	28

#	Article	IF	CITATIONS
488	Phosphate-based cathode materials to boost the electrochemical performance of sodium-ion batteries. Sustainable Energy and Fuels, 2022, 6, 3114-3147.	2.5	21
489	Review of room-temperature liquid metals for advanced metal anodes in rechargeable batteries. Energy Storage Materials, 2022, 50, 473-494.	9.5	35
490	Freestanding niobium pentoxide-decorated multiwalled carbon nanotube electrode: Charge storage mechanism in sodium-ion pseudocapacitor and battery. Journal of Energy Storage, 2022, 52, 104793.	3.9	9
491	Alkali Ions Pre-Intercalated 3d Crinkled Ti3c2tx Mxene Architectures for Advanced Sodium Storage. SSRN Electronic Journal, 0, , .	0.4	0
492	Enhancement in Rate Performance and High Voltage Structural Stability of P3/O3 Na0.9fe0.5mn0.45ni0.05o2 Layered Oxide Cathode Material. SSRN Electronic Journal, 0, , .	0.4	0
493	Defects Collaborative 3d Cu2se Nanoarrays Boosts High Rate Na-Ion Storage. SSRN Electronic Journal, 0, , .	0.4	0
494	Unraveling the diffusion kinetics of honeycomb structured Na ₂ Ni ₂ TeO ₆ as a high-potential and stable electrode for sodium-ion batteries. Journal of Materials Chemistry A, 2022, 10, 15460-15473.	5.2	18
495	Perspective: Design of cathode materials for sustainable sodium-ion batteries. MRS Energy & Sustainability, 2022, 9, 183-197.	1.3	22
496	Phase Relations in a NaFeO2-SnO2 (0–50 mol.% SnO2) System and the Crystal Structure and Conductivity of Na0.8Fe0.8Sn0.2O2. Materials, 2022, 15, 3612.	1.3	0
497	A sodium liquid metal battery based on the multi-cationic electrolyte for grid energy storage. Energy Storage Materials, 2022, 50, 572-579.	9.5	35
498	Air-stability of sodium-based layered-oxide cathode materials. Science China Chemistry, 2022, 65, 1076-1087.	4.2	46
499	Electrolyte Solvation Structure Design for Sodium Ion Batteries. Advanced Science, 2022, 9, .	5.6	138
500	Engineering hierarchical structure and surface of Na4MnV(PO4)3 for ultrafast sodium storage by a scalable ball milling approach. Nano Energy, 2022, 99, 107396.	8.2	22
501	Antifluorite-type Na ₅ FeO ₄ as a low-cost, environment-friendly cathode with combined cationic/anionic redox activity for sodium ion batteries: a first-principles investigation. RSC Advances, 2022, 12, 17410-17421.	1.7	3
502	The resistive nature of decomposing interfaces of solid electrolytes with alkali metal electrodes. Journal of Materials Chemistry A, 2022, 10, 19732-19742.	5.2	14
503	A machine learning protocol for revealing ion transport mechanisms from dynamic NMR shifts in paramagnetic battery materials. Chemical Science, 2022, 13, 7863-7872.	3.7	10
504	Prediction of the Be ₂ B ₂ monolayer: an ultrahigh capacity anode material for Li-ion and Na-ion batteries. Physical Chemistry Chemical Physics, 2022, 24, 14953-14963.	1.3	4
505	A new telluriumâ€based Ni ₃ TeO ₆ â€carbon nanotubes composite anode for Naâ€ion battery. International Journal of Energy Research, 2022, 46, 16041-16049.	2.2	6

#	Article	IF	CITATIONS
506	Formulating Highâ€Rate and Long ycle Heterostructured Layered Oxide Cathodes by Local Chemistry and Orbital Hybridization Modulation for Sodiumâ€ion Batteries. Advanced Materials, 2022, 34, .	11.1	48
507	Hierarchical Engineering for High-Energy-Oriented Sodium-Ion Batteries. Accounts of Materials Research, 2022, 3, 672-684.	5.9	14
508	Fundamental insight into the interaction between a lithium salt and an inorganic filler for ion mobility using a synergic theoretical-experimental approach. Journal of Colloid and Interface Science, 2022, 625, 734-742.	5.0	3
509	Sodiophilic skeleton based on the packing of hard carbon microspheres for stable sodium metal anode without dead sodium. Journal of Energy Chemistry, 2022, 73, 400-406.	7.1	11
510	Sodium-Ion Solid-State Electrolyte. ACS Symposium Series, 0, , 275-294.	0.5	0
511	Advanced material characterization techniques for sodiumâ€ion battery. Asia-Pacific Journal of Chemical Engineering, 2022, 17, .	0.8	2
512	Hard carbon derived for lignin with robust and low-potential sodium ion storage. Journal of Electroanalytical Chemistry, 2022, 919, 116526.	1.9	19
513	Suppression of partially irreversible phase transition in O′3-Na3Ni2SbO6 cathode for sodium-ion batteries by interlayered structural modulation. Journal of Energy Chemistry, 2022, 73, 436-444.	7.1	7
514	Electrochemical Proton Storage: From Fundamental Understanding to Materials to Devices. Nano-Micro Letters, 2022, 14, .	14.4	24
515	Metal Substitution versus Oxygen-Storage Modifier to Regulate the Oxygen Redox Reactions in Sodium-Deficient Three-Layered Oxides. Batteries, 2022, 8, 56.	2.1	4
516	In-situ imaging techniques for advanced battery development. Materials Today, 2022, 57, 279-294.	8.3	16
517	Suppressing the Irreversible Phase Transition in Sodium Layered Cathode Via Integrating P2 and O3-Type Structures. SSRN Electronic Journal, 0, , .	0.4	0
518	Engineering Fluoride-rich Interphase and Inhibiting Grain Coarsening for Highly Reversible Bismuth Sulfide Anode for Sodium Storage. Materials Today Energy, 2022, , 101084.	2.5	1
519	Synergistic effect of nanometerization and uniform amorphous carbon coating on FeSe2 sodium ion battery anode materials. Journal of Materials Science: Materials in Electronics, 2022, 33, 16728-16739.	1.1	2
520	Review and prospects for room-temperature sodium-sulfur batteries. Materials Research Letters, 2022, 10, 691-719.	4.1	19
521	Cu–V bimetallic selenide with synergistic effect for high-rate and long-life sodium storage. Journal of Materials Research, 2022, 37, 3308-3317.	1.2	2
522	Correlation between the Cation Disorders of Fe ³⁺ and Li ⁺ in P3-Type Na _{0.67} [Li _{0.1} (Fe _{0.5} Mn _{0.5}) _{0.9}]O ₂ for Sodium Ion Batteries. ACS Applied Materials & Interfaces, 2022, 14, 33120-33129.	4.0	10
523	Stabilizing Metallic Na Anodes via Sodiophilicity Regulation: A Review. Materials, 2022, 15, 4636.	1.3	6

#	Article	IF	CITATIONS
524	Structure and Electronic Structure Evolution of P2-Na _{<i>x</i>} CoO ₂ Phases from X-ray Diffraction and ²³ Na Magic Angle Spinning Nuclear Magnetic Resonance. Chemistry of Materials, 2022, 34, 6431-6439.	3.2	2
525	Defect Properties of Li2NiGe3O8. Clean Technologies, 2022, 4, 619-628.	1.9	1
526	Research progress on carbon materials as negative electrodes in sodium―and potassiumâ€ion batteries. , 2022, 4, 1182-1213.		55
527	Development of vanadium-based polyanion positive electrode active materials for high-voltage sodium-based batteries. Nature Communications, 2022, 13, .	5.8	35
528	Two-dimensional CSiO and CGeO: direct-band-gap semiconductors with normal/anomalous auxeticity for solar cells and alkali-metal-ion batteries. Journal of Physics Condensed Matter, 2022, 34, 365301.	0.7	0
529	Vanadium Tetrasulfide for Nextâ€Generation Rechargeable Batteries: Advances and Challenges. Chemical Record, 2022, 22, .	2.9	7
530	Prepare and optimize NASICON-type Na4MnAl(PO4)3 as low cost cathode for sodium ion batteries. Surfaces and Interfaces, 2022, 32, 102151.	1.5	7
531	Carbon skeleton confined Sb chalcogenides nanodots for stable sodium storage. Carbon, 2022, 197, 341-349.	5.4	10
532	Na2MnPO4F/Ti3C2-CQDs composite cathode material with enhanced electrochemical properties for lithium/sodium hybrid ion battery. Diamond and Related Materials, 2022, 128, 109216.	1.8	5
533	The balanced improvement of electrochemical performance of cobalt disulfide anode material for sodium-ion batteries by constructing reduced graphene oxide conductive network based on "bucket principle― Journal of Alloys and Compounds, 2022, 922, 166235.	2.8	1
534	Progress in the development of solid-state electrolytes for reversible room-temperature sodium–sulfur batteries. Materials Advances, 2022, 3, 6415-6440.	2.6	26
535	Molten Salt Synthesis of Carbon Anode for High-Performance Sodium-Ion Batteries. SSRN Electronic Journal, 0, , .	0.4	0
536	Altering Thermal Transformation Pathway to Create Closed Pores in Coalâ€Derived Hard Carbon and Boosting of Na ⁺ Plateau Storage for Highâ€Performance Sodiumâ€Ion Battery and Sodiumâ€Ion Capacitor. Advanced Functional Materials, 2022, 32, .	7.8	43
537	Carbon Quantum Dot Modified Reduced Graphene Oxide Framework for Improved Alkali Metal Ion Storage Performance. Small, 2022, 18, .	5.2	11
538	Porous Amorphous Silicon Hollow Nanoboxes Coated with Reduced Graphene Oxide as Stable Anodes for Sodium-Ion Batteries. ACS Omega, 2022, 7, 30208-30214.	1.6	4
539	Facile synthesis of high quality hard carbon anode from Eucalyptus wood for sodium-ion batteries. Chemical Papers, 2022, 76, 7465-7473.	1.0	6
540	Pomegranate-inspired porous SnSe/ZnSe@C anode: A stress-buffer nanostructure for fast and ultrastable sodium-ion storage. Journal of Energy Chemistry, 2022, 75, 369-377.	7.1	24
541	Highly Reversible Sodium Metal Battery Anodes via Alloying Heterointerfaces. Small, 2022, 18, .	5.2	14

#	Article	IF	CITATIONS
542	Critical overview of polyanionic frameworks as positive electrodes for Na-ion batteries. Journal of Materials Research, 2022, 37, 3169-3196.	1.2	8
543	P2-type layered high-entropy oxides as sodium-ion cathode materials. Materials Futures, 2022, 1, 035104.	3.1	25
544	Suppressing the irreversible phase transition from P2 to O2 in sodium-layered cathode via integrating P2- and O3-type structures. Materials Today Energy, 2022, 29, 101106.	2.5	8
545	Binary heteroatom doping enhanced the sodium storage performance of porous carbon nanofibers with fast kinetics. Ceramics International, 2022, 48, 36264-36272.	2.3	2
546	An Undoped Triâ€Phase Coexistent Cathode Material for Sodiumâ€ion Batteries. Advanced Functional Materials, 2022, 32, .	7.8	18
547	Tug-of-War in the Selection of Materials for Battery Technologies. Batteries, 2022, 8, 105.	2.1	7
548	Interfacial engineering on metal anodes in rechargeable batteries. EnergyChem, 2022, 4, 100089.	10.1	12
549	A bioconfined synthesis strategy of Sb2S3@N–doped carbon ribbons for boosting ultralong–life sodium storage. Journal of Power Sources, 2022, 546, 231875.	4.0	3
550	Constructing low N/P ratio sodium-based batteries by reversible Na metal electrodeposition on sodiophilic zinc-metal-decorated hard carbons. Journal of Power Sources, 2022, 544, 231862.	4.0	3
551	Decoration of carbon encapsulated nitrogen-rich Mo N with few-layered MoSe2 nanosheets for high-performance sodium-ion storage. Journal of Energy Chemistry, 2022, 74, 332-340.	7.1	13
552	Alkali ions pre-intercalated 3D crinkled Ti3C2Tx MXene architectures for advanced sodium storage. Chemical Engineering Journal, 2022, 450, 138453.	6.6	12
553	Cyclotriphosphazene-based flame-retardant polymer electrolytes for high performance sodium metal batteries. Chemical Engineering Journal, 2022, 450, 138385.	6.6	13
554	Common ion effect enhanced cobalt hexacyanoferrate for aqueous Na-ion battery. Composites Part B: Engineering, 2022, 246, 110241.	5.9	7
555	ε-MnO2@C cathode with high stability for aqueous zinc-ion batteries. Applied Surface Science, 2022, 605, 154685.	3.1	15
556	Self-assembled MoTe2 hierarchical nanoflowers with carbon coating as anode material for excellent sodium storage performance. Chemical Engineering Journal, 2023, 452, 139111.	6.6	22
557	Constructing Interstitial Pillar to Manipulating Interlamination Interaction Force: Towards High Sodium-Content P2/O3 Intergrowth Cathodes. SSRN Electronic Journal, 0, , .	0.4	0
558	A Strategy to Enhance Rate Capability by Doping TitaniumÂlnto Na2fep2o7@C Cathode Materials for Na-Ion Batteries. SSRN Electronic Journal, 0, , .	0.4	0
559	Spontaneous solid electrolyte interface formation in uncycled sodium half-cell batteries: using X-ray photoelectron spectroscopy to explore the pre-passivation of sodium metal by fluoroethylene carbonate before potentials are applied. Sustainable Energy and Fuels, 0, , .	2.5	0

#	Article	IF	CITATIONS
560	Vanadium-free NASICON-type electrode materials for sodium-ion batteries. Journal of Materials Chemistry A, 2022, 10, 21816-21837.	5.2	12
561	Electrochemical investigation of MoSeTe as an anode for sodium-ion batteries. Proceedings of the Indian National Science Academy, 2022, 88, 430-438.	0.5	4
562	Nano self-assembly of fluorophosphate cathode induced by surface energy evolution towards high-rate and stable sodium-ion batteries. Nano Research, 2023, 16, 439-448.	5.8	46
563	Theoretical study of δ-5 boron monolayer as an anode material for Li- and non-Li-ion batteries. Journal of Materials Research, 2022, 37, 3384-3393.	1.2	1
564	Synthetic Control of Electronic Property and Porosity in Anthraquinone-Based Conjugated Polymer Cathodes for High-Rate and Long-Cycle-Life Na–Organic Batteries. ACS Nano, 2022, 16, 14590-14599.	7.3	15
565	Dualâ€ion Intercalation Chemistry Enabling Hybrid Metalâ€ion Batteries. ChemSusChem, 2023, 16, .	3.6	7
566	Design of Perovskite-Type Fluorides Cathodes for Na-ion Batteries: Correlation between Structure and Transport. Batteries, 2022, 8, 126.	2.1	1
567	Computational Screening of Na ₃ MBr ₆ Compounds as Sodium Solid Electrolytes. Chemistry of Materials, 2022, 34, 8356-8365.	3.2	7
568	First-principles comparative study of Cr migration in O3 and O/P hybrid-phased <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi>NaCrO</mml:mi><mml:mn>2Physical Review Materials, 2022, 6, .</mml:mn></mml:msub></mml:math 	ml :෩タ > <td>nmd:msub></td>	nm d :msub>
569	Metalâ€organic framework derived porous structures towards lithium rechargeable batteries. EcoMat, 2023, 5, .	6.8	33
570	Electrochemically Controllable Synthesis of Low-Valence Titanium Sulfides for Advanced Sodium Ion Batteries with Ultralong Cycle Life in a Wide Potential Window. ACS Applied Materials & Interfaces, 2022, 14, 42113-42122.	4.0	1
571	Revisiting Electrolyte Kinetics Differences in Sodium Ion Battery: Are Esters Really Inferior to Ethers?. Energy and Environmental Materials, 2023, 6, .	7.3	5
572	Rechargeable Batteries for Grid Scale Energy Storage. Chemical Reviews, 2022, 122, 16610-16751.	23.0	340
573	Characterizing battery materials and electrodes via <i>in situ</i> / <i>operando</i> transmission electron microscopy. Chemical Physics Reviews, 2022, 3, .	2.6	9
574	Novel two-dimensional SiC2 monolayer with potential as a superior anode for sodium-ion batteries. Journal of Materials Science, 2022, 57, 18406-18416.	1.7	1
575	Molten salts for rechargeable batteries. Materials Today, 2022, 60, 128-157.	8.3	20
576	Self-templated anchor of FeS2 nanoparticles on porous carbon matrix as highly reversible K-storage anode. Applied Surface Science, 2023, 608, 155153.	3.1	5
577	Constructing interstitial pillar to manipulating interlamination interaction force: Towards high sodium-content P2/O3 intergrowth cathodes. Electrochimica Acta, 2022, 433, 141253.	2.6	3

#	Article	IF	CITATIONS
578	Lignin for energy applications – state of the art, life cycle, technoeconomic analysis and future trends. Green Chemistry, 2022, 24, 8193-8226.	4.6	85
579	The Mechanical Properties of Batteries and Supercapacitors. , 2022, , .		0
580	Eliminating crystal water enables enhanced sodium storage performance in an oxalate-phosphate cathode material. Chinese Chemical Letters, 2023, 34, 107898.	4.8	2
581	Gradient Designs for Efficient Sodium Batteries. ACS Energy Letters, 2022, 7, 4106-4117.	8.8	16
582	Halogen Hybrid Flow Batteries Advances for Stationary Chemical Power Sources Technologies. Energies, 2022, 15, 7397.	1.6	7
583	Production of Nanoparticles of MoSe ₂ and Carbon in One Step to Increase Their Stability for Applications in Sodium-Ion Batteries. ACS Applied Nano Materials, 2022, 5, 15665-15675.	2.4	3
584	Enhanced Electrochemical Performances of Mn3O4/Heteroatom-Doped Reduced Graphene Oxide Aerogels as an Anode for Sodium-Ion Batteries. Nanomaterials, 2022, 12, 3569.	1.9	3
585	Defect Engineering in Prussian Blue Analogs for Highâ€Performance Sodiumâ€ i on Batteries. Advanced Energy Materials, 2022, 12, .	10.2	35
586	Sodium-ion conducting polymer electrolytes. Rare Metals, 2023, 42, 1-16.	3.6	20
587	Prospective Sustainability Screening of Sodiumâ€lon Battery Cathode Materials. Advanced Energy Materials, 2022, 12, .	10.2	31
588	Coâ€Intercalation Batteries (CoIBs): Role of TiS ₂ as Electrode for Storing Solvated Na Ions. Advanced Energy Materials, 2022, 12, .	10.2	13
589	Recent development of three-dimension printed graphene oxide and MXene-based energy storage devices. Tungsten, 2024, 6, 196-211.	2.0	11
590	Effect of Cr3+ doping on the electrochemical performance of Na3V2(PO4)2F3/C cathode materials for sodium ion battery. Electrochimica Acta, 2023, 437, 141491.	2.6	6
591	Recent Progress in Surface Coatings for Sodium-Ion Battery Electrode Materials. Electrochemical Energy Reviews, 2022, 5, .	13.1	28
592	First-principles investigation of phase stability in layered <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mi>Na</mml:mi><mml:m Physical Review Materials, 2022, 6, .</mml:m </mml:msub></mml:mrow></mml:math 	ni> a.9 /mml	:mi>
593	Mitigating interfacial instability of high-voltage sodium layered oxide cathodes with coordinative polymeric structure. Journal of Power Sources, 2022, 552, 232235.	4.0	6
594	Sodium-ion conducting pseudosolid electrolyte for energy-dense, sodium-metal batteries. Journal of Power Sources, 2023, 554, 232305.	4.0	2
595	Regulated electrochemical performance of manganese oxide cathode for potassium-ion batteries: A combined experimental and first-principles density functional theory (DFT) investigation. Journal of Colloid and Interface Science, 2023, 633, 886-896.	5.0	32

	CITATION	CITATION REPORT	
#	Article	IF	CITATIONS
596	Towards High-Performance Sodium-Ion Batteries: Starting from Electrode Materials. , 0, 17, 273-281.		0
597	Theoretical Prediction of Spinel Na ₂ In <i>_x</i> Sc _{0.666â^'} <i>_x</i> Cl ₄ and Rockâ€Salt Na ₃ In _{1â^'} <i>_x</i> Sc <i>_x</i> Sc <i>_x</i> Sc <i>_x Superionic Conductors for Allâ€Solidâ€State Sodiumâ€Ion Batteries. Advanced Theory and Simulations,</i>	1.3	3
598	Surface and in-depth chemistry of sulfuric and perchloric acid intercalated graphite explored through secondary ion mass spectrometry (SIMS) and atomic force microscopy (AFM). , 2024, , 346-359.		1
599	First principles investigation on Na-ion storage in two-dimensional boron-rich B ₂ N, B ₃ N, and B ₅ N. Physical Chemistry Chemical Physics, 2023, 25, 1123-1132.	1.3	3
600	Recent progress on nanostructured iron-based anodes beyond metal-organic frameworks for sodium-ion batteries. EnergyChem, 2023, 5, 100095.	10.1	7
601	Mass produced Sb/P@C composite nanospheres for advanced sodium-ions battery anodes. Electrochimica Acta, 2023, 439, 141602.	2.6	8
602	Tuning discharge voltage by Schottky electron barrier in P2-Na2/3Mg0.205Ni0.1Fe0.05Mn0.645O2. Energy Storage Materials, 2023, 55, 587-596.	9.5	4
603	A strategy to enhance rate capability by doping Titanium into Na2FeP2O7@C cathode materials for Na-ion batteries. Journal of Power Sources, 2023, 557, 232533.	4.0	4
604	Devisable three-dimensional Cu2Se nanoarrays boosts high rate Na-Ion storage. Applied Surface Science, 2023, 612, 155725.	3.1	8
605	Inspired by the Cu-driven conversion reaction: how anionic properties dictate the electrochemical performance of vanadium sulfide. Journal of Materials Chemistry A, 2022, 10, 25575-25585.	5.2	2
607	Advanced Nb2O5 Anode towards Fast Pseudocapacitive Sodium Storage. Coatings, 2022, 12, 1873.	1.2	1
608	Structural change-conductivity relationship in Na4–xZr2–xNbxSi3O12 solid electrolytes over a wide temperature range. Ionics, 0, , .	1.2	0
609	Optimized synthesis of Na2/3Ni1/3Mn2/3O2 as cathode for sodium-ion batteries by rapid microwave calcination. Ceramics International, 2023, 49, 12452-12461.	2.3	5
610	NiCo2S4 nanoparticles anchored in the 3D interpenetrating framework composed of GNs and CNTs toward enhanced sodium storage performance. Electrochimica Acta, 2023, 441, 141760.	2.6	1
611	Origin of Fast Capacity Decay in Feâ€Mn Based Sodium Layered Oxides. Advanced Functional Materials, 2023, 33, .	7.8	12
612	Sodium-based batteries: development, commercialization journey and new emerging chemistries. Oxford Open Materials Science, 2023, 3, .	0.5	6
613	Mitigating Electron Leakage of Solid Electrolyte Interface for Stable Sodiumâ€lon Batteries. Angewandte Chemie - International Edition, 2023, 62, .	7.2	25
614	Mitigating Electron Leakage of Solid Electrolyte Interface for Stable Sodium″on Batteries. Angewandte Chemie, 2023, 135,	1.6	2

#	Article	IF	CITATIONS
615	Physics-Based Reduced Order Model for Sodium-Ion Batteries. Journal of the Electrochemical Society, 2023, 170, 010517.	1.3	0
616	Impact of Catholyte Lewis Acidity at the Molten Salt–NaSICON Interface in Low-Temperature Molten Sodium Batteries. Journal of Physical Chemistry C, 2023, 127, 1293-1302.	1.5	3
617	Dualâ€strategy modification on P2â€Na _{0.67} Ni _{0.33} Mn _{0.67} O ₂ realizes stable highâ€voltage cathode and high energy density full cell for sodiumâ€ion batteries. SusMat, 2023, 3, 58-71.	7.8	18
619	NaTi2(PO4)3 modified O3-type NaNi1/3Fe1/3Mn1/3O2 as high rate and air stable cathode for sodium-ion batteries. Electrochimica Acta, 2023, 441, 141859.	2.6	15
620	Microwave calcination as a novel route to prepare high performance Mg-doped Na2/3Ni1/3Mn2/3O2 cathodes for sodium-ion batteries. Journal of Electroanalytical Chemistry, 2023, 930, 117157.	1.9	3
621	High-entropy substitution: A strategy for advanced sodium-ion cathodes with high structural stability and superior mechanical properties. Energy Storage Materials, 2023, 56, 132-140.	9.5	12
622	Sub-nanometric amorphous V–O clusters without grain boundaries bonded in yolk-shell carbon nanospheres for superior sodium-ion storage. Composites Part B: Engineering, 2023, 252, 110532.	5.9	6
623	Rational Design of Electrode Materials for Advanced Supercapacitors: From Lab Research to Commercialization. Advanced Functional Materials, 2023, 33, .	7.8	66
624	Application of First Principles Computations Based on Density Functional Theory (DFT) in Cathode Materials of Sodium-Ion Batteries. Batteries, 2023, 9, 86.	2.1	3
625	Solidâ€State Batteries Based on Organic Cathode Materials. Batteries and Supercaps, 2023, 6, .	2.4	3
626	On the Road to Stable Electrochemical Metal Deposition in Multivalent Batteries. ACS Sustainable Chemistry and Engineering, 2023, 11, 2014-2032.	3.2	7
627	Facile fabrication of the hybrid of amorphous FePO4·2H2O and GO toward high performance sodium-ion batteries. Journal of Physics and Chemistry of Solids, 2023, 176, 111243.	1.9	3
628	Reaching the initial coulombic efficiency and structural stability limit of P2/O3 biphasic layered cathode for sodium-ion batteries. Journal of Colloid and Interface Science, 2023, 638, 758-767.	5.0	9
629	Internal and External Coâ€Engineering of Stable Cathode Interface Improves Cycle Performance of Polymer Sodium Batteries. Advanced Functional Materials, 2024, 34, .	7.8	2
630	Wood-derived carbon anode for sodium-ion batteries. Electrochemistry Communications, 2023, 148, 107439.	2.3	2
631	Organic arbon Core–Shell Structure Promotes Cathode Performance for Naâ€Ion Batteries. Advanced Functional Materials, 2023, 33, .	7.8	10
632	Rational design and synthesis of nanosheets self-assembled hierarchical flower-ball-like CuFeS2 for boosted wide temperature sodium-ion batteries. Nano Research, 2023, 16, 9407-9415.	5.8	6
633	MOF-derived crystalline carbon with graphite-like crystal: A high initial coulombic efficiency, low potential and large capacity anode for Na-ion batteries. Carbon, 2023, 208, 10-21.	5.4	3

#	Articie	IF	Citations
634	Preparation and sodium storage performance of 2D bilayered V2O5â‹nH2O nanomaterial with Zn2+ intercalation. Journal of Electroanalytical Chemistry, 2023, 937, 117416.	1.9	2
635	Functional porous carbons for zinc ion energy storage: Structure-Function relationship and future perspectives. Coordination Chemistry Reviews, 2023, 482, 215056.	9.5	5
636	Metal-organic frameworks based single-atom catalysts for advanced fuel cells and rechargeable batteries. Journal of Energy Chemistry, 2023, 80, 501-534.	7.1	17
637	Recent advances and future perspectives of rechargeable chloride-based batteries. Nano Energy, 2023, 110, 108364.	8.2	10
638	The CrBr3 monolayer: Two dimension sodium ion battery anode material to characterize state-of-charge by magnetism. Applied Surface Science, 2023, 623, 157074.	3.1	1
639	Fundamentals, recent developments and prospects of lithium and non-lithium electrochemical rechargeable battery systems. Journal of Energy Chemistry, 2023, 81, 221-259.	7.1	27
640	Designing freestanding electrodes with Fe2O3-based conversion type anode material for sodium-ion batteries. Journal of Alloys and Compounds, 2023, 948, 169670.	2.8	6
641	Enhancement in rate performance and high voltage structural stability of P3/O3 Na0.9Fe0.5Mn0.45Ni0.05O2 layered oxide cathode. Journal of Electroanalytical Chemistry, 2023, 932, 117222.	1.9	2
642	Recent Progress in Solid Electrolytes for All-Solid-State Metal(Li/Na)–Sulfur Batteries. Batteries, 2023, 9, 110.	2.1	4
643	High-Voltage Layered Manganese-Based Oxide Cathode with Excellent Rate Capability Enabled by K/F Co-doping. ACS Applied Energy Materials, 2023, 6, 2358-2369.	2.5	3
644	Investigations on anomalous behavior of ionic conductivity in <scp>NaPF₆</scp> salt loaded hydroxyethyl cellulose biodegradable polymer electrolyte for energy storage applications. Polymers for Advanced Technologies, 2023, 34, 1698-1715.	1.6	6
645	Research Progress on Electrochemical Properties of Na ₃ V ₂ (PO ₄) ₃ as Cathode Material for Sodium-Ion Batteries. Industrial & Engineering Chemistry Research, 2023, 62, 3444-3464.	1.8	10
646	Insight into the structural and electrochemical properties of the interface between a Na ₆ SOI ₂ solid electrolyte and a metallic Na anode. Physical Chemistry Chemical Physics, 2023, 25, 8544-8555.	1.3	2
647	Research progress towards the corrosion and protection of electrodes in energy-storage batteries. Energy Storage Materials, 2023, 57, 371-399.	9.5	12
648	Boosting Cycling Stability of Polymer Sodium Battery by "Rigid-Flexible―Coupled Interfacial Stress Modulation. Nano Letters, 2023, 23, 3630-3636.	4.5	7
649	Molten salt synthesis of carbon anode for high-performance sodium-ion batteries. Electrochimica Acta, 2023, 447, 142150.	2.6	4
650	Partial Modification Strategies of NASICON-Type Na ₃ V ₂ (PO ₄) ₃ Materials for Cathodes of Sodium-Ion Batteries: Progress and Perspectives. ACS Applied Energy Materials, 2023, 6, 2657-2679.	2.5	6
651	Dendriteâ€Free Sodium Metal Anodes Via Solid Electrolyte Interphase Engineering With a Covalent Organic Framework Separator. Advanced Energy Materials, 2023, 13, .	10.2	25

#	Article	IF	CITATIONS
652	MoSe2 Complex with N and B Dual-Doped 3D Carbon Nanofibers for Sodium Batteries. Metals, 2023, 13, 518.	1.0	0
653	Sodium Insertion into Fe[Fe(CN) ₆] Framework Prepared by Microwaveâ€Assisted Coâ€Precipitation. ChemElectroChem, 2023, 10, .	1.7	5
654	In Situ Transmission Electron Microscopy for Sodiumâ€lon Batteries. Advanced Materials, 2023, 35, .	11.1	8
655	A NiCoSe _{<i>x</i>/i>} /CG heterostructure with strong interfacial interaction showing rapid diffusion kinetics as a flexible anode for high-rate sodium storage. Dalton Transactions, 2023, 52, 5192-5201.	1.6	5
656	Amorphous Germanium Nanomaterials as Highâ€Performance Anode for Lithium and Sodiumâ€lon Batteries. Advanced Materials Technologies, 2023, 8, .	3.0	6
657	Microstructure regulation of resin-based hard carbons <i>via</i> esterification cross-linking for high-performance sodium-ion batteries. Inorganic Chemistry Frontiers, 2023, 10, 2404-2413.	3.0	3
658	Predicting the Na ⁺ ion transport properties of NaSICON materials using density functional theory and Kinetic Monte Carlo. Journal of Materials Chemistry A, 2023, 11, 9160-9177.	5.2	2
659	Hierarchical cathode constructed by carbon coated Na _{3.5} VMn _{0.5} Cr _{0.5} (PO ₄) ₃ nanoparticles on rGO for high-capacity and long-cycle life sodium storage. Materials Advances, 2023, 4, 1998-2007.	2.6	1
660	Recent Advances in New-Generation Electrolytes for Sodium-Ion Batteries. Energies, 2023, 16, 3169.	1.6	1
661	Sr-Doped NASICON-Structured Cathode with Enhanced Conductivity for Ultrafast and High-Stability Sodium-Ion Storage. ACS Applied Energy Materials, 0, , .	2.5	1
662	Low-Concentration Electrolyte Enables High-Voltage Positive Electrode Na ₄ Co ₃ (PO ₄) ₂ P ₂ O ₇ with Good Cycle Stability. ACS Applied Energy Materials, 0, , .	2.5	1
663	Layered double hydroxides as electrode materials for flexible energy storage devices. Journal of Semiconductors, 2023, 44, 041601.	2.0	26
664	Impact of Ti and Zn Dual‣ubstitution in P2 Type Na _{2/3} Ni _{1/3} Mn _{2/3} O ₂ on Ni–Mn and Naâ€Vacancy Ordering and Electrochemical Properties. Advanced Materials, 2023, 35, .	11.1	16
665	Topological Insulator Bi ₂ Se ₃ â€Assisted Heterostructure for Ultrafast Charging Sodium″on Batteries. Small, 2023, 19, .	5.2	5
667	Sodium systems – Low temperature (LIB equivalent) Sodium Systems Low Temperature: Overview. , 2023, , .		2
674	Synthesis and catalytic applications of metal boride ceramics. , 2023, , 57-105.		0
755	Fast Na-diffusive tin alloy for all-solid-state Na-based batteries. Journal of Materials Chemistry A, 2023, 11, 25859-25864.	5.2	0
760	Basic Information of Electrochemical Energy Storage. , 2023, , 17-48.		0

#	Article	IF	CITATIONS
796	Recent advances in all-solid-state batteries for commercialization. Materials Chemistry Frontiers, 2024, 8, 1861-1887.	3.2	0