Current status and challenges for automotive battery pa

Nature Energy 3, 290-300 DOI: 10.1038/s41560-018-0130-3

Citation Report

#	Article	IF	CITATIONS
1	Investigation of particulate emissions during handling of electrodes in lithium-ion battery assembly. Procedia CIRP, 2018, 78, 341-346.	1.0	8
2	In Situ/ex Situ Investigations on the Formation of the Mosaic Solid Electrolyte Interface Layer on Graphite Anode for Lithium-Ion Batteries. Journal of Physical Chemistry C, 2018, 122, 28717-28726.	1.5	62
3	Insight into the Solvation Structure of Tetraglyme-Based Electrolytes via First-Principles Molecular Dynamics Simulation. Journal of Physical Chemistry B, 2018, 122, 10014-10022.	1.2	12
4	A "technology-smart―battery policy strategy for Europe. Science, 2018, 361, 1075-1077.	6.0	24
5	Hierarchical waxberry-like LiNi _{0.5} Mn _{1.5} O ₄ as an advanced cathode material for lithium-ion batteries with a superior rate capability and long-term cyclability. Journal of Materials Chemistry A, 2018, 6, 14155-14161.	5.2	35
6	Critical electrode properties and drying conditions causing component segregation in graphitic anodes for lithium-ion batteries. Journal of Energy Storage, 2018, 18, 509-517.	3.9	72
7	Electrode manufacturing for lithium-ion batteries—Analysis of current and next generation processing. Journal of Energy Storage, 2019, 25, 100862.	3.9	188
8	Anodeâ€Free Sodium Metal Batteries Based on Nanohybrid Core–Shell Templates. Small, 2019, 15, e1901274.	5.2	34
9	Ultrathin conformal polycyclosiloxane films to improve silicon cycling stability. Science Advances, 2019, 5, eaaw4856.	4.7	61
10	The dual-function sacrificing template directed formation of MoS ₂ /C hybrid nanotubes enabling highly stable and ultrafast sodium storage. Journal of Materials Chemistry A, 2019, 7, 18828-18834.	5.2	47
11	Beneficial rheological properties of lithium-ion battery cathode slurries from elevated mixing and coating temperatures. Journal of Energy Storage, 2019, 26, 100994.	3.9	53
12	Data-and Expert-Driven Analysis of Cause-Effect Relationships in the Production of Lithium-Ion Batteries. , 2019, , .		12
13	Operando Fourier Transform Infrared Investigation of Cathode Electrolyte Interphase Dynamic Reversible Evolution on Li1.2Ni0.2Mn0.6O2. ACS Applied Materials & Interfaces, 2019, 11, 45108-45117.	4.0	25
14	Modelling of the Calendering Process of NMCâ€622 Cathodes in Battery Production Analyzing Machine/Material–Process–Structure Correlations. Energy Technology, 2019, 7, 1900840.	1.8	29
15	Chemâ€Bonding and Physâ€Trapping Se Electrode for Longâ€Life Rechargeable Batteries. Advanced Functional Materials, 2019, 29, 1809014.	7.8	36
16	On-chip micro/nano devices for energy conversion and storage. Nano Today, 2019, 28, 100764.	6.2	33
17	Cu ₄ SnS ₄ -Rich Nanomaterials for Thin-Film Lithium Batteries with Enhanced Conversion Reaction. ACS Nano, 2019, 13, 10671-10681.	7.3	26
18	Data-Driven Safety Envelope of Lithium-Ion Batteries for Electric Vehicles. Joule, 2019, 3, 2703-2715.	11.7	127

#	Article	IF	CITATIONS
19	Design of a systematic value chain for lithium-ion batteries from the raw material perspective. Resources Policy, 2019, 64, 101473.	4.2	20
20	Assessment of social sustainability hotspots in the supply chain of lithium-ion batteries. Procedia CIRP, 2019, 80, 292-297.	1.0	34
21	Simulation-based assessment of the energy demand in battery cell manufacturing. Procedia CIRP, 2019, 80, 126-131.	1.0	37
22	Disassembly Automation for Recycling End-of-Life Lithium-Ion Pouch Cells. Jom, 2019, 71, 4457-4464.	0.9	46
23	Cradle-to-Gate Analysis of the Embodied Energy in Lithium Ion Batteries. Procedia CIRP, 2019, 80, 304-309.	1.0	13
24	Handling Cell Components in the Production of Multi-Layered Large Format All-Solid-State Batteries with Lithium Anode. Procedia CIRP, 2019, 81, 1236-1241.	1.0	13
25	Tracing the technological development trajectory in post-lithium-ion battery technologies: A patent-based approach. Journal of Cleaner Production, 2019, 241, 118343.	4.6	56
26	Effect of Microstructure on the Ionic Conductivity of an All Solid-State Battery Electrode. Journal of the Electrochemical Society, 2019, 166, A318-A328.	1.3	59
27	Graphitic Nanocarbon with Engineered Defects for Highâ€Performance Potassiumâ€lon Battery Anodes. Advanced Functional Materials, 2019, 29, 1903641.	7.8	212
28	Life Cycle Analysis of Lithium-Ion Batteries for Automotive Applications. Batteries, 2019, 5, 48.	2.1	241
29	In-situ formation of poly(ionic liquid)s with ionic liquid-based plasticizer and lithium salt in electrodes for solid-state lithium batteries. Polymer, 2019, 178, 121614.	1.8	13
30	Commercialization of Lithium Battery Technologies for Electric Vehicles. Advanced Energy Materials, 2019, 9, 1900161.	10.2	865
31	Influence of the Electrolyte Quantity on Lithium-Ion Cells. Journal of the Electrochemical Society, 2019, 166, A1709-A1714.	1.3	75
32	Sodium-Sulfur Batteries with a Polymer-Coated NASICON-type Sodium-Ion Solid Electrolyte. Matter, 2019, 1, 439-451.	5.0	75
33	A High-Performance All-Solid-State Sodium Battery with a Poly(ethylene) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50 18 1, 132-138.	7 Td (oxid	le)–Na <sul 81</sul
34	Recent Development in Separators for Highâ€Temperature Lithiumâ€Ion Batteries. Small, 2019, 15, e1901689.	5.2	158
35	Li+ diffusion kinetics of SnS2 nanoflowers enhanced by reduced graphene oxides with excellent electrochemical performance as anode material for lithium-ion batteries. Journal of Alloys and Compounds, 2019, 794, 285-293.	2.8	26
36	Evaluation of a Highâ€Intensive Mixing Process in a Ring Shear Mixer and Its Impact on the Properties of Composite Particles for Lithium–Sulfur Battery Cathodes. Energy Technology, 2019, 7, 1801059.	1.8	6

#	Article	IF	CITATIONS
37	Data mining in battery production chains towards multi-criterial quality prediction. CIRP Annals - Manufacturing Technology, 2019, 68, 463-466.	1.7	67
38	Numerical simulation of the behavior of lithium-ion battery electrodes during the calendaring process via the discrete element method. Powder Technology, 2019, 349, 1-11.	2.1	74
39	Surfaceâ€Driven Energy Storage Behavior of Dualâ€Heteroatoms Functionalized Carbon Material. Advanced Functional Materials, 2019, 29, 1900941.	7.8	68
40	Hierarchical Mn ₃ O ₄ /Graphene Microflowers Fabricated via a Selective Dissolution Strategy for Alkali-Metal-Ion Storage. ACS Applied Materials & Interfaces, 2019, 11, 14120-14125.	4.0	26
41	Ambientâ€Pressure Relithiation of Degraded Li <i>_x</i> Ni _{0.5} Co _{0.2} Mn _{0.3} O ₂ (0 <) Tj ETQq Advanced Energy Materials, 2019, 9, 1900454.	0 0 0 rgBT 10.2	- /Qyerlock 10
42	Study the Mechanism of Enhanced Li Storage Capacity through Decreasing Internal Resistance by High Electronical Conductivity via Solâ€gel Electrospinning of Co 3 O 4 Carbon Nanofibers. ChemistrySelect, 2019, 4, 3542-3546.	0.7	11
43	Prospects of production technologies and manufacturing costs of oxide-based all-solid-state lithium batteries. Energy and Environmental Science, 2019, 12, 1818-1833.	15.6	99
44	Electrophoretic Deposition for Lithiumâ€lon Battery Electrode Manufacture. Batteries and Supercaps, 2019, 2, 551-559.	2.4	32
45	An In Situ Interface Reinforcement Strategy Achieving Long Cycle Performance of Dualâ€lon Batteries. Advanced Energy Materials, 2019, 9, 1804022.	10.2	92
46	Highâ€Rate and Largeâ€Capacity Lithium Metal Anode Enabled by Volume Conformal and Selfâ€Healable Composite Polymer Electrolyte. Advanced Science, 2019, 6, 1802353.	5.6	133
47	Impact of transport electrification on critical metal sustainability with a focus on the heavy-duty segment. Nature Communications, 2019, 10, 5398.	5.8	67
48	From the Perspective of Battery Production: Energy–Environment–Economy (3E) Analysis of Lithium-Ion Batteries in China. Sustainability, 2019, 11, 6941.	1.6	15
49	Molybdenum and tungsten chalcogenides for lithium/sodium-ion batteries: Beyond MoS2. Journal of Energy Chemistry, 2019, 33, 100-124.	7.1	174
50	Data mining in lithium-ion battery cell production. Journal of Power Sources, 2019, 413, 360-366.	4.0	85
51	Theoretical versus Practical Energy: A Plea for More Transparency in the Energy Calculation of Different Rechargeable Battery Systems. Advanced Energy Materials, 2019, 9, 1803170.	10.2	276
52	Enhanced Interfacial Stability of Hybridâ€Electrolyte Lithiumâ€Sulfur Batteries with a Layer of Multifunctional Polymer with Intrinsic Nanoporosity. Advanced Functional Materials, 2019, 29, 1805996.	7.8	47
53	Influence of the Cell Format on the Electrolyte Filling Process of Lithiumâ€Ion Cells. Energy Technology, 2020, 8, 1801108.	1.8	27
54	Extrusionâ€Based Processing of Cathodes: Influence of Solid Content on Suspension and Electrode Properties. Energy Technology, 2020, 8, 1801169.	1.8	34

#	Article	IF	CITATIONS
55	Concept for the Analysis of the Electrolyte Composition within the Cell Manufacturing Process: From Sealing to Sample Preparation. Energy Technology, 2020, 8, 1801081.	1.8	9
56	Solventâ€Free Manufacturing of Electrodes for Lithiumâ€Ion Batteries via Electrostatic Coating. Energy Technology, 2020, 8, 1900309.	1.8	43
57	The Influence of Different Postâ€Drying Procedures on Remaining Water Content and Physical and Electrochemical Properties of Lithiumâ€Ion Batteries. Energy Technology, 2020, 8, 1900245.	1.8	40
58	The Effects of Mechanical and Thermal Loads during Lithiumâ€lon Pouch Cell Formation and Their Impacts on Process Time. Energy Technology, 2020, 8, 1900118.	1.8	18
59	Capacity Distribution of Large Lithiumâ€lon Battery Pouch Cells in Context with Pilot Production Processes. Energy Technology, 2020, 8, 1900196.	1.8	21
60	Influence of Separator Material on Infiltration Rate and Wetting Behavior of Lithiumâ€lon Batteries. Energy Technology, 2020, 8, 1900078.	1.8	23
61	Investigation of the Influence of Deposition Accuracy of Electrodes on the Electrochemical Properties of Lithiumâ€ion Batteries. Energy Technology, 2020, 8, 1900129.	1.8	15
62	Enhanced Processing and Testing Concepts for New Active Materials for Lithiumâ€lon Batteries. Energy Technology, 2020, 8, 1900133.	1.8	3
63	Mechanical, Electrical, and Ionic Behavior of Lithiumâ€ion Battery Electrodes via Discrete Element Method Simulations. Energy Technology, 2020, 8, 1900180.	1.8	40
64	Heated Calendering of Cathodes for Lithiumâ€ion Batteries with Varied Carbon Black and Binder Contents. Energy Technology, 2020, 8, 1900175.	1.8	52
65	Influence of the Carbon Black Dispersing Process on the Microstructure and Performance of Liâ€lon Battery Cathodes. Energy Technology, 2020, 8, 1900161.	1.8	59
66	Integration of Graphite and Silicon Anodes for the Commercialization of Highâ€Energy Lithiumâ€Ion Batteries. Angewandte Chemie - International Edition, 2020, 59, 110-135.	7.2	460
67	Graphit―undâ€ 5 iliciumâ€Anoden für Lithiumionen―Hochenergiebatterien. Angewandte Chemie, 2020, 132, 112-138.	1.6	23
68	Classification of Calenderingâ€Induced Electrode Defects and Their Influence on Subsequent Processes of Lithiumâ€Ion Battery Production. Energy Technology, 2020, 8, 1900026.	1.8	70
69	A Game Changer: Functional Nano/Micromaterials for Smart Rechargeable Batteries. Advanced Functional Materials, 2020, 30, 1902499.	7.8	41
70	Deriving Structureâ€Performance Relations of Chemically Modified Chitosan Binders for Sustainable Highâ€Voltage LiNi _{0.5} Mn _{1.5} O ₄ Cathodes. Batteries and Supercaps, 2020, 3, 155-164.	2.4	18
71	A Siteâ€Selective Doping Strategy of Carbon Anodes with Remarkable Kâ€Ion Storage Capacity. Angewandte Chemie - International Edition, 2020, 59, 4448-4455.	7.2	162
72	High-throughput computational screening for solid-state Li-ion conductors. Energy and Environmental Science, 2020, 13, 928-948.	15.6	80

#	Article	IF	CITATIONS
73	Tailoring micro resistance spot welding parameters for joining nickel tab to inner aluminium casing in a cylindrical lithium ion cell and its influence on the electrochemical performance. Journal of Manufacturing Processes, 2020, 49, 463-471.	2.8	20
74	A zinc bromine "supercapattery―system combining triple functions of capacitive, pseudocapacitive and battery-type charge storage. Materials Horizons, 2020, 7, 495-503.	6.4	54
75	Strategic Pore Architecture for Accommodating Volume Change from High Si Content in Lithiumâ€lon Battery Anodes. Advanced Energy Materials, 2020, 10, 1903400.	10.2	50
76	Natural Polymers as Green Binders for High‣oading Supercapacitor Electrodes. ChemSusChem, 2020, 13, 763-770.	3.6	37
77	Comparative study of thermal runaway and cell failure of lab-scale Li-ion batteries using accelerating rate calorimetry. Journal of Industrial and Engineering Chemistry, 2020, 83, 247-251.	2.9	19
78	Continuous-Flow Synthesis of Carbon-Coated Silicon/Iron Silicide Secondary Particles for Li-Ion Batteries. ACS Nano, 2020, 14, 698-707.	7.3	58
79	Unveiling and Amplifying the Benefits of Carbon-Coated Aluminum Current Collectors for Sustainable LiNi _{0.5} Mn _{1.5} O ₄ Cathodes. ACS Applied Energy Materials, 2020, 3, 218-230.	2.5	25
80	Phosphorusâ€Based Composites as Anode Materials for Advanced Alkali Metal Ion Batteries. Advanced Functional Materials, 2020, 30, 2004648.	7.8	45
81	Towards knowledge based LCE of battery technologies. Procedia CIRP, 2020, 90, 683-688.	1.0	5
82	Self-assembled materials for electrochemical energy storage. MRS Bulletin, 2020, 45, 815-822.	1.7	7
83	Comprehensive effort on electrode slurry preparation for better electrochemical performance of LiFePO4 battery. Journal of Power Sources, 2020, 480, 228837.	4.0	26
84	A Review of the Design of Advanced Binders for Highâ€Performance Batteries. Advanced Energy Materials, 2020, 10, 2002508.	10.2	202
85	Design and Evaluation of a Material-adapted Handling System for All-Solid-State Lithium-Ion Battery Production. Procedia CIRP, 2020, 93, 143-148.	1.0	2
86	Data-driven cyber-physical System for Quality Gates in Lithium-ion Battery Cell Manufacturing. Procedia CIRP, 2020, 93, 168-173.	1.0	21
87	Macro-environmental comparative analysis of e-mobility adoption pathways in France, Germany and Norway. Transport Policy, 2022, 124, 160-174.	3.4	9
88	Inhibition of transition metals dissolution in cobalt-free cathode with ultrathin robust interphase in concentrated electrolyte. Nature Communications, 2020, 11, 3629.	5.8	137
89	Advances in Materials Design for All-Solid-state Batteries: From Bulk to Thin Films. Applied Sciences (Switzerland), 2020, 10, 4727.	1.3	27
90	Identical Materials but Different Effects of Film-Forming Electrolyte Additives in Li Ion Batteries: Performance of a Benchmark System as the Key. Chemistry of Materials, 2020, 32, 6279-6284.	3.2	22

#	Article	IF	CITATIONS
91	Analysis of Carbonate Decomposition During Solid Electrolyte Interphase Formation in Isotope‣abeled Lithium Ion Battery Electrolytes: Extending the Knowledge about Electrolyte Soluble Species. Batteries and Supercaps, 2020, 3, 1183-1192.	2.4	21
92	Microstructured Sulfur-Doped Carbon-Coated Fe ₇ S ₈ Composite for High-Performance Lithium and Sodium Storage. ACS Sustainable Chemistry and Engineering, 2020, 8, 11783-11794.	3.2	38
93	Virtual Quality Gates in Manufacturing Systems: Framework, Implementation and Potential. Journal of Manufacturing and Materials Processing, 2020, 4, 106.	1.0	15
94	Microstructural Evolution of Battery Electrodes During Calendering. Joule, 2020, 4, 2746-2768.	11.7	95
95	Impact of Residual Lithium on the Adoption of High-Nickel Layered Oxide Cathodes for Lithium-Ion Batteries. Chemistry of Materials, 2020, 32, 9479-9489.	3.2	81
96	Designer Self-Assembled Polyelectrolyte Complex Nanoparticle Membrane for a Stable Lithium–Sulfur Battery at Lean Electrolyte Conditions. ACS Applied Energy Materials, 2020, 3, 7908-7919.	2.5	15
97	Impact of Particle Size Distribution on Performance of Lithiumâ€lon Batteries. ChemElectroChem, 2020, 7, 4755-4766.	1.7	66
98	Laser beam welding of copper foil stacks using a green high power disk laser. Procedia CIRP, 2020, 94, 582-586.	1.0	18
99	Complementary Effects of Mg and Cu Incorporation in Stabilizing the Cobalt-Free LiNiO ₂ Cathode for Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2020, 12, 43653-43664.	4.0	46
100	Atomic Insights into the Fundamental Interactions in Lithium Battery Electrolytes. Accounts of Chemical Research, 2020, 53, 1992-2002.	7.6	171
101	Between Liquid and All Solid: A Prospect on Electrolyte Future in Lithiumâ€lon Batteries for Electric Vehicles. Energy Technology, 2020, 8, 2000580.	1.8	48
102	A Strategy to Optimize the Performance of Bio-Derived Carbon Aerogels by a Structuring Additive. Nanomaterials, 2020, 10, 1811.	1.9	3
103	Toward understanding the real mechanical robustness of composite electrode impregnated with a liquid electrolyte. Applied Materials Today, 2020, 21, 100809.	2.3	7
104	From Cell to Battery System in BEVs: Analysis of System Packing Efficiency and Cell Types. World Electric Vehicle Journal, 2020, 11, 77.	1.6	73
105	Tracking and Tracing for Data Mining Application in the Lithium-ion Battery Production. Procedia CIRP, 2020, 93, 162-167.	1.0	23
106	Side by Side Battery Technologies with Lithiumâ€ion Based Batteries. Advanced Energy Materials, 2020, 10, 2000089.	10.2	127
107	Recent Advances in Developing Hybrid Materials for Sodium-Ion Battery Anodes. ACS Energy Letters, 2020, 5, 1939-1966.	8.8	149
108	A Stirred Self-Stratified Battery for Large-Scale Energy Storage. Joule, 2020, 4, 953-966.	11.7	41

#	Article	IF	CITATIONS
109	Modeling the Impact of Manufacturing Uncertainties on Lithium-Ion Batteries. Journal of the Electrochemical Society, 2020, 167, 060501.	1.3	55
110	Battery cost modeling: A review and directions for future research. Renewable and Sustainable Energy Reviews, 2020, 127, 109872.	8.2	75
111	Improvement of electrochemical homogeneity for lithium-ion batteries enabled by a conjoined-electrode structure. Applied Energy, 2020, 270, 115109.	5.1	17
112	Lithium-ion battery separators: Recent developments and state of art. Current Opinion in Electrochemistry, 2020, 20, 99-107.	2.5	55
113	Organic polymeric filler-amorphized poly(ethylene oxide) electrolyte enables all-solid-state lithium–metal batteries operating at 35 °C. Journal of Materials Chemistry A, 2020, 8, 13351-13363.	5.2	51
114	Effects of the Mixing Sequence on Making Lithium Ion Battery Electrodes. Journal of the Electrochemical Society, 2020, 167, 100518.	1.3	44
115	Predicting the state of charge and health of batteries using data-driven machine learning. Nature Machine Intelligence, 2020, 2, 161-170.	8.3	338
116	p-Type Ultrawide-Band-Gap Spinel ZnGa ₂ O ₄ : New Perspectives for Energy Electronics. Crystal Growth and Design, 2020, 20, 2535-2546.	1.4	68
117	An Innovative Lithium Ion Battery System Based on a Cu ₂ S Anode Material. ACS Applied Materials & Interfaces, 2020, 12, 17396-17405.	4.0	24
118	Basic knowledge in battery research bridging the gap between academia and industry. Materials Horizons, 2020, 7, 1937-1954.	6.4	94
119	Fostering a Sustainable Community in Batteries. ACS Energy Letters, 2020, 5, 2361-2366.	8.8	9
120	Niobium doping of Li1.2Mn0.54Ni0.13Co0.13O2 cathode materials with enhanced structural stability and electrochemical performance. Ceramics International, 2020, 46, 23773-23779.	2.3	29
121	Multiscale factors in designing alkali-ion (Li, Na, and K) transition metal inorganic compounds for next-generation rechargeable batteries. Energy and Environmental Science, 2020, 13, 4406-4449.	15.6	77
122	Ultrasensitive Detection of Electrolyte Leakage from Lithium-Ion Batteries by Ionically Conductive Metal-Organic Frameworks. Matter, 2020, 3, 904-919.	5.0	42
123	A "dendrite-eating―separator for high-areal-capacity lithium-metal batteries. Energy Storage Materials, 2020, 31, 181-186.	9.5	71
124	A Safe Organic Oxygen Battery Built with Liâ€Based Liquid Anode and MOFs Separator. Advanced Energy Materials, 2020, 10, 1903953.	10.2	33
125	A Long Cycle Life, All-Solid-State Lithium Battery with a Ceramic–Polymer Composite Electrolyte. ACS Applied Energy Materials, 2020, 3, 2916-2924.	2.5	73
126	Advances in Battery Cell Production. Energy Technology, 2020, 8, 1900751.	1.8	1

#	Article	IF	CITATIONS
127	Enhancing the Lithium Ion Conductivity of an All Solid-State Electrolyte via Dry and Solvent-Free Scalable Series Production Processes. Journal of the Electrochemical Society, 2020, 167, 020558.	1.3	22
128	Rational Design of a Laminated Dual-Polymer/Polymer–Ceramic Composite Electrolyte for High-Voltage All-Solid-State Lithium Batteries. , 2020, 2, 317-324.		59
129	Coâ€Crosslinked Waterâ€Soluble Biopolymers as a Binder for Highâ€Voltage LiNi _{0.5} Mn _{1.5} O ₄ Graphite Lithiumâ€ion Full Cells. ChemSusChem, 2020, 13, 2650-2660.	3.6	26
130	High-nickel layered oxide cathodes for lithium-based automotive batteries. Nature Energy, 2020, 5, 26-34.	19.8	940
131	Solid versus Liquid—A Bottomâ€Up Calculation Model to Analyze the Manufacturing Cost of Future Highâ€Energy Batteries. Energy Technology, 2020, 8, 1901237.	1.8	78
132	A Siteâ€Selective Doping Strategy of Carbon Anodes with Remarkable Kâ€Ion Storage Capacity. Angewandte Chemie, 2020, 132, 4478-4485.	1.6	48
133	Double the energy storage of hard carbon anode for Li-ion batteries via a simple blending strategy. Electrochimica Acta, 2020, 336, 135729.	2.6	8
134	Lamination of Separators to Electrodes using Electrospinning. PLoS ONE, 2020, 15, e0227903.	1.1	2
135	C ₆₀ (OH) ₁₂ and Its Nanocomposite for High-Performance Lithium Storage. ACS Nano, 2020, 14, 1600-1608.	7.3	11
136	Clarification of Decomposition Pathways in a Stateâ€ofâ€theâ€Art Lithium Ion Battery Electrolyte through ¹³ Câ€Labeling of Electrolyte Components. Angewandte Chemie - International Edition, 2020, 59, 6128-6137.	7.2	81
137	Exploring the origin of electrochemical performance of Cr-doped LiNi0.5Mn1.5O4. Physical Chemistry Chemical Physics, 2020, 22, 3831-3838.	1.3	13
138	Deriving Structureâ€Performance Relations of Chemically Modified Chitosan Binders for Sustainable Highâ€Voltage LiNi _{0.5} Mn _{1.5} O ₄ Cathodes. Batteries and Supercaps, 2020, 3, 129-129.	2.4	2
139	Clarification of Decomposition Pathways in a Stateâ€ofâ€theâ€Art Lithium Ion Battery Electrolyte through 13 Câ€Labeling of Electrolyte Components. Angewandte Chemie, 2020, 132, 6184-6193.	1.6	18
140	3D microstructure design of lithium-ion battery electrodes assisted by X-ray nano-computed tomography and modelling. Nature Communications, 2020, 11, 2079.	5.8	217
141	Production Research as Key Factor for Successful Establishment of Battery Production on the Example of Largeâ€Scale Automotive Cells Containing Nickelâ€Rich LiNi _{0.8} Mn _{0.1} Co _{0.1} O ₂ Electrodes. Energy Technology, 2020, 8, 2000183.	1.8	22
142	Toward Green Battery Cells: Perspective on Materials and Technologies. Small Methods, 2020, 4, 2000039.	4.6	177
143	Intake characteristics and pumping loss in the intake stroke of a novel small scale opposed rotary piston engine. Journal of Cleaner Production, 2020, 261, 121180.	4.6	36
144	Battery plant location considering the balance between knowledge and cost: A comparative study of the EU-28 countries. Journal of Cleaner Production, 2020, 264, 121428.	4.6	13

#	Article	IF	CITATIONS
145	A Three-Dimensional Carbon Framework Constructed by N/S Co-doped Graphene Nanosheets with Expanded Interlayer Spacing Facilitates Potassium Ion Storage. ACS Energy Letters, 2020, 5, 1653-1661.	8.8	202
146	Harnessing salinity gradient energy in coastal stormwater runoff to reduce pathogen loading. Environmental Science: Water Research and Technology, 2020, 6, 1553-1558.	1.2	1
147	Polymer reinforced carbon fiber interfaces for high energy density structural lithium-ion batteries. Sustainable Energy and Fuels, 2020, 4, 2661-2668.	2.5	49
148	Si-on-Graphite fabricated by fluidized bed process for high-capacity anodes of Li-ion batteries. Chemical Engineering Journal, 2021, 407, 126603.	6.6	31
149	Approaching high-performance pouch cell via fast thermal dissipation and polarization-assisted ion migration. Chemical Engineering Journal, 2021, 407, 126306.	6.6	8
150	Comparison of the effects of incineration, vacuum pyrolysis and dynamic pyrolysis on the composition of NMC-lithium battery cathode-material production scraps and separation of the current collector. Resources, Conservation and Recycling, 2021, 164, 105142.	5.3	50
151	A review of composite polymer-ceramic electrolytes for lithium batteries. Energy Storage Materials, 2021, 34, 282-300.	9.5	233
152	Lithium vanadium oxide (Li _{1.1} V ₃ O ₈) thick porous electrodes with high rate capacity: utilization and evolution upon extended cycling elucidated <i>via operando</i> energy dispersive X-ray diffraction and continuum simulation. Physical Chemistry Chemical Physics. 2021. 23. 139-150.	1.3	10
153	Growing ordered CuO nanorods on 2D Cu/g-C3N4 nanosheets as stable freestanding anode for outstanding lithium storage. Chemical Engineering Journal, 2021, 407, 126941.	6.6	33
154	Mass load prediction for lithium-ion battery electrode clean production: A machine learning approach. Journal of Cleaner Production, 2021, 289, 125159.	4.6	73
155	Large-scale automotive battery cell manufacturing: Analyzing strategic and operational effects on manufacturing costs. International Journal of Production Economics, 2021, 232, 107982.	5.1	84
156	Sustainable materials for off-grid battery applications: advances, challenges and prospects. Sustainable Energy and Fuels, 2021, 5, 310-331.	2.5	14
157	Promises and Challenges of Next-Generation "Beyond Li-ion―Batteries for Electric Vehicles and Grid Decarbonization. Chemical Reviews, 2021, 121, 1623-1669.	23.0	769
158	Effects of the Nail Geometry and Humidity on the Nail Penetration of High-Energy Density Lithium Ion Batteries. Batteries, 2021, 7, 6.	2.1	11
159	Feature Analyses and Modeling of Lithium-Ion Battery Manufacturing Based on Random Forest Classification. IEEE/ASME Transactions on Mechatronics, 2021, 26, 2944-2955.	3.7	103
160	Post-lithium-ion battery cell production and its compatibility with lithium-ion cell production infrastructure. Nature Energy, 2021, 6, 123-134.	19.8	612
161	Sustainable Solventâ€Free Production and Resulting Performance of Polymer Electrolyteâ€Based Allâ€Solidâ€State Battery Electrodes. Energy Technology, 2021, 9, 2000923.	1.8	24
162	A hydrogel-enabled free-standing polypyrrole cathode film for potassium ion batteries with high mass loading and low-temperature stability. Journal of Materials Chemistry A, 2021, 9, 15045-15050.	5.2	10

#	Article	IF	CITATIONS
163	Conjugated cyclized-polyacrylonitrile encapsulated carbon nanotubes as core–sheath heterostructured anodes with favorable lithium storage. Journal of Materials Chemistry A, 2021, 9, 6962-6970.	5.2	21
164	Scale-Up of Pilot Line Battery Cell Manufacturing Life Cycle Inventory Models for Life Cycle Assessment. Procedia CIRP, 2021, 98, 13-18.	1.0	18
165	Lithium-Ion Batteries for Automotive Applications: Life Cycle Analysis. , 2021, , 395-405.		2
166	Integrated Material-Energy-Quality Assessment for Lithium-ion Battery Cell Manufacturing. Procedia CIRP, 2021, 98, 388-393.	1.0	12
167	Organic and Organic–Inorganic Composite Solid Electrolytes. New Developments in NMR, 2021, , 323-363.	0.1	0
168	A facile and low-cost Al ₂ O ₃ coating as an artificial solid electrolyte interphase layer on graphite/silicon composites for lithium-ion batteries. Nanotechnology, 2021, 32, 144001.	1.3	15
169	A Flexible Model for Benchmarking the Energy Usage of Automotive Lithium-Ion Battery Cell Manufacturing. Batteries, 2021, 7, 14.	2.1	34
170	Ultra-high throughput manufacturing method for composite solid-state electrolytes. IScience, 2021, 24, 102055.	1.9	8
171	Comparative Evaluation of LMR-NCM and NCA Cathode Active Materials in Multilayer Lithium-Ion Pouch Cells: Part II. Rate Capability, Long-Term Stability, and Thermal Behavior. Journal of the Electrochemical Society, 2021, 168, 020537.	1.3	18
172	Realizing Ultralong-Term Cyclicability of 5 Volt-Cathode-Material Graphite Flakes by Uniformly Comodified TiO2/Carbon Layer Inducing Stable Cathode–Electrolyte Interphase. ACS Applied Materials & Interfaces, 2021, 13, 10101-10109.	4.0	6
173	Process strategies for laser cutting of electrodes in lithium-ion battery production. Journal of Laser Applications, 2021, 33, .	0.8	15
174	Challenges in Ecofriendly Battery Recycling and Closed Material Cycles: A Perspective on Future Lithium Battery Generations. Metals, 2021, 11, 291.	1.0	61
175	Inline Monitoring of Battery Electrode Lamination Processes Based on Acoustic Measurements. Batteries, 2021, 7, 19.	2.1	9
176	High Li-ion conductivity in tetragonal LGPO: A comparative first-principles study against known LISICON and LGPS phases. Physical Review Materials, 2021, 5, .	0.9	8
177	Enhancing thermal safety in lithium-ion battery packs through parallel cell †current dumping' mitigation. Applied Energy, 2021, 286, 116495.	5.1	16
178	Myth and Reality of a Universal Lithiumâ€ŀon Battery Electrode Design Optimum: A Perspective and Case Study. Energy Technology, 2021, 9, 2000989.	1.8	10
179	Calendering of Li(Ni _{0.33} Mn _{0.33} Co _{0.33})O ₂ â€Based Cathodes: Analyzing the Link Between Process Parameters and Electrode Properties by Advanced Statistics. Batteries and Supercaps, 2021, 4, 834-844.	2.4	19
180	Evolution of Internal Stress in Heterogeneous Electrode Composite during the Drying Process. Energies, 2021, 14, 1683.	1.6	4

#	Article	IF	CITATIONS
181	Synthesis of Metal Oxide Nanoparticles in Flame Sprays: Review on Process Technology, Modeling, and Diagnostics. Energy & Fuels, 2021, 35, 5495-5537.	2.5	67
182	Opportunities for the State-of-the-Art Production of LIB Electrodes—A Review. Energies, 2021, 14, 1406.	1.6	55
183	Economies of scale in battery cell manufacturing: The impact of material and process innovations. Applied Energy, 2021, 286, 116499.	5.1	59
184	Additive Manufacturing of Electrochemical Energy Storage Systems Electrodes. Advanced Energy and Sustainability Research, 2021, 2, 2000111.	2.8	15
185	Comparative Evaluation of LMR-NCM and NCA Cathode Active Materials in Multilayer Lithium-Ion Pouch Cells: Part I. Production, Electrode Characterization, and Formation. Journal of the Electrochemical Society, 2021, 168, 030507.	1.3	35
186	Modeling the Influence of Particle Shape on Mechanical Compression and Effective Transport Properties in Granular Lithiumâ€lon Battery Electrodes. Energy Technology, 2021, 9, 2000886.	1.8	6
187	Nonaqueous Rechargeable Aluminum Batteries: Progresses, Challenges, and Perspectives. Chemical Reviews, 2021, 121, 4903-4961.	23.0	147
188	Materials and technologies for multifunctional, flexible or integrated supercapacitors and batteries. Materials Today, 2021, 48, 176-197.	8.3	66
189	Current and future lithium-ion battery manufacturing. IScience, 2021, 24, 102332.	1.9	236
190	Scalable Manufacture of Highâ€Performance Battery Electrodes Enabled by a Templateâ€Free Method. Small Methods, 2021, 5, e2100280.	4.6	24
191	Tetradiketone macrocycle for divalent aluminium ion batteries. Nature Communications, 2021, 12, 2386.	5.8	84
192	Stable Hollowâ€Structured Silicon Suboxideâ€Based Anodes toward Highâ€Performance Lithiumâ€Ion Batteries. Advanced Functional Materials, 2021, 31, 2101796.	7.8	127
193	Graphene collage on Ni-rich layered oxide cathodes for advanced lithium-ion batteries. Nature Communications, 2021, 12, 2145.	5.8	54
194	Electrical Characterization of Li-Ion Battery Modules for Second-Life Applications. Batteries, 2021, 7, 32.	2.1	9
195	The critical role of inorganic nanofillers in solid polymer composite electrolyte for Li ⁺ transportation. , 2021, 3, 482-508.		68
196	Effect of Gd content on the discharge and electrochemical behaviors of the magnesium alloy AZ31 as an anode for Mg-air battery. Journal of Materials Science, 2021, 56, 12789-12802.	1.7	15
197	Implications of the Heat Generation of LMR-NCM on the Thermal Behavior of Large-Format Lithium-Ion Batteries. Journal of the Electrochemical Society, 2021, 168, 053505.	1.3	6
198	Revealing the Various Electrochemical Behaviors of Sn ₄ P ₃ Binary Alloy Anodes in Alkali Metal Ion Batteries. Advanced Functional Materials, 2021, 31, 2102047.	7.8	25

#	Article	IF	CITATIONS
199	Dispersion kinetics of carbon black for the application in lithium-ion batteries. Advanced Powder Technology, 2021, 32, 2280-2288.	2.0	18
200	Novel design of uniform Si@graphite@C composite as high-performance Li-ion battery anodes. Electrochimica Acta, 2021, 377, 138092.	2.6	18
201	Recycling and environmental issues of lithium-ion batteries: Advances, challenges and opportunities. Energy Storage Materials, 2021, 37, 433-465.	9.5	210
202	A Comparison of Lithium-Ion Cell Performance across Three Different Cell Formats. Batteries, 2021, 7, 38.	2.1	21
203	Advances in Lithium–Sulfur Batteries: From Academic Research to Commercial Viability. Advanced Materials, 2021, 33, e2003666.	11.1	357
204	Lithium Ytterbium-Based Halide Solid Electrolytes for High Voltage All-Solid-State Batteries. , 2021, 3, 930-938.		80
205	One-pot synthesis of VOSO4@C cathode via a versatile oxalic acid for lithium-ion batteries. Vacuum, 2021, 188, 110207.	1.6	3
206	The Role of Pilot Lines in Bridging the Gap Between Fundamental Research and Industrial Production for Lithiumâ€ion Battery Cells Relevant to Sustainable Electromobility: A Review. Energy Technology, 2021, 9, 2100132.	1.8	25
207	Physico-chemical parameter measurement and model response evaluation for a pseudo-two-dimensional model of a commercial lithium-ion battery. Electrochimica Acta, 2021, 382, 138287.	2.6	18
208	A review on the stability and surface modification of layered transition-metal oxide cathodes. Materials Today, 2021, 46, 155-182.	8.3	132
209	Advances and Perspectives of Cathode Storage Chemistry in Aqueous Zinc-Ion Batteries. ACS Nano, 2021, 15, 9244-9272.	7.3	272
210	Battery production design using multi-output machine learning models. Energy Storage Materials, 2021, 38, 93-112.	9.5	45
211	Transforming Materials into Practical Automotive Lithiumâ€lon Batteries. Advanced Materials Technologies, 2021, 6, 2100152.	3.0	6
212	Design of Vacuum Postâ€Drying Procedures for Electrodes of Lithiumâ€Ion Batteries. Batteries and Supercaps, 2021, 4, 1499-1515.	2.4	11
213	Unveiling micro internal short circuit mechanism in a 60ÂAh high-energy-density Li-ion pouch cell. Nano Energy, 2021, 84, 105908.	8.2	15
214	Electrospun Silsequioxane-grafted PVDF hybrid membranes for high-performance rechargeable lithium batteries. Composites Part B: Engineering, 2021, 215, 108849.	5.9	16
215	Characterization and Laser Structuring of Aqueous Processed Li(Ni0.6Mn0.2Co0.2)O2 Thick-Film Cathodes for Lithium-Ion Batteries. Nanomaterials, 2021, 11, 1840.	1.9	18
216	<i>In Situ</i> Ultrasound Acoustic Measurement of the Lithium-Ion Battery Electrode Drying Process. ACS Applied Materials & Interfaces, 2021, 13, 36605-36620.	4.0	18

\sim			<u> </u>	
CI	ITATI	ON	REPO	JRT

#	Article	IF	CITATIONS
217	Continuous Processing of Cathode Slurry by Extrusion for Lithiumâ€lon Batteries. Energy Technology, 2021, 9, 2100250.	1.8	5
218	Machine vision-based intelligent manufacturing using a novel dual-template matching: a case study for lithium battery positioning. International Journal of Advanced Manufacturing Technology, 2021, 116, 2531-2551.	1.5	5
219	Background and Context. Sustainable Production, Life Cycle Engineering and Management, 2022, , 1-10.	0.2	0
220	Non-destructive local degradation detection in large format lithium-ion battery cells using reversible strain heterogeneity. Journal of Energy Storage, 2021, 40, 102788.	3.9	12
221	Highly Aligned Ultraâ€Thick Gelâ€Based Cathodes Unlocking Ultraâ€High Energy Density Batteries. Energy and Environmental Materials, 2022, 5, 1332-1339.	7.3	13
222	Boosting the cell performance of the SiO _{<i>x</i>} @C anode material via rational design of a Siâ€valence gradient. , 2022, 4, 129-141.		22
223	Pomegranate-inspired Zn2Ti3O8/TiO2@C nanospheres with pseudocapacitive effect for ultra-stable lithium-ion batteries. Chemical Engineering Journal, 2021, 418, 129227.	6.6	9
224	Relevance of the Catholyte Mixing Method for Solidâ€State Composite Cathodes. Energy Technology, 2021, 9, 2100479.	1.8	3
225	Stressâ€Regulation Design of Lithium Alloy Electrode toward Stable Battery Cycling. Energy and Environmental Materials, 2023, 6, .	7.3	11
226	Advanced electrode processing of lithium ion batteries: A review of powder technology in battery fabrication. Particuology, 2021, 57, 56-71.	2.0	79
227	LCE and Electromobility. Sustainable Production, Life Cycle Engineering and Management, 2022, , 11-55.	0.2	0
228	Issues and Advances in Scaling up Sulfide-Based All-Solid-State Batteries. Accounts of Chemical Research, 2021, 54, 3390-3402.	7.6	97
229	Emerging Carbonyl Polymers as Sustainable Electrode Materials for Lithiumâ€Free Metalâ€Ion Batteries. Energy and Environmental Materials, 2022, 5, 1037-1059.	7.3	18
230	Implementation for a cloud battery management system based on the CHAIN framework. Energy and AI, 2021, 5, 100088.	5.8	93
231	Machine Learning: An Advanced Platform for Materials Development and State Prediction in Lithiumâ€lon Batteries. Advanced Materials, 2022, 34, e2101474.	11.1	140
232	Growth Mechanism of Micro/Nano Metal Dendrites and Cumulative Strategies for Countering Its Impacts in Metal Ion Batteries: A Review. Nanomaterials, 2021, 11, 2476.	1.9	33
233	Artificial Intelligence Applied to Battery Research: Hype or Reality?. Chemical Reviews, 2022, 122, 10899-10969.	23.0	153
234	Increased Moisture Uptake of NCM622 Cathodes after Calendering due to Particle Breakage. Journal of the Electrochemical Society, 2021, 168, 090539.	1.3	26

#	Article	IF	CITATIONS
235	Recent progress of carbon nanomaterials for high-performance cathodes and anodes in aqueous zinc ion batteries. Energy Storage Materials, 2021, 41, 715-737.	9.5	93
236	Laser welding of current collector foil stacks in battery production–mechanical properties of joints welded with a green high-power disk laser. International Journal of Advanced Manufacturing Technology, 2022, 118, 2571-2586.	1.5	32
237	Understanding electronic and Li-ion transport of LiNi0.5Co0.2Mn0.3O2 electrodes affected by porosity and electrolytes using electrochemical impedance spectroscopy. Journal of Power Sources, 2021, 510, 230338.	4.0	16
238	Recent progress in thin separators for upgraded lithium ion batteries. Energy Storage Materials, 2021, 41, 805-841.	9.5	68
239	A novel hybrid thermal management approach towards high-voltage battery pack for electric vehicles. Energy Conversion and Management, 2021, 247, 114676.	4.4	20
240	Regionalized climate footprints of battery electric vehicles in Europe. Journal of Cleaner Production, 2021, 322, 129052.	4.6	30
241	The impact of climate policy implementation on lithium, cobalt and nickel demand: The case of the Dutch automotive sector up to 2040. Resources Policy, 2021, 74, 102351.	4.2	17
242	Enhanced performance and lifetime of lithium-ion batteries by laser structuring of graphite anodes. Applied Energy, 2021, 303, 117693.	5.1	47
243	High volumetric capacity nanoparticle electrodes enabled by nanofluidic fillers. Energy Storage Materials, 2021, 43, 202-211.	9.5	4
244	Energy efficiency of technical building services in production environments–Application to dry rooms in battery production. CIRP Annals - Manufacturing Technology, 2021, 70, 21-24.	1.7	5
245	Energy Flexibility in Battery Cell Manufacturing. Procedia CIRP, 2021, 99, 531-536.	1.0	2
246	Nanomaterials for electrochemical energy storage. Frontiers of Nanoscience, 2021, 18, 421-484.	0.3	2
247	Battery cost forecasting: a review of methods and results with an outlook to 2050. Energy and Environmental Science, 2021, 14, 4712-4739.	15.6	189
248	An SiO _x anode strengthened by the self-catalytic growth of carbon nanotubes. Nanoscale, 2021, 13, 3808-3816.	2.8	26
249	Ultrasmall Mo ₂ C nanocrystals embedded in N-doped porous carbons as a surface-dominated capacitive anode for lithium-ion capacitors. Chemical Communications, 2021, 57, 4966-4969.	2.2	8
250	Model-based energy analysis of a dry room HVAC system in battery cell production. Procedia CIRP, 2021, 98, 157-162.	1.0	16
251	Challenges of Battery Production: A Case Study of Electrical Vehicles in India. Lecture Notes in Mechanical Engineering, 2021, , 1129-1142.	0.3	3
252	Highly sensitive 2D organic field-effect transistors for the detection of lithium-ion battery electrolyte leakage. Chemical Communications, 2021, 57, 3464-3467.	2.2	5

#	Article	IF	CITATIONS
253	In situ construction of amorphous hierarchical iron oxyhydroxide nanotubes via selective dissolution-regrowth strategy for enhanced lithium storage. Science China Materials, 2020, 63, 1993-2001.	3.5	11
254	Machine learning approach for systematic analysis of energy efficiency potentials in manufacturing processes: A case of battery production. CIRP Annals - Manufacturing Technology, 2020, 69, 21-24.	1.7	39
255	Role of cerium-doping in CoFe2O4 electrodes for high performance supercapacitors. Journal of Energy Storage, 2020, 29, 101452.	3.9	58
256	Online detection of early stage internal short circuits in series-connected lithium-ion battery packs based on state-of-charge correlation. Journal of Energy Storage, 2020, 30, 101514.	3.9	53
257	Methodology for the Simulation based Energy Efficiency Assessment of Battery Cell Manufacturing Systems. Procedia Manufacturing, 2020, 43, 32-39.	1.9	21
258	Recent progress in laser texturing of battery materials: a review of tuning electrochemical performances, related material development, and prospects for large-scale manufacturing. International Journal of Extreme Manufacturing, 2021, 3, 012002.	6.3	62
259	Review—Knowledge-Based Process Design for High Quality Production of NCM811 Cathodes. Journal of the Electrochemical Society, 2020, 167, 160521.	1.3	33
260	Classifications of Lithium-Ion Battery Electrode Property Based on Support Vector Machine with Various Kernels. Communications in Computer and Information Science, 2021, , 23-34.	0.4	3
261	RUBoost-Based Ensemble Machine Learning for Electrode Quality Classification in Li-ion Battery Manufacturing. IEEE/ASME Transactions on Mechatronics, 2022, 27, 2474-2483.	3.7	23
262	Suppression of self-discharge in a non-flowing bromine battery via in situ generation of countercharged groups. Cell Reports Physical Science, 2021, 2, 100620.	2.8	2
263	Charge Transport Limitations to the Power Performance of LiNi0.5Mn0.3Co0.2O2 Composite Electrodes with Carbon Nanotubes. Journal of the Electrochemical Society, 0, , .	1.3	2
264	Battery Electrode Mass Loading Prognostics and Analysis for Lithium-Ion Battery–Based Energy Storage Systems. Frontiers in Energy Research, 2021, 9, .	1.2	8
265	Deep learning-based segmentation of lithium-ion battery microstructures enhanced by artificially generated electrodes. Nature Communications, 2021, 12, 6205.	5.8	44
266	Flexible, Selfâ€Supported Anode for Organic Batteries with a Matched Hierarchical Current Collector System for Boosted Current Density. Small, 2021, 17, 2103885.	5.2	3
267	A Morphologically Stable Li/Electrolyte Interface for Allâ€Solidâ€State Batteries Enabled by 3Dâ€Micropatterned Garnet. Advanced Materials, 2021, 33, e2104009.	11.1	76
268	Influence of the Lamination Process on the Wetting Behavior and the Wetting Rate of Lithium-Ion Batteries. Processes, 2021, 9, 1851.	1.3	10
269	Revealing Roles of Co and Ni in Mnâ€Rich Layered Cathodes. Advanced Energy Materials, 2021, 11, .	10.2	24
270	Machine learning for optimised and clean Li-ion battery manufacturing: Revealing the dependency between electrode and cell characteristics. Journal of Cleaner Production, 2021, 324, 129272	4.6	28

#	Article	IF	CITATIONS
271	Effects of binder content on low-cost solvent-free electrodes made by dry-spraying manufacturing for lithium-ion batteries. Journal of Power Sources, 2021, 515, 230644.	4.0	19
272	Lithium-Ion Batteries for Automotive Applications: Life Cycle Analysis. , 2019, , 1-12.		0
273	Influence of cell opening methods on organic solvent removal during pretreatment in lithium-ion battery recycling. Waste Management and Research, 2022, 40, 1015-1026.	2.2	7
274	From Materials to Cell: State-of-the-Art and Prospective Technologies for Lithium-Ion Battery Electrode Processing. Chemical Reviews, 2022, 122, 903-956.	23.0	343
275	Understanding the effect of coating-drying operating variables on electrode physical and electrochemical properties of lithium-ion batteries. Journal of Power Sources, 2021, 516, 230689.	4.0	18
276	Influence of pressure and temperature on the electrolyte filling of lithium-ion cells: Experiment, model and method. Journal of Power Sources, 2022, 517, 230668.	4.0	20
277	Simulation Based Approach for High-Throughput Stacking Processes in Battery Production. Processes, 2021, 9, 1993.	1.3	4
278	Rational Design of Liâ€Wicking Hosts for Ultrafast Fabrication of Flexible and Stable Lithium Metal Anodes. Small, 2022, 18, e2105308.	5.2	14
279	Role of heterogeneous inactive component distribution induced by drying process on the mechanical integrity of composite electrode during electrochemical operation. Journal Physics D: Applied Physics, 2021, 54, 055503.	1.3	3
280	Approach for Efficient Acquisition of Energy Data and Identification of Energy-related Process Parameters in Lithium-Ion Battery Cell Production. Procedia CIRP, 2021, 104, 1401-1406.	1.0	0
281	Energy Flexibility in Production Planning. Procedia CIRP, 2021, 104, 1095-1100.	1.0	4
282	Bottleneck reduction strategies for energy efficiency in the battery manufacturing. Procedia CIRP, 2021, 104, 1017-1022.	1.0	11
283	Marking of Electrode Sheets in the Production of Lithium-Ion Cells as an Enabler for Tracking and Tracing. Procedia CIRP, 2021, 104, 1011-1016.	1.0	14
284	Ontology-based Traceability System for Interoperable Data Acquisition in Battery Cell Manufacturing. Procedia CIRP, 2021, 104, 1215-1220.	1.0	8
285	Toward stable lithium-ion batteries: Accelerating the transfer and alloying reactions of Sn-based anodes via coordination atom regulation and carbon hybridization. Journal of Power Sources, 2022, 519, 230778.	4.0	16
286	Microstructure evolutions in lithium ion battery electrode manufacturing. Chinese Science Bulletin, 2022, 67, 1088-1102.	0.4	2
287	Demonstrating Apparently Inconspicuous but Sensitive Impacts on the Rollover Failure of Lithium-Ion Batteries at a High Voltage. ACS Applied Materials & Interfaces, 2021, 13, 57241-57251.	4.0	21
288	A Review of Lithiumâ€lon Battery Electrode Drying: Mechanisms and Metrology. Advanced Energy Materials, 2022, 12, .	10.2	70

#	Article	IF	CITATIONS
289	A generalized additive model-based data-driven solution for lithium-ion battery capacity prediction and local effects analysis. Transactions of the Institute of Measurement and Control, 0, , 014233122110579.	1.1	3
290	Oxygen Vacancy Modulated TiP ₂ O _{7â€y} with Enhanced Highâ€rate Capabilities and Longâ€term Cyclability used as Anode Material for Lithiumâ€ion Batteries. ChemistrySelect, 2021, 6, 12677-12684.	0.7	6
291	Quantifying key factors for optimised manufacturing of Li-ion battery anode and cathode via artificial intelligence. Energy and Al, 2022, 7, 100129.	5.8	32
292	Introducing Inline Process and Product Analysis for the Lean Cell Finalization in Lithium-Ion Battery Production. Procedia CIRP, 2021, 104, 1052-1058.	1.0	6
293	DEM Simulations of the Calendering Process: Parameterization of the Electrode Material of Lithium-Ion Batteries. Procedia CIRP, 2021, 104, 91-97.	1.0	6
294	Determinants of lithium-ion battery technology cost decline. Energy and Environmental Science, 2021, 14, 6074-6098.	15.6	46
295	Concept for modelling the influence of electrode corrugation after calendering on stacking accuracy in battery cell production. Procedia CIRP, 2021, 104, 744-749.	1.0	8
296	Model-based identification of production tolerances in battery production. Procedia CIRP, 2021, 104, 1059-1064.	1.0	5
298	Nitrogen Plasma-Assisted Functionalization of Silicon/Graphite Anodes to Enable Fast Kinetics. ACS Applied Materials & Interfaces, 2022, 14, 5237-5246.	4.0	14
299	Electrode fabrication process and its influence in lithium-ion battery performance: State of the art and future trends. Electrochemistry Communications, 2022, 135, 107210.	2.3	26
300	Advanced red phosphorus/carbon composites with practical application potential for sodium ion batteries. Energy Storage Materials, 2022, 46, 20-28.	9.5	13
301	Highly scalable and solvent-free fabrication of a solid polymer electrolyte separator via film casting technology. Advances in Industrial and Manufacturing Engineering, 2021, 3, 100065.	1.2	2
302	Effect of the Slurry Mixing Process on the Structural Properties of the Anode and the Resulting Fast-Charging Performance of the Lithium-Ion Battery Cell. Journal of the Electrochemical Society, 2022, 169, 020531.	1.3	19
303	Data-Based Interpretable Modeling for Property Forecasting and Sensitivity Analysis of Li-ion Battery Electrode. Automotive Innovation, 2022, 5, 121-133.	3.1	13
304	Evaluation of Deformation Behavior and Fast Elastic Recovery of Lithiumâ€Ion Battery Cathodes via Direct Rollâ€Gap Detection During Calendering. Energy Technology, 2022, 10, 2101033.	1.8	16
305	Digitalization Platform for Mechanistic Modeling of Battery Cell Production. Sustainability, 2022, 14, 1530.	1.6	5
306	A Roadmap for Transforming Research to Invent the Batteries of the Future Designed within the European Large Scale Research Initiative BATTERY 2030+. Advanced Energy Materials, 2022, 12, .	10.2	70
307	State of the Art of Lithium-Ion Pouch Cells in Automotive Applications: Cell Teardown and Characterization. Journal of the Electrochemical Society, 2022, 169, 030515.	1.3	26

#	Article	IF	CITATIONS
" 308	PERFORMANCE EVALUATION OF ADVANCED ENERGY STORAGE SYSTEMS: A REVIEW. Energy and Environment, 2023, 34, 1094-1141.	2.7	11
309	How to characterize a NDT method for weld inspection in battery cell manufacturing using deep learning. International Journal of Advanced Manufacturing Technology, 2022, 119, 4829.	1.5	5
310	Technological innovation <i>vs.</i> tightening raw material markets: falling battery costs put at risk. Energy Advances, 2022, 1, 136-145.	1.4	21
311	A Prestressing Strategy Enabled Synergistic Energyâ€Dissipation in Impactâ€Resistant Nacreâ€Like Structures. Advanced Science, 2022, 9, e2104867.	5.6	16
312	Regulated Synthesis of α-NaVOPO ₄ with an Enhanced Conductive Network as a High-Performance Cathode for Aqueous Na-Ion Batteries. ACS Applied Materials & Interfaces, 2022, 14, 6841-6851.	4.0	12
313	Processâ€Structureâ€Formulation Interactions for Enhanced Sodium Ion Battery Development: A Review. ChemPhysChem, 2022, 23, .	1.0	4
314	Meta-analysis of experimental results for heat capacity and thermal conductivity in lithium-ion batteries: A critical review. Journal of Power Sources, 2022, 522, 230829.	4.0	28
315	Cationâ€Tuning Induced dâ€Band Center Modulation on Coâ€Based Spinel Oxide for Oxygen Reduction/Evolution Reaction. Angewandte Chemie, 2022, 134, .	1.6	14
316	Cationâ€īuning Induced dâ€Band Center Modulation on Coâ€Based Spinel Oxide for Oxygen Reduction/Evolution Reaction. Angewandte Chemie - International Edition, 2022, 61, .	7.2	156
317	Sample-efficient parameter exploration of the powder film drying process using experiment-based Bayesian optimization. Scientific Reports, 2022, 12, 1615.	1.6	7
318	Hygroscopic Chemistry Enables Fireâ€Tolerant Supercapacitors with a Selfâ€Healable "Soluteâ€inâ€Air― Electrolyte. Advanced Materials, 2022, 34, e2109857.	11.1	12
319	Challenges, interface engineering, and processing strategies toward practical <scp>sulfideâ€based allâ€solidâ€state</scp> lithium batteries. InformaÄnÃ-Materiály, 2022, 4, .	8.5	92
320	The Battery Component Readiness Level (BC-RL) framework: A technology-specific development framework. Journal of Power Sources Advances, 2022, 14, 100089.	2.6	8
321	Systematic evaluation of materials and recipe for scalable processing of sulfide-based solid-state batteries. Materials Today Communications, 2022, 30, 103189.	0.9	10
322	Rechargeable Batteries of the Future—The State of the Art from a BATTERY 2030+ Perspective. Advanced Energy Materials, 2022, 12, .	10.2	124
323	One-step fabrication of robust lithium ion battery separators by polymerization-induced phase separation. Journal of Materials Chemistry A, 2022, 10, 10557-10568.	5.2	10
324	Process-Product Interdependencies in Lamination of Electrodes and Separators for Lithium-Ion Batteries. SSRN Electronic Journal, 0, , .	0.4	1
327	Towards Long Lifetime Battery: Al-Based Manufacturing and Management. IEEE/CAA Journal of Automatica Sinica, 2022, 9, 1139-1165.	8.5	111

#	Article	IF	CITATIONS
328	Future in Battery Production: An Extensive Benchmarking of Novel Production Technologies as Guidance for Decision Making in Engineering. IEEE Transactions on Engineering Management, 2024, 71, 1038-1056.	2.4	10
329	Inner Carbon Black Porosity as Characteristic Parameter for the Microstructure of Lithium-Ion Electrodes and its Effect on Physical and Electrochemical Properties. SSRN Electronic Journal, 0, , .	0.4	1
330	Model-based energy flexibility analysis of a dry room HVAC system in battery cell production. Procedia CIRP, 2022, 105, 410-415.	1.0	5
331	Effects of Nano-Micro Hierarchical Architecture Intraparticle Connectivity and Carbon Black-LiNi _{1/3} Mn _{1/3} Co _{1/3} O ₂ Interaction: An Energy-Power Tradeoff In Lithium-Ion Batteries. Journal of the Electrochemical Society, 2022, 169, 020576.	1.3	4
332	Analysis of the Li-ion battery industry in light of the global transition to electric passenger light duty vehicles until 2050. Environmental Research: Infrastructure and Sustainability, 2022, 2, 011002.	0.9	14
333	Advances of Metal Oxide Composite Cathodes for Aqueous Zincâ€lon Batteries. Advanced Energy and Sustainability Research, 2022, 3, .	2.8	4
334	Effect of Lithiation upon the Shear Strength of NMC811 Single Crystals. Journal of the Electrochemical Society, 2022, 169, 040511.	1.3	9
335	Allâ€Electrochemical Nanofabrication of Stacked Ternary Metal Sulfide/Graphene Electrodes for Highâ€Performance Alkaline Batteries. Small, 2022, 18, e2106403.	5.2	3
336	Methods—Spatially Resolved Diffraction Study of the Uniformity of a Li-Ion Pouch Cell. Journal of the Electrochemical Society, 2022, 169, 030518.	1.3	2
337	Ultrafast laser ablation of aqueous processed thick-film Li(Ni0.6Mn0.2Co0.2)O2 cathodes with 3D architectures for lithium-lon batteries. , 2022, , .		0
338	Direct upcycling of mixed Ni-lean polycrystals to single-crystal Ni-rich cathode materials. CheM, 2022, 8, 1944-1955.	5.8	28
339	Effect of coating operating parameters on electrode physical characteristics and final electrochemical performance of lithium-ion batteries. International Journal of Energy and Environmental Engineering, 2022, 13, 943-953.	1.3	7
340	Ion Channel Engineering in Super Thick Cathodes toward High-Energy-Density Li–S Batteries. Energy & Fuels, 2022, 36, 4087-4093.	2.5	3
341	Recent progress, mechanisms, and perspectives for crystal and interface chemistry applying to the Zn metal anodes in aqueous zincâ€ion batteries. SusMat, 2022, 2, 114-141.	7.8	60
342	Comparative X-ray Photoelectron Spectroscopy Study of the SEI and CEI in Three Different Lithium Ion Cell Formats. Journal of the Electrochemical Society, 2022, 169, 030533.	1.3	8
343	Scaling Methodology to Describe the Capacity Dependent Responses During Thermal Runaway of Lithiumâ€kon Batteries. Batteries and Supercaps, 2022, 5, .	2.4	4
344	Exploring the characteristics of technological knowledge interaction dynamics in the field of solid-state batteries: A patent-based approach. Journal of Cleaner Production, 2022, 353, 131689.	4.6	10
345	Investigating finite-size effects in molecular dynamics simulations of ion diffusion, heat transport, and thermal motion in superionic materials. Journal of Chemical Physics, 2022, 156, 134705.	1.2	11

#	Article	IF	CITATIONS
346	Biomassâ€Derived Carbon for Highâ€Performance Batteries: From Structure to Properties. Advanced Functional Materials, 2022, 32, .	7.8	71
347	A data mining approach for continuous battery cell manufacturing processes from development towards production. Advances in Industrial and Manufacturing Engineering, 2022, 4, 100078.	1.2	4
348	Energy efficiency of Heating, Ventilation and Air Conditioning systems in production environments through model-predictive control schemes: The case of battery production. Journal of Cleaner Production, 2022, 350, 131354.	4.6	7
349	Inner carbon black porosity as characteristic parameter for the microstructure of lithium-ion electrodes and its effect on physical and electrochemical properties. Journal of Power Sources, 2022, 529, 231259.	4.0	25
350	In-situ instrumentation of cells and power line communication data acquisition towards smart cell development. Journal of Energy Storage, 2022, 50, 104218.	3.9	11
351	Distributed internal thermal monitoring of lithium ion batteries with fibre sensors. Journal of Energy Storage, 2022, 50, 104291.	3.9	32
352	Early Quality Classification and Prediction of Battery Cycle Life in Production Using Machine Learning. Journal of Energy Storage, 2022, 50, 104144.	3.9	27
353	Correct water content measuring of lithium-ion battery components and the impact of calendering via Karl-Fischer titration. Journal of Energy Storage, 2022, 51, 104398.	3.9	11
354	Investigation of Fast-Charging and Degradation Processes in 3D Silicon–Graphite Anodes. Nanomaterials, 2022, 12, 140.	1.9	9
355	<i>In Situ</i> Electrochemically Activated Vanadium Oxide Cathode for Advanced Aqueous Zn-Ion Batteries. Nano Letters, 2022, 22, 119-127.	4.5	113
356	Effective Ultrasound Acoustic Measurement to Monitor the Lithium-Ion Battery Electrode Drying Process with Various Coating Thicknesses. ACS Applied Materials & Interfaces, 2022, 14, 2092-2101.	4.0	4
357	Interpretable Sensitivity Analysis and Electrode Porosity Classification for Li-ion Battery Smart Manufacturing. , 2021, , .		0
358	Puffing Up Hollow Carbon Nanofibers with Highâ€Energy Metalâ€Organic Frameworks for Capacitiveâ€Dominated Potassiumâ€ion Storage. Small, 2022, 18, e2105767.	5.2	13
359	Digitalization of Battery Manufacturing: Current Status, Challenges, and Opportunities. Advanced Energy Materials, 2022, 12, .	10.2	51
360	Influence of Cell Opening Methods on Electrolyte Removal during Processing in Lithium-Ion Battery Recycling. Metals, 2022, 12, 663.	1.0	4
361	Sodium-ion battery from sea salt: a review. Materials for Renewable and Sustainable Energy, 2022, 11, 71-89.	1.5	13
362	Discrete element method (DEM) analysis of lithium ion battery electrode structures from X-ray tomography-the effect of calendering conditions. Powder Technology, 2022, 403, 117366.	2.1	19

#	Article	IF	CITATIONS
364	Hydrolysis of Argyrodite Sulfide-Based Separator Sheets for Industrial All-Solid-State Battery Production. ACS Applied Materials & Interfaces, 2022, 14, 24245-24254.	4.0	19
365	High-Voltage Operation by Mechanical Interlocking Adhesion of Nickel-Rich Cathode and Functional Separator in Lithium-Ion Batteries. SSRN Electronic Journal, 0, , .	0.4	0
366	Comminution and Classification as Important Process Steps for the Circular Production of Lithium Batteries. KONA Powder and Particle Journal, 2023, 40, 50-73.	0.9	4
367	Stabilized cobalt-free lithium-rich cathode materials with an artificial lithium fluoride coating. International Journal of Minerals, Metallurgy and Materials, 2022, 29, 917-924.	2.4	11
368	Surface Functionalization of LiNi _{7.0} Co _{0.15} Mn _{0.15} O ₂ with Fumed Li ₂ ZrO ₃ via a Costâ€Effective Dryâ€Coating Process for Enhanced Performance in Solidâ€State Batteries. Batteries and Supercaps, 2022, 5, .	2.4	5
369	Wetting and Inductivity in the Impedance Behavior of Large Lithium-Ion Cells. Journal of the Electrochemical Society, 2022, 169, 050522.	1.3	3
370	Self-ball milling strategy to construct high-entropy oxide coated LiNi0.8Co0.1Mn0.1O2 with enhanced electrochemical performance. Journal of Advanced Ceramics, 2022, 11, 882-892.	8.9	23
371	Forecasting the Global Battery Material Flow: Analyzing the Break-Even Points at Which Secondary Battery Raw Materials Can Substitute Primary Materials in the Battery Production. Applied Sciences (Switzerland), 2022, 12, 4790.	1.3	14
372	Perspectives on Improving the Safety and Sustainability of High Voltage Lithiumâ€Ion Batteries Through the Electrolyte and Separator Region. Advanced Energy Materials, 2022, 12, .	10.2	64
373	Interpretable machine learning for battery capacities prediction and coating parameters analysis. Control Engineering Practice, 2022, 124, 105202.	3.2	38
374	New method for acquisition of impedance spectra from charge/discharge curves of lithium-ion batteries. Journal of Power Sources, 2022, 535, 231483.	4.0	6
375	Understanding slurry mixing effects on the fast charging capability of lithium-ion battery cells: Methodology and case study. Journal of Power Sources, 2022, 536, 231455.	4.0	11
376	Mechanical and physical processes of battery recycling. , 2022, , 455-486.		0
377	State of Health Estimation for Lithium-Ion Battery via Recursive Feature Elimination on Partial Charging Curves. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2023, 11, 131-142.	3.7	11
378	Multiscale Polymeric Materials for Advanced Lithium Battery Applications. Advanced Materials, 2023, 35, .	11.1	18
379	Design of experiments applied to lithium-ion batteries: A literature review. Applied Energy, 2022, 320, 119305.	5.1	52
380	Holistic battery system design optimization for electric vehicles using a multiphysically coupled lithium-ion battery design tool. Journal of Energy Storage, 2022, 52, 104854.	3.9	7
381	Numerical and experimental investigation on the defect formation in lithium-ion-battery electrode-slot coating. Chemical Engineering Science, 2022, 258, 117744.	1.9	8

#	Article	IF	Citations
382	Microstructure and Surface Engineering Through Indium Modification on Ni-Rich Layered Cathode Materials for Enhanced Electrochemical Performance of Lithium-Ion Batteries. SSRN Electronic Journal, 0, , .	0.4	0
383	Calendering of Silicon-Containing Electrodes and Their Influence on the Mechanical and Electrochemical Properties. Batteries, 2022, 8, 46.	2.1	6
384	3D electrode architectures for high energy and high power lithium-ion batteries. , 2022, , .		0
385	Capacities prediction and correlation analysis for lithium-ion battery-based energy storage system. Control Engineering Practice, 2022, 125, 105224.	3.2	4
386	Carbon binder domain networks and electrical conductivity in lithium-ion battery electrodes: A critical review. Renewable and Sustainable Energy Reviews, 2022, 166, 112624.	8.2	41
387	The Transition to Electrified Vehicles: Evaluating the Labor Demand of Manufacturing Conventional Versus Battery Electric Vehicle Powertrains. SSRN Electronic Journal, 0, , .	0.4	1
388	Free-standing and binder-free porous monolithic electrodes prepared via sol–gel processes. Journal of Sol-Gel Science and Technology, 2022, 103, 637-679.	1.1	5
389	Thermal-electrochemical parameters of a high energy lithium-ion cylindrical battery. Electrochimica Acta, 2022, 425, 140700.	2.6	8
390	A critical review of the circular economy for lithium-ion batteries and photovoltaic modules – status, challenges, and opportunities. Journal of the Air and Waste Management Association, 2022, 72, 478-539.	0.9	16
391	Single Lithium Ion Conducting "Binderlyte―for Highâ€₽erforming Lithium Metal Batteries. Small, 2022, 18, .	5.2	6
392	Specific Surface Area and Bulk Strain: Important Material Metrics Determining the Electrochemical Performance of Li- and Mn-Rich Layered Oxides. Journal of the Electrochemical Society, 2022, 169, 060521.	1.3	4
393	Protein-modified SEI formation and evolution in Li metal batteries. Journal of Energy Chemistry, 2022, 73, 248-258.	7.1	16
394	A Moltenâ€5alt Method to Synthesize Ultrahighâ€Nickel Singleâ€Crystalline LiNi _{0.92} Co _{0.06} Mn _{0.02} O ₂ with Superior Electrochemical Performance as Cathode Material for Lithiumâ€ion Batteries. Small, 2022, 18, .	5.2	20
395	Carbon <scp>nanotubesâ€coated Niâ€rich</scp> cathodes for the green manufacturing process of <scp>lithiumâ€ion</scp> batteries. International Journal of Energy Research, 2022, 46, 16061-16074.	2.2	10
396	Investigation of Moisture Content, Structural and Electrochemical Properties of Nickel-Rich NCM Based Cathodes Processed at Ambient Atmosphere. Journal of the Electrochemical Society, 2022, 169, 060512.	1.3	9
397	Mechanically and thermally robust microporous copolymer separators for lithium ion batteries. Electrochimica Acta, 2022, 425, 140705.	2.6	3
398	Achieving low-temperature hydrothermal relithiation by redox mediation for direct recycling of spent lithium-ion battery cathodes. Energy Storage Materials, 2022, 51, 54-62.	9.5	44
399	Effects of the mixing sequence on the graphite dispersion and resistance of lithium-ion battery anodes. Journal of Colloid and Interface Science, 2022, 625, 136-144.	5.0	12

#	Article	IF	CITATIONS
400	Rational Design of Co3s4-Con@N-Doped Carbon Hollow Spheres with Polar S-Co-N Bond as Bifunctional Host Materials for Lithium-Sulfur Batteries. SSRN Electronic Journal, 0, , .	0.4	0
401	Nanostructuring versus microstructuring in battery electrodes. Nature Reviews Materials, 2022, 7, 736-746.	23.3	92
402	Galliumâ€based liquid metals for lithiumâ€ion batteries. , 2022, 1, 354-372.		39
403	Robust Selfâ€Standing Singleâ€Ion Polymer Electrolytes Enabling Highâ€Safety Magnesium Batteries at Elevated Temperature. Advanced Energy Materials, 2022, 12, .	10.2	19
404	Surface-stabilization of LMR-NCM by Washing with Aqueous Buffers to Reduce Gassing and Improve Cycle-Life. Journal of the Electrochemical Society, 2022, 169, 070516.	1.3	7
405	Chemomechanics of Rechargeable Batteries: Status, Theories, and Perspectives. Chemical Reviews, 2022, 122, 13043-13107.	23.0	59
406	Toward Automated Computational Discovery of Battery Materials. Advanced Materials Technologies, 2023, 8, .	3.0	5
407	Systematic analysis of the impact of slurry coating on manufacture of Li-ion battery electrodes via explainable machine learning. Energy Storage Materials, 2022, 51, 223-238.	9.5	22
408	Qualifying water-based electrode dispersions for the inkjet printing process: a requirements analysis. Rapid Prototyping Journal, 2022, 28, 33-50.	1.6	3
409	Comparative Study on Chitosans as Green Binder Materials for LiMn2O4 Positive Electrodes in Lithium Ion Batteries. ChemElectroChem, 0, , .	1.7	2
410	High-voltage operation by mechanical interlocking adhesion of nickel-rich cathode and functional separator in lithium-ion batteries. Chemical Engineering Journal, 2022, 450, 138159.	6.6	3
411	Controlled polymerization for lithium-ion batteries. Energy Storage Materials, 2022, 52, 598-636.	9.5	4
412	A Techno-Economic Model for Benchmarking the Production Cost of Lithium-Ion Battery Cells. Batteries, 2022, 8, 83.	2.1	7
413	Radiolysis of Electrolytes in Batteries: A Quick and Efficient Screening Process for the Selection of Electrolyteâ€Additive Formulations. Small Methods, 2022, 6, .	4.6	2
414	Understanding Synthesis–Structure–Performance Correlations of Nanoarchitectured Activated Carbons for Electrochemical Applications and Carbon Capture. Advanced Functional Materials, 2022, 32, .	7.8	32
415	A Ceramic Rich Quaternary Composite Solid-State Electrolyte for Solid-State Lithium Metal Batteries. Journal of the Electrochemical Society, 2022, 169, 080510.	1.3	4
416	Tailored Digitalization in Electrode Manufacturing: The Backbone of Smart Lithiumâ€Ion Battery Cell Production. Energy Technology, 2022, 10, .	1.8	5
417	Location choice for largeâ€scale battery manufacturing plants: Exploring the role of clean energy, costs, and knowledge on location decisions in Europe. Journal of Industrial Ecology, 2022, 26, 1514-1527.	2.8	4

#	Article	IF	CITATIONS
418	Priority and Prospect of Sulfideâ€Based Solidâ€Electrolyte Membrane. Advanced Materials, 2023, 35, .	11.1	15
419	Impact of Electrode Defects on Battery Cell Performance: A Review. Batteries and Supercaps, 2022, 5, .	2.4	7
420	Theoretical Progress of 2D Sixâ€Memberedâ€Ring Inorganic Materials as Anodes for Nonâ€Lithiumâ€Ion Batteries. Small, 2022, 18, .	5.2	6
421	Enabling Long-Cycling Life of Si-on-Graphite Composite Anodes via Fabrication of a Multifunctional Polymeric Artificial Solid–Electrolyte Interphase Protective Layer. ACS Applied Materials & Interfaces, 2022, 14, 38824-38834.	4.0	9
422	Lean Cell Finalization in Lithiumâ€Ion Battery Production: Determining the Required Electrolyte Wetting Degree to Begin the Formation. Energy Technology, 2023, 11, .	1.8	9
423	Preheating of Lithium-Ion Battery Electrodes as Basis for Heated Calendering—A Numerical Approach. Processes, 2022, 10, 1667.	1.3	3
424	In situ 4D distribution visualization of carbon-black volume fraction in cathode slurry of lithium-ion battery by multi-layered electrical resistance tomography (mlERT). Advanced Powder Technology, 2022, 33, 103766.	2.0	2
425	Model-based planning of technical building services and process chains for battery cell production. Journal of Cleaner Production, 2022, 370, 133512.	4.6	3
426	Effect of external pressure and internal stress on battery performance and lifespan. Energy Storage Materials, 2022, 52, 395-429.	9.5	49
427	Pseudocapacitance-rich carbon nanospheres with graphene protective shield achieving favorable capacity-cyclability combinations of K-ion storage. Chemical Engineering Journal, 2023, 451, 138452.	6.6	5
428	Modelâ€Based Optimization of Web Tension Control for the Flexible Cell Stack Assembly of Lithiumâ€lon Battery Cells. Energy Technology, 2023, 11, .	1.8	2
429	Effects of carbon coating on calendered nano-silicon graphite composite anodes of LiB. Journal of Power Sources, 2022, 548, 232000.	4.0	11
430	Aging aware operation of lithium-ion battery energy storage systems: A review. Journal of Energy Storage, 2022, 55, 105634.	3.9	42
431	Characterization of slurries for lithium-ion battery cathodes by measuring their flow and change in hydrostatic pressure over time and clarification of the relationship between slurry and cathode properties. Journal of Colloid and Interface Science, 2023, 629, 36-45.	5.0	4
432	Potential of a machine learning based cross-process control in lithium-ion battery production. Procedia CIRP, 2022, 112, 525-530.	1.0	2
433	The Transition to Electrified Vehicles: Implications for the Future of Automotive Manufacturing and Worker Skills and Occupations. SSRN Electronic Journal, 0, , .	0.4	0
434	Enhancing laser-based contacting of aluminum current collector foils for the production of lithium-ion batteries using a nanosecond pulsed fiber laser. Procedia CIRP, 2022, 111, 778-783.	1.0	8
435	Asset Description of Digital Twin for Resilient Production Control in Rechargeable Battery Production. IFIP Advances in Information and Communication Technology, 2022, , 537-547.	0.5	0

#	Article	IF	CITATIONS
436	Multi-Body Simulation of a Novel Electrode Stacking Process for Lithium-Ion Battery Production. Procedia CIRP, 2022, 112, 519-524.	1.0	2
437	Roadmap on Li-ion battery manufacturing research. JPhys Energy, 2022, 4, 042006.	2.3	17
438	Simulation of the Calendering Process of NMCâ€622 Cathodes for Lithiumâ€Ion Batteries. Energy Technology, 2023, 11, .	1.8	2
439	Current Challenges in Efficient Lithiumâ€ l on Batteries' Recycling: A Perspective. Global Challenges, 2022, 6, .	1.8	26
440	Influence of geometrical manufacturing tolerances on lithiumâ€ion battery performance. International Journal of Energy Research, 0, , .	2.2	0
441	Simulation of Structure Formation during Drying of Lithiumâ€lon Battery Electrodes using Discrete Element Method. Energy Technology, 2023, 11, .	1.8	5
442	Current Status of Formulations and Scalable Processes for Producing Sulfidic Solid‣tate Batteries. Batteries and Supercaps, 2022, 5, .	2.4	12
443	Recent advance in two-dimensional MXenes: New horizons in flexible batteries and supercapacitors technologies. Energy Storage Materials, 2022, 53, 783-826.	9.5	23
444	Modifying the Interface between the Solvated Ionic Liquid Electrolyte and Positive Electrode to Boost Lithium-Ion Battery Performance. ACS Applied Energy Materials, 2022, 5, 10891-10896.	2.5	1
445	Toward Highâ€Areal apacity Electrodes for Lithium and Sodium Ion Batteries. Advanced Energy Materials, 2022, 12, .	10.2	28
446	Experimental Investigation of the Temperature, Pressure, and Binder System Influence on Vacuum Postdrying Processes and Moisture Management of Liâ€Ion Battery Electrodes. Energy Technology, 2023, 11, .	1.8	3
447	Battery Materials Discovery and Smart Grid Management using Machine Learning. Batteries and Supercaps, 2022, 5, .	2.4	2
448	Smart Manufacturing Processes of Low-Tortuous Structures for High-Rate Electrochemical Energy Storage Devices. Micromachines, 2022, 13, 1534.	1.4	1
449	Serrated lithium fluoride nanofibers-woven interlayer enables uniform lithium deposition for lithium-metal batteries. National Science Review, 2022, 9, .	4.6	31
450	Life Cycle Assessment of the Battery Cell Production: Using a Modular Material and Energy Flow Model to Assess Product and Process Innovations. Energy Technology, 2023, 11, .	1.8	7
451	The Influence of Calendering on the Fast Charging Performance and Lithium Plating of Hard Carbon Blend Anodes. Energy Technology, 0, , 2200865.	1.8	1
452	Toward a Liâ€lon Battery Ontology Covering Production and Material Structure. Energy Technology, 2023, 11, .	1.8	4
453	Perspectives on strategies and techniques for building robust thick electrodes for lithium-ion batteries. Journal of Power Sources, 2022, 551, 232176.	4.0	19

#	Article	IF	CITATIONS
454	Improving the Performance of Lithiumâ€Ion Batteries Using a Twoâ€Layer, Hard Carbonâ€Containing Silicon Anode for Use in Highâ€Energy Electrodes. Energy Technology, 2023, 11, .	1.8	6
455	Cell-Internal Contacting of Prismatic Lithium-Ion Batteries Using Micro-Friction Stir Spot Welding. Batteries, 2022, 8, 174.	2.1	5
456	A Perspective on Innovative Drying Methods for Energyâ€Efficient Solventâ€Based Production of Lithiumâ€Ion Battery Electrodes. Energy Technology, 2022, 10, .	1.8	7
457	A Paradox over Electric Vehicles, Mining of Lithium for Car Batteries. Energies, 2022, 15, 7997.	1.6	10
458	Numerical Models of the Electrolyte Filling Process of Lithium-Ion Batteries to Accelerate and Improve the Process and Cell Design. Batteries, 2022, 8, 159.	2.1	6
459	Simplifying Electrode Design for Lithium-Ion Rechargeable Cells. ACS Omega, 2022, 7, 37867-37872.	1.6	5
460	Self-swelling derived frameworks with rigidity and flexibility enabling high-reversible silicon anodes. Chinese Chemical Letters, 2023, 34, 107946.	4.8	1
461	Influence of Pretreatment Strategy on the Crushing of Spent Lithium-Ion Batteries. Metals, 2022, 12, 1839.	1.0	5
462	Digitalization Platform for Sustainable Battery Cell Production: Coupling of Process, Production, and Product Models. Energy Technology, 2023, 11, .	1.8	3
463	Toward the flexible production of large-format lithium-ion batteries using laser-based cell-internal contacting. Journal of Laser Applications, 2022, 34, .	0.8	7
464	Modifying the Network Structures of High Energy Anodes for Lithiumâ€Ion Batteries through Intensive Dry Mixing. Energy Technology, 2023, 11, .	1.8	3
465	Microstructure and surface engineering through indium modification on Ni-rich layered cathode materials for enhanced electrochemical performance of lithium-ion batteries. Journal of Alloys and Compounds, 2023, 934, 167862.	2.8	6
466	Achieving High Performance of Lithium Metal Batteries by Improving the Interfacial Compatibility between Organic and Inorganic Electrolytes Using a Lithium Single-Ion Polymer. ACS Applied Energy Materials, 2022, 5, 14175-14184.	2.5	1
467	Improving electrochemical properties of LiNi0.8Mn0.1Co0.1O2 cathode materials for lithium ion batteries by controlling calcination gas atmosphere. Solid State Ionics, 2022, 386, 116031.	1.3	2
468	Influence of Different Alginate and Carboxymethyl Cellulose Binders on Moisture Content, Electrode Structure, and Electrochemical Properties of Graphiteâ€Based Anodes for Lithiumâ€Ion Batteries. Energy Technology, 2023, 11, .	1.8	2
469	A dibutylhydroquinone/dibutylbenzoquinone-Cd2+/Cd self-stratified Battery. Energy Storage Materials, 2022, 53, 873-880.	9.5	0
470	Balance of sulfur doping content and conductivity of hard carbon anode for high-performance K-ion storage. Energy Storage Materials, 2023, 54, 668-679.	9.5	25
471	Heatâ€Resistant, Robust, and Hydrophilic Separators Based on Regenerated Cellulose for Advanced Supercapacitors. Small, 2023, 19, .	5.2	5

472	Sulfated Alginate as an Effective Polymer Binder for High-Voltage LiNi _{0.5} Mn _{1.5} O ₄ Electrodes in Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2022, 14, 51808-51818.	4.0	7
473	Modification of Battery Separators via Electrospinning to Enable Lamination in Cell Assembly. Energies, 2022, 15, 8430.	1.6	3
474	Traceability in Battery Cell Production. Energy Technology, 2023, 11, .	1.8	0
475	Entropy Stabilization Strategy for Enhancing the Local Structural Adaptability of Liâ€Rich Cathode Materials. Advanced Materials, 2023, 35, .	11.1	28
476	A low-carbon strategy for revival of degraded single crystal LiNi0.6Co0.2Mn0.2O2. Rare Metals, 2023, 42, 459-470.	3.6	5
477	A review on methods for state of health forecasting of lithium-ion batteries applicable in real-world operational conditions. Journal of Energy Storage, 2023, 57, 105978.	3.9	21
478	Moisture behavior of lithium-ion battery components along the production process. Journal of Energy Storage, 2023, 57, 106174.	3.9	8
479	Visualization of styrene-butadiene rubber (SBR) latex and large-scale analysis of the microstructure of lithium-ion battery (LIB) anodes. Journal of Power Sources, 2023, 557, 232552.	4.0	4
480	Integration of laser structuring into the electrode manufacturing process chain for lithium-ion batteries. Journal of Power Sources, 2023, 556, 232478.	4.0	10
481	Electrochemical lithium storage performance at high voltage and temperature of LiNi0.6Co0.2Mn0.2O2 cathode for Lithium-ion batteries by facile Mn3(PO4)2 dry coating. Applied Surface Science, 2023, 613, 156018.	3.1	4
482	Multi-criteria and real-time control of continuous battery cell production steps using deep learning. Advances in Industrial and Manufacturing Engineering, 2023, 6, 100108.	1.2	1
483	A Paradigm of Calendaringâ€Driven Electrode Microstructure for Balanced Battery Energy Density and Power Density. Advanced Energy Materials, 2023, 13, .	10.2	13
484	Insights into Enhancing Electrochemical Performance of Li-Ion Battery Anodes via Polymer Coating. Energies, 2022, 15, 8791.	1.6	8
485	Challenges and opportunities in free-standing supercapacitors research. APL Materials, 2022, 10, .	2.2	4
486	Influence of Electrode Corrugation after Calendering on the Geometry of Single Electrode Sheets in Battery Cell Production. Energy Technology, 2023, 11, .	1.8	3
487	Introducing Spectrophotometry for Quality Control in Lithiumâ€lonâ€Battery Electrode Manufacturing. Energy Technology, 2023, 11, .	1.8	2
488	Enhanced Stability and Narrowed Dâ€Band Gap of Ceâ€Doped Co ₃ O ₄ for Rechargeable Aqueous Znâ€Air Battery. Advanced Functional Materials, 2023, 33, .	7.8	25
489	Applications and Development of X-ray Inspection Techniques in Battery Cell Production. Processes, 2023, 11, 10.	1.3	5

#	Article	IF	CITATIONS
491	Enabling Aqueous Processing of Niâ€Rich Layered Oxide Cathode Materials by Addition of Lithium Sulfate. ChemSusChem, 2023, 16, .	3.6	2
492	Mechanism, quantitative characterization, and inhibition of corrosion in lithium batteries. , 2023, 2, e9120046.		22
493	Achieving High-Performance Si Nanoparticles-Embedded Carbon Fiber Film Anodes in Lithium-Ion Batteries Through Low Current Activation. Electronic Materials Letters, 0, , .	1.0	0
494	Construction of Hierarchical Surface on Carbon Fiber Paper for Lithium Metal Batteries with Superior Stability. Advanced Energy Materials, 2023, 13, .	10.2	11
495	Ultrafast Charge and Long Life of Highâ€Voltage Cathodes for Dualâ€Ion Batteries via a Bifunctional Interphase Nanolayer on Graphite Particles. Small, 2023, 19, .	5.2	9
496	Quality Assurance for Flexible Stack Assembly of Lithiumâ€lon Cells. Energy Technology, 2023, 11, .	1.8	1
497	Fabrication of a Biomass-Derived Activated Carbon-Based Anode for High-Performance Li-Ion Batteries. Micromachines, 2023, 14, 192.	1.4	5
498	Alternative solvents for Lithium-Nickel-Cobalt-Manganese-Oxide electrode fabrication for lithium-ion-cells. Journal of Power Sources, 2023, 558, 232546.	4.0	2
499	Battery lifetime of electric vehicles by novel rainflow-counting algorithm with temperature and C-rate dynamics: Effects of fast charging, user habits, vehicle-to-grid and climate zones. Journal of Energy Storage, 2023, 59, 106458.	3.9	5
500	A fault detection method of electric vehicle battery through Hausdorff distance and modified Z-score for real-world data. Journal of Energy Storage, 2023, 60, 106561.	3.9	7
501	Surface engineered hollow Ni-Co-P@TiO2- nanopolyhedrons as high performance anode material for sodium storage. Journal of Colloid and Interface Science, 2023, 635, 265-272.	5.0	3
502	Use Cases for Digital Twins in Battery Cell Manufacturing. Lecture Notes in Production Engineering, 2023, , 833-842.	0.3	0
503	Integration of Electrode Markings into the Manufacturing Process of Lithium-Ion Battery Cells for Tracking and Tracing Applications. Batteries, 2023, 9, 89.	2.1	4
504	Early stage techno-economic and environmental analysis of aluminium batteries. Energy Advances, 0, , .	1.4	0
505	Production of Nickelâ€Rich Cathodes for Lithiumâ€lon Batteries from Lab to Pilot Scale under Investigation of the Process Atmosphere. Energy Technology, 2023, 11, .	1.8	1
506	A Conceptual Framework forÂProduction Process Parameter Optimization withÂModular Hybrid Simulations. Lecture Notes in Computer Science, 2023, , 17-25.	1.0	0
507	3D microscale modeling of NMC cathodes using multi-resolution FIB-SEM tomography. Journal of Power Sources, 2023, 562, 232745.	4.0	3
508	Mixing methods for solid state electrodes: Techniques, fundamentals, recent advances, and perspectives. Chemical Engineering Journal, 2023, 464, 142469.	6.6	10

#	Article	IF	CITATIONS
509	Recent advances and future perspectives of rechargeable chloride-based batteries. Nano Energy, 2023, 110, 108364.	8.2	10
510	A design process model for battery systems based on existing life cycle assessment results. Journal of Cleaner Production, 2023, 407, 137149.	4.6	4
511	Comparison of the consequences of state of charge and state of health on the thermal runaway behavior of lithium ion batteries. Journal of Energy Storage, 2023, 62, 106837.	3.9	3
512	Discrete element method and electrochemical modelling of lithium ion cathode structures characterised by X-ray computed tomography. Chemical Engineering Journal, 2023, 465, 142749.	6.6	7
513	Influence analysis of production defects of lithium-ion cells using single-cell and multi-cell characterization. Journal of Energy Storage, 2023, 62, 106938.	3.9	4
514	In-situ electrochemical oxidization of V2O3-C cathode for boosted zinc-ion storage performance. Applied Surface Science, 2023, 616, 156481.	3.1	1
515	Model Experiments for Explaining the Processes Occurring During Conductive Battery Electrode Drying. Energy Technology, 2023, 11, .	1.8	3
516	Relaxation Effects in Self-Discharge Measurements of Lithium-Ion Batteries. Journal of the Electrochemical Society, 2023, 170, 020502.	1.3	13
517	Experimental Analysis of Drying Kinetics and Quality Aspects of Convection-Dried Cathodes at Laboratory Scale. Batteries, 2023, 9, 96.	2.1	2
518	A review of research needs in nondestructive evaluation for quality verification in electric vehicle lithium-ion battery cell manufacturing. Journal of Power Sources, 2023, 561, 232742.	4.0	13
519	Probing the Mysterious Behavior of Tungsten as a Dopant Inside Pristine Cobaltâ€Free Nickelâ€Rich Cathode Materials. Advanced Functional Materials, 2023, 33, .	7.8	10
520	Coating Defects of Lithium-Ion Battery Electrodes and Their Inline Detection and Tracking. Batteries, 2023, 9, 111.	2.1	5
521	Mass Transport in the Stefan–Knudsen Transition Region during Vacuum Drying at Different Pressures in a Porous Structure Resembling Battery Electrodes. Langmuir, 2023, 39, 2859-2869.	1.6	1
522	Electron and Ion Transport in Lithium and Lithium-Ion Battery Negative and Positive Composite Electrodes. Chemical Reviews, 2023, 123, 1327-1363.	23.0	62
523	Highly efficient, remarkable sensor activity and energy storage properties of MXenes and borophene nanomaterials. Progress in Solid State Chemistry, 2023, 70, 100392.	3.9	5
524	Settling and fluidization of tall cylinders in solidâ€liquid suspensions. AICHE Journal, 2023, 69, .	1.8	1
525	New insights into orthophosphoric acid assisted rapid aqueous processing of NMC622 cathodes. , 2023, 1, 378-387.		0
526	A reactive wetting strategy improves lithium metal reversibility. Energy Storage Materials, 2023, 58, 176-183.	9.5	8

# 527	ARTICLE Unveiling the Mechanical and Electrochemical Evolution of Nanosilicon Composite Anodes in Sulfideâ€Based Allâ€Solidâ€State Batteries. Advanced Energy Materials, 2023, 13, .	IF 10.2	CITATIONS
528	A Review of Renewable Energy and Storage Technologies for Automotive Applications. , 0, , 10.		1
529	A critical review of structural supercapacitors and outlook on future research challenges. Composites Science and Technology, 2023, 235, 109968.	3.8	23
530	Controlled Isotropic Canalization of Microsized Silicon Enabling Stable Highâ€Rate and Highâ€Loading Lithium Storage. Advanced Materials, 2023, 35, .	11.1	10
531	Challenges and Opportunities to Mitigate the Catastrophic Thermal Runaway of Highâ€Energy Batteries. Advanced Energy Materials, 2023, 13, .	10.2	22
532	Quantificational 4D visualization and mechanism analysis of inhomogeneous electrolyte wetting. ETransportation, 2023, 16, 100232.	6.8	5
533	Status and outlook for lithium-ion battery cathode material synthesis and the application of mechanistic modeling. JPhys Energy, 2023, 5, 022002.	2.3	0
534	Synthesis and characterization of poly [(3,4â€ethylenedioxy) thiophene]:polystyrene sulfonate (<scp>PEDOT</scp> : <scp>PSS</scp>) for energy storage device application. Journal of Applied Polymer Science, 2023, 140, .	1.3	2
535	Design, production, and characterization of three-dimensionally-structured oxide-polymer composite cathodes for all-solid-state batteries. Energy Storage Materials, 2023, 57, 607-617.	9.5	8
536	Mechanical Structuring of Lithiumâ€ion Battery Electrodes Using an Embossing Roller. Energy Technology, 2023, 11, .	1.8	3
537	Multilayer Graphene as a Cathode Conductive Additive in Lithium-Ion Pouch Cells: A Correlation of Changes in Electrolyte Uptake and Composition of the Electrode Electrolyte Interface with Enhanced Cycling Stability. ACS Applied Energy Materials, 2023, 6, 3251-3263.	2.5	0
538	Dry battery electrode processing, what's next?. , 2023, , 100009.		1
539	Understanding the solvation structures of glyme-based electrolytes by machine learning molecular dynamics. , 2023, 42, 100061.		1
540	Synergistic effect of small-size MnO2 nanodots and conductive reduced graphene oxide boosting cathode materials for high-performance aqueous zinc-based energy storage. Journal of Power Sources, 2023, 566, 232915.	4.0	6
541	A Systematic Literature Analysis on Electrolyte Filling and Wetting in Lithium-Ion Battery Production. Batteries, 2023, 9, 164.	2.1	3
542	Air―and Moisture Robust Surface Modification for Niâ€Rich Layered Cathode Materials for Liâ€ŀon Batteries. Small, 2023, 19, .	5.2	2
543	Extending the 3D-battery concept: large areal ultrashort pulsed laser structuring of multilayered electrode coatings. , 2023, , .		0
544	Architectural framework of digital twin-based cyber-physical production system for resilient rechargeable battery production. Journal of Computational Design and Engineering, 2023, 10, 809-829.	1.5	1

#	Article	IF	CITATIONS
545	Reversing the Chemical and Structural Changes of Prussian White After Exposure to Humidity to Enable Aqueous Electrode Processing for Sodium-ion Batteries. Journal of the Electrochemical Society, 2023, 170, 030540.	1.3	7
547	Ultrasensitive Detection for Lithium-Ion Battery Electrolyte Leakage by Rare-Earth Nd-Doped SnO ₂ Nanofibers. ACS Sensors, 2023, 8, 1700-1709.	4.0	7
548	A hierarchical SiO2-microsphere-graphene host enabling superior long-term cycling for lithium-metal anodes. Journal of Alloys and Compounds, 2023, 955, 169949.	2.8	2
549	From laboratory innovations to materials manufacturing for lithium-based batteries. Nature Energy, 2023, 8, 329-339.	19.8	69
550	Recent Progress in and Perspectives on Emerging Halide Superionic Conductors for All-Solid-State Batteries. Electrochemical Energy Reviews, 2023, 6, .	13.1	30
551	Issues Related to Power Supply Reliability in Integrated Electronic Security Systems Operated in Buildings and Vast Areas. Energies, 2023, 16, 3351.	1.6	1
552	Concept for Digital Product Twins in Battery Cell Production. World Electric Vehicle Journal, 2023, 14, 108.	1.6	0
553	Tighten the loop – Potential for reduction of environmental impacts by direct recycling of battery production waste. Procedia CIRP, 2023, 116, 65-70.	1.0	1
554	A discrete element analysis of the mechanical behaviour of a lithium-ion battery electrode active layer. Powder Technology, 2023, 425, 118574.	2.1	4
555	Capacity estimation for lithium-ion battery via a novel health indicator extracted from partial constant voltage charging curve. Journal of Cleaner Production, 2023, 409, 137220.	4.6	2
556	A Recyclable Standalone Microporous Layer with Interpenetrating Network for Sustainable Fuel Cells. Advanced Materials, 2023, 35, .	11.1	1
565	Interface engineering of MXene-based heterostructures for lithium-sulfur batteries. Nano Research, 2023, 16, 9158-9178.	5.8	14
568	Ceramic material coatings: emerging future applications. , 2023, , 3-17.		5
571	Building Better Full Manganese-Based Cathode Materials for Next-Generation Lithium-Ion Batteries. Electrochemical Energy Reviews, 2023, 6, .	13.1	10
579	The Role and Implementation Path of the Automotive Industry in Carbon Neutrality. Lecture Notes in Electrical Engineering, 2023, , 100-112.	0.3	0
589	Institutional Problems of Leadership Development in the Developing Economies: A Case of Azerbaijan. Springer Proceedings in Business and Economics, 2023, , 93-106.	0.3	0
605	Challenges and Opportunities for Laser Applications in Electric Vehicle Manufacturing. Lecture Notes in Mechanical Engineering, 2024, , 219-253.	0.3	0
618	Battery Production Systems: State of the Art and Future Developments. IFIP Advances in Information and Communication Technology, 2023, , 521-535.	0.5	1

IF CITATIONS ARTICLE # Produktionsverfahren von Batteriezellen und -systemen., 2024, 259-273. 0 621 Advanced engineering strategies for Li₂S cathodes in lithium–sulfur batteries. Journal of Materials Chemistry A, 2023, 11, 26318-26339. 5.2 Potenziale der Digitalisierung f $\tilde{A}^{1}\!/_{4}r$ eine nachhaltige Batteriezellproduktion. FOM-Edition, 2023, , 653 0.1 0 383-399. Research progress of Prussian blue and its analogues for cathodes of aqueous zinc ion batteries. Journal of Materials Chemistry A, 2024, 12, 2647-2672. Electrode Conditions of Lithium-Ion Cell for Achieving High Energy Density. Korean Journal of 674 1.2 0 Chemical Engineering, 2024, 41, 43-52. Societal Impacts of Batteries in Transportation Frameworks., 2023,,.

CITATION REPORT