Review of emerging surgical robotic technology

Surgical Endoscopy and Other Interventional Techniques 32, 1636-1655

DOI: 10.1007/s00464-018-6079-2

Citation Report

#	Article	IF	CITATIONS
1	Comparison of the Control Designs of an Human Co-Working Endoscope Holder. , 2018, , .		1
2	A hierarchically patterned, bioinspired e-skin able to detect the direction of applied pressure for robotics. Science Robotics, 2018, 3, .	9.9	568
3	Surgical Endoscopy: Future Directions. Digestive Disease Interventions, 2018, 02, 383-387.	0.3	O
4	Gasless Robot-Assisted Nipple-Sparing Mastectomy: A Case Report. Journal of Breast Cancer, 2018, 21, 334.	0.8	25
5	Tech-trends in orthopedics 2018. Monthly Notices of the Royal Astronomical Society: Letters, 2018, 89, 475-476.	1.2	5
6	New era of robotic surgical systems. Asian Journal of Endoscopic Surgery, 2018, 11, 291-299.	0.4	35
7	Minimally Invasive Surgery in Pediatric Urology. Urologic Clinics of North America, 2018, 45, 611-621.	0.8	4
8	The future of robotic surgery. Annals of the Royal College of Surgeons of England, 2018, 100, 4-13.	0.3	75
9	Intelligent Information-Guided Robotic Surgery. , 2018, , .		1
10	Direct target NOTES: prospective applications for next generation robotic platforms. Techniques in Coloproctology, 2018, 22, 363-371.	0.8	38
11	Medrobotics <scp>F</scp> lex transanal excision of a rectal gastrointestinal stromal tumour: first video of the transanal <scp>F</scp> lex robot used in a human – a video vignette. Colorectal Disease, 2018, 20, 1048-1049.	0.7	16
12	The Application of Medical Artificial Intelligence Technology in Rural Areas of Developing Countries. Health Equity, 2018, 2, 174-181.	0.8	190
13	Low confidence levels with the robotic platform among senior surgical residents: simulation training is needed. Journal of Robotic Surgery, 2019, 13, 155-158.	1.0	15
14	Mesoscale Shape Memory Alloy Actuator for Visual Clarity of Surgical Cameras in Minimally Invasive Robotic Surgery. IEEE Transactions on Medical Robotics and Bionics, 2019, 1, 135-144.	2.1	6
15	The Future of Robotic Surgery in Pediatric Urology: Upcoming Technology and Evolution Within the Field. Frontiers in Pediatrics, 2019, 7, 259.	0.9	24
16	Translational prospects of untethered medical microrobots. Progress in Biomedical Engineering, 2019, 1, 012002.	2.8	120
17	Machine Learning for Haptics: Inferring Multi-Contact Stimulation From Sparse Sensor Configuration. Frontiers in Neurorobotics, 2019, 13, 51.	1.6	11
18	A new modular mechanism that allows full detachability and cleaning of steerable laparoscopic instruments. Surgical Endoscopy and Other Interventional Techniques, 2019, 33, 3484-3493.	1.3	24

#	Article	IF	Citations
19	A Brief History of Robotics in Surgery. , 2019, , 3-12.		5
20	Smart healthcare: making medical care more intelligent. Global Health Journal (Amsterdam,) Tj ETQq1 1 0.7843.	14 rgBT /C	verlock 10 Tf
22	Bronchoscopic management of peripheral pulmonary lesions: robotic approach paves the way to the future. BMC Pulmonary Medicine, 2019, 19, 166.	0.8	7
23	Reinforcement Design for Newton-Level High Force Generated by Bending Motion of Soft Microactuator. , 2019, , .		3
24	Robotic-assisted stereotactic real-time navigation: initial clinical experience and feasibility for rectal cancer surgery. Techniques in Coloproctology, 2019, 23, 53-63.	0.8	34
25	Robotic-assisted surgical endoscopy: a new era for endoluminalÂtherapies. VideoGIE, 2019, 4, 399-402.	0.3	20
26	Assessment of the Versius surgical robotic system for dual-field synchronous transanal total mesorectal excision (taTME) in a preclinical model: will tomorrow's surgical robots promise newfound options?. Techniques in Coloproctology, 2019, 23, 471-477.	0.8	35
27	A review on recent advances in soft surgical robots for endoscopic applications. International Journal of Medical Robotics and Computer Assisted Surgery, 2019, 15, e2010.	1.2	82
28	Robot-assisted endoscopic submucosal dissection versus conventional ESD for colorectal lesions: outcomes of a randomized pilot study in endoscopists without prior ESD experience (with video). Gastrointestinal Endoscopy, 2019, 90, 290-298.	0.5	60
29	Transanal Access Platform Options and Instrument Innovations. , 2019, , 245-254.		0
30	Totally Robotic taTME: Experiences and Challenges to Date. , 2019, , 455-464.		1
31	Control Strategy and Experiments for Robot Assisted Craniomaxillofacial Surgery System. Mathematical Problems in Engineering, 2019, 2019, 1-12.	0.6	1
32	Emerging nextâ€generation robotic colonoscopy systems towards painless colonoscopy. Journal of Digestive Diseases, 2019, 20, 196-205.	0.7	23
33	Adopting Robotics Training into a General Surgery Residency Curriculum: Where Are We Now?. Current Surgery Reports, 2019, 7, 1.	0.4	1
34	Pneumatic Soft Arm Based on Spiral Balloon Weaving and Shape Memory Polymer Backbone. Journal of Mechanical Design, Transactions of the ASME, 2019, 141, .	1.7	5
35	Introductory Chapter: Addressing the Challenges of Laparoscopic Surgery. , 0, , .		3
36	Evolution of minimal access breast surgery. Gland Surgery, 2019, 8, 784-793.	0.5	13
37	3D Printed Single Incision Laparoscopic Manipulator System Adapted to the Required Forces in Laparoscopic Surgery. , 2019, , .		4

#	Article	IF	CITATIONS
38	Method for the Detection of Tumor Blood Vessels in Neurosurgery Using a Gripping Force Feedback System. Sensors, 2019, 19, 5157.	2.1	1
39	Updates and Controversies of Robotic-Assisted Surgery in Gynecologic Surgery. Clinical Obstetrics and Gynecology, 2019, 62, 733-748.	0.6	29
40	On the Preliminary Design of a Portable Manipulation System for Commercial Robotic Surgery Forceps., 2019,,.		1
41	The effect of low- and high-penetration light on localized cancer therapy. Advanced Drug Delivery Reviews, 2019, 138, 105-116.	6.6	44
42	Current Status of Robotic Surgery in Pediatric Urology. Journal of Laparoendoscopic and Advanced Surgical Techniques - Part A, 2019, 29, 159-166.	0.5	34
43	Early experience with the Senhance \hat{A}^{\otimes} -laparoscopic/robotic platform in the US. Journal of Robotic Surgery, 2019, 13, 357-359.	1.0	36
44	Ergonomics of minimally invasive surgery: an analysis of muscle effort and fatigue in the operating room between laparoscopic and robotic surgery. Surgical Endoscopy and Other Interventional Techniques, 2019, 33, 2323-2331.	1.3	53
45	Robotic Versus Open Minor Liver Resections of the Posterosuperior Segments: A Multinational, Propensity Score-Matched Study. Annals of Surgical Oncology, 2019, 26, 583-590.	0.7	54
46	A roadmap for robotic-assisted sigmoid resection in diverticular disease using a Senhanceâ, \$\pi\$ Surgical Robotic System: results and technical aspects. Journal of Robotic Surgery, 2020, 14, 297-304.	1.0	24
47	A comprehensive review of robotic surgery curriculum and training for residents, fellows, and postgraduate surgical education. Surgical Endoscopy and Other Interventional Techniques, 2020, 34, 361-367.	1.3	114
48	Single-port robotic surgery: the next generation of minimally invasive urology. World Journal of Urology, 2020, 38, 897-905.	1.2	83
49	Bronchoscopic navigation and tissue diagnosis. General Thoracic and Cardiovascular Surgery, 2020, 68, 672-678.	0.4	24
50	Robotics In Vivo: A Perspective on Human–Robot Interaction in Surgical Robotics. Annual Review of Control, Robotics, and Autonomous Systems, 2020, 3, 221-242.	7.5	23
51	Medical robotics and computer-integrated interventional medicine. , 2020, , 617-672.		15
52	Variation in the utilization of robotic surgical operations. Journal of Robotic Surgery, 2020, 14, 593-599.	1.0	8
53	Safety at the edge: a safety framework to identify edge conditions in the future transportation system with highly automated vehicles. Injury Prevention, 2020, 26, 386-390.	1.2	1
54	Surgical data science., 2020,, 931-952.		2
55	Towards near real-time assessment of surgical skills: A comparison of feature extraction techniques. Computer Methods and Programs in Biomedicine, 2020, 187, 105234.	2.6	35

#	ARTICLE	IF	Citations
56	A Review of Augmented Reality in Robotic-Assisted Surgery. IEEE Transactions on Medical Robotics and Bionics, 2020, 2, 1-16.	2.1	69
57	The future of robotic surgery in otolaryngology – head and neck surgery. Oral Oncology, 2020, 101, 104510.	0.8	27
58	Artificial intelligence and robotic surgery. Current Opinion in Urology, 2020, 30, 48-54.	0.9	71
59	Cost-effectiveness Evaluation of Laparoscopic Versus Robotic Minimally Invasive Colectomy. Annals of Surgery, 2020, 272, 334-341.	2.1	29
60	A Systematic Literature Review of Research in the Surgical Field of Medical Robotics. , 2020, , .		7
61	A Multilayer-Multimodal Fusion Architecture for Pattern Recognition of Natural Manipulations in Percutaneous Coronary Interventions. , 2020, , .		2
62	New design and optimization procedure of a 2-dof articulating mechanism for a laparoscopic surgical instrument. Mechanics Based Design of Structures and Machines, 2020, , 1-19.	3.4	1
63	Development of Robot-Assisted Untact Swab Sampling System for Upper Respiratory Disease. Applied Sciences (Switzerland), 2020, 10, 7707.	1.3	21
65	High-resolution imaging system with an annular aperture of coded phase masks for endoscopic applications. Optics Express, 2020, 28, 15122.	1.7	23
66	Cost Analysis of Robotic Roux-en-Y Gastric Bypass in a Single Academic Center: How Expensive Is Expensive?. Obesity Surgery, 2020, 30, 4860-4866.	1.1	10
67	Evaluation of long-term stability of monolithic 3D-printed robotic manipulator structures for minimally invasive surgery. International Journal of Computer Assisted Radiology and Surgery, 2020, 15, 1693-1697.	1.7	6
68	Autonomous Tissue Retraction in Robotic Assisted Minimally Invasive Surgery – A Feasibility Study. IEEE Robotics and Automation Letters, 2020, 5, 6528-6535.	3.3	41
69	Surgical robotic systems: What we have now? A urological perspective. BJUI Compass, 2020, 1, 152-159.	0.7	17
70	Comparing Outcomes of Robotically Assisted Latissimus Dorsi Harvest to the Traditional Open Approach in Breast Reconstruction. Plastic and Reconstructive Surgery, 2020, 146, 1221-1225.	0.7	19
71	Robotic Surgery in Oncology. Indian Journal of Surgical Oncology, 2020, 11, 549-551.	0.3	7
73	3D augmentation of the surgical video stream: Toward a modular approach. Computer Methods and Programs in Biomedicine, 2020, 191, 105505.	2.6	12
74	Frontiers of Robotic Colonoscopy: A Comprehensive Review of Robotic Colonoscopes and Technologies. Journal of Clinical Medicine, 2020, 9, 1648.	1.0	63
75	Laparoscopic Robotic Surgery: Current Perspective and Future Directions. Robotics, 2020, 9, 42.	2.1	28

#	Article	IF	CITATIONS
76	Advanced Intelligent Systems for Surgical Robotics. Advanced Intelligent Systems, 2020, 2, 1900138.	3.3	54
77	Current state of robotic use in inguinal hernia repair: a survey of minimally invasive hernia surgeons. Updates in Surgery, 2020, 72, 179-184.	0.9	8
78	Challenges of continuum robots in clinical context: a review. Progress in Biomedical Engineering, 2020, 2, 032003.	2.8	116
79	Medical robotics., 2020, , 153-204.		10
80	Surgeon-Centered Analysis of Robot-Assisted Needle Driving Under Different Force Feedback Conditions. Frontiers in Neurorobotics, 2019, 13, 108.	1.6	18
81	Antifogging/Antibacterial Coatings Constructed by <i>N</i> -Hydroxyethylacrylamide and Quaternary Ammonium-Containing Copolymers. ACS Applied Materials & Samp; Interfaces, 2020, 12, 12305-12316.	4.0	62
82	Complications of Robotic Surgery. Surgical Clinics of North America, 2020, 100, 461-468.	0.5	27
83	Emerging surgical robotic technology: a progression toward microbots. Annals of Laparoscopic and Endoscopic Surgery, 0, 5, 3-3.	0.5	21
85	Chinese surgical robot micro hand S: A consecutive case series in general surgery. International Journal of Surgery, 2020, 75, 55-59.	1,1	22
86	Current and Future Robotic Surgery Platforms: Introduction of keynote speech at 2019 Mayo Clinic-SRRSH Global Robotic & Endoscopic Surgery Summit. Laparoscopic, Endoscopic, and Robotic Surgery, 2020, 3, 26-28.	0.3	O
87	Medical student experience with robot-assisted surgery after limited laparoscopy exposure. Journal of Robotic Surgery, 2021, 15, 443-450.	1.0	5
89	Added value of 3D-vision during robotic pancreatoduodenectomy anastomoses in biotissue (LAEBOT) Tj ETQq1 1 Techniques, 2021, 35, 2928-2935.	0.784314 1.3	4 rgBT /Over 11
90	3D-printed multifunctional materials enabled by artificial-intelligence-assisted fabrication technologies. Nature Reviews Materials, 2021, 6, 27-47.	23.3	140
91	The robots are here, but are nurse educators prepared?. Collegian, 2021, 28, 230-235.	0.6	9
92	Robotic Surgery: The Impact of Simulation and Other Innovative Platforms on Performance and Training. Journal of Minimally Invasive Gynecology, 2021, 28, 490-495.	0.3	35
93	Transcending human frailties with technological enhancements and replacements: Transhumanist perspective in nursing and healthcare. Nursing Inquiry, 2021, 28, e12391.	1.1	3
94	A Historical Review of Medical Robotic Platforms. Journal of Robotics, 2021, 2021, 1-13.	0.6	19
95	Robotic surgical systems in urology: What is currently available?. Investigative and Clinical Urology, 2021, 62, 14.	1.0	47

#	Article	IF	CITATIONS
96	Deformation modeling based on mechanical properties of liver tissue for virtuanormal vectors of trianglesl surgical simulation. International Journal of Computer Assisted Radiology and Surgery, 2021, 16, 253-267.	1.7	2
97	Overview of Current Robotic Technology. , 2021, , 1-17.		3
98	Future Technologies for Treatment of G.I. Tract Lesions. , 2021, , 1-13.		0
99	Clinical outcomes and cost of robotic ventral hernia repair: systematic review. BJS Open, 2021, 5, .	0.7	12
100	Detailed cost of robotic-assisted surgery in the Australian public health sector: from implementation to a multi-specialty caseload. BMC Health Services Research, 2021, 21, 108.	0.9	20
101	Flexible transoral robotic surgery: the Italian experience. Acta Otorhinolaryngologica Italica, 2021, 41, 24-30.	0.7	3
102	Robotic colorectal surgery checkpoint: a review of cited articles during the last year. Chirurgia (Turin), 2021, 34, .	0.0	0
103	The effects of a preoperative multidisciplinary conference on outcomes for high-risk patients with challenging surgical treatment options: a retrospective study. BMC Anesthesiology, 2021, 21, 39.	0.7	7
104	Implementación tecnológica en los servicios de CirugÃa General y del Aparato Digestivo en España. Encuesta nacional y resultados. CirugÃa Española, 2021, 99, 707-707.	0.1	0
105	Digital Innovation Hubs in Health-Care Robotics Fighting COVID-19: Novel Support for Patients and Health-Care Workers Across Europe. IEEE Robotics and Automation Magazine, 2021, 28, 40-47.	2.2	14
106	Machine learning: principles and applications for thoracic surgery. European Journal of Cardio-thoracic Surgery, 2021, 60, 213-221.	0.6	20
107	RAS-NOTECHS: validity and reliability of a tool for measuring non-technical skills in robotic-assisted surgery settings. Surgical Endoscopy and Other Interventional Techniques, 2022, 36, 1916-1926.	1.3	13
108	Robot-assisted laminectomy in spinal surgery: a systematic review. Annals of Translational Medicine, 2021, 9, 715-715.	0.7	12
109	Intraoperative and postoperative outcomes of robot-assisted cholecystectomy: a systematic review. Systematic Reviews, 2021, 10, 124.	2.5	16
110	Real-world comparison of curative open, laparoscopic and robotic resections for sigmoid and rectal cancer–single center experience. Journal of Robotic Surgery, 2021, , 1.	1.0	0
111	Validating Safety in Human–Robot Collaboration: Standards and New Perspectives. Robotics, 2021, 10, 65.	2.1	41
112	An intuitive surgical handle design for robotic neurosurgery. International Journal of Computer Assisted Radiology and Surgery, 2021, 16, 1131-1139.	1.7	7
113	Evaluation of improved bi-manual endoscopic resection using a customizable 3D-printed manipulator system designed for use with standard endoscopes: a feasibility study using a porcine ex-vivo model. Endoscopy International Open, 2021, 09, E881-E887.	0.9	3

#	Article	IF	CITATIONS
114	Robotic Natural Orifice Transluminal Endoscopic Surgery Hysterectomy and Salpingo-Oophorectomy in a Porcine Model. Surgical Innovation, 2022, 29, 215-224.	0.4	1
115	Design and implementation of a handâ€held robotâ€assisted minimally invasive surgical device with enhanced intuitive manipulability and stable grip force. International Journal of Medical Robotics and Computer Assisted Surgery, 2021, 17, e2286.	1.2	4
116	Intelligent Soft Surgical Robots for Nextâ€Generation Minimally Invasive Surgery. Advanced Intelligent Systems, 2021, 3, 2100011.	3.3	55
117	The Path to Surgical Robotics in Neurosurgery. Operative Neurosurgery, 2021, 20, 514-520.	0.4	24
118	A rare cause of lower gastrointestinal bleeding treated with robotic colorectal surgery. Surgical Case Reports, 2021, 7, 125.	0.2	0
119	Simple methods to test the accuracy of MRgFUS robotic systems. International Journal of Medical Robotics and Computer Assisted Surgery, 2021, 17, e2287.	1.2	8
120	Revolution of Smart Healthcare Materials in Big Data Analytics. Materials Today: Proceedings, 2023, 81, 834-841.	0.9	9
121	Contact force sensors in minimally invasive catheters: current and future applications. Expert Review of Medical Devices, 2021, 18, 1-11.	1.4	2
122	Development Status and Multilevel Classification Strategy of Medical Robots. Electronics (Switzerland), 2021, 10, 1278.	1.8	5
123	Clinical and Cost Outcomes of Robot-Assisted Inguinal Hernia Repair: A Systematic Review. Journal of the American College of Surgeons, 2021, 232, 746-763e2.	0.2	7
124	Robotic Transanal Total Mesorectal Excision (RTaTME): State of the Art. Journal of Personalized Medicine, 2021, 11, 584.	1.1	4
125	Flexible Manipulator with Low-Melting-Point Alloy Actuation and Variable Stiffness. Soft Robotics, 2022, 9, 577-590.	4.6	18
126	Soft robotics: the route to true robotic organisms. Artificial Life and Robotics, 2021, 26, 269-274.	0.7	6
128	Needle penetration forces into textile prostheses and skin: experimental study. Journal of the Textile Institute, 0 , 0 , 0 .	1.0	1
129	Analog Position using Sensor Fusion for Haptic Systems Control. , 2021, , .		2
130	Healthcare Robotic Telepresence., 2021,,.		4
131	Enhancing the Localization of Uterine Leiomyomas Through Cutaneous Softness Rendering for Robot-Assisted Surgical Palpation Applications. IEEE Transactions on Haptics, 2021, 14, 503-512.	1.8	5
132	A dual-mode tactile hardness sensor for intraoperative tumor detection and tactile imaging in robot-assisted minimally invasive surgery. Smart Materials and Structures, 2021, 30, 085041.	1.8	8

#	Article	IF	Citations
133	Robotic lobectomy: how to teach thoracic residents. Journal of Thoracic Disease, 2021, 13, S8-S12.	0.6	3
134	Soft robotic steerable microcatheter for the endovascular treatment of cerebral disorders. Science Robotics, 2021, 6, .	9.9	47
135	Design and Evaluation of a Framework for Reciprocal Speech Interaction in Human-Robot Collaboration. , $2021, , .$		1
136	Study on cutting force of reaming porcine bone and substitute bone. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 2022, 236, 095441192110437.	1.0	0
137	Analysis of Coupling Effect in Human-Commanded Stiffness During Bilateral Tele-Impedance. IEEE Transactions on Robotics, 2021, 37, 1282-1297.	7.3	16
138	Augmented reality-based autostereoscopic surgical visualization system for telesurgery. International Journal of Computer Assisted Radiology and Surgery, 2021, 16, 1985-1997.	1.7	9
139	An Introduction to Robotically Assisted Surgical Systems: Current Developments and Focus Areas of Research. Current Robotics Reports, 2021, 2, 321-332.	5.1	18
140	Lack of predictive tools for conventional and targeted cancer therapy: Barriers to biomarker development and clinical translation. Advanced Drug Delivery Reviews, 2021, 176, 113854.	6.6	12
141	Intraoperative and postoperative complications in colorectal procedures: the role of continuous updating in medicine. Minerva Surgery, 2021, 76, 350-371.	0.1	1
142	A Comparison of Clinical Outcomes Between Two Different Models of Surgical Robots in Roux-en-Y Gastric Bypass. Journal of Laparoendoscopic and Advanced Surgical Techniques - Part A, 2021, 31, 969-977.	0.5	2
143	Introducer Design Concepts for an Epicardial Parallel Wire Robot. Robotic Surgery (Auckland), 2021, Volume 8, 21-38.	1.3	1
144	Sugammadex, the Guardian of Deep Muscle Relaxation During Conventional and Robot-Assisted Laparoscopic Surgery: A Narrative Review. Drug Design, Development and Therapy, 2021, Volume 15, 3893-3901.	2.0	4
145	Tactile Perception for Teleoperated Robotic Exploration within Granular Media. ACM Transactions on Human-Robot Interaction, 2021, 10 , 1 -27.	3.2	3
146	Managing User Integration. Advances in Medical Technologies and Clinical Practice Book Series, 2022, , 25-41.	0.3	0
148	Future and Other Robotic Platforms. , 2021, , 1501-1510.		0
150	Endoscopic Surgical Platforms. , 2021, , 267-279.		0
151	Energy in robotic surgery. Annals of Laparoscopic and Endoscopic Surgery, 0, 6, 9-9.	0.5	11
152	Multi-Class Detection of Laparoscopic Instruments for the Intelligent Box-Trainer System Using Faster R-CNN Architecture. , 2021, , .		17

#	Article	IF	CITATIONS
153	Intraluminal Endoscopic Suturing System in the Esophagus with Separate Instruments., 2021, , 143-153.		0
156	Enhancing Spatial Navigation in Robot-Assisted Surgery: An Application. Lecture Notes in Mechanical Engineering, 2020, , 95-105.	0.3	1
157	Analysis of Attention in Child–Robot Interaction Among Children Diagnosed with Cognitive Impairment. International Journal of Social Robotics, 2021, 13, 141-152.	3.1	11
158	Perceptual uncertainty and action consequences independently affect hand movements in a virtual environment. Scientific Reports, 2020, 10, 22307.	1.6	5
159	Design of 3D-Printed Flexible Joints With Presettable Stiffness for Surgical Robots. IEEE Access, 2020, 8, 79573-79585.	2.6	18
160	5G Robotic Telesurgery: Remote Transoral Laser Microsurgeries on a Cadaver. IEEE Transactions on Medical Robotics and Bionics, 2020, 2, 511-518.	2.1	28
161	Dimensional Optimization for Minimally Invasive Surgery Robot Based on Double Space and Kinematic Accuracy Reliability Index. Journal of Engineering and Science in Medical Diagnostics and Therapy, 2020, 3, .	0.3	3
162	A Spherical Joint Robotic End-Effector for the Expanded Endoscopic Endonasal Approach. Journal of Medical Robotics Research, 2020, 05, 2150002.	1.0	5
163	The evolution of lower gastrointestinal endoscopy: where are we now?. Therapeutic Advances in Gastrointestinal Endoscopy, 2020, 13, 263177452097959.	1,2	8
164	Updates in Urologic Robot Assisted Surgery. F1000Research, 2018, 7, 1948.	0.8	33
165	Robotic liver surgery: literature review and current evidence. Mini-invasive Surgery, 0, , .	0.2	2
166	Robotics in spinal surgery. Annals of Translational Medicine, 2019, 7, S165-S165.	0.7	25
167	Robotic surgery for rectal cancer: the future?. Minerva Chirurgica, 2018, 73, 574-578.	0.8	2
168	Extraperitoneal radical prostatectomy with the Senhance Surgical System robotic platform. Croatian Medical Journal, 2019, 60, 556-559.	0.2	26
169	How People Use Active Telepresence Cameras in Tele-manipulation. , 2021, , .		2
170	An Open-Source Platform for Cooperative, Semi-Autonomous Robotic Surgery. , 2021, , .		3
171	Prototype Haptic Feedback Device for Robot-Assisted Minimally Invasive Surgery. , 2021, , .		0
172	Application of robots in general surgery. Journal of the Korean Medical Association, 2021, 64, 678-687.	0.1	1

#	Article	IF	Citations
173	A retrospective multicentre study on the evaluation of perioperative outcomes of singleâ€port robotic cholecystectomy comparing the Xi and SP versions of the da Vinci robotic surgical system. International Journal of Medical Robotics and Computer Assisted Surgery, 2022, 18, e2345.	1,2	2
174	Do People Favor Artificial Intelligence Over Physicians? A Survey Among the General Population and Their View on Artificial Intelligence in Medicine. Value in Health, 2022, 25, 374-381.	0.1	32
175	Fiber-reinforced soft polymeric manipulator with smart motion scaling and stiffness tunability. Cell Reports Physical Science, 2021, 2, 100600.	2.8	6
176	72nd Southwestern Surgical Congress Claude H. Organ, Jr. memorial lecture: Rise of acute care robotic surgery for common emergency general surgery conditions. American Journal of Surgery, 2021, , .	0.9	0
177	Robotic esophagomyotomy for achalasia: technical note and review of the literature. Minerva Surgery, 2021, , .	0.1	2
178	Robotic Surgery: At the Crossroads of a Data Explosion. World Journal of Surgery, 2021, 45, 3484-3492.	0.8	4
179	Minimally invasive gastrointestinal surgery: From past to the future. Annals of Medicine and Surgery, 2021, 71, 102922.	0.5	15
180	Ranking Robot-Assisted Surgery Skills Using Kinematic Sensors. Lecture Notes in Computer Science, 2019, , 330-336.	1.0	4
181	Surgery, Perioperative Treatment and Prognostic Factors Based on Genetic and Epigenetic Alterations in Colorectal Cancer. Juntendo Medical Journal, 2019, 65, 194-202.	0.1	0
182	Robotic-Assisted Rectal Surgery: Current Status and Future Perspectives. Nihon Daicho Komonbyo Gakkai Zasshi, 2019, 72, 567-574.	0.1	0
183	Adoption of Robotic Technology in Surgical Practice. , 2019, , 29-36.		0
184	Robotic Technologies (Past, Present and Future). , 2019, , 3-27.		0
186	Towards Finger Motion Tracking and Analyses for Cardiac Surgery. IFMBE Proceedings, 2020, , 1515-1525.	0.2	3
187	The Impact of Human Factors on the Safety of Operating Rooms and everyday Surgical Practice. Journal of Advanced Research in Medical Science & Technology, 2020, 07, 8-16.	0.6	0
188	The evolution ways for laparoscopic surgery. Klinichna Khirurhiia, 2020, 87, 86-90.	0.0	0
189	Recurrent and Spiking Modeling of Sparse Surgical Kinematics. , 2020, , .		0
190	Application of Robot in Colonoscopy. Recent Patents on Mechanical Engineering, 2020, 13, 205-218.	0.2	0
191	Cloud Computing for Robotics and Surgery. , 2021, , 37-58.		1

#	Article	IF	CITATIONS
192	Next-Generation Surgical Robots. , 2021, , 401-405.		1
193	Biopsies vert $ ilde{A}$ ©brales assist $ ilde{A}$ ©es par robot dans les spondylodiscites infectieuses. Revue Du Rhumatisme Monographies, 2022, 89, 14-17.	0.0	0
194	Identifying curriculum content for a cross-specialty robotic-assisted surgery training program: a Delphi study. Surgical Endoscopy and Other Interventional Techniques, 2022, 36, 4786-4794.	1.3	7
195	Innovation and new technologies in colorectal cancer UNIVEC device development experience. , 2022, , 307-315.		0
196	HFAM: Soft Hydraulic Filament Artificial Muscles for Flexible Robotic Applications. IEEE Access, 2020, 8, 226637-226652.	2.6	32
197	Medical Engineering in <i>Heisei</i> : A Review â€"Surgical Robotsâ€". Journal of the Japan Society for Precision Engineering, 2020, 86, 28-31.	0.0	0
198	Inguinal Hernia Repair in the Elderly. , 2020, , 211-217.		0
199	New Robotic Systems., 2020, , 405-417.		1
200	A Novel Vascular Robotic System: Performance Evaluation. Lecture Notes in Computer Science, 2020, , 727-737.	1.0	0
201	Emergence of flexible technology in developing advanced systems for post-stroke rehabilitation: a comprehensive review. Journal of Neural Engineering, 2021, 18, 061003.	1.8	15
202	Future Technologies for Treatment of G.I. Tract Lesions. , 2022, , 509-521.		0
203	Technological implementation in General Surgery services in Spain. National survey and results. CirugÃa Española (English Edition), 2021, 99, 707-715.	0.1	0
204	Modern robotics in medicine. Translational Medicine, 2020, 7, 91-108.	0.1	4
205	Sensorless Optimal Switching Impact/Force Controller. IEEE Access, 2021, 9, 158167-158184.	2.6	13
206	Targets Detection Using Multiple Foveas., 2021,,.		0
207	Surgical data science – from concepts toward clinical translation. Medical Image Analysis, 2022, 76, 102306.	7.0	107
208	Roadmap on signal processing for next generation measurement systems. Measurement Science and Technology, 2022, 33, 012002.	1.4	12
209	Untethered Microrobots for Active Drug Delivery: From Rational Design to Clinical Settings. Advanced Healthcare Materials, 2022, 11, e2102253.	3.9	30

#	Article	IF	CITATIONS
210	Robot-Assisted Surgery., 2021, , 129-158.		2
211	Analysis of tendon tension and hysteresis by tendon twisting and development of antiâ€twist tendon mechanism of robotic surgical instruments. International Journal of Medical Robotics and Computer Assisted Surgery, 2021, , e2357.	1.2	1
212	Review on Development Status and Key Technologies of Surgical Robots. , 2020, , .		2
213	A Reactive Autonomous Camera System for the RAVEN II Surgical Robot. , 2020, , .		1
214	Mechanical Design of a Novel 4DOF Serial Manipulator., 2021,,.		0
215	Preoperative planning method based on a MOPSO algorithm for robot-assisted cholecystectomy. International Journal of Computer Assisted Radiology and Surgery, 2022, 17, 731-744.	1.7	O
216	Robotic Systems in Surgery. Bio-Medical Engineering, 2022, 55, 365-369.	0.3	0
217	Robotic system for top to bottom MRgFUS therapy of multiple cancer types. International Journal of Medical Robotics and Computer Assisted Surgery, 2022, 18, e2364.	1.2	10
218	Hyper-Redundant Manipulator Capable of Adjusting Its Non-Uniform Curvature with Discrete Stiffness Distribution. Applied Sciences (Switzerland), 2022, 12, 482.	1.3	2
219	Robotic Transplant Surgery Broadening the Playing Field. Annals of Surgery, 2022, 275, e804-e804.	2.1	O
220	A Modular Lockable Mechanism for Tendon-Driven Robots: Design, Modeling and Characterization. IEEE Robotics and Automation Letters, 2022, 7, 2023-2030.	3.3	9
221	Artificial Intelligence and Its Application in Cardiovascular Disease Management. , 2022, , 189-236.		3
222	Evaluation of a 3Dâ€Printed Transoral Robotic Surgery Simulator Utilizing Artificial Tissue. Laryngoscope, 2021, , .	1.1	1
223	Configuration Design and Verification of Soft-Rigid Hybrid Hand with ab/adduction Movement. Mechanisms and Machine Science, 2022, , 2375-2389.	0.3	1
224	An efficient lightweight speck technique for edge-IoT-based smart healthcare systems., 2022,, 139-162.		3
225	Attacks and Countermeasures in IoT Based Smart Healthcare Applications. Intelligent Systems Reference Library, 2022, , 67-90.	1.0	15
226	Modularized Electrosurgical System With a Hybrid CPU-FPGA Chip for Real-Time Thermal Lesion Approximation. IEEE Transactions on Instrumentation and Measurement, 2022, 71, 1-10.	2.4	0
227	TRAINMAN-MAGOS: capture of dexterous assembly manufacturing know-how as a new efficient approach to support robotic automation. Procedia Computer Science, 2022, 200, 101-110.	1.2	3

#	Article	IF	CITATIONS
228	Cloud Communication-Based Sensing Performance Evaluation of a Vascular Interventional Robot System. IEEE Sensors Journal, 2022, 22, 9005-9017.	2.4	15
229	Artificial Intelligence in Healthcare - A Revolution to Social Healthcare System. Journal of Evolution of Medical and Dental Sciences, 2022, 11, 293-297.	0.1	0
230	Robot-assisted techniques in vascular and endovascular surgery. Langenbeck's Archives of Surgery, 2022, 407, 1789-1795.	0.8	16
231	Attitudes and access of Irish general surgery trainees to robotic surgical training. Surgery Open Science, 2022, 9, 24-27.	0.5	1
232	A Novel Asymmetric Pneumatic Soft-Surgical Endoscope Design with Laminar Jamming. , 2021, 2021, 4636-4640.		1
233	A Reconfigurable and Deployable Mechanism for In-pipe Manipulation Robot. , 2021, , .		0
234	System Design and Simulation Experiments of a Virtual Reality Based Tele-operated Surgical Robot System. , 2021, , .		2
235	GeçmiÅŸten GünümümE Cerrahi ve Cerrahi HemÅŸireliÄŸinin Yeri. İstanbul GeliÅŸim Ææniversitesi SaÄŸ Dergisi, 2021, , 692-704.	ʻlık Bilim Ö.O	leri O
236	Influence of steep Trendelenburg position on postoperative complications: a systematic review and meta-analysis. Journal of Robotic Surgery, 2022, 16, 1233-1247.	1.0	6
237	Practical Aspects of the Use of Telematic Systems in the Diagnosis of Acute Coronary Syndrome in Poland. Medicina (Lithuania), 2022, 58, 554.	0.8	2
238	Intuitive, Efficient and Ergonomic Tele-Nursing Robot Interfaces: Design Evaluation and Evolution. ACM Transactions on Human-Robot Interaction, 2022, 11, 1-41.	3.2	6
239	Robotic Surgery in Rectal Cancer: Potential, Challenges, and Opportunities. Current Treatment Options in Oncology, 2022, 23, 961-979.	1.3	11
240	An Apparatus Based on a CO2-Laser with Feedback for Automated Precision Evaporation of Biological Tissues. Instruments and Experimental Techniques, 2022, 65, 332-335.	0.1	1
242	Effect of Voltage Driver on Uncoupled Stability and Fidelity of Kinesthetic Haptic Systems., 2022,,.		0
243	Machine learning to predict pregnancy outcomes: a systematic review, synthesizing framework and future research agenda. BMC Pregnancy and Childbirth, 2022, 22, 348.	0.9	27
244	An introductory review of robotically assisted surgical systems. International Journal of Medical Robotics and Computer Assisted Surgery, 2022, 18, e2409.	1.2	30
245	Topical pH Sensing NIR Fluorophores for Intraoperative Imaging and Surgery of Disseminated Ovarian Cancer. Advanced Science, 2022, 9, e2201416.	5.6	11
246	Intuitive Remote Robotic Nasal Sampling by Orientation Control With Variable RCM in Limited Space. IEEE Transactions on Medical Robotics and Bionics, 2022, 4, 646-655.	2.1	2

#	Article	IF	CITATIONS
247	How gender is intertwined with robots and affective technologies: A short review., 2022, , 161-175.		0
248	A Binocular Vision-Guided Puncture Needle Automatic Positioning Method., 2022,,.		0
249	Optical spectroscopy and imaging in surgical management of cancer patients. Translational Biophotonics, 2022, 4, .	1.4	3
250	The Role of the Versius Surgical Robotic System in the Paediatric Population. Children, 2022, 9, 805.	0.6	3
251	Functional mimicry of Ruffini receptors with fibre Bragg gratings and deep neural networks enables a bio-inspired large-area tactile-sensitive skin. Nature Machine Intelligence, 2022, 4, 425-435.	8.3	53
252	Evaluating the incidence, management, and recurrence of inguinal hernia during robotic prostatectomy: A literature review. Journal of Clinical Urology, 0, , 205141582210956.	0.1	0
253	Cost analysis of supply chain management of Da Vinci surgical instruments: A retrospective study. Technology and Health Care, 2022, , 1-9.	0.5	2
254	Risk management of smart healthcare systems: Delimitation, state-of-arts, process, and perspectives. Journal of Patient Safety and Risk Management, 2022, 27, 129-148.	0.4	3
255	Da Vinci Xi surgical system in the robot-assisted laparoscopic pericystectomy plus indocyanine green fluorescence imaging for hepatic cystic echinococcosis. Asian Journal of Surgery, 2022, , .	0.2	0
256	Role of Robotic Surgery in Benign Gynecology. Obstetrics and Gynecology Clinics of North America, 2022, 49, 273-286.	0.7	6
257	Robotics in therapeutic endoscopy (with video). Gastrointestinal Endoscopy, 2022, 96, 402-410.	0.5	6
259	Robotic Versus Conventional Minimal-Invasive Inguinal Hernia Repair: Study Protocol for a Prospective, Randomized and Blinded Clinical Trial. International Journal of Surgery Protocols, 2022, 26, 27-34.	0.5	0
260	Application Effect of Robot-Assisted Laparoscopy in Hepatectomy for Colorectal Cancer Patients with Liver Metastases. Computational and Mathematical Methods in Medicine, 2022, 2022, 1-8.	0.7	2
261	New Robotic System with Wristed Microinstruments Allows Precise Reconstructive Microsurgery: Preclinical Study. Annals of Surgical Oncology, 2022, 29, 7859-7867.	0.7	12
262	Which one will you choose; open, laparoscopic, or robotic transduodenal ampullectomy?: a case report. Journal of Minimally Invasive Surgery, 2022, 25, 73-76.	0.2	2
263	Haptic Feedback and Force-Based Teleoperation in Surgical Robotics. Proceedings of the IEEE, 2022, 110, 1012-1027.	16.4	27
264	Advancement of Flexible Robot Technologies for Endoluminal Surgeries. Proceedings of the IEEE, 2022, 110, 909-931.	16.4	24
265	Robust control for third-order electro-mechanical systems with partially unknown dynamics under state constraints. , 2022, , .		O

#	ARTICLE	IF	CITATIONS
266	Human-Robot Shared Control for Surgical Robot Based on Context-Aware Sim-to-Real Adaptation. , 2022, , .		16
267	Introducing the New Surgical Robot HUGOâ,,¢ RAS: System Description and Docking Settings for Gynecological Surgery. Frontiers in Oncology, 0, 12, .	1.3	34
268	More than surgical tools: a systematic review of robots as didactic tools for the education of professionals in health sciences. Advances in Health Sciences Education, 2022, 27, 1139-1176.	1.7	10
269	Pilot Animal Study on Robotic-Assisted Endovascular Visceral Interventions. CardioVascular and Interventional Radiology, 2022, 45, 1207-1213.	0.9	3
270	Clinical Effect and Postoperative Pain of Laparo-Thoracoscopic Esophagectomy in Patients with Esophageal Cancer. Evidence-based Complementary and Alternative Medicine, 2022, 2022, 1-7.	0.5	1
271	RoCS: Robotic Curriculum for young Surgeons. Journal of Robotic Surgery, 2023, 17, 495-507.	1.0	2
272	Multifunctional Fiberâ€Enabled Intelligent Health Agents. Advanced Materials, 2022, 34, .	11.1	36
273	Robot-Assisted General Surgery Procedures at the Veterans Health Administration: A Comparison of Surgical Techniques. Journal of Surgical Research, 2022, 279, 330-337.	0.8	2
274	Newer Cancer Therapies and Perioperative Implications. , 2023, , 56-69.		0
275	Microâ€Hand Robotâ€Assisted Versus da Vinci Robotâ€Assisted Cholecystectomy: A Multiâ€centre, Randomized Controlled Trial. World Journal of Surgery, 2022, 46, 2632-2641.	0.8	1
276	Uncoupled Stability of Kinesthetic Haptic Systems Simulating Mass-Damper-Spring Environments with Complementary Filter. , 2022, , .		1
277	Roboticâ€assisted thoracoscopic surgery improves perioperative outcomes in overweight and obese patients with non–smallâ€cell lung cancer undergoing lobectomy: A propensity score matching analysis. Thoracic Cancer, 2022, 13, 2606-2615.	0.8	7
278	Adaptive force control with active damping for robot manipulators with bounded inputs. Computational and Applied Mathematics, 2022, 41, .	1.0	0
279	Ensuring safety and feasibility for resection of pediatric benign ovarian tumors by single-port robot-assisted laparoscopic surgery using the da Vinci Xi system. Frontiers in Surgery, 0, 9, .	0.6	3
280	Robotics in neurosurgery: Current prevalence and future directions., 0, 13, 373.		7
281	Robotic-assisted choledochal cyst excision with Roux-en-Y hepaticojejunostomy in children: does age matter?. Surgical Endoscopy and Other Interventional Techniques, 0, , .	1.3	4
282	Robotics in Iaparoscopic surgery - A review. Robotica, 2023, 41, 126-173.	1.3	6
283	Doppler diagnostics of laser evaporation of biological tissues. Journal of Laser Applications, 2022, 34, 041201.	0.8	1

#	Article	IF	Citations
284	Visual Servo Control of Endoscope-Holding Robot Based on Multi-Objective Optimization: System Modeling and Instrument Tracking. SSRN Electronic Journal, 0, , .	0.4	0
285	Interactive-Rate Supervisory Control for Arbitrarily-Routed Multitendon Robots via Motion Planning. IEEE Access, 2022, 10, 80999-81019.	2.6	3
286	Robotic Flexible Ureteroscopy (Robotic fURS)., 2022,, 215-222.		0
287	Dayak Onions (Eleutherine americana L Merr) Reduced Mesothelial Cell Detachment After Laparoscopy in Rats. Open Access Macedonian Journal of Medical Sciences, 2022, 10, 1321-1329.	0.1	0
288	Design, Sensing, and Control of a Magnetic Compliant Continuum Manipulator. IEEE Transactions on Medical Robotics and Bionics, 2022, 4, 910-921.	2.1	5
289	Robot-Assisted Retraction for Transoral Surgery. IEEE Robotics and Automation Letters, 2022, 7, 12102-12109.	3.3	0
290	Robotic re-exploration for post-operative in house complications following robotic pelvic uro-oncologic surgery: Initial experience, tips and tricks. Journal of Minimal Access Surgery, 2022, .	0.4	0
291	A Novel Haptic Master Manipulator With a Pneumatic-Electric Mechanism for Natural Orifice Transluminal Endoscopic Surgery. IEEE Transactions on Instrumentation and Measurement, 2022, 71, 1-12.	2.4	0
292	Design of A Continuum Robot System with Object Detection for the Diagnosis of Vocal Fold Lesions. , 2022, , .		1
293	Barriers and enablers to the effective implementation of robotic assisted surgery. PLoS ONE, 2022, 17, e0273696.	1.1	8
294	Singularity Analysis and Geometric Optimization of a 6-DOF Parallel Robot for SILS. Machines, 2022, 10, 764.	1.2	4
295	Robotic Surgery: A Narrative Review. Cureus, 2022, , .	0.2	13
296	Robotic Retrograde Intrarenal Surgery: A Journey from "Back to the Future― Journal of Clinical Medicine, 2022, 11, 5488.	1.0	12
297	The Senhance Surgical System in Colorectal Surgery: A Systematic Review. Journal of Robotic Surgery, 2023, 17, 325-334.	1.0	8
298	Design, Analysis and Experimental Validation of a Novel 7-Degrees of Freedom Instrument for Laparoscopic Surgeries. Annals of Biomedical Engineering, 2023, 51, 751-770.	1.3	3
299	Towards Human Activity Recognition Enhanced Robot Assisted Surgery. Mechanisms and Machine Science, 2023, , 143-168.	0.3	1
300	The usefulness and ergonomics of a new robotic system for flexible ureteroscopy and laser lithotripsy for treating renal stones. Investigative and Clinical Urology, 2022, 63, 647.	1.0	5
301	Virtual classroom proficiency-based progression for robotic surgery training (VROBOT): a randomised, prospective, cross-over, effectiveness study. Journal of Robotic Surgery, 2023, 17, 629-635.	1.0	3

#	Article	IF	CITATIONS
303	Two-finger Multi-DOF Folding Robot Grippers*. IFAC-PapersOnLine, 2022, 55, 76-81.	0.5	2
304	3.5 mm compliant robotic surgical forceps with 4 DOF : design and performance evaluation. Advanced Robotics, 2023, 37, 270-280.	1.1	1
305	Robotic versus laparoscopic distal pancreatectomy on perioperative outcomes: a systematic review and meta-analysis. Updates in Surgery, 2023, 75, 7-21.	0.9	12
306	Path Generation with Reinforcement Learning for Surgical Robot Control., 2022,,.		o
307	A Historical Perspective of RALP. , 2022, , 3-9.		0
308	Constitutive Pathway of an Innovative Health-Tech Ecosystem: The Healthware Group Case Study. , 2022, , .		1
309	Mixed Reality User Interface for a Hybrid Operation Room. , 2022, , .		0
310	A warm hug from a robot: A dual-mode e-skin with programming compliance. Review of Scientific Instruments, 2022, 93, .	0.6	1
312	MCFBG curvature sensor using two-photon absorption process in Si-APD and its application to medical use. , 2022, , .		0
313	Robotic Hiatal Hernia Repair Associated with Higher Morbidity and Readmission Rates Compared to Laparoscopic Repair: 10-Year Analysis from the National Readmissions Database (NRD). Journal of Gastrointestinal Surgery, 2023, 27, 489-497.	0.9	2
314	Application and Challenges of Blockchain in IoMT in Smart Healthcare System., 2023,, 39-53.		0
315	Slippery quartz surfaces for antiâ€fouling optical windows. , 2023, 2, .		3
316	Editorial: Challenges, techniques and pitfalls in surgery: How far can we push the boundaries?. Frontiers in Oncology, $0,12,12$	1.3	0
317	A Deep-Learning-Based Guidewire Compliant Control Method for the Endovascular Surgery Robot. Micromachines, 2022, 13, 2237.	1.4	5
318	Artificial Intelligence: The Milestone in Modern Biomedical Research. BioMedInformatics, 2022, 2, 727-744.	1.0	17
319	Design and Control of a Size-Adjustable Pediatric Lower-Limb Exoskeleton Based on Weight Shift. IEEE Access, 2023, 11, 6372-6384.	2.6	7
320	After a Decade of Teleimpedance: A Survey. IEEE Transactions on Human-Machine Systems, 2023, 53, 401-416.	2.5	6
321	Robotic-assisted surgery in pediatrics: what is evidence-based?—a literature review. Translational Pediatrics, 2023, 12, 271-279.	0.5	4

#	ARTICLE	IF	CITATIONS
322	Senhance Robotic Platform in Pediatrics: Early US Experience. Children, 2023, 10, 178.	0.6	2
323	Embeddable Coiled Soft Sensor-Based Joint Angle Sensing for Flexible Surgical Manipulator., 2022,,.		1
324	Architectural Threats to Security and Privacy: A Challenge for Internet of Things (IoT) Applications. Electronics (Switzerland), 2023, 12, 88.	1.8	7
325	Development of a remote-control system for catheterization capable of high-speed force feedback. International Journal of Computer Assisted Radiology and Surgery, 0, , .	1.7	1
326	HUMANISE: Human-Inspired Smart Management, towards a Healthy and Safe Industrial Collaborative Robotics. Sensors, 2023, 23, 1170.	2.1	0
327	Toward Multicamera Systems for Minimally Invasive Surgery. , 2023, 7, 1-4.		0
328	Advanced User Interfaces for Teleoperated Surgical Robotic Systems. , 2023, 2, .		8
329	Identifying the preoperative factors predicting the surgical difficulty of robotic distal pancreatectomy. Surgical Endoscopy and Other Interventional Techniques, 2023, 37, 3823-3831.	1.3	1
330	ACAM-FoC: A Deep Neural Network Augmented From CAM-FoC to Measure the Grip Force of Mass-Produced Elongated Surgical Instruments. IEEE Robotics and Automation Letters, 2023, 8, 5368-5375.	3.3	1
331	Robotic-assisted surgery in the pediatric surgeons $\widehat{a}\in \mathbb{R}^{m}$ world: Current situation and future prospectives. Frontiers in Pediatrics, 0, 11, .	0.9	7
332	A Step Towards Conditional Autonomy - Robotic Appendectomy. IEEE Robotics and Automation Letters, 2023, 8, 2429-2436.	3.3	1
333	A handheld confocal microendoscope compatible with laparoscopy for histology in situ. Optics and Lasers in Engineering, 2023, 164, 107532.	2.0	0
335	Robotic repair of pediatric hernias: Current techniques and practices. Seminars in Pediatric Surgery, 2023, 32, 151261.	0.5	1
336	Cable Tension Optimization for an Epicardial Parallel Wire Robot. Journal of Medical Devices, Transactions of the ASME, 2023, 17, .	0.4	0
337	Sensitivity analysis of a double-parallelogram based RCM mechanism used for MIS robots. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 0, , 095440622311538.	1.1	0
338	Advanced Soft Robotic System for In Situ 3D Bioprinting and Endoscopic Surgery. Advanced Science, 2023, 10, .	5.6	17
339	Input-Constrained Hybrid Control of a Hyper-Redundant Mobile Medical Manipulator. Journal of Shanghai Jiaotong University (Science), 0, , .	0.5	0
340	Acceptability of Automated Robotic Clinical Breast Examination: Survey Study. Journal of Participatory Medicine, 0, 15, e42704.	0.7	2

#	Article	IF	CITATIONS
341	Visual servo control of endoscope-holding robot based on multi-objective optimization: System modeling and instrument tracking. Measurement: Journal of the International Measurement Confederation, 2023, 211, 112658.	2.5	6
342	Preoperative planning of three axis intersection surgical laparoscopic arm system based on characteristic parameters. International Journal of Computer Assisted Radiology and Surgery, 2023, 18, 1757-1767.	1.7	2
343	Self-folding soft-robotic chains with reconfigurable shapes and functionalities. Nature Communications, 2023, 14 , .	5.8	17
344	Introducing the E100: will the improvement make a significant difference? Financial analysis based on sleeve gastrectomy. Journal of Robotic Surgery, 2023, 17, 1531-1534.	1.0	0
345	Development of a Novel 4-DOF Flexible Endoscopic Robot Using Cable-Driven Multisegment Continuum Mechanisms. Journal of Mechanisms and Robotics, 2024, 16 , .	1.5	6
346	Operating Platforms for Surgical Endoscopy. , 2023, , 37-65.		0
347	Recent advances in single-site/incision robotic-assisted radical prostatectomy. European Journal of Surgical Oncology, 2023, , .	0.5	2
348	Robotics in Endoscopy/Tele-Endoscopy. , 2023, , 961-971.		0
349	Robotic hepatectomy: current evidence and future directions. Minerva Surgery, 2023, 78, .	0.1	1
350	User interfaces for actuated scope maneuvering in surgical systems: a scoping review. Surgical Endoscopy and Other Interventional Techniques, 2023, 37, 4193-4223.	1.3	3
351	A Novel Master–Slave Interventional Surgery Robot with Force Feedback and Collaborative Operation. Sensors, 2023, 23, 3584.	2.1	1
352	Mechatronic Design for Multi Robots-Insect Swarms Interactions. , 2023, , .		3
353	A Fast Soft Robotic Laser Sweeping System Using Data-Driven Modeling Approach. IEEE Transactions on Robotics, 2023, 39, 3043-3058.	7.3	3
354	General Discretization Method for Enhanced Kinesthetic Haptic Stability. IEEE Transactions on Haptics, 2023, , 1 -15.	1.8	0
355	Integrated intelligent tactile system for a humanoid robot. Science Bulletin, 2023, 68, 1027-1037.	4.3	8
359	Structural Study of a Robotic System for Sils Surgery. Mechanisms and Machine Science, 2023, , 20-31.	0.3	0
361	Design of a Miniature Three-Dimensional Force Sensor for Force Feedback in Minimally Invasive Surgery. Lecture Notes in Mechanical Engineering, 2023, , 501-519.	0.3	0
367	Development and Experimental Evaluation of a 3DoF Tendon-Driven Probe for Robot Assisted Minimally Invasive Surgical Operations., 2023,,.		0

#	Article	IF	Citations
372	Design and fabrication of multi-pouch inflatable holding structure with higher payload., 2023,,.		0
374	EQ-5D studies in robotic surgery: a mini-review. , 2023, , .		2
376	Elastic Context: Encoding Elasticity for Data-driven Models of Textiles Elastic Context: Encoding Elasticity for Data-driven Models of Textiles. , 2023, , .		0
380	Position Control of Active Arms of Da Vinci Robotic Surgical System. , 2023, , .		0
383	Assistive robotic technologies: An overview of recent advances in medical applications. , 2023, , 1-23.		0
389	Emerging Surgical Robotic Applications for Modern Minimally Invasive Surgery (MIS). Advances in Computational Intelligence and Robotics Book Series, 2023, , 314-332.	0.4	6
395	Research on Virtual Training System of Robot-assisted Surgery based on Unity3D., 2023,,.		0
397	The Evolution of Minimally Invasive Robotic Surgery in the Last 20 Years. Updates in Surgery Series, 2024, , 3-10.	0.0	0
398	Costs in Robotic Colorectal Surgery. Updates in Surgery Series, 2024, , 25-31.	0.0	0
399	A Learning Human-Based Method For Peg-In-Hole Assembly Using ELM. , 2023, , .		0
401	The Future of Robotics in Skull Base Surgery. , 2023, , 93-110.		0
402	Manual Continuum Snake-like Tube Tool Platform: A Low-Cost Solution with Intuitive Operation* $<$ sup> $1 <$ /sup>. , 2023, , .		0
403	History of Robotic Surgery., 2023,, 1-7.		0
404	Robotic Devices in Gynecology. , 2023, , 175-202.		0
405	Future of Robotic Surgery., 2023,, 243-249.		0
410	Soft tissue surgical robot for minimally invasive surgery: a review. Biomedical Engineering Letters, 2023, 13, 561-569.	2.1	0
416	Low cost and alternative robotic surgical systems: a future perspective. , 2024, , 337-344.		0
417	ChatHRC: Personalized Human-Robot Collaboration using Fuzzy Reinforcement Learning with Natural Language Rewards., 2023,,.		0

#	ARTICLE	IF	CITATIONS
425	Heterogeneous Robot-Assisted Services in Isolation Wards: A System Development and Usability Study. , 2023, , .		0
428	An Introduction to Recent Approaches Underlying Mechanistic Insights Harboring Oncobiology. , 2024, , 1-44.		0
434	Advancements in robotic surgery: innovations, challenges and future prospects. Journal of Robotic Surgery, 2024, 18 , .	1.0	1
435	Clinical applications of robotic surgery platforms: a comprehensive review. Journal of Robotic Surgery, 2024, 18, .	1.0	0
436	Meta-synthesis of qualitative studies on patient perceptions and requirements during the perioperative period of robotic surgery. Journal of Robotic Surgery, 2024, 18 , .	1.0	0
438	Learning-Based Model Predictive Control with Application in Robotic Trajectory Tracking., 2023,,.		0
441	Emerging Al Application Scenario in Smart Healthcare Management. , 2023, , .		0
452	Applications and impact of artificial intelligence in veterinary sciences. , 2024, , 139-150.		O