Performance and cost of materials for lithium-based re-

Nature Energy 3, 267-278 DOI: 10.1038/s41560-018-0107-2

Citation Report

ARTICLE IF CITATIONS Reality check. Nature Energy, 2018, 3, 245-245. 19.8 3 1 Triphenylphosphine Oxide as Highly Effective Electrolyte Additive for Graphite/NMC811 Lithium Ion 3.2 Cells. Chemistry of Materials, 2018, 30, 2726-2741. Nanocomposite of Si/C Anode Material Prepared by Hybrid Process of High-Energy Mechanical Milling 3 1.3 11 and Carbonization for Li-Ion Secondary Batteries. Applied Sciences (Switzerland), 2018, 8, 2140. Supercritical CO₂-assisted synthesis of 3D porous SiOC/Se cathode for ultrahigh areal capacity and long cycle life Li–Se batteries. Journal of Materials Chemistry A, 2018, 6, 24773-24782. Fluorinated Electrolyte Compound as a Bi-Functional Interphase Additive for Both, Anodes and 5 1.329 Cathodes in Lithium-Ion Batteries. Journal of the Electrochemical Society, 2018, 165, A3525-A3530. Recent Advances in Energy Chemical Engineering of Next-Generation Lithium Batteries. Engineering, 3.2 2018, 4, 831-847. Performance Metrics Required of Next-Generation Batteries to Electrify Vertical Takeoff and Landing 7 8.8 81 (VTOL) Aircraft. ACS Energy Letters, 2018, 3, 2989-2994. Enhanced Capacity of NiO Nanocubes with High Dispersion and Exposed Facets Reinforced by Thermal 2.4 Plasma. ACS Applied Nano Materials, 2018, 1, 5981-5988. Detrimental Effects of Chemical Crossover from the Lithium Anode to Cathode in Rechargeable 9 8.8 89 Lithium Metal Batteries. ACS Energy Letters, 2018, 3, 2921-2930. Properties of Ion Complexes and Their Impact on Charge Transport in Organic Solvent-Based Electrolyte Solutions for Lithium Batteries: Insights from a Theoretical Perspective. Batteries, 2018, 4, 2.1 62. Before Li Ion Batteries. Chemical Reviews, 2018, 118, 11433-11456. 11 23.0 1.492 Will Sodium Layered Oxides Ever Be Competitive for Sodium Ion Battery Applications?. Journal of the 1.3 Electrochemical Society, 2018, 165, A3714-A3722. Impact of Trifluoromethylation of Adiponitrile on Aluminum Dissolution Behavior in Dinitrile-Based 13 1.3 25 Electrolytes. Journal of the Electrochemical Society, 2018, 165, A3773-A3781. Highâ€Voltage Liâ€Ion Fullâ€Cells with Ultralong Term Cycle Life at Elevated Temperature. Advanced Energy 14 10.2 34 Materials, 2018, 8, 1802322. An Integrated Strategy towards Enhanced Performance of the Lithiumâ€"Sulfur Battery and its Fading 15 1.7 14 Mechanism. Chemistry - A European Journal, 2018, 24, 18544-18550. Hydrothermal-derived carbon as a stabilizing matrix for improved cycling performance of silicon-based anodes for lithium-ion full cells. Beilstein Journal of Nanotechnology, 2018, 9, 2381-2395. Scalable Room-Temperature Synthesis of Multi-shelled Na3(VOPO4)2F Microsphere Cathodes. Joule, 17 11.7 128 2018, 2, 2348-2363. Perspective on Performance, Cost, and Technical Challenges for Practical Dual-Ion Batteries. Joule, 11.7 2018, 2, 2528-2550.

#	Article	IF	CITATIONS
19	A Hierarchical Silverâ€Nanowire–Graphene Host Enabling Ultrahigh Rates and Superior Longâ€Term Cycling of Lithiumâ€Metal Composite Anodes. Advanced Materials, 2018, 30, e1804165.	11.1	221
20	Size effects of micro-pattern on lithium metal surface on the electrochemical performance of lithium metal secondary batteries. Journal of Power Sources, 2018, 408, 136-142.	4.0	20
21	Activate metallic copper as high-capacity cathode for lithium-ion batteries via nanocomposite technology. Nano Energy, 2018, 54, 59-65.	8.2	22
22	Ameliorating Interfacial Ionic Transportation in All-Solid-State Li-Ion Batteries with Interlayer Modifications. ACS Energy Letters, 2018, 3, 2775-2795.	8.8	66
23	L-Leucine Templated Biomimetic Assembly of SnO2 Nanoparticles and Their Lithium Storage Properties. Scanning, 2018, 2018, 1-8.	0.7	2
24	Unlocking Full Discharge Capacities of Poly(vinylphenothiazine) as Battery Cathode Material by Decreasing Polymer Mobility Through Crossâ€Linking. Advanced Energy Materials, 2018, 8, 1802151.	10.2	78
25	A Review: Carbon Additives in LiMnPO4- and LiCoO2-Based Cathode Composites for Lithium Ion Batteries. Batteries, 2018, 4, 50.	2.1	29
26	Growth of Al and Co co-doped NiO nanosheets on carbon cloth as the air electrode for Zn-air batteries with high cycling stability. Electrochimica Acta, 2018, 290, 21-29.	2.6	29
27	High-performance Na ion cathodes based on the ubiquitous and reversible O redox reaction. Journal of Materials Chemistry A, 2018, 6, 24120-24127.	5.2	5
28	Outstanding electrochemical performance of high-voltage LiNi1/3Co1/3Mn1/3O2 cathode achieved by application of LiPO2F2 electrolyte additive. Electrochimica Acta, 2018, 290, 568-576.	2.6	78
29	A high-volumetric-capacity and high-areal-capacity ZnCo ₂ O ₄ anode for Li-ion batteries enabled by a robust biopolymer binder. Journal of Materials Chemistry A, 2018, 6, 19455-19462.	5.2	27
30	Polydopamine-inspired nanomaterials for energy conversion and storage. Journal of Materials Chemistry A, 2018, 6, 21827-21846.	5.2	103
31	A "technology-smart―battery policy strategy for Europe. Science, 2018, 361, 1075-1077.	6.0	24
32	MXene Aerogel Scaffolds for Highâ€Rate Lithium Metal Anodes. Angewandte Chemie, 2018, 130, 15248-15253.	1.6	49
33	MXene Aerogel Scaffolds for Highâ€Rate Lithium Metal Anodes. Angewandte Chemie - International Edition, 2018, 57, 15028-15033.	7.2	279
34	Surface and Subsurface Reactions of Lithium Transition Metal Oxide Cathode Materials: An Overview of the Fundamental Origins and Remedying Approaches. Advanced Energy Materials, 2018, 8, 1802057.	10.2	207
35	Cation-Dependent Electrochemistry of Polysulfides in Lithium and Magnesium Electrolyte Solutions. Journal of Physical Chemistry C, 2018, 122, 21770-21783.	1.5	49
36	Mechanism of Charge/Discharge of Poly(vinylphenothiazine)-Based Li–Organic Batteries. Chemistry of Materials, 2018, 30, 6307-6317.	3.2	57

#	Article	IF	CITATIONS
37	Li ⁺ intercalated V ₂ O ₅ · <i>n</i> H ₂ O with enlarged layer spacing and fast ion diffusion as an aqueous zinc-ion battery cathode. Energy and Environmental Science, 2018, 11, 3157-3162.	15.6	785
38	Nâ€Ðoped Graphene Modified 3D Porous Cu Current Collector toward Microscale Homogeneous Li Deposition for Li Metal Anodes. Advanced Energy Materials, 2018, 8, 1800914.	10.2	155
39	Rejuvenating zinc batteries. Nature Materials, 2018, 17, 480-481.	13.3	88
40	The big squeeze. Nature Materials, 2018, 17, 481-481.	13.3	0
41	Toward High Power Batteries: Pre-lithiated Carbon Nanospheres as High Rate Anode Material for Lithium Ion Batteries. ACS Applied Energy Materials, 2018, 1, 4321-4331.	2.5	40
42	A route towards understanding the kinetic processes of bis(trifluoromethanesulfonyl) imide anion intercalation into graphite for dual-ion batteries. Electrochimica Acta, 2018, 284, 669-680.	2.6	41
43	Pentafluorophenyl Isocyanate as an Effective Electrolyte Additive for Improved Performance of Silicon-Based Lithium-Ion Full Cells. ACS Applied Materials & Interfaces, 2018, 10, 28187-28198.	4.0	49
44	Pre-Lithiation Strategies for Rechargeable Energy Storage Technologies: Concepts, Promises and Challenges. Batteries, 2018, 4, 4.	2.1	251
45	A strategy for designing new AB 4.5 -type hydrogen storage alloys with high capacity and long cycling life. Journal of Power Sources, 2018, 398, 42-48.	4.0	26
46	A surfactant-assisted strategy to tailor Li-ion charge transfer interfacial resistance for scalable all-solid-state Li batteries. Sustainable Energy and Fuels, 2018, 2, 2165-2170.	2.5	51
47	High oulombic fficiency Carbon/Li Clusters Composite Anode without Precycling or Prelithiation. Small, 2018, 14, e1802226.	5.2	31
48	Olivine Positive Electrodes for Li-Ion Batteries: Status and Perspectives. Batteries, 2018, 4, 39.	2.1	41
49	Cu ion implantation improves the performance of Si film anode used in lithium ion battery. Nuclear Instruments & Methods in Physics Research B, 2019, 440, 191-196.	0.6	6
50	Hierarchically Porous Nâ€Doped Carbon Fibers as a Freeâ€Standing Anode for Highâ€Capacity Potassiumâ€Based Dualâ€Ion Battery. Advanced Energy Materials, 2019, 9, 1901663.	10.2	128
51	Facile Patterning of Laserâ€Induced Graphene with Tailored Li Nucleation Kinetics for Stable Lithiumâ€Metal Batteries. Advanced Energy Materials, 2019, 9, 1901796.	10.2	76
52	Enabling High Performance Potassiumâ€Based Dualâ€Graphite Battery Cells by Highly Concentrated Electrolytes. Batteries and Supercaps, 2019, 2, 992-1006.	2.4	39
53	Joint Optimization of Vehicle Battery Pack Capacity and Charging Infrastructure for Electrified Public Bus Systems. IEEE Transactions on Transportation Electrification, 2019, 5, 672-682.	5.3	40
54	<i>In Situ</i> Electron Microscopy Investigation of Sodiation of Titanium Disulfide Nanoflakes. ACS Nano, 2019, 13, 9421-9430.	7.3	30

#	Article	IF	CITATIONS
55	Fluor und Lithium: Ideale Partner für Elektrolyte in wiederaufladbaren Hochleistungsbatterien. Angewandte Chemie, 2019, 131, 16124-16147.	1.6	31
56	Design, synthesis and lithium-ion storage capability of Al _{0.5} Nb _{24.5} O ₆₂ . Journal of Materials Chemistry A, 2019, 7, 19862-19871.	5.2	96
57	Recent advances in polysulfide mediation of lithium-sulfur batteries via facile cathode and electrolyte modification. APL Materials, 2019, 7, .	2.2	35
58	High electrochemical performance of nano TiO ₂ ceramic filler incorporated PVC-PEMA composite gel polymer electrolyte for Li-ion battery applications. Materials Research Express, 2019, 6, 105524.	0.8	18
59	A modeling framework to assess specific energy, costs and environmental impacts of Li-ion and Na-ion batteries. Sustainable Energy and Fuels, 2019, 3, 3061-3070.	2.5	36
60	Cl [–] /SO ₃ ^{2–} -Codoped Poly(3,4-ethylenedioxythiophene) That Interpenetrates and Encapsulates Porous Fe ₂ O ₃ To Form Composite Nanoframeworks for Stable Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2019, 11, 30801-30809.	4.0	18
61	Lithiation-Induced Structural Rearrangement and Stress Change in SiCO-Derived Porous Carbon: A First-Principles Study. Journal of Physical Chemistry C, 2019, 123, 19315-19321.	1.5	2
62	Manipulation of an ionic and electronic conductive interface for highly-stable high-voltage cathodes. Nano Energy, 2019, 65, 103988.	8.2	45
63	Sulfideâ€Based Solidâ€State Electrolytes: Synthesis, Stability, and Potential for Allâ€Solidâ€State Batteries. Advanced Materials, 2019, 31, e1901131.	11.1	365
64	Facile and scalable synthesis of SiOx materials for Li-ion negative electrodes. Journal of Power Sources, 2019, 436, 226883.	4.0	36
65	Free-standing transition metal oxide electrode architectures for electrochemical energy storage. Journal of Materials Science, 2019, 54, 13045-13069.	1.7	20
66	High-Modulus Hexagonal Boron Nitride Nanoplatelet Cel Electrolytes for Solid-State Rechargeable Lithium-Ion Batteries. ACS Nano, 2019, 13, 9664-9672.	7.3	64
67	Made From Henna! A Fast-Charging, High-Capacity, and Recyclable Tetrakislawsone Cathode Material for Lithium Ion Batteries. ACS Sustainable Chemistry and Engineering, 2019, 7, 13836-13844.	3.2	36
68	Study on thermal stability of nickel-rich/silicon-graphite large capacity lithium ion battery. Applied Thermal Engineering, 2019, 161, 114144.	3.0	24
69	Ultraviolet irradiated PEO/LATP composite gel polymer electrolytes for lithium-metallic batteries (LMBs). Applied Surface Science, 2019, 494, 1119-1126.	3.1	81
70	Nitrogen-doped hierarchical porous carbon derived from low-cost biomass pomegranate residues for high performance lithiumâ€'sulfur batteries. Journal of Electroanalytical Chemistry, 2019, 848, 113316.	1.9	36
71	Batteries Safety: Recent Progress and Current Challenges. Frontiers in Energy Research, 2019, 7, .	1.2	93
72	Intercalation chemistry of graphite: alkali metal ions and beyond. Chemical Society Reviews, 2019, 48, 4655-4687.	18.7	534

#	Article	IF	CITATIONS
73	Bio-derived N-doped porous carbon as sulfur hosts for high performance lithium sulfur batteries. Journal of Central South University, 2019, 26, 1426-1434.	1.2	6
74	Electrochemical synthesis of nanowire anodes from spent lithium ion batteries. Electrochimica Acta, 2019, 319, 481-489.	2.6	25
75	Highâ€Performance, Lowâ€Cost, and Denseâ€Structure Electrodes with High Mass Loading for Lithiumâ€Ion Batteries. Advanced Functional Materials, 2019, 29, 1903961.	7.8	93
76	Preparative hydrophilic interaction liquid chromatography of acidic organofluorophosphates formed in lithium ion battery electrolytes. Journal of Chromatography A, 2019, 1603, 438-441.	1.8	4
77	Ion Transport in Porous Electrodes Obtained by Impedance Using a Symmetric Cell with Predictable Low-Temperature Battery Performance. Journal of Physical Chemistry Letters, 2019, 10, 5013-5018.	2.1	29
78	Fluorine and Lithium: Ideal Partners for Highâ€Performance Rechargeable Battery Electrolytes. Angewandte Chemie - International Edition, 2019, 58, 15978-16000.	7.2	243
79	Effect of the active material type and battery geometry on the thermal behavior of lithium-ion batteries. Energy, 2019, 185, 1250-1262.	4.5	20
80	Tetrahydrothiophene 1-oxide as highly effective co-solvent for propylene carbonate-based electrolytes. Journal of Power Sources, 2019, 437, 226881.	4.0	9
81	Butyronitrile-Based Electrolytes for Fast Charging of Lithium-Ion Batteries. Energies, 2019, 12, 2869.	1.6	17
82	Structure design and mechanism analysis of silicon anode for lithium-ion batteries. Science China Materials, 2019, 62, 1515-1536.	3.5	80
83	Controllable growth of LiMn2O4 by carbohydrate-assisted combustion synthesis for high performance Li-ion batteries. Nano Energy, 2019, 64, 103936.	8.2	47
84	Thermally stable, nano-porous and eco-friendly sodium alginate/attapulgite separator for lithium-ion batteries. Energy Storage Materials, 2019, 22, 48-56.	9.5	79
85	Overview of model-based online state-of-charge estimation using Kalman filter family for lithium-ion batteries. Renewable and Sustainable Energy Reviews, 2019, 113, 109233.	8.2	382
86	High Capacity Utilization of Li Metal Anodes by Application of Celgard Separator-Reinforced Ternary Polymer Electrolyte. Journal of the Electrochemical Society, 2019, 166, A2142-A2150.	1.3	26
87	Unraveling and Mitigating the Storage Instability of Fluoroethylene Carbonate-Containing LiPF ₆ Electrolytes To Stabilize Lithium Metal Anodes for High-Temperature Rechargeable Batteries. ACS Applied Energy Materials, 2019, 2, 4925-4935.	2.5	49
88	High-Performance Metal–Organic Framework-Based Single Ion Conducting Solid-State Electrolytes for Low-Temperature Lithium Metal Batteries. ACS Applied Materials & Interfaces, 2019, 11, 43206-43213.	4.0	104
89	Flexible Garnet Solid-State Electrolyte Membranes Enabled by Tile-and-Grout Design. ACS Energy Letters, 2019, 4, 2668-2674.	8.8	50
90	Synthesis of LiPF ₆ Using CaF ₂ as the Fluorinating Agent Directly: An Advanced Industrial Production Process Fully Harmonious to the Environments. Industrial & Engineering Chemistry Research, 2019, 58, 20491-20494.	1.8	15

#	Article	IF	CITATIONS
91	Immobilization of Polyiodide Redox Species in Porous Carbon for Battery-Like Electrodes in Eco-Friendly Hybrid Electrochemical Capacitors. Nanomaterials, 2019, 9, 1413.	1.9	11
92	The Future of Vehicle Electrification in India May Ride on Two Wheels. ACS Energy Letters, 2019, 4, 2691-2694.	8.8	5
93	Carbon-Based Electrode Materials for Microsupercapacitors in Self-Powering Sensor Networks: Present and Future Development. Sensors, 2019, 19, 4231.	2.1	16
94	Silicon-Nanographite Aerogel-Based Anodes for High Performance Lithium Ion Batteries. Scientific Reports, 2019, 9, 14621.	1.6	21
95	Insights into pseudographite-structured hard carbon with stabilized performance for high energy K-ion storage. Journal of Power Sources, 2019, 444, 227310.	4.0	50
97	A raw material criticality and environmental impact assessment of state-of-the-art and post-lithium-ion cathode technologies. Journal of Energy Storage, 2019, 26, 101022.	3.9	40
98	Hydrothermal Synthesis of Tunable Oliveâ€Like Ni _{0.8} Co _{0.1} Mn _{0.1} CO ₃ and its Transformation to LiNi _{0.8} Co _{0.1} Mn _{0.1} O ₂ Cathode Materials for Liâ€lon Batteries. ChemElectroChem, 2019, 6, 5661-5670.	1.7	13
99	Ni-Particle-Embedded Bilayer Gel Polymer Electrolyte for Highly Stable Lithium Metal Batteries. ACS Applied Energy Materials, 2019, 2, 8310-8318.	2.5	5
100	Exploring the bottlenecks of anionic redox in Li-rich layered sulfides. Nature Energy, 2019, 4, 977-987.	19.8	123
101	A New Electrolyte Formulation for Securing High Temperature Cycling and Storage Performances of Naâ€ion Batteries. Advanced Energy Materials, 2019, 9, 1901431.	10.2	59
102	Crystalâ€&tate Photochromism and Dualâ€Mode Mechanochromism of an Organic Molecule with Fluorescence, Roomâ€Temperature Phosphorescence, and Delayed Fluorescence. Angewandte Chemie, 2019, 131, 16597-16602.	1.6	25
103	P2â€Na _{0.67} Al _{<i>x</i>} Mn _{1â^'<i>x</i>} O ₂ : Costâ€Effective, Stable and Highâ€Rate Sodium Electrodes by Suppressing Phase Transitions and Enhancing Sodium Cation Mobility. Angewandte Chemie - International Edition, 2019, 58, 18086-18095.	7.2	127
104	Modelling of the Calendering Process of NMCâ€622 Cathodes in Battery Production Analyzing Machine/Material–Process–Structure Correlations. Energy Technology, 2019, 7, 1900840.	1.8	29
105	Fluorinated Solid-Electrolyte Interphase in High-Voltage Lithium Metal Batteries. Joule, 2019, 3, 2647-2661.	11.7	432
106	An Approach for Pre-Lithiation of Li _{1+<i>x</i>} Ni _{0.5} Mn _{1.5} O ₄ Cathodes Mitigating Active Lithium Loss. Journal of the Electrochemical Society, 2019, 166, A3531-A3538.	1.3	28
107	Promoting Transport Kinetics in Li-Ion Battery with Aligned Porous Electrode Architectures. Nano Letters, 2019, 19, 8255-8261.	4.5	104
108	Conductive Copper Niobate: Superior Li ⁺ â€Storage Capability and Novel Li ⁺ â€Transport Mechanism. Advanced Energy Materials, 2019, 9, 1902174.	10.2	99
109	Marginal Magnesium Doping for Highâ€Performance Lithium Metal Batteries. Advanced Energy Materials, 2019, 9, 1902278.	10.2	47

#	ARTICLE	IF	CITATIONS
110	Elucidating the Effect of Iron Doping on the Electrochemical Performance of Cobaltâ€Free Lithiumâ€Rich Layered Cathode Materials. Advanced Energy Materials, 2019, 9, 1902445.	10.2	70
111	P2â€Na 0.67 Al x Mn 1â~' x O 2 : Costâ€Effective, Stable and Highâ€Rate Sodium Electrodes by Suppressing Phase Transitions and Enhancing Sodium Cation Mobility. Angewandte Chemie, 2019, 131, 18254-18263.	² 1.6	9
112	Amorphous Sb 2 S 3 Anodes by Reactive Radio Frequency Magnetron Sputtering for Highâ€Performance Lithiumâ€Ion Half/Full Cells. Energy Technology, 2019, 7, 1900928.	1.8	15
113	Predicting battery life with early cyclic data by machine learning. Energy Storage, 2019, 1, e98.	2.3	13
114	Design, Fabrication, and Modulation of THz Bandpass Metamaterials. Laser and Photonics Reviews, 2019, 13, 1900071.	4.4	42
116	The coming electric vehicle transformation. Science, 2019, 366, 422-424.	6.0	191
117	Improving the Cycling Performance of High-Voltage NMC111 Graphite Lithium Ion Cells By an Effective Urea-Based Electrolyte Additive. Journal of the Electrochemical Society, 2019, 166, A2910-A2920.	1.3	16
118	Electrification of Directional Drilling Machines for Sustainable Trenchless Excavations. , 2019, , .		5
119	High-Rate Spinel LiMn ₂ O ₄ (LMO) Following Carbonate Removal and Formation of Li-Rich Interface by ALD Treatment. Journal of Physical Chemistry C, 2019, 123, 23783-23790.	1.5	22
120	The Role of Electrolyte Additives on the Interfacial Chemistry and Thermal Reactivity of Si-Anode-Based Li-Ion Battery. ACS Applied Energy Materials, 2019, 2, 6513-6527.	2.5	46
121	Data-Driven Safety Envelope of Lithium-Ion Batteries for Electric Vehicles. Joule, 2019, 3, 2703-2715.	11.7	127
122	Design of a systematic value chain for lithium-ion batteries from the raw material perspective. Resources Policy, 2019, 64, 101473.	4.2	20
123	Assessment of social sustainability hotspots in the supply chain of lithium-ion batteries. Procedia CIRP, 2019, 80, 292-297.	1.0	34
124	Understanding the impact of calcination time of high-voltage spinel Li1+Ni0.5Mn1.5O4 on structure and electrochemical behavior. Electrochimica Acta, 2019, 325, 134901.	2.6	14
125	Unlocking the True Capability of Graphite-Based Dual-Ion Batteries with Ethyl Methyl Carbonate Electrolyte. ACS Applied Energy Materials, 2019, 2, 7512-7517.	2.5	26
126	Importance of Capacity Balancing on The Electrochemical Performance of Li[Ni _{0.8} Co _{0.1} Mn _{0.1}]O ₂ (NCM811)/Silicon Full Cells. Journal of the Electrochemical Society, 2019, 166, A3265-A3271.	1.3	40
127	Constructing multidimensional conducting networks on LiCoO2 cathode for enhanced rate performance and cycle stability. Journal of Electroanalytical Chemistry, 2019, 850, 113419.	1.9	9
128	Fluorinated polysulfonamide based single ion conducting room temperature applicable gel-type polymer electrolytes for lithium ion batteries. Journal of Materials Chemistry A, 2019, 7, 188-201.	5.2	106

#	Article	IF	CITATIONS
129	Oxygen Redox Promoted by Na Excess and Covalency in Hexagonal and Monoclinic Na _{2â^'x} RuO ₃ Polymorphs. Journal of the Electrochemical Society, 2019, 166, A5343-A5348.	1.3	8
130	High-Performance Quasi-Solid-State MXene-Based Li–I Batteries. ACS Central Science, 2019, 5, 365-373.	5.3	78
131	Nanoporous Polymer Films with a High Cation Transference Number Stabilize Lithium Metal Anodes in Light-Weight Batteries for Electrified Transportation. Nano Letters, 2019, 19, 1387-1394.	4.5	59
132	Nanopore confined anthraquinone in MOF-derived N-doped microporous carbon as stable organic cathode for lithium-ion battery. Energy Storage Materials, 2019, 22, 433-440.	9.5	34
133	Reversible Anion Storage in a Metal-Organic Framework for Dual-Ion Battery Systems. Journal of the Electrochemical Society, 2019, 166, A5474-A5482.	1.3	50
134	Sustainable Graphitic Carbon Materials from Biogas as Anodes for Sodium-Ion Batteries. Journal of the Electrochemical Society, 2019, 166, A403-A409.	1.3	6
135	Achieving the Paris Climate Agreement Goals. , 2019, , .		93
136	Critical Review of the Use of Reference Electrodes in Li-Ion Batteries: A Diagnostic Perspective. Batteries, 2019, 5, 12.	2.1	103
137	Anchoring anions with metal–organic framework-functionalized separators for advanced lithium batteries. Nanoscale Horizons, 2019, 4, 705-711.	4.1	71
138	NASICON-Structured NaTi2(PO4)3 for Sustainable Energy Storage. Nano-Micro Letters, 2019, 11, 44.	14.4	100
139	Unravelling charge/discharge and capacity fading mechanisms in dual-graphite battery cells using an electron inventory model. Energy Storage Materials, 2019, 21, 414-426.	9.5	50
140	Understanding the Effect of UV-Induced Cross-Linking on the Physicochemical Properties of Highly Performing PEO/LiTFSI-Based Polymer Electrolytes. Langmuir, 2019, 35, 8210-8219.	1.6	92
141	The driving power of the electron. JPhys Energy, 2019, 1, 011001.	2.3	23
142	The Doping of FeNb ₁₁ O ₂₉ as a Way to Improve Its Electrochemical Performances. ChemistrySelect, 2019, 4, 5656-5661.	0.7	6
143	γ-Fe2O3 nanoparticles stabilized by holey reduced graphene oxide as a composite anode for lithium-ion batteries. Journal of Colloid and Interface Science, 2019, 552, 633-638.	5.0	38
144	The Power of Stoichiometry: Conditioning and Speciation of MgCl ₂ /AlCl ₃ in Tetraethylene Glycol Dimethyl Ether-Based Electrolytes. ACS Applied Materials & Interfaces, 2019, 11, 24057-24066.	4.0	34
145	An air-stable electrochromic conjugated microporous polymer as an emerging electrode material for hybrid energy storage systems. Journal of Materials Chemistry A, 2019, 7, 16397-16405.	5.2	96
146	Multifunctional polymer electrolyte improving stability of electrode-electrolyte interface in lithium metal battery under high voltage. Journal of Membrane Science, 2019, 588, 117194.	4.1	27

#	Article	IF	CITATIONS
147	Graphitic Nanocarbon with Engineered Defects for Highâ€Performance Potassiumâ€Ion Battery Anodes. Advanced Functional Materials, 2019, 29, 1903641.	7.8	212
148	Carbon coated transition metal borates as anode materials for Na-ion batteries. Chemical Engineering Journal, 2019, 375, 121998.	6.6	26
149	Life Cycle Analysis of Lithium-Ion Batteries for Automotive Applications. Batteries, 2019, 5, 48.	2.1	241
150	Lithiophilic CuO Nanoflowers on Tiâ€Mesh Inducing Lithium Lateral Plating Enabling Stable Lithiumâ€Metal Anodes with Ultrahigh Rates and Ultralong Cycle Life. Advanced Energy Materials, 2019, 9, 1900853.	10.2	103
151	Probing and suppressing voltage fade of Li-rich Li1.2Ni0.13Co0.13Mn0.54O2 cathode material for lithium-ion battery. Electrochimica Acta, 2019, 318, 875-882.	2.6	42
152	Lowâ€Cost Selfâ€Assembled Oxide Separator for Rechargeable Batteries. Advanced Functional Materials, 2019, 29, 1903550.	7.8	21
153	Intermetallic SnSb nanodots embedded in carbon nanotubes reinforced nanofabric electrodes with high reversibility and rate capability for flexible Li-ion batteries. Nanoscale, 2019, 11, 13282-13288.	2.8	27
154	Specifically Designed Ionic Liquids—Formulations, Physicochemical Properties, and Electrochemical Double Layer Storage Behavior. ChemEngineering, 2019, 3, 58.	1.0	0
155	Improved Interfaces of Mechanically Modified Lithium Electrodes with Solid Polymer Electrolytes. Advanced Materials Interfaces, 2019, 6, 1900518.	1.9	14
156	Commercialization of Lithium Battery Technologies for Electric Vehicles. Advanced Energy Materials, 2019, 9, 1900161.	10.2	865
157	Structure-Performance Relationship of Zn ²⁺ Substitution in P2–Na _{0.66} Ni _{0.33} Mn _{0.67} O ₂ with Different Ni/Mn Ratios for High-Energy Sodium-Ion Batteries. ACS Applied Energy Materials, 2019, 2, 4914-4924.	2.5	39
158	Enabling Safe Sodium Metal Batteries by Solid Electrolyte Interphase Engineering: A Review. Industrial & Engineering Chemistry Research, 2019, 58, 9758-9780.	1.8	88
159	Influence of the Electrolyte Quantity on Lithium-Ion Cells. Journal of the Electrochemical Society, 2019, 166, A1709-A1714.	1.3	75
160	Surface-Modified Tin Nanoparticles and Their Electrochemical Performance in Lithium Ion Battery Cells. ACS Applied Nano Materials, 2019, 2, 3577-3589.	2.4	19
161	Cascadeâ€Type Prelithiation Approach for Liâ€Ion Capacitors. Advanced Energy Materials, 2019, 9, 1900078.	10.2	37
162	Preparation of spinel LiMn2O4 with porous microscopic morphology by simple coprecipitation-microwave synthesis method. Ionics, 2019, 25, 5213-5220.	1.2	4
163	Thermal profiling of lithium ion battery electrodes at different states of charge and aging conditions. Journal of Power Sources, 2019, 433, 226709.	4.0	12
164	Preparation of rGO/Sn/Na2Sn(PO4)2 as high performance anode material for lithium ion batteries. Materials Letters, 2019, 253, 38-41.	1.3	1

#	Article	IF	CITATIONS
165	Lithium Deficiencies Engineering in Li-Rich Layered Oxide Li _{1.098} Mn _{0.533} Ni _{0.113} Co _{0.138} O ₂ for High-Stability Cathode. Journal of the American Chemical Society, 2019, 141, 10876-10882.	6.6	171
166	Chromatographic Techniques in the Research Area of Lithium Ion Batteries: Current State-of-the-Art. Separations, 2019, 6, 26.	1.1	44
167	Deciphering the lithium ion movement in lithium ion batteries: determination of the isotopic abundances of ⁶ Li and ⁷ Li. RSC Advances, 2019, 9, 12055-12062.	1.7	13
168	Entrapping lithium deposition in lithiophilic reservoir constructed by vertically aligned ZnO nanosheets for dendrite-free Li metal anodes. Nano Energy, 2019, 62, 55-63.	8.2	127
169	LiPF ₆ Stabilizer and Transition-Metal Cation Scavenger: A Bifunctional Bipyridine-Based Ligand for Lithium-Ion Battery Application. Chemistry of Materials, 2019, 31, 4025-4033.	3.2	22
170	Li+ diffusion kinetics of SnS2 nanoflowers enhanced by reduced graphene oxides with excellent electrochemical performance as anode material for lithium-ion batteries. Journal of Alloys and Compounds, 2019, 794, 285-293.	2.8	26
171	Modular development of metal oxide/carbon composites for electrochemical energy conversion and storage. Journal of Materials Chemistry A, 2019, 7, 13096-13102.	5.2	22
172	Boosting Aqueous Batteries by Conversion-Intercalation Graphite Cathode Chemistry. Joule, 2019, 3, 1184-1187.	11.7	7
173	High Li+-conductive perovskite Li3/8Sr7/16Ta3/4Zr1/4O3 electrolyte prepared by hot-pressing for all-solid-state Li-ion batteries. Solid State Ionics, 2019, 338, 1-4.	1.3	12
174	Effective Chemical Prelithiation Strategy for Building a Silicon/Sulfur Li-Ion Battery. ACS Energy Letters, 2019, 4, 1717-1724.	8.8	151
175	Exploring the Impact of Mechanical Pressure on the Performance of Anode-Free Lithium Metal Cells. Journal of the Electrochemical Society, 2019, 166, A1291-A1299.	1.3	189
176	Exploring oxygen electrocatalytic activity and pseudocapacitive behavior of Co3O4 nanoplates in alkaline solutions. Electrochimica Acta, 2019, 310, 86-95.	2.6	21
177	Surface Modification of Ni-Rich LiNi _{0.8} Co _{0.1} Mn _{0.1} O ₂ Cathode Material by Tungsten Oxide Coating for Improved Electrochemical Performance in Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2019, 11, 18404-18414.	4.0	177
178	Synergy effects on blending Li-rich and classical layered cathode oxides with improved electrochemical performance. Ceramics International, 2019, 45, 15097-15107.	2.3	4
179	High-performance P2-Type Fe/Mn-based oxide cathode materials for sodium-ion batteries. Electrochimica Acta, 2019, 312, 45-53.	2.6	30
180	Effects of technology parameters on stress in silicon-graphite based multilayer electrodes for lithium ion batteries. Journal Physics D: Applied Physics, 2019, 52, 345501.	1.3	4
181	Lithium-Powder Based Electrodes Modified with Znl ₂ for Enhanced Electrochemical Performance of Lithium-Metal Batteries. Journal of the Electrochemical Society, 2019, 166, A1400-A1407.	1.3	14
182	Lath-shaped biomass derived hard carbon as anode materials with super rate capability for sodium-ion batteries. Journal of Electroanalytical Chemistry, 2019, 841, 63-72.	1.9	39

#	Article	IF	CITATIONS
183	Life cycle greenhouse gas emissions of Electric Vehicles in China: Combining the vehicle cycle and fuel cycle. Energy, 2019, 177, 222-233.	4.5	160
184	Solid Polymer Electrolytes for Lithium Metal Battery via Thermally Induced Cationic Ring-Opening Polymerization (CROP) with an Insight into the Reaction Mechanism. Chemistry of Materials, 2019, 31, 3118-3133.	3.2	51
185	A Roomâ€Temperature Molten Hydrate Electrolyte for Rechargeable Zinc–Air Batteries. Advanced Energy Materials, 2019, 9, 1900196.	10.2	128
186	New insights into the phase evolution in CuS during lithiation and delithiation processes. Journal of Materials Chemistry A, 2019, 7, 11699-11708.	5.2	16
187	A new HILIC-ICP-SF-MS method for the quantification of organo(fluoro)phosphates as decomposition products of lithium ion battery electrolytes. RSC Advances, 2019, 9, 11413-11419.	1.7	8
188	Towards water based ultra-thick Li ion battery electrodes – A binder approach. Journal of Power Sources, 2019, 423, 183-191.	4.0	46
189	New Li-ion battery full-cells: MoO3 nanobelts as high energy density electrode. Materials Research Express, 2019, 6, 075003.	0.8	9
190	Collapse of LiNi _{1–<i>x</i>–<i>y</i>} Co _{<i>x</i>} Mn _{<i>y</i>} O ₂ Lattice at Deep Charge Irrespective of Nickel Content in Lithium-Ion Batteries. Journal of the American Chemical Society. 2019, 141, 5097-5101.	6.6	299
191	Ionic Liquids and their Polymers in Lithium‣ulfur Batteries. Israel Journal of Chemistry, 2019, 59, 832-842.	1.0	15
192	Synthesis of Fe ₂ O ₃ Nanoparticle-Decorated N-Doped Reduced Graphene Oxide as an Effective Catalyst for Zn-Air Batteries. Journal of the Electrochemical Society, 2019, 166, A616-A622.	1.3	19
193	Recent progress on lithium-ion batteries with high electrochemical performance. Science China Chemistry, 2019, 62, 533-548.	4.2	136
194	Slurryâ€Fabricable Li ⁺ â€Conductive Polymeric Binders for Practical Allâ€Solidâ€State Lithiumâ€Ion Batteries Enabled by Solvate Ionic Liquids. Advanced Energy Materials, 2019, 9, 1802927.	10.2	135
195	Disiloxane with nitrile end groups as Co-solvent for electrolytes in lithium sulfur batteries – A feasible approach to replace LiNO3. Electrochimica Acta, 2019, 307, 76-82.	2.6	15
196	Data-driven prediction of battery cycle life before capacity degradation. Nature Energy, 2019, 4, 383-391.	19.8	1,237
197	Reviving bulky MoS ₂ as an advanced anode for lithium-ion batteries. Journal of Materials Chemistry A, 2019, 7, 10988-10997.	5.2	36
198	A Bottom-Up Approach to Lithium-Ion Battery Cost Modeling with a Focus on Cathode Active Materials. Energies, 2019, 12, 504.	1.6	147
199	A review of rechargeable batteries for portable electronic devices. InformaÄnÃ-Materiály, 2019, 1, 6-32.	8.5	694
200	Study of the Formation of a Solid Electrolyte Interphase (SEI) on a Silicon Nanowire Anode in Liquid Disiloxane Electrolyte with Nitrile End Groups for Lithiumâ€ion Batteries. Batteries and Supercaps, 2019, 2, 213-222	2.4	25

#	Article	IF	Citations
	Sodium Storage and Electrode Dynamics of Tin–Carbon Composite Electrodes from Bulk Precursors		
201	for Sodiumâ€ion Batteries. Advanced Functional Materials, 2019, 29, 1900790.	7.8	107
202	Electrolytes for Dual arbon Batteries. ChemElectroChem, 2019, 6, 2615-2629.	1.7	59
203	Dynamic processes in Si and Si/C anodes in lithium-ion batteries during cycling. Journal of Electroanalytical Chemistry, 2019, 839, 187-194.	1.9	15
204	Film-forming electrolyte additives for rechargeable lithium-ion batteries: progress and outlook. Journal of Materials Chemistry A, 2019, 7, 8700-8722.	5.2	135
205	Anion‧orbent Composite Separators for Highâ€Rate Lithiumâ€Ion Batteries. Advanced Materials, 2019, 31, e1808338.	11.1	178
206	Fluorinated Cyclic Phosphorus(III)-Based Electrolyte Additives for High Voltage Application in Lithium-Ion Batteries: Impact of Structure–Reactivity Relationships on CEI Formation and Cell Performance. ACS Applied Materials & Interfaces, 2019, 11, 16605-16618.	4.0	27
207	Structural engineering of SnS2/Graphene nanocomposite for high-performance K-ion battery anode. Nano Energy, 2019, 60, 912-918.	8.2	101
208	Rationally assembled rGO/Sn/Na ₂ Zr(PO ₄) ₂ nanocomposites as high performance anode materials for lithium and sodium ion batteries. Sustainable Energy and Fuels, 2019, 3, 1509-1516.	2.5	2
209	Sheet-type Li6PS5Cl-infiltrated Si anodes fabricated by solution process for all-solid-state lithium-ion batteries. Journal of Power Sources, 2019, 426, 143-150.	4.0	84
210	Scalable synthesis of ant-nest-like bulk porous silicon for high-performance lithium-ion battery anodes. Nature Communications, 2019, 10, 1447.	5.8	494
211	Study the Mechanism of Enhanced Li Storage Capacity through Decreasing Internal Resistance by High Electronical Conductivity via Solâ€gel Electrospinning of Co 3 O 4 Carbon Nanofibers. ChemistrySelect, 2019, 4, 3542-3546.	0.7	11
212	Prospects of production technologies and manufacturing costs of oxide-based all-solid-state lithium batteries. Energy and Environmental Science, 2019, 12, 1818-1833.	15.6	99
213	Cross Talk between Transition Metal Cathode and Li Metal Anode: Unraveling Its Influence on the Deposition/Dissolution Behavior and Morphology of Lithium. Advanced Energy Materials, 2019, 9, 1900574.	10.2	123
214	On the Factors Affecting Aging and Selfâ€Discharge of Lithium–Sulfur Cells. Effect of Positive Electrode Composition. Energy Technology, 2019, 7, 1900134.	1.8	14
215	Synthesis and Design of Engineered Biochars as Electrode Materials in Energy Storage Systems. Biofuels and Biorefineries, 2019, , 233-265.	0.5	6
216	Understanding the Li-ion storage mechanism in a carbon composited zinc sulfide electrode. Journal of Materials Chemistry A, 2019, 7, 15640-15653.	5.2	48
217	Unveiling the Origin of Superior Electrochemical Performance in Polycrystalline Dense SnO ₂ Nanospheres as Anodes for Lithium-ion Batteries. ACS Applied Energy Materials, 2019, 2, 2004-2012.	2.5	14
218	NMR as a powerful tool to study lithium ion battery electrolytes. Annual Reports on NMR Spectroscopy, 2019, 97, 121-162.	0.7	6

#	Article	IF	CITATIONS
220	P2 – Type Na0.67Mn0.8Cu0.1Mg0.1O2 as a new cathode material for sodium-ion batteries: Insights of the synergetic effects of multi-metal substitution and electrolyte optimization. Journal of Power Sources, 2019, 416, 184-192.	4.0	47
221	Analysis of acidic organo(fluoro)phosphates as decomposition product of lithium ion battery electrolytes via derivatization gas chromatography-mass spectrometry. Journal of Chromatography A, 2019, 1592, 188-191.	1.8	7
222	An In Situ Interface Reinforcement Strategy Achieving Long Cycle Performance of Dualâ€lon Batteries. Advanced Energy Materials, 2019, 9, 1804022.	10.2	92
223	Ester-Based Battery Solvents in Contact with Metallic Lithium: Effect of Water and Alcohol Impurities. Journal of Physical Chemistry C, 2019, 123, 7033-7044.	1.5	6
224	MoNb ₁₂ O ₃₃ as a new anode material for high-capacity, safe, rapid and durable Li ⁺ storage: structural characteristics, electrochemical properties and working mechanisms. Journal of Materials Chemistry A, 2019, 7, 6522-6532.	5.2	157
225	Bridging the academic and industrial metrics for next-generation practical batteries. Nature Nanotechnology, 2019, 14, 200-207.	15.6	420
226	Further Insights into Structural Diversity of Phosphorus-Based Decomposition Products in Lithium Ion Battery Electrolytes via Liquid Chromatographic Techniques Hyphenated to Ion Trap-Time-of-Flight Mass Spectrometry. Analytical Chemistry, 2019, 91, 3980-3988.	3.2	27
227	New approaches to consider electrical properties, band gaps and rate capability of same-structured cathode materials using density of states diagrams: Layered oxides as a case study. Journal of Alloys and Compounds, 2019, 787, 738-743.	2.8	30
228	Efficient Liâ€lonâ€Conductive Layer for the Realization of Highly Stable Highâ€Voltage and Highâ€Capacity Lithium Metal Batteries. Advanced Energy Materials, 2019, 9, 1803722.	10.2	54
229	Comparative analysis of stearates as grease lubricant thickeners. Industrial Lubrication and Tribology, 2019, 71, 1093-1098.	0.6	1
230	Developing a Large-Scale Microscopic Model of Electric Public Bus Operation and Charging. , 2019, , .		5
231	The Future of Biofuels in an Electrifying Global Transportation Sector: Imperative, Prospects and Challenges. Applied Economic Perspectives and Policy, 2019, 41, 563-582.	3.1	39
232	Investigations on the Effective Electric Loads in Blended Insertion Electrodes for Lithiumâ€lon Batteries. ChemElectroChem, 2019, 6, 5728-5734.	1.7	14
233	Reaction Product Analyses of the Most Active "Inactive―Material in Lithium-Ion Batteries—The Electrolyte. I: Themal Stress and Marker Molecules. Chemistry of Materials, 2019, 31, 9970-9976.	3.2	17
234	lssues and opportunities facing aqueous zinc-ion batteries. Energy and Environmental Science, 2019, 12, 3288-3304.	15.6	1,313
235	Zinc niobate materials: crystal structures, energy-storage capabilities and working mechanisms. Journal of Materials Chemistry A, 2019, 7, 25537-25547.	5.2	63
236	Toward a new generation of low cost, efficient, and durable metal–air flow batteries. Journal of Materials Chemistry A, 2019, 7, 26744-26768.	5.2	51
237	Lithium-ion battery pioneers awarded Chemistry Nobel. Physics Today, 2019, 72, 20-24.	0.3	2

	Сітаті	on Report	
#	Article	IF	CITATIONS
238	Power Consumption Analysis, Measurement, Management, and Issues: A State-of-the-Art Review of Smartphone Battery and Energy Usage. IEEE Access, 2019, 7, 182113-182172.	2.6	100
239	Novel zinc–iodine hybrid supercapacitors with a redox iodide ion electrolyte and B, N dual-doped carbon electrode exhibit boosted energy density. Journal of Materials Chemistry A, 2019, 7, 24400-24407.	5.2	68
240	Covalent organic framework-regulated ionic transportation for high-performance lithium-ion batteries. Journal of Materials Chemistry A, 2019, 7, 26540-26548.	5.2	48
241	<i>In situ</i> ⁷ Li-NMR analysis of lithium metal surface deposits with varying electrolyte compositions and concentrations. Physical Chemistry Chemical Physics, 2019, 21, 26084-26094.	1.3	41
242	Building Better Batteries in the Solid State: A Review. Materials, 2019, 12, 3892.	1.3	168
243	Recycling lithium-ion batteries from electric vehicles. Nature, 2019, 575, 75-86.	13.7	1,699
244	A high-energy-density and long-life lithium-ion battery via reversible oxide–peroxide conversion. Nature Catalysis, 2019, 2, 1035-1044.	16.1	150
245	Decarbonizing mobility: Thoughts on an unresolved challenge. European Physical Journal Plus, 2019, 134, 1.	1.2	5
246	Advances in sodium secondary batteries utilizing ionic liquid electrolytes. Energy and Environmental Science, 2019, 12, 3247-3287.	15.6	129
247	Grafted polyrotaxanes as highly conductive electrolytes for lithium metal batteries. Journal of Power Sources, 2019, 409, 148-158.	4.0	59
248	Adaptation and improvement of an elemental mapping method for lithium ion battery electrodes and separators by means of laser ablation-inductively coupled plasma-mass spectrometry. Analytical and Bioanalytical Chemistry, 2019, 411, 581-589.	1.9	17
249	In-situ growth of Co3O4 nanowire-assembled clusters on nickel foam for aqueous rechargeable Zn-Co3O4 and Zn-air batteries. Applied Catalysis B: Environmental, 2019, 241, 104-112.	10.8	167
250	Molybdenum and tungsten chalcogenides for lithium/sodium-ion batteries: Beyond MoS2. Journal of Energy Chemistry, 2019, 33, 100-124.	7.1	174
251	3-Dimensional hierarchically porous ZnFe2O4/C composites with stable performance as anode materials for Li-ion batteries. Chemical Engineering Journal, 2019, 355, 687-696.	6.6	67
252	Recent advances in gel polymer electrolyte for high-performance lithium batteries. Journal of Energy Chemistry, 2019, 37, 126-142.	7.1	220
253	Advancing knowledge of electrochemically generated lithium microstructure and performance decay of lithium ion battery by synchrotron X-ray tomography. Materials Today, 2019, 27, 21-32.	8.3	47
254	Rechargeable Seawater Batteries—From Concept to Applications. Advanced Materials, 2019, 31, e1804936.	11.1	73
255	Self-Assembled Block Copolymer Electrolytes: Enabling Superior Ambient Cationic Conductivity and Electrochemical Stability. Chemistry of Materials, 2019, 31, 277-285.	3.2	33

#	Article	IF	CITATIONS
256	Automotive Li-Ion Batteries: Current Status and Future Perspectives. Electrochemical Energy Reviews, 2019, 2, 1-28.	13.1	745
257	Theoretical versus Practical Energy: A Plea for More Transparency in the Energy Calculation of Different Rechargeable Battery Systems. Advanced Energy Materials, 2019, 9, 1803170.	10.2	276
258	Orthorhombic and monoclinic modifications of FeNb11O29, as promising anode materials for lithium batteries: Relationships between pseudocapacitive behaviour and structure. Electrochimica Acta, 2019, 296, 938-944.	2.6	20
259	Ultrathin Sb2S3 nanosheet anodes for exceptional pseudocapacitive contribution to multi-battery charge storage. Energy Storage Materials, 2019, 20, 36-45.	9.5	51
260	Operando Pressure Measurements Reveal Solid Electrolyte Interphase Growth to Rank Li-Ion Cell Performance. Joule, 2019, 3, 745-761.	11.7	141
261	Tuning Anionic Redox Activity and Reversibility for a Highâ€Capacity Liâ€Rich Mnâ€Based Oxide Cathode via an Integrated Strategy. Advanced Functional Materials, 2019, 29, 1806706.	7.8	121
262	Effects of Charge Cutoff Potential on an Electrolyte Additive for LiNi _{0.6} Co _{0.2} Mn _{0.2} O ₂ –Mesocarbon Microbead Full Cells. Energy Technology, 2019, 7, 1800981.	1.8	17
263	Effect of solvent for tailoring the nanomorphology of multinary CuCo2S4 for overall water splitting and energy storage. Journal of Alloys and Compounds, 2019, 784, 1-7.	2.8	62
264	Cyclic Voltammetry in Lithium–Sulfur Batteries—Challenges and Opportunities. Energy Technology, 2019, 7, 1801001.	1.8	138
265	Synthesis of LiNi _{0.5} Mn _{1.5} O ₄ via Ammoniaâ€free Coâ€precipitation Method: Insight in the Effects of the Lithium Additions on the Morphology, Structure and Electrochemical properties. ChemistrySelect, 2019, 4, 393-398.	0.7	6
266	Synthesis and Comparative Investigation of Silicon Transition Metal Silicide Composite Anodes for Lithium Ion Batteries. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2019, 645, 248-256.	0.6	10
267	Projecting the Future Levelized Cost of Electricity Storage Technologies. Joule, 2019, 3, 81-100.	11.7	515
268	Possible carbon-carbon bond formation during decomposition? Characterization and identification of new decomposition products in lithium ion battery electrolytes by means of SPME-GC-MS. Electrochimica Acta, 2019, 295, 401-409.	2.6	19
269	The excellent electrochemical performances of ZnMn2O4/Mn2O3: The composite cathode material for potential aqueous zinc ion batteries. Journal of Electroanalytical Chemistry, 2019, 832, 69-74.	1.9	147
270	In-situ encapsulation of pseudocapacitive Li2TiSiO5 nanoparticles into fibrous carbon framework for ultrafast and stable lithium storage. Nano Energy, 2019, 55, 173-181.	8.2	55
271	Sandwich-structured nano/micro fiber-based separators for lithium metal batteries. Nano Energy, 2019, 55, 316-326.	8.2	84
272	Investigation of various layered lithium ion battery cathode materials by plasma- and X-ray-based element analytical techniques. Analytical and Bioanalytical Chemistry, 2019, 411, 277-285.	1.9	32
273	A Facile Preparation of S 8 /C Composite Cathode for Lithiumâ€Sulfur Cells: Influence of Intrinsic and Extrinsic Cathode Properties on the Electrochemical Performance. Energy Technology, 2019, 7, 1800789	1.8	7

#	Article	IF	CITATIONS
274	Robust Pitch on Silicon Nanolayer–Embedded Graphite for Suppressing Undesirable Volume Expansion. Advanced Energy Materials, 2019, 9, 1803121.	10.2	107
275	Tailored N-doped porous carbon nanocomposites through MOF self-assembling for Li/Na ion batteries. Journal of Colloid and Interface Science, 2019, 538, 267-276.	5.0	63
276	Correlation between long range and local structural changes in Ni-rich layered materials during charge and discharge process. Journal of Power Sources, 2019, 412, 336-343.	4.0	109
277	Influence of the Cell Format on the Electrolyte Filling Process of Lithiumâ€ion Cells. Energy Technology, 2020, 8, 1801108.	1.8	27
278	Concept for the Analysis of the Electrolyte Composition within the Cell Manufacturing Process: From Sealing to Sample Preparation. Energy Technology, 2020, 8, 1801081.	1.8	9
279	In Situ Probing Multiple cale Structures of Energy Materials for Liâ€Ion Batteries. Small Methods, 2020, 4, 1900223.	4.6	39
280	The Effects of Mechanical and Thermal Loads during Lithiumâ€Ion Pouch Cell Formation and Their Impacts on Process Time. Energy Technology, 2020, 8, 1900118.	1.8	18
281	Capacity Distribution of Large Lithiumâ€lon Battery Pouch Cells in Context with Pilot Production Processes. Energy Technology, 2020, 8, 1900196.	1.8	21
282	Enhanced Processing and Testing Concepts for New Active Materials for Lithiumâ€lon Batteries. Energy Technology, 2020, 8, 1900133.	1.8	3
283	Graphene for Energy Storage and Conversion: Synthesis and Interdisciplinary Applications. Electrochemical Energy Reviews, 2020, 3, 395-430.	13.1	59
284	Integration of Graphite and Silicon Anodes for the Commercialization of Highâ€Energy Lithiumâ€Ion Batteries. Angewandte Chemie - International Edition, 2020, 59, 110-135.	7.2	460
285	Graphit―und‣iliciumâ€Anoden für Lithiumionen―Hochenergiebatterien. Angewandte Chemie, 2020, 132, 112-138.	1.6	23
286	Strategien für kostengünstige und leistungsstarke Dualâ€lonenâ€Batterien. Angewandte Chemie, 2020, 132 3830-3861.	' 1.6	40
287	Strategies towards Low ost Dualâ€Ion Batteries with High Performance. Angewandte Chemie - International Edition, 2020, 59, 3802-3832.	7.2	242
288	Layered Transition Metal Dichalcogenideâ€Based Nanomaterials for Electrochemical Energy Storage. Advanced Materials, 2020, 32, e1903826.	11.1	329
289	Macroscopic Carbon Nanotube Structures for Lithium Batteries. Small, 2020, 16, e1902719.	5.2	35
290	Inâ€Depth TEM Investigation on Structural Inhomogeneity within a Primary Li _{<i>x</i>} Ni _{0.835} Co _{0.15} Al _{0.015} O ₂ Particle: Origin of Capacity Decay during Highâ€Rate Discharge. Angewandte Chemie - International Edition, 2020, 59, 2385-2391.	7.2	16
291	Inâ€Depth TEM Investigation on Structural Inhomogeneity within a Primary Li x Ni 0.835 Co 0.15 Al 0.015 O 2 Particle: Origin of Capacity Decay during Highâ€Rate Discharge. Angewandte Chemie, 2020, 132, 2406-2412.	1.6	4

#	ARTICLE	IF	CITATIONS
292 293	Tin oxide electrodes in Li and Na-ion batteries. , 2020, , 411-439. Nanoporous silicon spheres preparation via a controllable magnesiothermic reduction as anode for	2.6	3
294	Li-ion batteries. Electrochimica Acta, 2020, 329, 135141. Core-shell structured α-Fe2O3@Li4Ti5O12 composite as anode materials for high-performance lithium-ion batteries. Journal of Alloys and Compounds, 2020, 813, 152175.	2.8	22
295	Uniform lithium electrodeposition for stable lithium-metal batteries. Nano Energy, 2020, 67, 104172.	8.2	27
296	Regeneration and reutilization of cathode materials from spent lithium-ion batteries. Chemical Engineering Journal, 2020, 383, 123089.	6.6	213
297	Reinforcing concentrated phosphate electrolytes with in-situ polymerized skeletons for robust quasi-solid lithium metal batteries. Energy Storage Materials, 2020, 25, 305-312.	9.5	45
298	Double-carbon protected silicon anode for high performance lithium-ion batteries. Journal of Alloys and Compounds, 2020, 812, 151848.	2.8	28
299	A reality check and tutorial on electrochemical characterization of battery cell materials: How to choose the appropriate cell setup. Materials Today, 2020, 32, 131-146.	8.3	193
300	Understanding the high rate lithium storage capabilities of SiCO-derived porous carbon. Applied Materials Today, 2020, 18, 100434.	2.3	5
301	A Game Changer: Functional Nano/Micromaterials for Smart Rechargeable Batteries. Advanced Functional Materials, 2020, 30, 1902499.	7.8	41
302	Current and future cathode materials for non-aqueous Li-air (O2) battery technology – A focused review. Energy Storage Materials, 2020, 24, 512-528.	9.5	121
303	Chemical stability and long-term cell performance of low-cobalt, Ni-Rich cathodes prepared by aqueous processing for high-energy Li-lon batteries. Energy Storage Materials, 2020, 24, 188-197.	9.5	155
304	Perspectives in emerging bismuth electrochemistry. Chemical Engineering Journal, 2020, 381, 122558.	6.6	103
305	Oxygen vacancy regulated TiNb2O7 compound with enhanced electrochemical performance used as anode material in Li-ion batteries. Electrochimica Acta, 2020, 330, 135299.	2.6	59
306	Dual-ion batteries: The emerging alternative rechargeable batteries. Energy Storage Materials, 2020, 25, 1-32.	9.5	160
307	An electrolyte additive capable of scavenging HF and PF5 enables fast charging of lithium-ion batteries in LiPF6-based electrolytes. Journal of Power Sources, 2020, 446, 227366.	4.0	113
308	Lithium ion battery electrolyte degradation of field-tested electric vehicle battery cells – A comprehensive analytical study. Journal of Power Sources, 2020, 447, 227370.	4.0	65
309	Solid-state template-free fabrication of uniform Mo2C microflowers with lithium storage towards Li-ion batteries. Chinese Chemical Letters, 2020, 31, 1670-1673.	4.8	5

#	Article	IF	Citations
310	Smart grids of tomorrow and the challenges for the future. , 2020, , 279-311.		0
311	Covalently bonded 3D rebar graphene foam for ultrahigh-areal-capacity lithium-metal anodes by in-situ loose powder metallurgy synthesis. Carbon, 2020, 158, 536-544.	5.4	22
312	Citrate-directed hydrothermal synthesis of ZnCo2O4-in-carbon porous microspheres for highly reliable lithium-ion batteries. Ionics, 2020, 26, 703-710.	1.2	4
313	A Review of Composite Lithium Metal Anode for Practical Applications. Advanced Materials Technologies, 2020, 5, .	3.0	111
314	Microstructure controlled ZnCo ₂ O ₄ /C microhydrangea nanocomposites as highly reliable anodes for lithiumâ€ion batteries. International Journal of Energy Research, 2020, 44, 977-987.	2.2	8
315	Rechargeable Mg metal batteries enabled by a protection layer formed in vivo. Energy Storage Materials, 2020, 26, 408-413.	9.5	91
316	Li+ conduction in air-stable Sb-Substituted Li4SnS4 for all-solid-state Li-Ion batteries. Journal of Power Sources, 2020, 446, 227338.	4.0	75
317	Layered Co/Ni-free Mn-rich oxide P2-Na2/3Mn0.8Fe0.1Mg0.1O2 as high-performance cathode material for sodium-ion batteries. Ionics, 2020, 26, 735-743.	1.2	22
318	Ti ₃ C ₂ T <i>_{<i>x</i>}</i> MXene Interface Layer Driving Ultra-Stable Lithium-Iodine Batteries with Both High Iodine Content and Mass Loading. ACS Nano, 2020, 14, 1176-1184.	7.3	105
319	Insights into P2-Type Layered Positive Electrodes for Sodium Batteries: From Long- to Short-Range Order. ACS Applied Materials & Interfaces, 2020, 12, 5017-5024.	4.0	25
320	Sandwich-Like C@SnS@TiO ₂ Anodes with High Power and Long Cycle for Li-Ion Storage. ACS Applied Materials & Interfaces, 2020, 12, 5857-5865.	4.0	25
321	Covalent fixing of sulfur in metal–sulfur batteries. Energy and Environmental Science, 2020, 13, 432-471.	15.6	118
322	Plasmaâ€Enabled Ternary SnO ₂ @Sn/Nitrogenâ€Doped Graphene Aerogel Anode for Sodiumâ€Ion Batteries. ChemElectroChem, 2020, 7, 1358-1364.	1.7	26
323	Stroboscopic neutron diffraction applied to fast time-resolved <i>operando</i> studies on Li-ion batteries (d-LiNi _{0.5} Mn _{1.5} O ₄ <i>vs.</i> graphite). Journal of Materials Chemistry A, 2020, 8, 1288-1297.	5.2	15
324	New Insight into the Role of Mn Doping on the Bulk Structure Stability and Interfacial Stability of Niâ€Rich Layered Oxide. ChemNanoMat, 2020, 6, 451-460.	1.5	12
325	Applications of porphyrins in emerging energy conversion technologies. Coordination Chemistry Reviews, 2020, 407, 213157.	9.5	127
326	ALD-Modified LiNi _{0.33} Mn _{0.33} Co _{0.33} O ₂ Paired with Macroporous Silicon for Lithium-Ion Batteries: An Investigation on Lithium Trapping, Resistance Rise, and Cycle-Life Performance. ACS Applied Energy Materials, 2020, 3, 456-468.	2.5	12
327	Unlocking the Poly(vinylidene fluoride-co-hexafluoropropylene)/Li10GeP2S12 composite solid-state Electrolytes for Dendrite-Free Li metal batteries assisting with perfluoropolyethers as bifunctional adjuvant. Journal of Power Sources, 2020, 446, 227365.	4.0	74

#	Article	IF	CITATIONS
328	Three-dimensional polymer networks for solid-state electrochemical energy storage. Chemical Engineering Journal, 2020, 391, 123548.	6.6	44
329	Molybdenum carbide nanostructures for electrocatalytic polysulfide conversion in lithium–polysulfide batteries. Nanoscale Horizons, 2020, 5, 501-506.	4.1	19
330	Using <i>in situ</i> and operando methods to characterize phase changes in charged lithium nickel cobalt aluminum oxide cathode materials. Journal Physics D: Applied Physics, 2020, 53, 113002.	1.3	12
331	High-Performance Lithium Ion Batteries Combining Submicron Silicon and Thiophene–Terephthalic Acid-Conjugated Polymer Binders. ACS Sustainable Chemistry and Engineering, 2020, 8, 1043-1049.	3.2	21
332	Tailoring Electrolyte Additives with Synergistic Functional Moieties for Silicon Negative Electrode-Based Lithium Ion Batteries: A Case Study on Lactic Acid <i>O</i> -Carboxyanhydride. Chemistry of Materials, 2020, 32, 173-185.	3.2	31
333	Constructing a Highâ€6trength Solid Electrolyte Layer by In Vivo Alloying with Aluminum for an Ultrahighâ€Rate Lithium Metal Anode. Advanced Functional Materials, 2020, 30, 1907343.	7.8	83
334	Cobaltâ€Free Highâ€Capacity Niâ€Rich Layered Li[Ni _{0.9} Mn _{0.1}]O ₂ Cathode. Advanced Energy Materials, 2020, 10, 1903179.	10.2	141
335	Comparative study of thermal runaway and cell failure of lab-scale Li-ion batteries using accelerating rate calorimetry. Journal of Industrial and Engineering Chemistry, 2020, 83, 247-251.	2.9	19
336	Pilot-Plant Production of High-Performance Silicon Nanowires by Molten Salt Electrolysis of Silica. Industrial & Engineering Chemistry Research, 2020, 59, 1-8.	1.8	30
337	Continuous-Flow Synthesis of Carbon-Coated Silicon/Iron Silicide Secondary Particles for Li-Ion Batteries. ACS Nano, 2020, 14, 698-707.	7.3	58
338	Niâ€Rich Layered Cathode Materials with Electrochemoâ€Mechanically Compliant Microstructures for Allâ€Solidâ€State Li Batteries. Advanced Energy Materials, 2020, 10, 1903360.	10.2	136
339	Phenothiazineâ€Functionalized Poly(norbornene)s as Highâ€Rate Cathode Materials for Organic Batteries. ChemSusChem, 2020, 13, 2232-2238.	3.6	43
340	Ultrafast kinetics net electrode assembled via MoSe2/MXene heterojunction for high-performance sodium-ion batteries. Chemical Engineering Journal, 2020, 385, 123839.	6.6	141
341	Mechanochemical Synthesis of Fe–Si-Based Anode Materials for High-Energy Lithium Ion Full-Cells. ACS Applied Energy Materials, 2020, 3, 743-758.	2.5	35
342	Morphological Reversibility of Modified Li-Based Anodes for Next-Generation Batteries. ACS Energy Letters, 2020, 5, 152-161.	8.8	53
343	Tailoring the Polymer-Derived Carbon Encapsulated Silicon Nanoparticles for High-Performance Lithium-Ion Battery Anodes. ACS Applied Energy Materials, 2020, 3, 268-278.	2.5	42
344	Ceramics for electrochemical storage. , 2020, , 549-709.		21
345	Poly(vinylphenoxazine) as Fast-Charging Cathode Material for Organic Batteries. ACS Sustainable Chemistry and Engineering, 2020, 8, 238-247.	3.2	56

#	Article	IF	CITATIONS
346	High conductivity Ni12P5 nanowires as high-rate electrode material for battery-supercapacitor hybrid devices. Chemical Engineering Journal, 2020, 392, 123661.	6.6	78
347	Diffusionâ€Limited Câ€Rate: A Fundamental Principle Quantifying the Intrinsic Limits of Liâ€Ion Batteries. Advanced Energy Materials, 2020, 10, 1902523.	10.2	101
348	MXeneâ€Based Dendriteâ€Free Potassium Metal Batteries. Advanced Materials, 2020, 32, e1906739.	11.1	244
349	A new dual-ion hybrid energy storage system with energy density comparable to that of ternary lithium ion batteries. Journal of Materials Chemistry A, 2020, 8, 2571-2580.	5.2	95
350	Poly-p-phenylenes as Novel Bulk-type Anode Materials for Potassium-Ion Batteries: A First-Principles Study. Journal of Physical Chemistry C, 2020, 124, 23045-23051.	1.5	6
351	Three-Dimensional Hierarchical Porous Structures Constructed by Two-Stage MXene-Wrapped Si Nanoparticles for Li-Ion Batteries. ACS Applied Materials & Interfaces, 2020, 12, 48718-48728.	4.0	45
352	Ultralight and fire-extinguishing current collectors for high-energy and high-safety lithium-ion batteries. Nature Energy, 2020, 5, 786-793.	19.8	168
353	Lighter and safer. Nature Energy, 2020, 5, 739-740.	19.8	6
354	High valence transition metal-doped olivine cathodes for superior energy and fast cycling lithium batteries. Journal of Materials Chemistry A, 2020, 8, 25727-25738.	5.2	12
355	Regulating the Grain Orientation and Surface Structure of Primary Particles through Tungsten Modification to Comprehensively Enhance the Performance of Nickel-Rich Cathode Materials. ACS Applied Materials & Interfaces, 2020, 12, 47513-47525.	4.0	36
356	Enabling Natural Graphite in Highâ€Voltage Aqueous Graphite Zn Metal Dualâ€Ion Batteries. Advanced Energy Materials, 2020, 10, 2001256.	10.2	43
357	Small Groups, Big Impact: Eliminating Li+ Traps in Single-Ion Conducting Polymer Electrolytes. IScience, 2020, 23, 101417.	1.9	20
358	Different thermal degradation mechanisms: Role of aluminum in Ni-rich layered cathode materials. Nano Energy, 2020, 78, 105367.	8.2	27
359	Projecting the Competition between Energy-Storage Technologies in the Electricity Sector. Joule, 2020, 4, 2162-2184.	11.7	48
360	Lithium Metal-Based Composite: An Emerging Material for Next-Generation Batteries. Matter, 2020, 3, 1009-1030.	5.0	35
361	Propylene carbonate-nitrile solvent blends for thermally stable gel polymer lithium ion battery electrolytes. Journal of Power Sources, 2020, 478, 229047.	4.0	14
362	The importance of design in lithium ion battery recycling – a critical review. Green Chemistry, 2020, 22, 7585-7603.	4.6	190
363	Review on the production of high-purity lithium metal. Journal of Materials Chemistry A, 2020, 8, 22455-22466.	5.2	31

#	Article	IF	CITATIONS
364	Advances in the chemistry and applications of alkali-metal–gas batteries. Nature Reviews Chemistry, 2020, 4, 566-583.	13.8	70
365	Impact of single vs. blended functional electrolyte additives on interphase formation and overall lithium ion battery performance. Journal of Solid State Electrochemistry, 2020, 24, 3145-3156.	1.2	3
366	Industrialization of Layered Oxide Cathodes for Lithiumâ€lon and Sodiumâ€lon Batteries: A Comparative Perspective. Energy Technology, 2020, 8, 2000723.	1.8	36
367	Production of nanostructured electrodes from spent Lithium ion batteries and their application in new energy storage devices. AIP Conference Proceedings, 2020, , .	0.3	0
368	Elucidating the Improved Electrolyte Stability with Novel Benzimidazole Salt on the Li Anode Surface: Insights into Interfacial Reactions. Journal of Physical Chemistry C, 2020, 124, 23523-23531.	1.5	8
369	Enabling "lithium-free―manufacturing of pure lithium metal solid-state batteries through in situ plating. Nature Communications, 2020, 11, 5201.	5.8	101
370	A renewable gel polymer electrolyte based on the different sized carboxylated cellulose with satisfactory comprehensive performance for rechargeable lithium ion battery. Polymer, 2020, 208, 122943.	1.8	25
371	Controlling Ion Coordination Structure and Diffusion Kinetics for Optimized Electrode-Electrolyte Interphases and High-Performance Si Anodes. Chemistry of Materials, 2020, 32, 8956-8964.	3.2	24
372	Toward High-Capacity Battery Anode Materials: Chemistry and Mechanics Intertwined. Chemistry of Materials, 2020, 32, 8755-8771.	3.2	28
373	Water electrolysers with closed and open electrochemical systems. Nature Materials, 2020, 19, 1140-1150.	13.3	326
374	Size effect on the growth and pulverization behavior of Si nanodomains in SiO anode. Nano Energy, 2020, 78, 105101.	8.2	51
375	Inhibition of transition metals dissolution in cobalt-free cathode with ultrathin robust interphase in concentrated electrolyte. Nature Communications, 2020, 11, 3629.	5.8	137
376	Trifluoromethyl-free anion for highly stable lithium metal polymer batteries. Energy Storage Materials, 2020, 32, 225-233.	9.5	42
377	Intercalation materials for secondary batteries based on alkali metal exchange: developments and perspectives. Journal of Materials Chemistry A, 2020, 8, 16854-16883.	5.2	19
378	Identical Materials but Different Effects of Film-Forming Electrolyte Additives in Li Ion Batteries: Performance of a Benchmark System as the Key. Chemistry of Materials, 2020, 32, 6279-6284.	3.2	22
379	Surface Modification of the LiNi _{0.8} Co _{0.1} Mn _{0.1} O ₂ Cathode Material by Coating with FePO ₄ with a Yolk–Shell Structure for Improved Electrochemical Performance. ACS Applied Materials & Interfaces, 2020, 12, 36046-36053.	4.0	58
380	Analysis of Carbonate Decomposition During Solid Electrolyte Interphase Formation in Isotope‣abeled Lithium Ion Battery Electrolytes: Extending the Knowledge about Electrolyte Soluble Species. Batteries and Supercaps, 2020, 3, 1183-1192.	2.4	21
381	Novel synthesis of highly phosphorus-doped carbon as an ultrahigh-rate anode for sodium ion batteries. Carbon, 2020, 168, 448-457.	5.4	52

#	Article	IF	Citations
382	Large-scale synthesis of highly structural-connecting carbon nanospheres as an anodes material for lithium-ion batteries with high-rate capacity. Chemical Engineering Journal Advances, 2020, 2, 100014.	2.4	5
383	Progress of 3D network binders in silicon anodes for lithium ion batteries. Journal of Materials Chemistry A, 2020, 8, 25548-25570.	5.2	88
384	Tackling xEV Battery Chemistry in View of Raw Material Supply Shortfalls. Frontiers in Energy Research, 2020, 8, .	1.2	16
385	Recycling for All Solid-State Lithium-Ion Batteries. Matter, 2020, 3, 1845-1861.	5.0	38
386	Towards a fully predictive multi-scale pressure drop model for a wall-flow filter. Chemical Engineering Research and Design, 2020, 164, 261-280.	2.7	7
387	Electrochemical Performance of an Ultrathin Surface Oxide-Modulated Nano-Si Anode Confined in a Graphite Matrix for Highly Reversible Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2020, 12, 54608-54618.	4.0	16
388	A high-throughput assessment of the adsorption capacity and Li-ion diffusion dynamics in Mo-based ordered double-transition-metal MXenes as anode materials for fast-charging LIBs. Nanoscale, 2020, 12, 24510-24526.	2.8	27
389	Impact of the Crystalline Li ₁₅ Si ₄ Phase on the Self-Discharge Mechanism of Silicon Negative Electrodes in Organic Electrolytes. ACS Applied Materials & Interfaces, 2020, 12, 55903-55912.	4.0	12
390	Towards High Performance Chemical Vapour Deposition V2O5 Cathodes for Batteries Employing Aqueous Media. Molecules, 2020, 25, 5558.	1.7	9
391	Boosting Capacitive Sodium-Ion Storage in Electrochemically Exfoliated Graphite for Sodium-Ion Capacitors. ACS Applied Materials & Interfaces, 2020, 12, 52635-52642.	4.0	25
392	Tailoring Ion-Conducting Interphases on Magnesium Metals for High-Efficiency Rechargeable Magnesium Metal Batteries. ACS Energy Letters, 2020, 5, 3733-3740.	8.8	30
393	Effect of Anode Slippage on Cathode Cutoff Potential and Degradation Mechanisms in Ni-Rich Li-Ion Batteries. Cell Reports Physical Science, 2020, 1, 100253.	2.8	42
394	Electropolymerization Triggered <i>in Situ</i> Surface Modification of Electrode Interphases: Alleviating First-Cycle Lithium Loss in Silicon Anode Lithium-Ion Batteries. ACS Sustainable Chemistry and Engineering, 2020, 8, 12788-12798.	3.2	13
395	Diagnosing and correcting anode-free cell failure via electrolyte and morphological analysis. Nature Energy, 2020, 5, 693-702.	19.8	303
396	Insight into Si/SiCO thin films anodes for lithium-ion batteries with high capacity and cycling stability. Applied Materials Today, 2020, 20, 100773.	2.3	8
397	V2O5@TiO2 composite as cathode material for lithium-ion storage with excellent performance. Journal of Solid State Electrochemistry, 2020, 24, 2419-2425.	1.2	3
398	Effects of volume variations under different compressive pressures on the performance and microstructure of all-solid-state batteries. Journal of Power Sources, 2020, 473, 228595.	4.0	58
399	Reducing Capacity and Voltage Decay of Coâ€Free Li _{1.2} Ni _{0.2} Mn _{0.6} O ₂ as Positive Electrode Material for Lithium Batteries Employing an Ionic Liquidâ€Based Electrolyte. Advanced Energy Materials, 2020, 10, 2001830.	10.2	42

#	Article	IF	CITATIONS
400	Operando X-ray absorption spectroscopy investigations on NaxNi1/3Fe1/3Mn1/3O2 positive electrode materials for sodium and sodium ion batteries. Journal of Power Sources, 2020, 473, 228557.	4.0	11
401	Anode-free rechargeable lithium metal batteries: Progress and prospects. Energy Storage Materials, 2020, 32, 386-401.	9.5	136
402	A bilayer polymer electrolyte encompassing pyrrolidinium-based RTIL for binder-free silicon few-layer graphene nanocomposite anodes for Li-ion battery. Electrochemistry Communications, 2020, 118, 106807.	2.3	6
403	Performance and behavior of LLZO-based composite polymer electrolyte for lithium metal electrode with high capacity utilization. Nano Energy, 2020, 77, 105196.	8.2	32
404	Degradation-guided optimization of charging protocol for cycle life enhancement of Li-ion batteries with Lithium Manganese Oxide-based cathodes. Journal of Power Sources, 2020, 474, 228659.	4.0	21
405	Lithium Dendrite Suppression with a Silica Nanoparticle-Dispersed Colloidal Electrolyte. ACS Applied Materials & Interfaces, 2020, 12, 37188-37196.	4.0	27
406	Stable high-capacity and high-rate silicon-based lithium battery anodes upon two-dimensional covalent encapsulation. Nature Communications, 2020, 11, 3826.	5.8	193
407	Recent progresses of 3D printing technologies for structural energy storage devices. Materials Today Nano, 2020, 12, 100094.	2.3	42
408	Cobalt Oxide Grown on Biomass Carbon as a Threeâ€Dimensional Selfâ€Supporting Negative Electrode with High Area Specific Capacity. ChemistrySelect, 2020, 5, 8998-9004.	0.7	5
409	Quantification of Dead Lithium via In Situ Nuclear Magnetic Resonance Spectroscopy. Cell Reports Physical Science, 2020, 1, 100139.	2.8	67
410	Calenderingâ€Compatible Macroporous Architecture for Silicon–Graphite Composite toward Highâ€Energy Lithiumâ€lon Batteries. Advanced Materials, 2020, 32, e2003286.	11.1	111
411	Electrochemical characteristics and energy densities of lithium-ion batteries using mesoporous silicon and graphite as anodes. Electrochimica Acta, 2020, 357, 136870.	2.6	25
412	Stress Relief Principle of Micronâ€Sized Anodes with Large Volume Variation for Practical Highâ€Energy Lithiumâ€Ion Batteries. Advanced Functional Materials, 2020, 30, 2004841.	7.8	37
413	Nature-Inspired Purpurin Polymer for Li-Ion Batteries: Mechanistic Insights into Energy Storage via Solid-State NMR and Computational Studies. Journal of Physical Chemistry C, 2020, 124, 17939-17948.	1.5	6
414	Dynamic Simulation and Control of a New Parallel Hybrid Power System. Applied Sciences (Switzerland), 2020, 10, 5467.	1.3	3
415	Towards the swift prediction of the remaining useful life of lithium-ion batteries with end-to-end deep learning. Applied Energy, 2020, 278, 115646.	5.1	121
416	Optimization of battery and wind technologies: Case of power deviation penalties. Technology in Society, 2020, 63, 101322.	4.8	3
417	Stable Potassium Metal Anodes with an Allâ€Aluminum Current Collector through Improved Electrolyte Wetting. Advanced Materials, 2020, 32, e2002908.	11.1	70

ARTICLE IF CITATIONS # Unveiling interfacial dynamics and structural degradation of solid electrolytes in a seawater battery 5.2 8 418 system. Journal of Materials Chemistry A, 2020, 8, 21804-21811. Nanoscale Ion Regulation in Woodâ€Based Structures and Their Device Applications. Advanced 11.1 Materials, 2021, 33, e2002890. Tuning Both Anionic and Cationic Redox Chemistry of Li-Rich 420 Li_{1.2}Mn_{0.6}Ni_{0.2}O₂ via a "Three-in-One―Strategy. 3.227 Chemistry of Materials, 2020, 32, 9404-9414. Practical energy densities, cost, and technical challenges for magnesiumâ€sulfur batteries. EcoMat, 421 6.8 2020, 2, e12056. Phytoremediation of Soil Contaminated with Lithium Ion Battery Active Materialsâ€"A Proof-of-Concept 422 2.3 8 Study. Recycling, 2020, 5, 26. Dry-pressed lithium nickel cobalt manganese oxide (NCM) cathodes enabled by holey graphene host. 2.6 Electrochimica Acta, 2020, 362, 137129. Opportunities and Challenges of High-Energy Lithium Metal Batteries for Electric Vehicle Applications. ACS Energy Letters, 2020, 5, 3140-3151. 424 8.8 196 Stabilizing P3â€Type Oxides as Cathodes for Highâ€Rate and Longâ€Life Sodium Ion Batteries by Disordered 425 4.6 Distribution of Transition Metals. Small Methods, 2020, 4, 2000422. 426 Ultra-stable K metal anode enabled by oxygen-rich carbon cloth. Nano Research, 2020, 13, 3137-3141. 5.8 27 Heuristic solution for achieving long-term cycle stability for Ni-rich layered cathodes at full depth 19.8 278 of discharge. Nature Energy, 2020, 5, 860-869. Stabilizing Tin Anodes in Sodium-Ion Batteries by Alloying with Silicon. ACS Applied Energy Materials, 428 2.5 23 2020, 3, 9950-9962. Between Liquid and All Solid: A Prospect on Electrolyte Future in Lithiumâ€ion Batteries for Electric 429 1.8 Vehicles. Energy Technology, 2020, 8, 2000580. Suppressing H2–H3 phase transition in high Ni–low Co layered oxide cathode material by dual 430 5.2 112 modification. Journal of Materials Chemistry A, 2020, 8, 21306-21316. Li-rich cathodes for rechargeable Li-based batteries: reaction mechanisms and advanced 15.6 characterization techniques. Energy and Environmental Science, 2020, 13, 4450-4497. Cathode–Sulfide Solid Electrolyte Interfacial Instability: Challenges and Solutions. Frontiers in 432 1.2 4 Energy Research, 2020, 0, . Niobiumâ€Doped Titanium Dioxide with High Dopant Contents for Enhanced Lithiumâ€lon Storage. ChemElectroChem, 2020, 7, 4016-4023. Effective Optimization of High Voltage Solidâ€State Lithium Batteries by Using Poly(ethylene oxide)â€Based 434 Polymer Electrolyte with Semiâ€Interpenetrating Network. Advanced Functional Materials, 2020, 30, 7.8 84 2006289. Sustainable Encapsulation Strategy of Silicon Nanoparticles in Microcarbon Sphere for High-Performance Lithium-Ion Battery Anode. ACS Sustainable Chemistry and Engineering, 2020, 8, 3.2 14150-14158.

#	Article	IF	CITATIONS
436	TiO ₂ Nanocrystalâ€Framed Li ₂ TiSiO ₅ Platelets for Lowâ€Voltage Lithium Battery Anode. Advanced Functional Materials, 2020, 30, 2001909.	7.8	25
437	Long-Term Cyclability of NCM-811 at High Voltages in Lithium-Ion Batteries: an In-Depth Diagnostic Study. Chemistry of Materials, 2020, 32, 7796-7804.	3.2	152
438	Effects of Film Formation on the Electrodeposition of Lithium. ChemElectroChem, 2020, 7, 4336-4342.	1.7	12
439	In Situ Curing Technology for Dual Ceramic Composed by Organic–Inorganic Functional Polymer Gel Electrolyte for Dendriticâ€Free and Robust Lithium–Metal Batteries. Advanced Materials Interfaces, 2020, 7, 2000830.	1.9	14
440	Recent Advances in Lithium–Carbon Dioxide Batteries. Small Structures, 2020, 1, 2000027.	6.9	57
441	Challenges and Strategies to Advance Highâ€Energy Nickelâ€Rich Layered Lithium Transition Metal Oxide Cathodes for Harsh Operation. Advanced Functional Materials, 2020, 30, 2004748.	7.8	146
442	High energy density anodes using hybrid Li intercalation and plating mechanisms on natural graphite. Energy and Environmental Science, 2020, 13, 3723-3731.	15.6	44
443	A Scalable Silicon Nanowires-Grown-On-Graphite Composite for High-Energy Lithium Batteries. ACS Nano, 2020, 14, 12006-12015.	7.3	66
444	Enabling sustainable critical materials for battery storage through efficient recycling and improved design: A perspective. MRS Energy & Sustainability, 2020, 7, 1.	1.3	21
445	Strongly binding natural stibnite on carbon fiber as anode for lithium-ion batteries. Ionics, 2020, 26, 5915-5922.	1.2	7
446	A Progress Report on Metal–Sulfur Batteries. Advanced Functional Materials, 2020, 30, 2004084.	7.8	78
447	Insight into the Bonding and Aggregation of Alkyllithiums by Experimental Charge Density Studies and Energy Decomposition Analyses. Journal of the American Chemical Society, 2020, 142, 15897-15906.	6.6	22
448	Bicontinuous phase separation of lithium-ion battery electrodes for ultrahigh areal loading. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 21155-21161.	3.3	42
449	Electrode Engineering of Redox-Active Conjugated Microporous Polymers for Ultra-High Areal Capacity Organic Batteries. ACS Energy Letters, 2020, 5, 2945-2953.	8.8	59
450	Industrial Recycling of Lithium-Ion Batteries—A Critical Review of Metallurgical Process Routes. Metals, 2020, 10, 1107.	1.0	142
451	A Cation-Tethered Flowable Polymeric Interface for Enabling Stable Deposition of Metallic Lithium. Journal of the American Chemical Society, 2020, 142, 21393-21403.	6.6	65
452	Nanofibrous Conductive Binders Based on DNA-Wrapped Carbon Nanotubes for Lithium Battery Electrodes. IScience, 2020, 23, 101739.	1.9	3
453	Dual Immobilization of SnO _{<i>x</i>} Nanoparticles by N-Doped Carbon and TiO ₂ for High-Performance Lithium-Ion Battery Anodes. ACS Applied Materials & Interfaces, 2020, 12, 55820-55829.	4.0	18

	CITATION R	CITATION REPORT	
#	ARTICLE Riâf Rasad Electroda Materials for Albali Metalâf kan Batteries, Small 2020, 16, e2004022	IF	Citations
454	Biâ€Based Electrode Materials for Alkali Metalâ€lon Batteries. Small, 2020, 16, e2004022.	5.2	71
455	Side by Side Battery Technologies with Lithiumâ€ion Based Batteries. Advanced Energy Materials, 2020, 10, 2000089.	10.2	127
456	Quantifying the cost effectiveness of non-aqueous potassium-ion batteries. Journal of Power Sources, 2020, 464, 228228.	4.0	25
457	Advanced Current Collectors for Alkali Metal Anodes. Chemical Research in Chinese Universities, 2020, 36, 386-401.	1.3	24
458	CHAIN: Cyber Hierarchy and Interactional Network Enabling Digital Solution for Battery Full-Lifespan Management. Matter, 2020, 3, 27-41.	5.0	110
459	In-situ electrolytic synthesis and superior lithium storage capability of Ni–NiO/C nanocomposite by sacrificial nickel anode in molten carbonates. Journal of Alloys and Compounds, 2020, 834, 155111.	2.8	11
460	Revealing <i>In Situ</i> Li Metal Anode Surface Evolution upon Exposure to CO ₂ Using Ambient Pressure X-Ray Photoelectron Spectroscopy. ACS Applied Materials & Interfaces, 2020, 12, 26607-26613.	4.0	21
461	An effective way of co-precipitating Ni2+, Mn2+ and Co2+ by using ammonium oxalate as precipitant for Ni-rich Li-ion batteries cathode. Journal of Materials Science, 2020, 55, 11535-11544.	1.7	14
462	Sputter coating of lithium metal electrodes with lithiophilic metals for homogeneous and reversible lithium electrodeposition and electrodissolution. Materials Today, 2020, 39, 137-145.	8.3	32
463	The success story of graphite as a lithium-ion anode material – fundamentals, remaining challenges, and recent developments including silicon (oxide) composites. Sustainable Energy and Fuels, 2020, 4, 5387-5416.	2.5	608
464	Tuning Cobaltâ€Free Nickelâ€Rich Layered LiNi _{0.9} Mn _{0.1} O ₂ Cathode Material for Lithiumâ€Ion Batteries. ChemElectroChem, 2020, 7, 2637-2642.	1.7	24
465	Toward adequate control of internal interfaces utilizing nitrile-based electrolytes. Journal of Chemical Physics, 2020, 152, 174701.	1.2	8
466	Solid Electrolyte Interphase Evolution on Lithium Metal Electrodes Followed by Scanning Electrochemical Microscopy Under Realistic Battery Cycling Current Densities. ChemElectroChem, 2020, 7, 3590-3596.	1.7	17
467	Novel Polarization Voltage Model: Accurate Voltage and State of Power Prediction. IEEE Access, 2020, , 1-1.	2.6	5
468	Spontaneous and reversible hollowing of alloy anode nanocrystals for stable battery cycling. Nature Nanotechnology, 2020, 15, 475-481.	15.6	68
469	A review on energy chemistry of fast-charging anodes. Chemical Society Reviews, 2020, 49, 3806-3833.	18.7	323
470	A High Capacity and Working Voltage Potassiumâ€Based Dual Ion Batteries. Energy and Environmental Materials, 2021, 4, 413-420.	7.3	23
471	Recent Advances in Vanadiumâ€Based Aqueous Rechargeable Zincâ€Ion Batteries. Advanced Energy Materials, 2020, 10, 2000477.	10.2	265

#	Article	IF	CITATIONS
472	Impact of the silicon particle size on the pre-lithiation behavior of silicon/carbon composite materials for lithium ion batteries. Journal of Power Sources, 2020, 464, 228224.	4.0	40
473	Reliable liquid electrolytes for lithium metal batteries. Energy Storage Materials, 2020, 30, 113-129.	9.5	92
474	Simulation of 3-D lithium dendritic evolution under multiple electrochemical states: A parallel phase field approach. Energy Storage Materials, 2020, 30, 52-58.	9.5	17
475	Data-driven nonparametric Li-ion battery ageing model aiming at learning from real operation data – Part A: Storage operation. Journal of Energy Storage, 2020, 30, 101409.	3.9	24
476	In-situ growth of silicon nanowires on graphite by molten salt electrolysis for high performance lithium-ion batteries. Materials Letters, 2020, 273, 127946.	1.3	9
477	Battery cost modeling: A review and directions for future research. Renewable and Sustainable Energy Reviews, 2020, 127, 109872.	8.2	75
478	Fast sample preparation for organo(fluoro)phosphate quantification approaches in lithium ion battery electrolytes by means of gas chromatographic techniques. Journal of Chromatography A, 2020, 1624, 461258.	1.8	1
479	Interface Modification for Enhanced Efficiency and Stability Perovskite Solar Cells. Journal of Physical Chemistry C, 2020, 124, 12948-12955.	1.5	25
480	A low-strain V3Nb17O50 anode compound for superior Li+ storage. Energy Storage Materials, 2020, 30, 401-411.	9.5	59
481	SiO@C/TiO2 nanospheres with dual stabilized architecture as anode material for high-performance Li-ion battery. Journal of Alloys and Compounds, 2020, 836, 155407.	2.8	17
482	Synthesis of Ni-Rich Layered-Oxide Nanomaterials with Enhanced Li-Ion Diffusion Pathways as High-Rate Cathodes for Li-Ion Batteries. ACS Applied Energy Materials, 2020, 3, 6583-6590.	2.5	37
483	A data-driven coulomb counting method for state of charge calibration and estimation of lithium-ion battery. Sustainable Energy Technologies and Assessments, 2020, 40, 100752.	1.7	37
484	3D Flexible, Conductive, and Recyclable Ti ₃ C ₂ T _{<i>x</i>} MXene-Melamine Foam for High-Areal-Capacity and Long-Lifetime Alkali-Metal Anode. ACS Nano, 2020, 14, 8678-8688.	7.3	164
485	Understanding the Roles of Tris(trimethylsilyl) Phosphite (TMSPi) in LiNi _{0.8} Mn _{0.1} Co _{0.1} O ₂ (NMC811)/Silicon–Graphite (Si–Gr) Lithiumâ€Ion Batteries. Advanced Materials Interfaces, 2020, 7, 2000277.	1.9	56
486	A facile synthesis of vanadium-doped SiOx composites for high-performance Li-ion battery anodes. Journal of Alloys and Compounds, 2020, 842, 155900.	2.8	12
487	Engineering Electrolytic Silicon–Carbon Composites by Tuning the In Situ Magnesium Oxide Space Holder: Molten-Salt Electrolysis of Carbon-Encapsulated Magnesium Silicates for Preparing Lithium-Ion Battery Anodes. ACS Sustainable Chemistry and Engineering, 2020, 8, 9866-9874.	3.2	22
488	Wetting Phenomena and their Effect on the Electrochemical Performance of Surfaceâ€Tailored Lithium Metal Electrodes in Contact with Crossâ€linked Polymeric Electrolytes. Angewandte Chemie - International Edition, 2020, 59, 17145-17153.	7.2	21
489	Elimination of "Voltage Noise―of Poly (Ethylene Oxide)-Based Solid Electrolytes in High-Voltage Lithium Batteries: Linear versus Network Polymers. IScience, 2020, 23, 101225.	1.9	56

#	Article	IF	CITATIONS
490	Experimental and computational studies of electrochemical anion intercalation into graphite from target-oriented designed borate-based ionic liquid electrolytes. Journal of Power Sources, 2020, 469, 228397.	4.0	15
491	Operando Differential Electrochemical Pressiometry for Probing Electrochemoâ€Mechanics in Allâ€Solidâ€State Batteries. Advanced Functional Materials, 2020, 30, 2002535.	7.8	41
492	Lithium-ion battery performance enhanced by the combination of Si thin flake anodes and binary ionic liquid systems. Materials Advances, 2020, 1, 625-631.	2.6	9
493	Mixed Anionic and Cationic Redox Chemistry in a Tetrathiomolybdate Amorphous Coordination Framework. Angewandte Chemie - International Edition, 2020, 59, 16579-16586.	7.2	15
494	Enhancing the Electrochemical Performance of LiNi _{0.70} Co _{0.15} Mn _{0.15} O ₂ Cathodes Using a Practical Solution-Based Al ₂ O ₃ Coating. ACS Applied Materials & amp; Interfaces, 2020, 12, 31392-31400.	4.0	57
495	Benetzungsvorgäge und ihr Einfluss auf die elektrochemischen Eigenschaften von oberflähenangepassten Lithiumâ€Metallâ€Elektroden in Kontakt mit quervernetzten Polymerâ€Elektrolyten. Angewandte Chemie, 2020, 132, 17293-17302.	1.6	6
496	Mixed Anionic and Cationic Redox Chemistry in a Tetrathiomolybdate Amorphous Coordination Framework. Angewandte Chemie, 2020, 132, 16722.	1.6	1
497	Manganese Metaphosphate Mn(PO ₃) ₂ as a Highâ€Performance Negative Electrode Material for Lithiumâ€Ion Batteries. ChemElectroChem, 2020, 7, 2831-2837.	1.7	5
498	Organic polymeric filler-amorphized poly(ethylene oxide) electrolyte enables all-solid-state lithium–metal batteries operating at 35 °C. Journal of Materials Chemistry A, 2020, 8, 13351-13363.	5.2	51
499	Why Celluloseâ€Based Electrochemical Energy Storage Devices?. Advanced Materials, 2021, 33, e2000892.	11.1	125
500	Investigating the oxidation state of Fe from LiFePO ₄ â€based lithium ion battery cathodes via capillary electrophoresis. Electrophoresis, 2020, 41, 1549-1556.	1.3	5
501	Engineering cathode-electrolyte interface of graphite to enable ultra long-cycle and high-power dual-ion batteries. Journal of Power Sources, 2020, 471, 228466.	4.0	55
502	In Situ Formation of Nickel Nanoparticles from Nickel Formate for Preparation of Straight Silicon Nanowires by Molten Salt Electrolysis. ChemistrySelect, 2020, 5, 6305-6311.	0.7	0
503	Large-scale preparation and electrochemical characterization of NaTi2(PO4)3/C composite nanoparticles as anode materials in sodium ion batteries. Materials Express, 2020, 10, 680-686.	0.2	4
504	Al and Fe-containing Mn-based layered cathode with controlled vacancies for high-rate sodium ion batteries. Nano Energy, 2020, 76, 104997.	8.2	54
505	Toward real-time monitoring of lithium metal growth and dendrite formation surveillance for safe lithium metal batteries. Journal of Materials Chemistry A, 2020, 8, 7090-7099.	5.2	11
506	Unraveling the Rapid Redox Behavior of Liâ€Excess 3dâ€Transition Metal Oxides for High Rate Capability. Advanced Energy Materials, 2020, 10, 1904092.	10.2	14
507	Nonâ€Flammable Fluorinated Phosphorus(III)â€Based Electrolytes for Advanced Lithiumâ€lon Battery Performance. ChemElectroChem, 2020, 7, 1499-1508.	1.7	13

ARTICLE IF CITATIONS # Hierarchical porous silicon structures with extraordinary mechanical strength as high-performance 508 5.8 298 lithium-ion battery anodes. Nature Communications, 2020, 11, 1474. Computational predictions of twoâ \in dimensional anode materials of metalâ \in ion batteries. Wiley 509 6.2 Interdisciplinary Reviews: Computational Molecular Science, 2020, 10, e1473. Nanosized α-MnS homogenously embedded in axial multichannel carbon nanofibers as freestanding 510 1.7 14 electrodes for lithium-ion batteries. Journal of Materials Science, 2020, 55, 7403-7416. Poly(Ethylene Oxide)-based Electrolyte for Solid-State-Lithium-Batteries with High Voltage Positive Electrodes: Evaluating the Role of Electrolyte Oxidation in Rapid Cell Failure. Scientific Reports, 2020, 10, 4390. Hybrid Effect of Micropatterned Lithium Metal and Three Dimensionally Ordered Macroporous 512 Polyimide Separator on the Cycle Performance of Lithium Metal Batteries. ACS Applied Energy 2.5 14 Materials, 2020, 3, 3721-3727. Lithiophilic Silver Coating on Lithium Metal Surface for Inhibiting Lithium Dendrites. Frontiers in 1.8 Chemistry, 2020, 8, 109 514 Galvanic Corrosion of Lithiumâ€Powderâ€Based Electrodes. Advanced Energy Materials, 2020, 10, 2000017. 10.2 62 Benchmarking the performance of all-solid-state lithium batteries. Nature Energy, 2020, 5, 259-270. 19.8 515 662 High-energy long-cycling all-solid-state lithium metal batteries enabled by silver–carbon composite 516 19.8 932 anodes. Nature Energy, 2020, 5, 299-308. Quantitative spatially resolved <i>post-mortem</i> analysis of lithium distribution and transition metal depositions on cycled electrodes <i>via</i> a laser ablation-inductively coupled plasma-optical 1.7 emission spectrometry method. RSC Advances, 2020, 10, 7083-7091. 3D printing of cellular materials for advanced electrochemical energy storage and conversion. 518 2.8 56 Nanoscale, 2020, 12, 7416-7432. One-pot sol–gel synthesis of a CoMo catalyst for sustainable biofuel production by solvent- and hydrogen-free deoxygenation: effect of the citric acid ratio. Sustainable Energy and Fuels, 2020, 4, 519 2.5 2841-2849. Are MXenes suitable as cathode materials for rechargeable Mg batteries?. Sustainable Energy and 520 2.5 22 Fuels, 2020, 4, 2956-2966. Fast anion intercalation into graphite cathode enabling high-rate rechargeable zinc batteries. Journal 521 4.0 of Power Sources, 2020, 457, 227994. Protective coatings on silicon particles and their effect on energy density and specific energy in 522 3.9 18 lithium ion battery cells: A model study. Journal of Energy Storage, 2020, 29, 101376. An Innovative Lithium Ion Battery System Based on a Cu₂S Anode Material. ACS Applied 24 Materials & amp; Interfaces, 2020, 12, 17396-17405. New insight derived from a two-compartment cell: electrochemical behavior of FeF₃ 524 2.211 positive electrode. Chemical Communications, 2020, 56, 4878-4881. Revealing the correlation between structural evolution and Li⁺diffusion kinetics of 5.2 nickel-rich cathode materials in Li-ion batteries. Journal of Materials Chemistry A, 2020, 8, 8540-8547.

#	Article	IF	CITATIONS
526	A Twoâ€Dimensional Mesoporous Polypyrrole–Graphene Oxide Heterostructure as a Dualâ€Functional Ion Redistributor for Dendriteâ€Free Lithium Metal Anodes. Angewandte Chemie, 2020, 132, 12245-12251.	1.6	21
527	A Twoâ€Dimensional Mesoporous Polypyrrole–Graphene Oxide Heterostructure as a Dualâ€Functional Ion Redistributor for Dendriteâ€Free Lithium Metal Anodes. Angewandte Chemie - International Edition, 2020, 59, 12147-12153.	7.2	115
528	Basic knowledge in battery research bridging the gap between academia and industry. Materials Horizons, 2020, 7, 1937-1954.	6.4	94
529	Water-Stable Cathode for High Rate Na-Ion Batteries. ACS Applied Materials & Interfaces, 2020, 12, 15220-15227.	4.0	21
530	A Highâ€Performance Li–Mn–O Liâ€rich Cathode Material with Rhombohedral Symmetry via Intralayer Li/Mn Disordering. Advanced Materials, 2020, 32, e2000190.	11.1	83
531	Gas phase synthesis of amorphous silicon nitride nanoparticles for high-energy LIBs. Energy and Environmental Science, 2020, 13, 1212-1221.	15.6	48
532	Operando Acoustic Monitoring of SEI Formation and Long-Term Cycling in NMC/SiGr Composite Pouch Cells. Journal of the Electrochemical Society, 2020, 167, 020517.	1.3	36
533	Novel Method for Monitoring the Electrochemical Capacitance by In Situ Impedance Spectroscopy as Indicator for Particle Cracking of Nickel-Rich NCMs: Part I. Theory and Validation. Journal of the Electrochemical Society, 2020, 167, 100511.	1.3	61
534	Improvement of electrochemical performance of LiNi0.8Co0.1Mn0.1O2 cathode material via Li2.09W0.9Nb0.1O4 Li-ion conductive coating layer. Journal of Solid State Electrochemistry, 2020, 24, 2301-2313.	1.2	10
535	Ethylene oxide–based polymer electrolytes with fluoroalkyl moieties for stable lithium metal batteries. Ionics, 2020, 26, 4795-4802.	1.2	3
536	Recent advances in research on anodes for safe and efficient lithium–metal batteries. Nanoscale, 2020, 12, 15528-15559.	2.8	31
537	Transition to electric vehicles in China: Implications for private motorization rate and battery market. Energy Policy, 2020, 144, 111654.	4.2	48
538	Green Bio-template Fabrication of Fe Derivatives@Carbon Composites and Porous Carbon Sheets toward Advanced Li-Ion Capacitors as Low-Cost Electrodes. ACS Applied Energy Materials, 2020, 3, 7159-7166.	2.5	8
539	Preparation of hierarchical LiNi x Co y Mn z O 2 from solvothermal [Ni x Co y Mn z](OH) 2 via regulating the ratio of Ni, Co, and Mn and its excellent properties for lithiumâ€ion battery ca. Journal of the Chinese Chemical Society, 2020, 67, 2062-2070.	0.8	5
540	Nickel and Cobalt Oxidation State Evolution at Ni-Rich NMC Cathode Surfaces during Treatment. Journal of Physical Chemistry C, 2020, 124, 16508-16514.	1.5	17
541	New aqueous energy storage devices comprising graphite cathodes, MXene anodes and concentrated sulfuric acid solutions. Energy Storage Materials, 2020, 32, 1-10.	9.5	32
542	Accessing copper oxidation states of dissolved negative electrode current collectors in lithium ion batteries. Electrophoresis, 2020, 41, 1568-1575.	1.3	12
543	Study on the superior lithium storage performance of carbon/Sn–Mo oxide composite as lithium-ion battery anode. Journal of Materials Science, 2020, 55, 14373-14388.	1.7	6

#	Article	IF	CITATIONS
544	O2-Type Li _{0.78} [Li _{0.24} Mn _{0.76}]O ₂ Nanowires for High-Performance Lithium-Ion Battery Cathode. Nano Letters, 2020, 20, 5779-5785.	4.5	37
545	Hollow multishelled structures revive high energy density batteries. Nanoscale Horizons, 2020, 5, 1287-1292.	4.1	31
546	Organic-based active electrode materials for potassium batteries: status and perspectives. Journal of Materials Chemistry A, 2020, 8, 17296-17325.	5.2	32
547	Dataâ€Driven Fast Clustering of Secondâ€Life Lithiumâ€Ion Battery: Mechanism and Algorithm. Advanced Theory and Simulations, 2020, 3, 2000109.	1.3	20
548	Efficient fast-charging of lithium-ion batteries enabled by laser-patterned three-dimensional graphite anode architectures. Journal of Power Sources, 2020, 471, 228475.	4.0	168
549	A novel and improved hydrophilic vanadium oxide-based cathode for aqueous Zn-ion batteries. Electrochimica Acta, 2020, 354, 136721.	2.6	22
550	Recent progress in all-solid-state lithium batteries: The emerging strategies for advanced electrolytes and their interfaces. Energy Storage Materials, 2020, 31, 401-433.	9.5	107
551	Highâ€Nickel NMA: A Cobaltâ€Free Alternative to NMC and NCA Cathodes for Lithiumâ€Ion Batteries. Advanced Materials, 2020, 32, e2002718.	11.1	205
552	Sodiumâ€lon Batteries Paving the Way for Grid Energy Storage. Advanced Energy Materials, 2020, 10, 2001274.	10.2	265
553	Solvation Rule for Solidâ€Electrolyte Interphase Enabler in Lithiumâ€Metal Batteries. Angewandte Chemie, 2020, 132, 18386-18390.	1.6	10
554	Solvation Rule for Solidâ€Electrolyte Interphase Enabler in Lithiumâ€Metal Batteries. Angewandte Chemie - International Edition, 2020, 59, 18229-18233.	7.2	45
555	Surface architecture decoration on enhancing properties of LiNiO·8CoO·1MnO·1O2 with building bi-phase Li3PO4 and AlPO4 by Al(H2PO4)3 treatment. Electrochimica Acta, 2020, 338, 135870.	2.6	27
556	Pre-intercalation of potassium to improve the electrochemical performance of carbon-coated MoO3 cathode materials for lithium batteries. Journal of Alloys and Compounds, 2020, 826, 154055.	2.8	15
557	Layered ternary metal oxides: Performance degradation mechanisms as cathodes, and design strategies for high-performance batteries. Progress in Materials Science, 2020, 111, 100655.	16.0	115
558	Interrelationship Between the Open Circuit Potential Curves in a Class of Ni-Rich Cathode Materials. Journal of the Electrochemical Society, 2020, 167, 040510.	1.3	2
559	Metal-organic frameworks derived In-based nanoparticles encapsulated by carbonaceous matrix for highly efficient energy storage. Applied Surface Science, 2020, 513, 145894.	3.1	8
560	Tin modification of sodium manganese hexacyanoferrate as a superior cathode material for sodium ion batteries. Electrochimica Acta, 2020, 342, 135928.	2.6	21
561	Bioderived Molecular Electrodes for Nextâ€Generation Energyâ€&torage Materials. ChemSusChem, 2020, 13, 2186-2204.	3.6	32

#	Article	IF	CITATIONS
562	Waterproof lithium metal anode enabled by cross-linking encapsulation. Science Bulletin, 2020, 65, 909-916.	4.3	60
563	Acyclic Acetals in Propylene Carbonate-Based Electrolytes for Advanced and Safer Graphite-Based Lithium Ion Batteries. Journal of the Electrochemical Society, 2020, 167, 040509.	1.3	14
564	Fundamentals and Challenges of Lithium Ion Batteries at Temperatures between â^'40 and 60 °C. Advanced Energy Materials, 2020, 10, 1904152.	10.2	200
565	Prospects of organic electrode materials for practical lithium batteries. Nature Reviews Chemistry, 2020, 4, 127-142.	13.8	772
566	Enabling Rapid Charging Lithium Metal Batteries via Surface Acoustic Waveâ€Driven Electrolyte Flow. Advanced Materials, 2020, 32, e1907516.	11.1	35
567	Mn ²⁺ or Mn ³⁺ ? Investigating transition metal dissolution of manganese species in lithium ion battery electrolytes by capillary electrophoresis. Electrophoresis, 2020, 41, 697-704.	1.3	39
568	Role of Conductive Carbon in Porous Li-Ion Battery Electrodes Revealed by Electrochemical Impedance Spectroscopy Using a Symmetric Cell. Journal of Physical Chemistry C, 2020, 124, 5559-5564.	1.5	38
569	Solidâ€State Lithium–Sulfur Battery Enabled by Thioâ€LiSICON/Polymer Composite Electrolyte and Sulfurized Polyacrylonitrile Cathode. Advanced Functional Materials, 2020, 30, 1910123.	7.8	77
570	Quasi-Solid-State Dual-Ion Sodium Metal Batteries for Low-Cost Energy Storage. CheM, 2020, 6, 902-918.	5.8	137
571	Rational Design of a Laminated Dual-Polymer/Polymer–Ceramic Composite Electrolyte for High-Voltage All-Solid-State Lithium Batteries. , 2020, 2, 317-324.		59
572	An aqueous manganese–lead battery for large-scale energy storage. Journal of Materials Chemistry A, 2020, 8, 5959-5967.	5.2	29
573	Is the Cation Innocent? An Analytical Approach on the Cationic Decomposition Behavior of <i>N</i> -Butyl- <i>N</i> -methylpyrrolidinium Bis(trifluoromethanesulfonyl)imide in Contact with Lithium Metal. Chemistry of Materials, 2020, 32, 2389-2398.	3.2	31
574	Development of a lithium ion cell enabling in situ analyses of the electrolyte using gas chromatographic techniques. Electrochimica Acta, 2020, 338, 135894.	2.6	10
575	A Co9S8 microsphere and N-doped carbon nanotube composite host material for lithium-sulfur batteries. Journal of Alloys and Compounds, 2020, 826, 154201.	2.8	32
576	Degradation and Aging Routes of Ni-Rich Cathode Based Li-Ion Batteries. Batteries, 2020, 6, 8.	2.1	73
577	Niâ€Rich/Coâ€Poor Layered Cathode for Automotive Li″on Batteries: Promises and Challenges. Advanced Energy Materials, 2020, 10, 1903864.	10.2	242
578	A novel graphene-wrapped corals-like NiSe2 for ultrahigh-capacity potassium ion storage. Carbon, 2020, 161, 834-841.	5.4	44
579	Current Understanding of Nonaqueous Electrolytes for Calciumâ€Based Batteries. Batteries and Supercaps, 2020, 3, 570-580.	2.4	27

#	Article	IF	CITATIONS
580	High-nickel layered oxide cathodes for lithium-based automotive batteries. Nature Energy, 2020, 5, 26-34.	19.8	940
581	Effect of N-N Dimethyltrifluoroacetamide Additive on Low Temperature Performance of Graphite Anode. International Journal of Electrochemical Science, 2020, 15, 382-393.	0.5	6
582	Development of Safe and Sustainable Dualâ€Ion Batteries Through Hybrid Aqueous/Nonaqueous Electrolytes. Advanced Energy Materials, 2020, 10, 1902709.	10.2	51
583	Solid versus Liquid—A Bottomâ€Up Calculation Model to Analyze the Manufacturing Cost of Future Highâ€Energy Batteries. Energy Technology, 2020, 8, 1901237.	1.8	78
584	Double the energy storage of hard carbon anode for Li-ion batteries via a simple blending strategy. Electrochimica Acta, 2020, 336, 135729.	2.6	8
585	High-Performance Lithium-Rich Layered Oxide Material: Effects of Preparation Methods on Microstructure and Electrochemical Properties. Materials, 2020, 13, 334.	1.3	20
586	A Comparative Review of Electrolytes for Organicâ€Materialâ€Based Energyâ€Storage Devices Employing Solid Electrodes and Redox Fluids. ChemSusChem, 2020, 13, 2205-2219.	3.6	64
587	Spatially uniform Li deposition realized by 3D continuous duct-like graphene host for high energy density Li metal anode. Carbon, 2020, 161, 198-205.	5.4	43
588	Ecofriendly Chemical Activation of Overlithiated Layered Oxides by DNAâ€Wrapped Carbon Nanotubes. Advanced Energy Materials, 2020, 10, 1903658.	10.2	5
589	Nitrogen-doped carbon stabilized LiFe0.5Mn0.5PO4/rGO cathode materials for high-power Li-ion batteries. Chinese Journal of Chemical Engineering, 2020, 28, 1935-1940.	1.7	9
590	Intelligent Nanoarchitectonics for Selfâ€Assembling Systems. Advanced Intelligent Systems, 2020, 2, 1900157.	3.3	14
591	Clarification of Decomposition Pathways in a Stateâ€ofâ€theâ€Art Lithium Ion Battery Electrolyte through ¹³ Câ€Labeling of Electrolyte Components. Angewandte Chemie - International Edition, 2020, 59, 6128-6137.	7.2	81
592	Ethylene carbonate-free electrolytes for Li-ion battery: Study of the solid electrolyte interphases formed on graphite anodes. Journal of Power Sources, 2020, 451, 227804.	4.0	37
593	The Role of Balancing Nanostructured Silicon Anodes and NMC Cathodes in Lithium-Ion Full-Cells with High Volumetric Energy Density. Journal of the Electrochemical Society, 2020, 167, 020516.	1.3	46
594	Clarification of Decomposition Pathways in a Stateâ€ofâ€theâ€Art Lithium Ion Battery Electrolyte through 13 Câ€Labeling of Electrolyte Components. Angewandte Chemie, 2020, 132, 6184-6193.	1.6	18
595	Realizing the Single-Phase Spinel-Type Sodium Titanium Oxide with the Li ₄ Ti ₅ O ₁₂ -like Structure for Building Stable Sodium-Ion Batteries. ACS Applied Materials & Interfaces, 2020, 12, 9322-9331.	4.0	18
596	Freestanding SnS Carbon Composite Nanofiber Material with Excellent Electrochemical Performance as Binderâ€Free Negative Electrode for Lithiumâ€ion Batteries. ChemistrySelect, 2020, 5, 1792-1796.	0.7	7
597	A method for quantitative analysis of gases evolving during formation applied on LiNi0.6Mn0.2Co0.2O2 â^£â^£ natural graphite lithium ion battery cells using gas chromatography - barrier discharge ionization detector. Journal of Chromatography A, 2020, 1622, 461122.	1.8	13

	Сітат	CITATION REPORT	
#	Article	IF	CITATIONS
598	Analyzing Energy Materials by Cryogenic Electron Microscopy. Advanced Materials, 2020, 32, e1908293.	11.1	61
599	Conductive Li _{3.08} Cr _{0.02} Si _{0.09} V _{0.9} O ₄ Anode Material: Novel "Zero‣train―Characteristic and Superior Electrochemical Li ⁺ Storage. Advanced Energy Materials, 2020, 10, 1904267.	10.2	53
600	Toward Green Battery Cells: Perspective on Materials and Technologies. Small Methods, 2020, 4, 2000039.	4.6	177
601	An electrochemical evaluation of nitrogen-doped carbons as anodes for lithium ion batteries. Carbon, 2020, 164, 261-271.	5.4	53
602	Bipolarization of cathode particles as underlying mechanism for voltage hysteresis and the first charge cycle overvoltage of intercalation batteries. Electrochimica Acta, 2020, 343, 136127.	2.6	17
603	Intake characteristics and pumping loss in the intake stroke of a novel small scale opposed rotary piston engine. Journal of Cleaner Production, 2020, 261, 121180.	4.6	36
604	Battery plant location considering the balance between knowledge and cost: A comparative study of the EU-28 countries. Journal of Cleaner Production, 2020, 264, 121428.	4.6	13
605	Mechanistic investigation of silicon-graphite/LiNi0.8Mn0.1Co0.1O2 commercial cells for non-intrusive diagnosis and prognosis. Journal of Power Sources, 2020, 459, 227882.	4.0	60
606	A three-dimensional TiO2-Graphene architecture with superior Li ion and Na ion storage performance. Journal of Power Sources, 2020, 461, 228129.	4.0	22
607	A review of multi-physical fields induced phenomena and effects in spark plasma sintering: Fundamentals and applications. Materials and Design, 2020, 191, 108662.	3.3	286
608	Unconventional capacity increase kinetics of a chemically engineered SnO ₂ aerogel anode for long-term stable lithium-ion batteries. Journal of Materials Chemistry A, 2020, 8, 8244-8254.	5.2	39
609	Designing a hybrid electrode toward high energy density with a staged Li ⁺ and PF ₆ ^{â^'} deintercalation/intercalation mechanism. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 2815-2823.	3.3	50
610	Lead Sulfide Nanocubes for Solar Energy Storage. Energy Technology, 2020, 8, 2000301.	1.8	5
611	Forecasting the value of battery electric vehicles compared to internal combustion engine vehicles: The influence of driving range and battery technology. International Journal of Energy Research, 2020, 44, 6483-6501.	2.2	22
612	Crystal engineering of TMPOx-coated LiNi0.5Mn1.5O4 cathodes for high-performance lithium-ion batteries. Materials Today, 2020, 39, 127-136.	8.3	37
613	Approaching energy-dense and cost-effective lithium–sulfur batteries: From materials chemistry and price considerations. Energy, 2020, 201, 117718.	4.5	43
614	Structural Polymorphism in Na ₄ Zn(PO ₄) ₂ Driven by Rotational Order〓Disorder Transitions and the Impact of Heterovalent Substitutions on Na-Ion Conductivity. Inorganic Chemistry, 2020, 59, 6528-6540.	1.9	7
615	Improving the NMC111â^£Polymer Electrolyte Interface by Cathode Composition and Processing. Journal of the Electrochemical Society, 2020, 167, 070546.	1.3	10

#	Article	IF	CITATIONS
616	Lithium Dendrite in All-Solid-State Batteries: Growth Mechanisms, Suppression Strategies, and Characterizations. Matter, 2020, 3, 57-94.	5.0	334
617	Electrochemical Methods for Lithium Recovery: A Comprehensive and Critical Review. Advanced Materials, 2020, 32, e1905440.	11.1	198
618	Understanding Highâ€Rate K ⁺ â€Solvent Coâ€Intercalation in Natural Graphite for Potassiumâ€Ion Batteries. Angewandte Chemie, 2020, 132, 13017-13024.	1.6	28
619	Understanding Highâ€Rate K ⁺ â€Solvent Coâ€Intercalation in Natural Graphite for Potassiumâ€Ion Batteries. Angewandte Chemie - International Edition, 2020, 59, 12917-12924.	7.2	112
620	Partially graphitic hierarchical porous carbon nanofiber for high performance supercapacitors and lithium ion batteries. Journal of Power Sources, 2020, 462, 228098.	4.0	42
621	Methyl-group functionalization of pyrazole-based additives for advanced lithium ion battery electrolytes. Journal of Power Sources, 2020, 461, 228159.	4.0	10
622	Improved conductivity and ionic mobility in nanostructured thin films <i>via</i> aliovalent doping for ultra-high rate energy storage. Nanoscale Advances, 2020, 2, 2160-2169.	2.2	2
623	Conversion of a microwave synthesized alkali-metal MOF to a carbonaceous anode for Li-ion batteries. RSC Advances, 2020, 10, 13732-13736.	1.7	10
624	Polymer reinforced carbon fiber interfaces for high energy density structural lithium-ion batteries. Sustainable Energy and Fuels, 2020, 4, 2661-2668.	2.5	49
625	Towards High-Performance Li-rich NCMâ^£â^£Graphite Cells by Germanium-Polymer Coating of the Positive Electrode Material. Journal of the Electrochemical Society, 2020, 167, 060524.	1.3	14
626	Novel In Situ Gas Formation Analysis Technique Using a Multilayer Pouch Bag Lithium Ion Cell Equipped with Gas Sampling Port. Journal of the Electrochemical Society, 2020, 167, 060516.	1.3	23
627	Li/Mn-Rich Cathode Materials with Low-Cobalt Content and Core-Shell Particle Design for High-Energy Lithium Ion Batteries. Journal of the Electrochemical Society, 2020, 167, 060519.	1.3	14
628	High-performance Li-organic battery based on thiophene-containing porous organic polymers with different morphology and surface area as the anode materials. Chemical Engineering Journal, 2020, 395, 124975.	6.6	32
629	Phase Transition Mechanism for Crystalline Aromatic Dicarboxylate in Li ⁺ Intercalation. Chemistry of Materials, 2020, 32, 3396-3404.	3.2	16
630	Intrinsic blocking effect of SiOx on the side reaction with a LiPF6-based electrolyte. Catalysis Today, 2021, 364, 61-66.	2.2	11
631	Lithium Manganese Spinel Cathodes for Lithiumâ€lon Batteries. Advanced Energy Materials, 2021, 11, 2000997.	10.2	177
632	Electrochemical and structural evolution of structured V2O5 microspheres during Li-ion intercalation. Journal of Energy Chemistry, 2021, 55, 108-113.	7.1	19
633	Finding the sweet spot: Li/Mn-rich cathode materials with fine-tuned core–shell particle design for high-energy lithium ion batteries. Electrochimica Acta, 2021, 366, 137413.	2.6	14

#	Article	IF	CITATIONS
634	Understanding all solid-state lithium batteries through in situ transmission electron microscopy. Materials Today, 2021, 42, 137-161.	8.3	64
635	"Double guarantee mechanism―of Ca ²⁺ -intercalation and rGO-integration ensures hydrated vanadium oxide with high performance for aqueous zinc-ion batteries. Inorganic Chemistry Frontiers, 2021, 8, 79-89.	3.0	59
636	Solid‣tate Li–Metal Batteries: Challenges and Horizons of Oxide and Sulfide Solid Electrolytes and Their Interfaces. Advanced Energy Materials, 2021, 11, .	10.2	312
637	The effects of ambient storage conditions on the structural and electrochemical properties of NMC-811 cathodes for Li-ion batteries. Electrochimica Acta, 2021, 366, 137358.	2.6	54
638	Si-on-Graphite fabricated by fluidized bed process for high-capacity anodes of Li-ion batteries. Chemical Engineering Journal, 2021, 407, 126603.	6.6	31
639	Comparison of the effects of incineration, vacuum pyrolysis and dynamic pyrolysis on the composition of NMC-lithium battery cathode-material production scraps and separation of the current collector. Resources, Conservation and Recycling, 2021, 164, 105142.	5.3	50
640	A review of composite polymer-ceramic electrolytes for lithium batteries. Energy Storage Materials, 2021, 34, 282-300.	9.5	233
641	Mesoporous VO2(B) nanorods deposited onto graphene architectures for enhanced rate capability and cycle life of Li ion battery cathodes. Journal of Alloys and Compounds, 2021, 855, 157361.	2.8	24
642	Battery materials for low-cost electric transportation. Materials Today, 2021, 42, 57-72.	8.3	98
643	Regulating Interfacial Chemistry in Lithiumâ€lon Batteries by a Weakly Solvating Electrolyte**. Angewandte Chemie, 2021, 133, 4136-4143.	1.6	74
644	Study of electrochemical performance and thermal property of LiNi0.5Co0.2Mn0.3O2 cathode materials coated with a novel oligomer additive for high-safety lithium-ion batteries. Chemical Engineering Journal, 2021, 405, 126727.	6.6	26
645	Growing ordered CuO nanorods on 2D Cu/g-C3N4 nanosheets as stable freestanding anode for outstanding lithium storage. Chemical Engineering Journal, 2021, 407, 126941.	6.6	33
646	Advances in Natural Biopolymerâ€Based Electrolytes and Separators for Battery Applications. Advanced Functional Materials, 2021, 31, 2005646.	7.8	146
647	1T-Phase MoS2 with large layer spacing supported on carbon cloth for high-performance Na+ storage. Journal of Colloid and Interface Science, 2021, 583, 579-585.	5.0	65
648	Boosting energy efficiency of Li-rich layered oxide cathodes by tuning oxygen redox kinetics and reversibility. Energy Storage Materials, 2021, 35, 388-399.	9.5	42
649	A High Capacity All Solidâ€State Liâ€Sulfur Battery Enabled by Conversionâ€Intercalation Hybrid Cathode Architecture. Advanced Functional Materials, 2021, 31, 2004239.	7.8	45
650	Ultra-stable and highly reversible aqueous zinc metal anodes with high preferred orientation deposition achieved by a polyanionic hydrogel electrolyte. Energy Storage Materials, 2021, 35, 586-594.	9.5	127
651	Bi2O3/Bi nanocomposites confined by N-doped honeycomb-like porous carbon for high-rate and long-life lithium storage. Applied Materials Today, 2021, 22, 100885.	2.3	11

#	Article	IF	CITATIONS
652	A comprehensive understanding of the anionic redox chemistry in layered oxide cathodes for sodium-ion batteries. Science China Chemistry, 2021, 64, 385-402.	4.2	40
653	Modelling electrolyte-immersed tensile property of polypropylene separator for lithium-ion battery. Mechanics of Materials, 2021, 152, 103667.	1.7	13
654	Scalable Processing Routes for the Production of Allâ€Solidâ€State Batteries—Modeling Interdependencies of Product and Process. Energy Technology, 2021, 9, 2000665.	1.8	19
655	A hybrid transfer learning scheme for remaining useful life prediction and cycle life test optimization of different formulation Li-ion power batteries. Applied Energy, 2021, 282, 116167.	5.1	48
656	Large-scale automotive battery cell manufacturing: Analyzing strategic and operational effects on manufacturing costs. International Journal of Production Economics, 2021, 232, 107982.	5.1	84
657	Zinc Metal Energy Storage Devices under Extreme Conditions of Low Temperatures. Batteries and Supercaps, 2021, 4, 389-406.	2.4	23
658	Sn-O dual-doped Li-argyrodite electrolytes with enhanced electrochemical performance. Journal of Energy Chemistry, 2021, 59, 530-537.	7.1	43
659	TiO2@LiTi2(PO4)3 enabling fast and stable lithium storage for high voltage aqueous lithium-ion batteries. Journal of Power Sources, 2021, 484, 229255.	4.0	13
660	Quasi-solid single ion conducting polymer electrolyte membrane containing novel fluorinated poly(arylene ether sulfonimide) for lithium metal batteries. Journal of Power Sources, 2021, 484, 229267.	4.0	28
661	Effect of Li plating during formation of lithium ion batteries on their cycling performance and thermal safety. Journal of Power Sources, 2021, 484, 229306.	4.0	25
662	Overcoming the fundamental challenge of PVDF binder use with silicon anodes with a super-molecular nano-layer. Journal of Materials Chemistry A, 2021, 9, 1541-1551.	5.2	45
663	In Situ Construction of Uniform and Robust Cathode–Electrolyte Interphase for Liâ€Rich Layered Oxides. Advanced Functional Materials, 2021, 31, 2009192.	7.8	81
664	Surface modification of LiMn2O4 cathode with LaCoO3 by a molten salt method for lithium ion batteries. Ceramics International, 2021, 47, 6434-6441.	2.3	25
665	Phase Behavior during Electrochemical Cycling of Niâ€Rich Cathode Materials for Liâ€Ion Batteries. Advanced Energy Materials, 2021, 11, 2003404.	10.2	153
666	Life prediction of lithium-ion batteries based on stacked denoising autoencoders. Reliability Engineering and System Safety, 2021, 208, 107396.	5.1	82
667	Promises and Challenges of Next-Generation "Beyond Li-ion―Batteries for Electric Vehicles and Grid Decarbonization. Chemical Reviews, 2021, 121, 1623-1669.	23.0	769
668	Feâ€Based Mesoporous Nanostructures for Electrochemical Conversion and Storage of Energy. Batteries and Supercaps, 2021, 4, 429-444.	2.4	15
669	Laser Patterning of Highâ€Massâ€Loading Graphite Anodes for Highâ€Performance Liâ€lon Batteries. Batteries and Supercaps, 2021, 4, 464-468.	2.4	19

#	Article	IF	CITATIONS
670	Waste to life: Low-cost, self-standing, 2D carbon fiber green Li-ion battery anode made from end-of-life cotton textile. Electrochimica Acta, 2021, 368, 137644.	2.6	22
671	Rechargeable Al-ion batteries. EnergyChem, 2021, 3, 100049.	10.1	48
672	On the sustainability of lithium ion battery industry – A review and perspective. Energy Storage Materials, 2021, 36, 186-212.	9.5	425
673	Organic Cathode Materials for Lithiumâ€lon Batteries: Past, Present, and Future. Advanced Energy and Sustainability Research, 2021, 2, 2000044.	2.8	61
674	Electrochemically active layer on the surface of poly(anthraquinonyl sulfide) anode in dual-ion batteries. Polymer, 2021, 212, 123167.	1.8	4
675	Improved electrochemical properties of vanadium substituted Na0·67Fe0·5Mn0·5O2 cathode material for sodium-ion batteries. Ceramics International, 2021, 47, 5227-5234.	2.3	31
676	Recycled silicon-based anodes with three-dimensional hierarchical porous carbon framework synthesized by a self-assembly CaCO3 template method for lithium ion battery. Journal of Alloys and Compounds, 2021, 858, 157703.	2.8	14
677	Exploiting the Degradation Mechanism of NCM523Graphite Lithiumâ€ŀon Full Cells Operated at High Voltage. ChemSusChem, 2021, 14, 595-613.	3.6	56
678	Activity analysis based modeling of global supply chains for sustainability assessment. Journal of Business Economics, 2021, 91, 215-252.	1.3	16
679	Molecular Vanadium Oxides for Energy Conversion and Energy Storage: Current Trends and Emerging Opportunities. Angewandte Chemie - International Edition, 2021, 60, 7522-7532.	7.2	77
680	Regulating Interfacial Chemistry in Lithiumâ€lon Batteries by a Weakly Solvating Electrolyte**. Angewandte Chemie - International Edition, 2021, 60, 4090-4097.	7.2	373
681	LiFePO4/C nanoparticle with fast ion/electron transfer capability obtained by adjusting pH values. Journal of Materials Science, 2021, 56, 640-648.	1.7	10
682	Molekulare Vanadiumoxide für Energiewandlung und Energiespeicherung: Derzeitige Trends und zukünftige Möglichkeiten. Angewandte Chemie, 2021, 133, 7600-7611.	1.6	7
683	Circular economy strategies for electric vehicle batteries reduce reliance on raw materials. Nature Sustainability, 2021, 4, 71-79.	11.5	234
684	Recent Progress on Layered Cathode Materials for Nonaqueous Rechargeable Magnesium Batteries. Small, 2021, 17, e1902767.	5.2	55
685	Impact of Non-Arrhenius Temperature Behavior on the Fast-Charging Capabilities of LiCoO ₂ –Graphite Lithium-Ion Batteries. Journal of Physical Chemistry C, 2021, 125, 1731-1741.	1.5	7
686	MOF composite fibrous separators for high-rate lithium-ion batteries. Journal of Materials Science, 2021, 56, 5868-5877.	1.7	24
687	Electrolytes: From a Thorn Comes a Rose, and from a Rose, a Thorn. Israel Journal of Chemistry, 2021, 61, 85-93.	1.0	4

#	Article	IF	CITATIONS
688	Impedance Analysis of NCM Cathode Materials: Electronic and Ionic Partial Conductivities and the Influence of Microstructure. ACS Applied Energy Materials, 2021, 4, 1335-1345.	2.5	33
689	Revealing the Impact of Film-Forming Electrolyte Additives on Lithium Metal Batteries via Solid-State NMR/MRI Analysis. Journal of Physical Chemistry C, 2021, 125, 252-265.	1.5	25
690	Dimensional Gradient Structure of CoSe2@CNTs–MXene Anode Assisted by Ether for High-Capacity, Stable Sodium Storage. Nano-Micro Letters, 2021, 13, 40.	14.4	54
691	Recent advances in the synthesis of mesoporous materials and their application to lithium-ion batteries and hybrid supercapacitors. Korean Journal of Chemical Engineering, 2021, 38, 227-247.	1.2	37
692	Understanding the Outstanding Highâ€Voltage Performance of NCM523 Graphite Lithium Ion Cells after Elimination of Ethylene Carbonate Solvent from Conventional Electrolyte. Advanced Energy Materials, 2021, 11, 2003738.	10.2	86
693	Methane synthesis from CO ₂ and H ₂ O with electricity using H-permeable membrane electrochemical cells with Ru catalyst and phosphate electrolyte. Sustainable Energy and Fuels, 2021, 5, 935-940.	2.5	7
694	Scalable and controllable fabrication of CNTs improved yolk-shelled Si anodes with advanced in operando mechanical quantification. Energy and Environmental Science, 2021, 14, 3502-3509.	15.6	45
695	Pre-Lithiating SiO Anodes for Lithium-Ion Batteries by a Simple, Effective, and Controllable Strategy Using Stabilized Lithium Metal Powder. ACS Sustainable Chemistry and Engineering, 2021, 9, 648-657.	3.2	60
696	Post-lithium-ion battery cell production and its compatibility with lithium-ion cell production infrastructure. Nature Energy, 2021, 6, 123-134.	19.8	612
697	Electrodeposition of Metals and Preparation of Metal Nanoparticles in Nonaqueous Electrolytes and Their Application to Energy Devices. Electrochemistry, 2021, , .	0.6	3
698	Thermo-chemical conversion of carbonaceous wastes for CNT and hydrogen production: a review. Sustainable Energy and Fuels, 2021, 5, 4173-4208.	2.5	33
699	Identical cut-off voltage <i>versus</i> equivalent capacity: an objective evaluation of the impact of dopants in layered oxide cathodes. Journal of Materials Chemistry A, 2021, 9, 11219-11227.	5.2	12
700	A renewable future: a comprehensive perspective from materials to systems for next-generation batteries. Materials Chemistry Frontiers, 2021, 5, 3344-3377.	3.2	11
701	Improved Cycle Stability of LiSn Alloy Anode for Different Electrolyte Systems in Lithium Battery. Nanomaterials, 2021, 11, 300.	1.9	4
702	Key Figure Based Incoming Inspection of Lithium-Ion Battery Cells. Batteries, 2021, 7, 9.	2.1	11
703	Surface Engineered Li Metal Anode for Allâ€Solidâ€State Lithium Metal Batteries with High Capacity. ChemElectroChem, 2021, 8, 386-389.	1.7	23
704	A Comprehensive Physicalâ€Based Sensitivity Analysis of the Electrochemical Impedance Response of Lithiumâ€Ion Batteries. Energy Technology, 2021, 9, 2000986.	1.8	16
705	Conjugated cyclized-polyacrylonitrile encapsulated carbon nanotubes as core–sheath heterostructured anodes with favorable lithium storage. Journal of Materials Chemistry A, 2021, 9, 6962-6970.	5.2	21

# 706	ARTICLE Realizing poly(ethylene oxide) as a polymer for solid electrolytes in high voltage lithium batteries <i>via</i> simple modification of the cell setup. Materials Advances, 0, , .	IF 2.6	Citations 30
707	In-Depth Characterization of Lithium-Metal Surfaces with XPS and ToF-SIMS: Toward Better Understanding of the Passivation Layer. Chemistry of Materials, 2021, 33, 859-867.	3.2	82
708	Cation ordered Ni-rich layered cathode for ultra-long battery life. Energy and Environmental Science, 2021, 14, 1573-1583.	15.6	83
709	Electrochemoâ€Mechanical Effects on Structural Integrity of Niâ€Rich Cathodes with Different Microstructures in All Solidâ€State Batteries. Advanced Energy Materials, 2021, 11, 2003583.	10.2	112
710	Lithium-Ion Batteries for Automotive Applications: Life Cycle Analysis. , 2021, , 395-405.		2
711	Radical polymer-grafted carbon nanotubes as high-performance cathode materials for lithium organic batteries with promoted n-/p-type redox reactions. Journal of Power Sources, 2021, 483, 229136.	4.0	27
712	Integrated Material-Energy-Quality Assessment for Lithium-ion Battery Cell Manufacturing. Procedia CIRP, 2021, 98, 388-393.	1.0	12
713	A mechanistic review of lithiophilic materials: resolving lithium dendrites and advancing lithium metal-based batteries. Materials Chemistry Frontiers, 2021, 5, 6294-6314.	3.2	35
714	High-performance magnesium metal batteries <i>via</i> switching the passivation film into a solid electrolyte interphase. Energy and Environmental Science, 2021, 14, 4391-4399.	15.6	49
715	Quantifying and modeling of stress-driven short-circuits in lithium-ion batteries in electrified vehicles. Journal of Materials Chemistry A, 2021, 9, 7102-7113.	5.2	40
716	Shear-structured MoNb ₆ O ₁₈ as a new anode for lithium-ion batteries. Materials Advances, 2021, 2, 6272-6277.	2.6	6
717	Facile and Effective Positive Temperature Coefficient (PTC) Layer for Safer Lithium-Ion Batteries. Journal of Physical Chemistry C, 2021, 125, 1761-1766.	1.5	19
718	Advanced separators based on aramid nanofiber (ANF) membranes for lithium-ion batteries: a review of recent progress. Journal of Materials Chemistry A, 2021, 9, 12923-12946.	5.2	54
719	On the Beneficial Impact of Li ₂ CO ₃ as Electrolyte Additive in NCM523 â^¥ Graphite Lithium Ion Cells Under Highâ€Voltage Conditions. Advanced Energy Materials, 2021, 11, 2003756.	10.2	59
720	Opportunities and Challenges of Lithium Ion Batteries in Automotive Applications. ACS Energy Letters, 2021, 6, 621-630.	8.8	471
721	Ultrafast and durable Li/Na storage by an iron selenide anode using an elastic hierarchical structure. Inorganic Chemistry Frontiers, 2021, 8, 3686-3696.	3.0	5
722	In Situ Electrolyte Gelation to Prevent Chemical Crossover in Li Metal Batteries. Advanced Materials Interfaces, 2021, 8, 2002152.	1.9	2
723	Application of Gas Chromatography Hyphenated to Atmospheric Pressure Chemical Ionization-Quadrupole-Time-of-Flight-Mass Spectrometry (GC-APCI-Q-TOF-MS) for Structure Elucidation of Degradation Products Based on the Cation in Pyr ₁₄ TFSI. Journal of the Electrochemical Society. 2021. 168. 026501.	1.3	4

#	ARTICLE	IF	CITATIONS
724	An Overview of Parameter and Cost for Battery Electric Vehicles. World Electric Vehicle Journal, 2021, 12, 21.	1.6	122
725	Pathways of Developing Highâ€Energyâ€Density Flexible Lithium Batteries. Advanced Materials, 2021, 33, e2004419.	11.1	68
726	Optimizing Cycling Conditions for Anode-Free Lithium Metal Cells. Journal of the Electrochemical Society, 2021, 168, 020515.	1.3	72
727	A review of covalent organic framework electrode materials for rechargeable metal-ion batteries. New Carbon Materials, 2021, 36, 1-18.	2.9	23
728	Preparation and Characteristics of Core-Shell Structure with Nano Si/Graphite Nanosheets Hybrid Layers Coated on Spherical Natural Graphite as Anode Material for Lithium-ion Batteries. Journal of Electrochemical Science and Technology, 2021, 12, 74-81.	0.9	6
729	Beyond the State of the Art of Electric Vehicles: A Fact-Based Paper of the Current and Prospective Electric Vehicle Technologies. World Electric Vehicle Journal, 2021, 12, 20.	1.6	52
730	Electrophoretic Deposition of Outâ€ofâ€Plane Oriented Active Material for Lithiumâ€lon Batteries. Energy Technology, 2021, 9, 2000936.	1.8	3
731	Hostâ€Guest Interactions Enhance the Performance of Viologen Electrolytes for Aqueous Organic Redox Flow Batteries. Batteries and Supercaps, 2021, 4, 923-928.	2.4	18
732	Case study of N-carboxyanhydrides in silicon-based lithium ion cells as a guideline for systematic electrolyte additive research. Cell Reports Physical Science, 2021, 2, 100327.	2.8	16
733	Processing thin but robust electrolytes for solid-state batteries. Nature Energy, 2021, 6, 227-239.	19.8	328
734	Porous Manganese Oxide Networks as High-Capacity and High-Rate Anodes for Lithium-Ion Batteries. Energies, 2021, 14, 1299.	1.6	1
735	Pomegranate-like Ti-doped LiNi0.4Mn1.6O4 5ÂV-class cathode with superior high-voltage cycle and rate performance for Li-ion batteries. Chemical Engineering Science, 2021, 231, 116297.	1.9	16
736	Comparing the Ion-Conducting Polymers with Sulfonate and Ether Moieties as Cathode Binders for High-Power Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2021, 13, 9846-9855.	4.0	16
737	Metal–Organic Framework-Derived Hierarchical MnO/Co with Oxygen Vacancies toward Elevated-Temperature Li-Ion Battery. ACS Nano, 2021, 15, 4594-4607.	7.3	121
738	Comparative Evaluation of LMR-NCM and NCA Cathode Active Materials in Multilayer Lithium-Ion Pouch Cells: Part II. Rate Capability, Long-Term Stability, and Thermal Behavior. Journal of the Electrochemical Society, 2021, 168, 020537.	1.3	18
739	Polycarbonate-Based Lithium Salt-Containing Electrolytes: New Insights into Thermal Stability. Journal of Physical Chemistry C, 2021, 125, 4371-4378.	1.5	12
740	Realizing Ultralong-Term Cyclicability of 5 Volt-Cathode-Material Graphite Flakes by Uniformly Comodified TiO2/Carbon Layer Inducing Stable Cathode–Electrolyte Interphase. ACS Applied Materials & Interfaces, 2021, 13, 10101-10109.	4.0	6
741	Impact of LiTi2(PO4)3 coating on the electrochemical performance of Li1.2Ni0.13Mn0.54Co0.13O2 using a wet chemical method. Ionics, 2021, 27, 1465-1475.	1.2	2

#	Article	IF	CITATIONS
742	Carbon Foam Fibers with a Concentric Tube ore/Threeâ€Ðimensional Nanosheetâ€Sheath Structure for Highâ€Performance Lithiumâ€Sulfur Batteries. ChemElectroChem, 2021, 8, 873-879.	1.7	4
743	Regulating Lithium Electrodeposition with Laser-Structured Current Collectors for Stable Lithium Metal Batteries. ACS Applied Materials & Interfaces, 2021, 13, 8417-8425.	4.0	12
744	Process strategies for laser cutting of electrodes in lithium-ion battery production. Journal of Laser Applications, 2021, 33, .	0.8	15
745	Low-Resistance Mechanism of Nanoflake Crystalline Aromatic Dicarboxylates with Selective Defects for Safe and Fast Charging Negative Electrodes. ACS Nano, 2021, 15, 2719-2729.	7.3	1
746	Vertically aligned architecture in the dense and thick TiO2-graphene nanosheet electrode towards high volumetric and areal capacities. Electrochimica Acta, 2021, 370, 137770.	2.6	9
747	Roomâ€īemperature Sodium–Sulfur Batteries and Beyond: Realizing Practical High Energy Systems through Anode, Cathode, and Electrolyte Engineering. Advanced Energy Materials, 2021, 11, 2003493.	10.2	114
748	Nitrogen-Doped Carbon-Coating Disproportionated SiO Materials as Long Cycling Stable Anode for Lithium Ion Batteries. Molecules, 2021, 26, 1536.	1.7	13
749	What Can be Expected from "Anodeâ€Free―Lithium Metal Batteries?. Advanced Energy and Sustainability Research, 2021, 2, 2000110.	2.8	36
750	Insights into the Solubility of Poly(vinylphenothiazine) in Carbonate-Based Battery Electrolytes. ACS Applied Materials & Interfaces, 2021, 13, 12442-12453.	4.0	23
751	Dibenzo[<i>a</i> , <i>e</i>]Cyclooctatetraeneâ€Functionalized Polymers as Potential Battery Electrode Materials. Macromolecular Rapid Communications, 2021, 42, e2000725.	2.0	9
752	Design of High-Voltage Stable Hybrid Electrolyte with an Ultrahigh Li Transference Number. ACS Energy Letters, 0, , 1315-1323.	8.8	50
753	Manipulating Oxidation of Silicon with Fresh Surface Enabling Stable Battery Anode. Nano Letters, 2021, 21, 3127-3133.	4.5	33
754	Enhancing thermal safety in lithium-ion battery packs through parallel cell â€ [~] current dumping' mitigation. Applied Energy, 2021, 286, 116495.	5.1	16
755	Vinyl-Integrated In Situ Cross-Linked Composite Gel Electrolytes for Stable Lithium Metal Anodes. ACS Applied Energy Materials, 2021, 4, 2922-2931.	2.5	12
756	Robust Cycling of Ultrathin Li Metal Enabled by Nitrateâ€Preplanted Li Powder Composite. Advanced Energy Materials, 2021, 11, 2003769.	10.2	48
757	Understanding the Effectiveness of Phospholane Electrolyte Additives in Lithiumâ€Ion Batteries under Highâ€Voltage Conditions. ChemElectroChem, 2021, 8, 972-982.	1.7	5
758	DFT study of solvation of Li ⁺ /Na ⁺ in fluoroethylene carbonate/vinylene carbonate/ethylene sulfite solvents for lithium/sodium-based battery*. Chinese Physics B, 2021, 30, 038203.	0.7	1
759	Perspective—Combining Physics and Machine Learning to Predict Battery Lifetime. Journal of the Electrochemical Society, 2021, 168, 030525.	1.3	107

#	Article	IF	CITATIONS
760	Theoretical Prediction of P-Triphenylene-Graphdiyne as an Excellent Anode Material for Li, Na, K, Mg, and Ca Batteries. Applied Sciences (Switzerland), 2021, 11, 2308.	1.3	7
761	A Thorough Analysis of Two Different Pre‣ithiation Techniques for Silicon/Carbon Negative Electrodes in Lithium Ion Batteries. Batteries and Supercaps, 2021, 4, 1163-1174.	2.4	21
762	A Performance and Cost Overview of Selected Solid-State Electrolytes: Race between Polymer Electrolytes and Inorganic Sulfide Electrolytes. Batteries, 2021, 7, 18.	2.1	41
763	Impact of electrochemical and mechanical interactions on lithium-ion battery performance investigated by operando dilatometry. Journal of Power Sources, 2021, 488, 229457.	4.0	30
764	Sustainable Battery Materials for Nextâ€Generation Electrical Energy Storage. Advanced Energy and Sustainability Research, 2021, 2, 2000102.	2.8	52
765	Solid‣tate NMR and MRI Spectroscopy for Li/Na Batteries: Materials, Interface, and In Situ Characterization. Advanced Materials, 2021, 33, e2005878.	11.1	35
766	Intrinsic differences and realistic perspectives of lithium-sulfur and magnesium-sulfur batteries. Communications Materials, 2021, 2, .	2.9	34
767	Circularity of Lithium-Ion Battery Materials in Electric Vehicles. Environmental Science & Technology, 2021, 55, 5189-5198.	4.6	89
768	Synthesis of Metal Oxide Nanoparticles in Flame Sprays: Review on Process Technology, Modeling, and Diagnostics. Energy & Fuels, 2021, 35, 5495-5537.	2.5	67
769	Prospects on large-scale manufacturing of solid state batteries. MRS Energy & Sustainability, 2021, 8, 33-39.	1.3	23
770	Economies of scale in battery cell manufacturing: The impact of material and process innovations. Applied Energy, 2021, 286, 116499.	5.1	59
771	Comparative Evaluation of LMR-NCM and NCA Cathode Active Materials in Multilayer Lithium-Ion Pouch Cells: Part I. Production, Electrode Characterization, and Formation. Journal of the Electrochemical Society, 2021, 168, 030507.	1.3	35
772	Zinc-Doped High-Nickel, Low-Cobalt Layered Oxide Cathodes for High-Energy-Density Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2021, 13, 15324-15332.	4.0	84
773	Polycrystalline and Single Crystalline NCM Cathode Materials—Quantifying Particle Cracking, Active Surface Area, and Lithium Diffusion. Advanced Energy Materials, 2021, 11, 2003400.	10.2	237
774	Stabilizing Ni-Rich LiNi _{0.83} Co _{0.12} Mn _{0.05} O ₂ with Cyclopentyl Isocyanate as a Novel Electrolyte Additive. ACS Applied Materials & Interfaces, 2021, 13, 12069-12078.	4.0	43
775	Boosting lithium storage performance of Si nanoparticles via thin carbon and nitrogen/phosphorus co-doped two-dimensional carbon sheet dual encapsulation. Rare Metals, 2021, 40, 1347-1356.	3.6	115
776	Influence of electrolyte additive of trimethylsilylisocyanate on properties of electrode with nanosilicon for lithium-ion batteries. Himia, Fizika Ta Tehnologia Poverhni, 2021, 12, 67-78.	0.2	1
777	Nonaqueous Rechargeable Aluminum Batteries: Progresses, Challenges, and Perspectives. Chemical Reviews, 2021, 121, 4903-4961.	23.0	147

#	Article	IF	CITATIONS
778	Multifunctional Additives for High-Energy-Density Lithium-Ion Batteries: Improved Conductive Additive/Binder Networks and Enhanced Electrochemical Properties. ACS Applied Materials & Interfaces, 2021, 13, 19970-19982.	4.0	10
779	Robust Observer Design for Mitigating the Impact of Unknown Disturbances on State of Charge Estimation of Lithium Iron Phosphate Batteries Using Fractional Calculus. IEEE Transactions on Vehicular Technology, 2021, 70, 3218-3231.	3.9	22
780	Graphene: A promising candidate for charge regulation in high-performance lithium-ion batteries. Nano Research, 2021, 14, 4370-4385.	5.8	25
781	Achieving Desirable Initial Coulombic Efficiencies and Full Capacity Utilization of Liâ€ion Batteries by Chemical Prelithiation of Graphite Anode. Advanced Functional Materials, 2021, 31, 2101181.	7.8	115
782	Scalable Manufacture of Highâ€Performance Battery Electrodes Enabled by a Templateâ€Free Method. Small Methods, 2021, 5, e2100280.	4.6	24
783	Investigation on the electrochemical performance of hybrid zinc batteries through numerical analysis. Electrochimica Acta, 2021, 375, 137967.	2.6	6
784	Highly Stable Lil/Active Graphene Composite Cathodes for Efficient Lithium-Iodine Batteries. Journal of the Electrochemical Society, 2021, 168, 040522.	1.3	5
785	The Sand equation and its enormous practical relevance for solid-state lithium metal batteries. Materials Today, 2021, 44, 9-14.	8.3	47
786	Battery Materials Design Essentials. Accounts of Materials Research, 2021, 2, 319-326.	5.9	24
787	Review—Energy Storage through Graphite Intercalation Compounds. Journal of the Electrochemical Society, 2021, 168, 040541.	1.3	11
788	Review on Multivalent Rechargeable Metal–Organic Batteries. Energy & Fuels, 2021, 35, 7624-7636.	2.5	28
789	Graphene/PVDF Composites for Ni-rich Oxide Cathodes toward High-Energy Density Li-ion Batteries. Materials, 2021, 14, 2271.	1.3	7
790	Excitonic effects in the optical spectra of Li2SiO3 compound. Scientific Reports, 2021, 11, 7683.	1.6	11
791	Insight into the capacity decay mechanism of cycled LiNi _{0.5} Co _{0.2} Mn _{0.3} O ₂ cathodes via in situ x-ray diffraction. Nanotechnology, 2021, 32, 295701.	1.3	17
792	Recent Advances on Electrospun Nanofiber Materials for Post-lithium Ion Batteries. Advanced Fiber Materials, 2021, 3, 275-301.	7.9	62
793	Through the Maze of Multivalentâ€ion Batteries: A Critical Review on the Status of the Research on Cathode Materials for Mg ²⁺ and Ca ²⁺ lons Insertion. Batteries and Supercaps, 2021, 4, 1221-1251.	2.4	24
794	Crystal Alignment Technology of Electrode Material for Enhancing Electrochemical Performance in Lithium Ion Battery. Journal of the Electrochemical Society, 2021, 168, 040502.	1.3	11
795	Graphene collage on Ni-rich layered oxide cathodes for advanced lithium-ion batteries. Nature	5.8	54

#	Article	IF	CITATIONS
796	Optimizing interphase structure to enhance electrochemical performance of high voltage LiNi0.5Mn1.5O4 cathode via anhydride additives. Chemical Engineering Journal, 2021, 410, 128422.	6.6	39
797	A Dry Room-Free High-Energy Density Lithium-ion Batteries Enabled by Impurity Scavenging Separator Membrane. Energy Storage Materials, 2021, 36, 355-364.	9.5	25
798	Unveiling decaying mechanism through quantitative structure-activity relationship in electrolytes for lithium-ion batteries. Nano Energy, 2021, 83, 105843.	8.2	23
799	A review of safety considerations for batteries in aircraft with electric propulsion. MRS Bulletin, 2021, 46, 435-442.	1.7	46
800	Long-Lasting Solid Electrolyte Interphase for Stable Li-Metal Batteries. ACS Energy Letters, 2021, 6, 2153-2161.	8.8	41
801	Mechanistic Insights into the Preâ€Lithiation of Silicon/Graphite Negative Electrodes in "Dry State―and After Electrolyte Addition Using Passivated Lithium Metal Powder. Advanced Energy Materials, 2021, 11, 2100925.	10.2	46
802	Regulating alkali metal deposition behavior via Li/Na-philic Ni nanoparticles modified 3D hierarchical carbon skeleton. Chemical Engineering Journal, 2021, 412, 128661.	6.6	19
803	Metal-Ions Intercalation Mechanism in Layered Anode From First-Principles Calculation. Frontiers in Chemistry, 2021, 9, 677620.	1.8	3
804	Microstructural Tuning of Solid Electrolyte Na ₃ Zr ₂ Si ₂ PO ₁₂ by Polymer-Assisted Solution Synthesis Method and Its Effect on Ionic Conductivity and Dielectric Properties. ACS Applied Energy Materials, 2021, 4, 5475-5485.	2.5	23
805	Lithium-ion Battery State of Energy Estimation Using Deep Neural Network and Support Vector Regression. , 2021, , .		4
806	Cationâ€Assisted Lithiumâ€Ion Transport for Highâ€Performance PEOâ€based Ternary Solid Polymer Electrolytes. Angewandte Chemie - International Edition, 2021, 60, 11919-11927.	7.2	80
807	Effect of Gd content on the discharge and electrochemical behaviors of the magnesium alloy AZ31 as an anode for Mg-air battery. Journal of Materials Science, 2021, 56, 12789-12802.	1.7	15
808	A Comprehensive Solution for Ni-Rich Cathodes by Lithium Silicate Coating. Journal of the Electrochemical Society, 2021, 168, 050539.	1.3	2
809	Reversible formation of coordination bonds in Sn-based metal-organic frameworks for high-performance lithium storage. Nature Communications, 2021, 12, 3131.	5.8	80
810	Crossroads in the renaissance of rechargeable aqueous zinc batteries. Materials Today, 2021, 45, 191-212.	8.3	171
811	Hierarchical Carbon Shell Compositing Microscale Silicon Skeleton as High-Performance Anodes for Lithium-Ion Batteries. ACS Applied Energy Materials, 2021, 4, 4976-4985.	2.5	8
812	Solid-State Lithium Battery Cycle Life Prediction Using Machine Learning. Applied Sciences (Switzerland), 2021, 11, 4671.	1.3	13
813	Direct Multielement Analysis of Polydisperse Microparticles by Classification-Single-Particle ICP-OES in the Field of Lithium-Ion Battery Electrode Materials. Analytical Chemistry, 2021, 93, 7532-7539.	3.2	11

#	Article	IF	CITATIONS
814	Graphene's Role in Emerging Trends of Capacitive Energy Storage. Small, 2021, 17, e2006875.	5.2	28
815	Interplay between electrochemical reactions and mechanical responses in silicon–graphite anodes and its impact on degradation. Nature Communications, 2021, 12, 2714.	5.8	51
816	Nanostructured Siâ^'C Composites As Highâ€Capacity Anode Material For Allâ€Solidâ€State Lithiumâ€Ion Batteries**. Batteries and Supercaps, 2021, 4, 1323-1334.	2.4	19
817	The Impact of the Câ€Rate on Gassing During Formation of NMC622 II Graphite Lithiumâ€lon Battery Cells. Batteries and Supercaps, 2021, 4, 1344-1350.	2.4	7
818	Electrochemical Characterization of Battery Materials in 2â€Electrode Half ell Configuration: A Balancing Act Between Simplicity and Pitfalls. Batteries and Supercaps, 2021, 4, 1310-1322.	2.4	22
819	Galvanic Couples in Ionic Liquidâ€Based Electrolyte Systems for Lithium Metal Batteries—An Overlooked Cause of Galvanic Corrosion?. Advanced Energy Materials, 2021, 11, 2101021.	10.2	22
820	Enabling Aqueous Processing for LiNi _{0.5} Mn _{1.5} O ₄ â€Based Positive Electrodes in Lithiumâ€Ion Batteries by Applying Lithiumâ€Based Processing Additives. Advanced Energy and Sustainability Research, 2021, 2, 2100075.	2.8	11
821	Implications of the Heat Generation of LMR-NCM on the Thermal Behavior of Large-Format Lithium-Ion Batteries. Journal of the Electrochemical Society, 2021, 168, 053505.	1.3	6
822	Preparation of Poly(arylaminoâ€quinone) Polymer and Its Electrochemical Properties as a Cathode Material for Lithium Ion Battery. ChemistrySelect, 2021, 6, 4725-4735.	0.7	8
823	119Sn and 7Li Solid-State NMR of the Binary Li–Sn Intermetallics: Structural Fingerprinting and Impact on the Isotropic 119Sn Shift via DFT Calculations. Chemistry of Materials, 2021, 33, 3499-3514.	3.2	10
824	Thermally conductive silicone composites modified by graphene-oxide aerogel beads loaded with phase change materials as efficient heat sinks. Applied Thermal Engineering, 2021, 189, 116713.	3.0	8
825	Cationâ€Assisted Lithiumâ€lon Transport for Highâ€Performance PEOâ€based Ternary Solid Polymer Electrolytes. Angewandte Chemie, 2021, 133, 12026-12034.	1.6	6
826	A control approach for alternating current disturbance signal of fuel cells based on MOSFET highâ€speed switch. Fuel Cells, 2021, 21, 269.	1.5	0
827	Porous Polymer Gel Electrolytes Influence Lithium Transference Number and Cycling in Lithium-Ion Batteries. Electronic Materials, 2021, 2, 154-173.	0.9	8
828	Lithium Bis(trimethylsilyl) Phosphate as a Novel Bifunctional Additive for High-Voltage LiNi _{1.5} Mn _{0.5} O ₄ /Graphite Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2021, 13, 22351-22360.	4.0	21
829	Recycling and environmental issues of lithium-ion batteries: Advances, challenges and opportunities. Energy Storage Materials, 2021, 37, 433-465.	9.5	210
830	Free-standing ultrathin lithium metal–graphene oxide host foils with controllable thickness for lithium batteries. Nature Energy, 2021, 6, 790-798.	19.8	198
831	Enhanced electrochemical performance of Co1â^'xS/C and 3D network-like Co9S8@C anode materials for lithium-ion batteries. Journal of Materials Science: Materials in Electronics, 2021, 32, 19136-19144.	1.1	4

#	Article	IF	CITATIONS
832	Toward uniform Li plating/stripping by optimizing Li-ion transport and nucleation of engineered graphene aerogel. Chemical Engineering Journal, 2022, 427, 130967.	6.6	12
833	Toward High Performance Allâ€Solidâ€State Lithium Batteries with Highâ€Voltage Cathode Materials: Design Strategies for Solid Electrolytes, Cathode Interfaces, and Composite Electrodes. Advanced Energy Materials, 2021, 11, 2003154.	10.2	65
834	Anisotropic Carbon Nanotube Structures with High Aspect Ratio Nanopores for Li-Ion Battery Anodes. ACS Applied Nano Materials, 2021, 4, 6299-6305.	2.4	7
835	Advances in Lithium–Sulfur Batteries: From Academic Research to Commercial Viability. Advanced Materials, 2021, 33, e2003666.	11.1	357
836	Interphase Engineering by Electrolyte Additives for Lithium-Rich Layered Oxides: Advances and Perspectives. ACS Energy Letters, 2021, 6, 2552-2564.	8.8	69
837	Comparative performance of ex situ artificial solid electrolyte interphases for Li metal batteries with liquid electrolytes. IScience, 2021, 24, 102578.	1.9	17
838	Phase Compatible NiFe ₂ O ₄ Coating Tunes Oxygen Redox in Li-Rich Layered Oxide. ACS Nano, 2021, 15, 11607-11618.	7.3	95
839	A bottom-up performance and cost assessment of lithium-ion battery pouch cells utilizing nickel-rich cathode active materials and silicon-graphite composite anodes. Journal of Power Sources Advances, 2021, 9, 100055.	2.6	33
840	Sequential focused ion beam scanning electron microscopy analyses for monitoring cycled-induced morphological evolution in battery composite electrodes. Silicon-graphite electrode as exemplary case. Journal of Power Sources, 2021, 498, 229904.	4.0	12
841	Bifunctional Sulfonated Graphene-Modified LiNi _{0.5} Mn _{1.5} O ₄ for Long-Life and High-Energy-Density Lithium-Ion Batteries. ACS Applied Energy Materials, 2021, 4, 5963-5972.	2.5	9
842	Relationship of Chemical Composition and Moisture Sensitivity in LiNi <i>x</i> Mn <i>y</i> Co1â^' <i>X</i> â^' <i>Y</i> O2 for Lithium-Ion Batteries. Journal of Electrochemical Energy Conversion and Storage, 2021, 18, .	1.1	4
843	Boosting cycle stability of NCM811 cathode material via 2D Mg-Al-LDO nanosheet coating for lithium-ion battery. Journal of Alloys and Compounds, 2021, 867, 159079.	2.8	17
844	Aluminum-air batteries: A review of alloys, electrolytes and design. Journal of Power Sources, 2021, 498, 229762.	4.0	74
845	Reducing Greenhouse Gas Emissions from U.S. Light-Duty Transport in Line with the 2 °C Target. Environmental Science & Technology, 2021, 55, 9326-9338.	4.6	15
846	Facile Formation of a LiF-Carbon Layer as an Artificial Cathodic Electrolyte Interphase through Encapsulation of a Cathode with Carbon Monofluoride. ACS Applied Materials & Interfaces, 2021, 13, 31741-31748.	4.0	10
847	MnSn ₂ and MnSn ₂ –TiO ₂ nanostructured anode materials for lithium-ion batteries. Nanotechnology, 2021, 32, 375402.	1.3	6
848	A review on synthesis and applications of nano metal Oxide/porous carbon composite. Materials Today: Proceedings, 2022, 55, 212-219.	0.9	19
849	Transforming Materials into Practical Automotive Lithiumâ€lon Batteries. Advanced Materials Technologies, 2021, 6, 2100152.	3.0	6

#	Article	IF	CITATIONS
850	Enabling aqueous processing for LiNi0.80Co0.15Al0.05O2 (NCA)-based lithium-ion battery cathodes using polyacrylic acid. Electrochimica Acta, 2021, 380, 138203.	2.6	33
851	Crowning Metal Ions by Supramolecularization as a General Remedy toward a Dendriteâ€Free Alkaliâ€Metal Battery. Advanced Materials, 2021, 33, e2101745.	11.1	32
852	Carbon nanotubes-enhanced lithium storage capacity of recovered silicon/carbon anodes produced from solar-grade silicon kerf scrap. Electrochimica Acta, 2021, 381, 138269.	2.6	19
853	Early prediction of battery lifetime via a machine learning based framework. Energy, 2021, 225, 120205.	4.5	105
854	Pressure-Dependent Electrochemical Behavior of Di-Lithium Rhodizonate Cathodes. Chemistry of Materials, 2021, 33, 5738-5747.	3.2	3
855	Redox Charge Transfer Kinetics and Reversibility of VO ₂ in Aqueous and Nonâ€Aqueous Electrolytes of Naâ€Ion Storage. Energy and Environmental Materials, 2022, 5, 1222-1228.	7.3	4
856	Identifying the Association between Surface Heterogeneity and Electrochemical Properties in Graphite. Nanomaterials, 2021, 11, 1813.	1.9	6
857	Lithium deposition in single-ion conducting polymer electrolytes. Cell Reports Physical Science, 2021, 2, 100496.	2.8	10
858	Convolutional neural network based capacity estimation using random segments of the charging curves for lithium-ion batteries. Energy, 2021, 227, 120333.	4.5	93
859	Increasing the Lithium Ion Mobility in Poly(Phosphazene)-Based Solid Polymer Electrolytes through Tailored Cation Doping. Journal of the Electrochemical Society, 2021, 168, 070559.	1.3	4
860	A novel state of health estimation method for lithium-ion battery based on partial incremental capacity and Support vector regression. IOP Conference Series: Earth and Environmental Science, 2021, 804, 042004.	0.2	0
861	Phosphonium ionic liquid-based electrolyte for high voltage Li-ion batteries: Effect of ionic liquid ratio. Journal of Applied Electrochemistry, 2021, 51, 1651-1664.	1.5	9
862	Synthesis of pomegranate-shaped micron ZnMn2O4 with enhanced lithium storage capability. Journal of Materiomics, 2021, 7, 699-707.	2.8	11
863	Effective Solid Electrolyte Interphase Formation on Lithium Metal Anodes by Mechanochemical Modification. ACS Applied Materials & Interfaces, 2021, 13, 34227-34237.	4.0	17
864	Processable Potassium Metal Anode for Stable Batteries. Energy and Environmental Materials, 2022, 5, 1278-1284.	7.3	19
865	Review of Cathode in Advanced Liâ ^{°°} S Batteries: The Effect of Doping Atoms at Micro Levels. ChemElectroChem, 2021, 8, 3457-3471.	1.7	15
866	Towards more flexibility and transparency in life cycle inventories for Lithium-ion batteries. Resources, Conservation and Recycling, 2021, 170, 105619.	5.3	46
867	Fast Li-ion conductor Li1+yTi2-yAly(PO4)3 modified Li1.2[Mn0.54Ni0.13Co0.13]O2 as high performance cathode material for Li-ion battery. Ceramics International, 2021, 47, 18397-18404.	2.3	14

#	Article	IF	CITATIONS
868	Sepiolite-Assisted Separator Modification Process for High-Voltage LiNi _{0.5} Mn _{1.5} O ₄ Batteries and the Influence on Electrodes. Industrial & Engineering Chemistry Research, 2021, 60, 11117-11127.	1.8	5
869	Spectral Denoising for Accelerated Analysis of Correlated Ionic Transport. Physical Review Letters, 2021, 127, 025901.	2.9	6
870	Identification of Li _{<i>x</i>} Sn Phase Transitions During Lithiation of Tin Nanoparticle-Based Negative Electrodes from Ex Situ ¹¹⁹ Sn MAS NMR and Operando ⁷ Li NMR and XRD. ACS Applied Energy Materials, 2021, 4, 7278-7287.	2.5	8
871	On the PF6â^' anion intercalation in graphite from sodium salt-based electrolytes containing different mixtures of organic carbonates. Electrochimica Acta, 2021, 384, 138360.	2.6	4
872	Fast Charging of Lithiumâ€lon Batteries: A Review of Materials Aspects. Advanced Energy Materials, 2021, 11, 2101126.	10.2	407
873	Lithiophilic Cuâ€Li ₂ 0 matrix on a Cu Collector to Stabilize Lithium Deposition for Lithium Metal Batteries. Energy and Environmental Materials, 2022, 5, 1270-1277.	7.3	23
874	Binder-free MnO2 as a high rate capability cathode for aqueous magnesium ion battery. Journal of Alloys and Compounds, 2021, 869, 159279.	2.8	16
875	Evaluating the Passivation Layer of Freshly Cleaved Silicon Surfaces by Binary Silaneâ€Based Electrolytes. Batteries and Supercaps, 2021, 4, 1611.	2.4	2
876	GeS2 nanocomposite space-confined in an interconnected spherical graphene framework as advanced anodes for lithium storage. Applied Surface Science, 2021, 554, 149596.	3.1	6
877	Investigation of Delamination-Induced Performance Decay at the Cathode/LLZO Interface. Chemistry of Materials, 2021, 33, 5527-5541.	3.2	24
878	Bridging the Gap between Small Molecular π-Interactions and Their Effect on Phenothiazine-Based Redox Polymers in Organic Batteries. ACS Applied Energy Materials, 2021, 4, 7622-7631.	2.5	9
879	Starch as a Sustainable Fuel for Solution Combustion Synthesis: Nanomaterials for Energy and Environmental Applications. Current Nanoscience, 2021, 17, 505-524.	0.7	3
880	Tunable oxygen defect density and location for enhancement of energy storage. Journal of Energy Chemistry, 2021, 59, 736-747.	7.1	13
881	Degradation Diagnostics from the Subsurface of Lithiumâ€lon Battery Electrodes. Energy and Environmental Materials, 2022, 5, 662-669.	7.3	9
882	Background and Context. Sustainable Production, Life Cycle Engineering and Management, 2022, , 1-10.	0.2	0
883	An Atomic Insight into the Chemical Origin and Variation of the Dielectric Constant in Liquid Electrolytes. Angewandte Chemie, 2021, 133, 21643-21648.	1.6	9
884	Multiple Strategies toward Advanced P2-Type Layered Na _{<i>x</i>} MnO ₂ for Low-Cost Sodium-Ion Batteries. ACS Applied Energy Materials, 2021, 4, 8183-8192.	2.5	11
885	High-areal-capacity thick cathode with vertically-aligned micro-channels for advanced lithium ion batteries. Energy Storage Materials, 2021, 39, 287-293.	9.5	41

ARTICLE IF CITATIONS Exemplary Application: Analysis of Variability in the LCE of Batteries for Electric Vehicles. Sustainable 886 0.2 0 Production, Life Cycle Engineering and Management, 2022, , 129-161. Pragmatic Approaches to Correlate between the Physicochemical Properties of a Linear Poly(ethylene) Tj ETQq1 1 0.784314 rgBT $|O\rangle$ 1.5 Journal of Physical Chemistry C, 2021, 125, 18089-18097. Re-evaluating common electrolyte additives for high-voltage lithium ion batteries. Cell Reports 888 2.8 32 Physical Science, 2021, 2, 100521. Thermally Stable and Nonflammable Electrolytes for Lithium Metal Batteries: Progress and 5.8 Perspectives. Small Science, 2021, 1, 2100058. Viscoelastic polyborosiloxanes as artificial solid electrolyte interphase on lithium metal anodes. 890 2.6 6 Electrochimica Ácta, 2021, 388, 138526. Highly Aligned Ultraâ€Thick Gelâ€Based Cathodes Unlocking Ultraâ€High Energy Density Batteries. Energy 7.3 and Environmental Materials, 2022, 5, 1332-1339. Degradation-resistant TiO2@Sn anodes for high-capacity lithium-ion batteries. Journal of Materials 892 1.7 0 Science, 2021, 56, 17156-17166. Preparation of LiNi1/3Co1/3Mn1/3O2 Using NiCoMn-MOF as Precursor. Journal of Electronic Materials, 893 1.0 2021, 50, 6114-6120. 894 Emerging trends in sustainable battery chemistries. Trends in Chemistry, 2021, 3, 620-630. 4.4 34 Investigation of Polymer/Ceramic Composite Solid Electrolyte System: The Case of PEO/LGPS Composite 3.2 Electrolytes. ACS Sustainable Chemistry and Engineering, 2021, 9, 11314-11322. <i>Ab Initio</i> Exploration of Co-Free Layered Oxides as Cathode Materials in Li Ion Batteries. ACS 896 3.2 13 Sustainable Chemistry and Engineering, 2021, 9, 11342-11350. Deciphering Interfacial Reactions via Optical Sensing to Tune the Interphase Chemistry for Optimized 24 Naâ€Ion Electrolyte Formulation. Advanced Energy Materials, 2021, 11, 2101490. Influence of Calendering on the Electrochemical Performance of LiNi_{0.9}Mn_{0.05}Al_{0.05}O₂ Cathodes in Lithium-Ion Cells. 898 4.0 37 ACS Applied Materials & amp; Interfaces, 2021, 13, 42898-42908. Electrospinning oxygen-vacant TiNb24O62 nanowires simultaneously boosts electrons and ions 2.6 14 transmission capacities toward superior lithium storage. Electrochimica Acta, 2021, 388, 138656. Viability of Vehicles Utilizing On-Board CO₂ Capture. ACS Energy Letters, 2021, 6, 3180-3184. 900 8.8 6 The passivity of lithium electrodes in liquid electrolytes for secondary batteries. Nature Reviews 201 Materials, 2021, 6, 1036-1052. Engineering the Si Anode Interface via Particle Surface Modification: Embedded Organic Carbonates 902 2.511 Lead to Enhanced Performance. ACS Applied Energy Materials, 2021, 4, 8193-8200. A Micrometerâ€Sized Silicon/Carbon Composite Anode Synthesized by Impregnation of Petroleum Pitch 11.1 99 in Nanoporous Silicon. Advanced Materials, 2021, 33, e2103095.

#	Article	IF	CITATIONS
904	Singleâ€Ion Conducting Soft Electrolytes for Semiâ€Solid Lithium Metal Batteries Enabling Cell Fabrication and Operation under Ambient Conditions. Advanced Energy Materials, 2021, 11, 2101813.	10.2	26
905	The Origin of Gaseous Decomposition Products Formed During SEI Formation Analyzed by Isotope Labeling in Lithiumâ€lon Battery Electrolytes. Batteries and Supercaps, 2021, 4, 1731-1738.	2.4	16
906	Vanadium Metaphosphate V(PO ₃ 3 Derived from Vâ€MOF as a Novel Anode for Lithiumâ€lon Batteries. ChemistrySelect, 2021, 6, 8150-8157.	0.7	11
907	Science of Electrode Processes in the 21st Century: Fundamental Understanding of Microscopic Mechanisms towards Advancing Electrochemical Technologies. Bulletin of the Chemical Society of Japan, 2021, 94, 2423-2434.	2.0	12
908	Beyond Thin Films: Clarifying the Impact of <i>c</i> -Li ₁₅ Si ₄ Formation in Thin Film, Nanoparticle, and Porous Si Electrodes. ACS Applied Materials & Interfaces, 2021, 13, 38147-38160.	4.0	4
909	LCE and Electromobility. Sustainable Production, Life Cycle Engineering and Management, 2022, , 11-55.	0.2	0
910	An Atomic Insight into the Chemical Origin and Variation of the Dielectric Constant in Liquid Electrolytes. Angewandte Chemie - International Edition, 2021, 60, 21473-21478.	7.2	74
911	Trimetallic Metalâ€Organic Framework Nanoframe Superstructures: A Stressâ€Buffering Architecture Engineering of Anode Material toward Boosted Lithium Storage Performance. Energy and Environmental Materials, 2023, 6, .	7.3	7
912	Lowâ€Temperature Electrolyte Design for Lithiumâ€Ion Batteries: Prospect and Challenges. Chemistry - A European Journal, 2021, 27, 15842-15865.	1.7	106
913	High-Potential Test for Quality Control of Separator Defects in Battery Cell Production. Batteries, 2021, 7, 64.	2.1	9
914	Controllable synthesis of LiNi1/3Co1/3Mn1/3O2 electrode material via a high shear mixer-assisted precipitation process. Chemical Engineering Journal, 2021, 419, 129281.	6.6	18
915	Emerging Carbonyl Polymers as Sustainable Electrode Materials for Lithiumâ€Free Metalâ€Ion Batteries. Energy and Environmental Materials, 2022, 5, 1037-1059.	7.3	18
916	In Situ and Operando Analyses of Reaction Mechanisms in Vanadium Oxides for Liâ€, Naâ€, Znâ€, and Mgâ€lons Batteries. Advanced Materials Technologies, 2022, 7, 2100799.	3.0	24
917	Current status and future directions of all-solid-state batteries with lithium metal anodes, sulfide electrolytes, and layered transition metal oxide cathodes. Nano Energy, 2021, 87, 106081.	8.2	55
918	Stabilizing the Solidâ€Electrolyte Interphase with Polyacrylamide for Highâ€Voltage Aqueous Lithiumâ€Ion Batteries. Angewandte Chemie - International Edition, 2021, 60, 22812-22817.	7.2	30
919	Opportunities and Limitations of Ionic Liquid―and Organic Carbonate Solventâ€Based Electrolytes for Mgâ€ŀonâ€Based Dualâ€ŀon Batteries. ChemSusChem, 2021, 14, 4480-4498.	3.6	22
920	High-conversion reduction synthesis of porous silicon for advanced lithium battery anodes. Electrochimica Acta, 2021, 391, 138967.	2.6	9
921	Bioinspired synthesis and green ecological applications of reduced graphene oxide based ternary nanocomposites. Sustainable Materials and Technologies, 2021, 29, e00315.	1.7	5

#	Article	IF	CITATIONS
922	Machine Learning: An Advanced Platform for Materials Development and State Prediction in Lithiumâ€Ion Batteries. Advanced Materials, 2022, 34, e2101474.	11.1	140
923	A one-pot method to fabricate reduced graphene oxide (rGO)-coated Si@SiOx@β-Bi2O3/Bi composites for lithium-ion batteries. Electrochimica Acta, 2021, 390, 138857.	2.6	9
924	Graphene analogue metal organic framework withÂsuperior capacity and rate capability as an anode forÂlithium ion batteries. Electrochimica Acta, 2021, 389, 138750.	2.6	26
925	The triad "electrode – solid electrolyte interphase – electrolyte―as a ground for the use of conversion type reactions in lithium-ion batteries. Himia, Fizika Ta Tehnologia Poverhni, 2021, 12, 226-279.	0.2	0
926	A high-performance lithiated silicon–sulfur battery with pomegranate-structured electrodes. Journal of Power Sources, 2021, 506, 230174.	4.0	12
927	Enhancing Performance of Anode-Free Li-Metal Batteries by Addition of Ceramic Nanoparticles: Part I Journal of the Electrochemical Society, 2021, 168, 090541.	1.3	3
928	Characterization of structured ultra-thick LiNi0.6Co0.2Mn0.2O2 lithium-ion battery electrodes by mercury intrusion porosimetry. Materials Today Communications, 2021, 28, 102549.	0.9	7
929	A Novel Strategy to Overcome the Hurdle for Commercial Allâ€Solidâ€State Batteries via Lowâ€Cost Synthesis of Sulfide Solid Electrolytes. Small Methods, 2021, 5, e2100793.	4.6	14
930	Understanding the effect of Nb substitution on Li-Mn-rich layered oxides. Electrochimica Acta, 2021, 390, 138801.	2.6	5
931	LiNi0.5Mn1.5O4-δ (LNMO) as Co-free cathode for lithium ion batteries via solution-gel synthesis: Particle size and morphology investigation. Journal of Alloys and Compounds, 2022, 892, 162175.	2.8	12
932	In Situ Constructed Ionicâ€Electronic Dualâ€Conducting Scaffold with Reinforced Interface for Highâ€Performance Sodium Metal Anodes. Small, 2021, 17, e2104021.	5.2	17
933	A straightforward fabrication of solid-state lithium secondary batteries based on multi-functional poly(arylene ether sulfone)-g-poly(ethylene glycol) material. Journal of Power Sources, 2021, 507, 230288.	4.0	7
934	A Perspective on the Sustainability of Cathode Materials used in Lithiumâ€Ion Batteries. Advanced Energy Materials, 2021, 11, 2102028.	10.2	133
935	Revisiting lithium metal anodes from a dynamic and realistic perspective. EnergyChem, 2021, 3, 100063.	10.1	11
936	Effect of TiO <i>_x</i> Surface Modification on the Electrochemical Performances of Ni-Rich (NMC-622) Cathode Material for Lithium-Ion Batteries. ACS Applied Energy Materials, 2021, 4, 10493-10504.	2.5	9
937	From Lithiumâ€Metal toward Anodeâ€Free Solidâ€6tate Batteries: Current Developments, Issues, and Challenges. Advanced Functional Materials, 2021, 31, 2106608.	7.8	98
938	Designing of high capacity Si nanosheets anode electrodes for lithium batteries. Surface and Coatings Technology, 2021, 421, 127358.	2.2	11
939	Solvation Structure around Li ⁺ Ions in Organic Carbonate Electrolytes: Spacer-Free Thin Cell IR Spectroscopy. Analytical Chemistry, 2021, 93, 12594-12601.	3.2	13

#	Article	IF	Citations
940	A high-voltage symmetric sodium ion battery using sodium vanadium pyrophosphate with superior power density and long lifespan. Journal of Power Sources, 2021, 507, 230183.	4.0	6
941	Electrochemical Fluoridation of Manganese Oxide by Perfluorinatedâ€Gas Conversion for Lithiumâ€lon Cathodes. Batteries and Supercaps, 2021, 4, 1771-1780.	2.4	1
942	Reliable protocols for calculating the specific energy and energy density of Li-Ion batteries. Materials Today Energy, 2021, 21, 100838.	2.5	18
943	Current density induced growth of Li15Si4 alloy in silicon-carbon anodes during first lithiation process. Journal of Energy Storage, 2021, 41, 102930.	3.9	5
944	Salt and Solvent effect on physicochemical properties and species organisation of Lithium fluorosulfonyl imide (FSI and TFSI) based electrolytes for Li-ion battery: Consequence on cyclability of LiNi0.8Co0.15Al0.05 (NCA) cathode. Journal of the Taiwan Institute of Chemical Engineers, 2021, 126, 88-101.	2.7	4
945	Stabilized Solid Electrolyte Interphase Induced by Ultrathin Boron Nitride Membranes for Safe Lithium Metal Batteries. Nano Letters, 2021, 21, 8447-8454.	4.5	51
946	Towards Dendriteâ€Free Potassiumâ€Metal Batteries: Rational Design of a Multifunctional 3D Polyvinyl Alcoholâ€Borax Layer. Angewandte Chemie - International Edition, 2021, 60, 25122-25127.	7.2	32
947	Stabilizing the Solidâ€Electrolyte Interphase with Polyacrylamide for Highâ€Voltage Aqueous Lithiumâ€Ion Batteries. Angewandte Chemie, 2021, 133, 22994.	1.6	2
948	Improved Lithium-Ion Transport Within the LiNi _{0.8} Co _{0.15} Al _{0.05} O ₂ Secondary Cathode Particles Through a Template-Assisted Synthesis Route. ACS Sustainable Chemistry and Engineering, 2021, 9, 12560-12574.	3.2	4
949	High-Voltage-Compatible Dual-Ether Electrolyte for Lithium Metal Batteries. ACS Applied Energy Materials, 2021, 4, 9032-9037.	2.5	7
950	Degradation Mechanism of Monocrystalline Ni-Rich Li[Ni _x Mn _y Co _{z }]O ₂ (NMC) Active Material in Lithium Ion Batteries. Journal of the Electrochemical Society, 2021, 168, 090532.	1.3	13
951	Production of high-energy Li-ion batteries comprising silicon-containing anodes and insertion-type cathodes. Nature Communications, 2021, 12, 5459.	5.8	190
952	Towards Dendriteâ€Free Potassiumâ€Metal Batteries: Rational Design of a Multifunctional 3D Polyvinyl Alcoholâ€Borax Layer. Angewandte Chemie, 2021, 133, 25326-25331.	1.6	4
953	Carbon materials for stable Li metal anodes: Challenges, solutions, and outlook. , 2021, 3, 957-975.		64
954	SiO <i>_x</i> Anode: From Fundamental Mechanism toward Industrial Application. Small, 2021, 17, e2102641.	5.2	57
955	Fabrication and interfacial characterization of Ni-rich thin-film cathodes for stable Li-ion batteries. Electrochimica Acta, 2021, 398, 139316.	2.6	13
956	Standardization and normalization of capacity vs. current rate behavior of intercalation electrodes for Li-ion and Na-ion batteries. Journal of Energy Storage, 2021, 42, 103055.	3.9	15
957	Improvement of electrochemical performances of ultrathin Ti-coated Si-based multilayer nanofibers as anode materials for lithium-ion batteries. Surface and Coatings Technology, 2021, 424, 127669.	2.2	6

#	Article	IF	CITATIONS
958	Overpotential analysis of graphite-based Li-ion batteries seen from a porous electrode modeling perspective. Journal of Power Sources, 2021, 509, 230345.	4.0	33
959	Carbon in lithium-ion and post-lithium-ion batteries: Recent features. Synthetic Metals, 2021, 280, 116864.	2.1	15
960	Deep learning approach towards accurate state of charge estimation for lithium-ion batteries using self-supervised transformer model. Scientific Reports, 2021, 11, 19541.	1.6	56
961	Well-dispersed single-crystalline nickel-rich cathode for long-life high-voltage all-solid-state batteries. Journal of Power Sources, 2021, 508, 230335.	4.0	21
962	A safe electrolyte for high-performance lithium-ion batteries containing lithium difluoro(oxalato)borate, gamma-butyrolactone and non-flammable hydrofluoroether. Electrochimica Acta, 2021, 394, 139120.	2.6	9
963	What factors affect the public acceptance of new energy vehicles in underdeveloped regions? A case study of Gansu Province, China. Journal of Cleaner Production, 2021, 318, 128432.	4.6	20
964	In situ-formed nitrogen-doped carbon/silicon-based materials as negative electrodes for lithium-ion batteries. Journal of Electroanalytical Chemistry, 2021, 901, 115732.	1.9	6
965	Laser structuring of graphite anodes and NMC cathodes – Proportionate influence on electrode characteristics and cell performance. Electrochimica Acta, 2021, 392, 139002.	2.6	21
966	1-Hydroxyethylidene-1, 1-diphosphonic acid: A multifunctional interface modifier for eliminating HF in silicon anode. Energy Storage Materials, 2021, 42, 493-501.	9.5	23
967	A novel phosphonium ionic liquid electrolyte enabling high-voltage and high-energy positive electrode materials in lithium-metal batteries. Energy Storage Materials, 2021, 42, 826-835.	9.5	22
968	Grain size effect of nanocrystalline-Si embedded in buffering alloy-matrix as anode for Li-ion batteries. Journal of Alloys and Compounds, 2021, 882, 160558.	2.8	5
969	Dual-salt-additive electrolyte enables high-voltage lithium metal full batteries capable of fast-charging ability. Nano Energy, 2021, 89, 106353.	8.2	90
970	Superior long-term cycling of high-voltage lithium-ion batteries enabled by single-solvent electrolyte. Nano Energy, 2021, 89, 106299.	8.2	21
971	Computational comparison of oxidation stability: Sulfones vs. fluorinated sulfones. Chemical Physics, 2021, 551, 111328.	0.9	2
972	A review of the publication and patent landscape of anode materials for lithium ion batteries. Journal of Energy Storage, 2021, 43, 103231.	3.9	10
973	Confining invasion directions of Li+ to achieve efficient Si anode material for lithium-ion batteries. Energy Storage Materials, 2021, 42, 231-239.	9.5	41
974	N,S-codoped carbon dots as deposition regulating electrolyte additive for stable lithium metal anode. Energy Storage Materials, 2021, 42, 679-686.	9.5	43
975	The impact of climate policy implementation on lithium, cobalt and nickel demand: The case of the Dutch automotive sector up to 2040. Resources Policy, 2021, 74, 102351.	4.2	17

#	Article	IF	CITATIONS
976	Li2Ni(WO4)2/C: A potential tungstate anode material for lithium ion batteries. Journal of Alloys and Compounds, 2021, 888, 161535.	2.8	3
977	Sn-based nanomaterials: From composition and structural design to their electrochemical performances for Li- and Na-ion batteries. Energy Storage Materials, 2021, 43, 430-462.	9.5	57
978	Understanding kinetic and thermodynamic properties of blended cathode materials for lithium-ion batteries. Materials Today Energy, 2021, 22, 100845.	2.5	2
979	Revealing the role of spinel phase on Li-rich layered oxides: A review. Chemical Engineering Journal, 2022, 427, 131978.	6.6	43
980	Lower-voltage plateau Zn-substituted Co3O4 submicron spheres anode for Li-ion half and full batteries. Journal of Alloys and Compounds, 2022, 890, 161888.	2.8	7
981	Long-cycling lithium-oxygen batteries enabled by tailoring Li nucleation and deposition via lithiophilic oxygen vacancy in Vo-TiO2/Ti3C2T composite anodes. Journal of Energy Chemistry, 2022, 65, 654-665.	7.1	34
982	Status and challenges facing representative anode materials for rechargeable lithium batteries. Journal of Energy Chemistry, 2022, 66, 260-294.	7.1	149
983	Bioinspired PDA@TiO2 modification on high-voltage LiNi0.5Mn1.5O4 toward enhancing electrochemical performance. Journal of Alloys and Compounds, 2021, 889, 161690.	2.8	4
984	Space and interface confinement effect of necklace-box structural FeS2/WS2 carbon nanofibers to enhance Na+ storage performance and electrochemical kinetics. Chemical Engineering Journal, 2022, 427, 131002.	6.6	37
985	Vapor-induced phase inversion of poly (m-phenylene isophthalamide) modified polyethylene separator for high-performance lithium-ion batteries. Chemical Engineering Journal, 2022, 429, 132429.	6.6	27
986	The controlled release of active substance from one-dimensional inorganic nanocarrier for the stability enhancement of lithium batteries. Chemical Engineering Journal, 2022, 427, 131748.	6.6	6
987	Energy Flexibility in Battery Cell Manufacturing. Procedia CIRP, 2021, 99, 531-536.	1.0	2
988	Principle in developing novel fluorinated sulfone electrolyte for high voltage lithium-ion batteries. Energy and Environmental Science, 2021, 14, 3029-3034.	15.6	44
989	A non-flammable electrolyte for long-life lithium ion batteries operating over a wide-temperature range. Journal of Materials Chemistry A, 2021, 9, 15363-15372.	5.2	23
990	Prospects and limitations of single-crystal cathode materials to overcome cross-talk phenomena in high-voltage lithium ion cells. Journal of Materials Chemistry A, 2021, 9, 7546-7555.	5.2	62
991	Recent Progress of Porous Materials in Lithiumâ€Metal Batteries. Small Structures, 2021, 2, 2000118.	6.9	61
992	Potassium-ion batteries: outlook on present and future technologies. Energy and Environmental Science, 2021, 14, 2186-2243.	15.6	402
993	Battery cost forecasting: a review of methods and results with an outlook to 2050. Energy and Environmental Science, 2021, 14, 4712-4739.	15.6	189

#	Article	IF	CITATIONS
994	Thermally modulated lithium iron phosphate batteries for mass-market electric vehicles. Nature Energy, 2021, 6, 176-185.	19.8	232
995	A scalable aluminum niobate anode for high energy, high power practical lithium-ion batteries. Journal of Materials Chemistry A, 0, , .	5.2	13
996	Chapter 5. 2D Nanomaterial-based Polymer Composite Electrolytes for Lithium-based Batteries. Inorganic Materials Series, 2021, , 204-274.	0.5	2
997	Dendrite-free reversible Li plating/stripping in adiponitrile-based electrolytes for high-voltage Li metal batteries. Journal of Materials Chemistry A, 2021, 9, 4962-4970.	5.2	7
998	Scalable synthesis of silicon nanoplate-decorated graphite for advanced lithium-ion battery anodes. Nanoscale, 2021, 13, 2820-2824.	2.8	12
999	Ultrasmall Mo ₂ C nanocrystals embedded in N-doped porous carbons as a surface-dominated capacitive anode for lithium-ion capacitors. Chemical Communications, 2021, 57, 4966-4969.	2.2	8
1000	A mechanistic study of electrode materials for rechargeable batteries beyond lithium ions by <i>in situ</i> transmission electron microscopy. Energy and Environmental Science, 2021, 14, 2670-2707.	15.6	42
1001	A theoretical approach to evaluate and understand the electrical properties of the electrode materials of batteries. Physical Chemistry Chemical Physics, 2021, 23, 16013-16022.	1.3	11
1002	Self-assembled cationic organic nanosheets: role of positional isomers in a guanidinium-core for efficient lithium-ion conduction. Chemical Science, 2021, 12, 13878-13887.	3.7	5
1003	Insight into the microscopic morphology and electrochemical performance correlation mechanism upon calcination at different temperatures of a novel spherical cobalt-free 0.6Li2MnO3·0.4Li[Fe1/3Ni1/3Mn1/3]O2 cathode. Sustainable Energy and Fuels, 0, , .	2.5	4
1004	Recent progress in aqueous zinc-ion batteries: a deep insight into zinc metal anodes. Journal of Materials Chemistry A, 2021, 9, 6013-6028.	5.2	105
1005	Molecular engineering of carbonyl organic electrodes for rechargeable metal-ion batteries: fundamentals, recent advances, and challenges. Energy and Environmental Science, 2021, 14, 4228-4267.	15.6	100
1006	Glycolide additives enrich organic components in the solid electrolyte interphase enabling stable ultrathin lithium metal anodes. Materials Chemistry Frontiers, 2021, 5, 2791-2797.	3.2	21
1007	Biomass-based materials for green lithium secondary batteries. Energy and Environmental Science, 2021, 14, 1326-1379.	15.6	157
1008	Re-examining rates of lithium-ion battery technology improvement and cost decline. Energy and Environmental Science, 2021, 14, 1635-1651.	15.6	211
1009	Highâ€Safety and Highâ€Energyâ€Density Lithium Metal Batteries in a Novel Ionic‣iquid Electrolyte. Advanced Materials, 2020, 32, e2001741.	11.1	176
1010	Layered Heterostructure lonogel Electrolytes for Highâ€Performance Solidâ€State Lithiumâ€Ion Batteries. Advanced Materials, 2021, 33, e2007864.	11.1	51
1011	Oxygenâ€Deficient Blue TiO ₂ for Ultrastable and Fast Lithium Storage. Advanced Energy Materials, 2020, 10, 1903107.	10.2	83

#	Article	IF	CITATIONS
1012	Enabling 6C Fast Charging of Liâ€ l on Batteries with Graphite/Hard Carbon Hybrid Anodes. Advanced Energy Materials, 2021, 11, 2003336.	10.2	116
1013	Atomically ordered and epitaxially grown surface structure in core-shell NCA/NiAl2O4 enabling high voltage cyclic stability for cathode application. Electrochimica Acta, 2019, 300, 437-444.	2.6	10
1014	Mathematical modeling and numerical analysis of the discharge process of an alkaline zinc-cobalt battery. Journal of Energy Storage, 2020, 30, 101432.	3.9	6
1015	Incorporation of binary metal oxide and one dimensional carbon fiber hybrid nanocomposites for electrochemical energy storage applications. Journal of Alloys and Compounds, 2020, 842, 155649.	2.8	12
1016	Quantum prediction of ultra-low thermal conductivity in lithium intercalation materials. Nano Energy, 2020, 75, 104916.	8.2	24
1017	Boosting reaction kinetics and reversibility in Mott-Schottky VS2/MoS2 heterojunctions for enhanced lithium storage. Science Bulletin, 2020, 65, 1470-1478.	4.3	64
1018	An inverse opal Cu ₂ Nb ₃₄ O ₈₇ anode for high-performance Li ⁺ storage. Chemical Communications, 2020, 56, 7321-7324.	2.2	18
1019	Accelerated lithium-ion conduction in covalent organic frameworks. Chemical Communications, 2020, 56, 10465-10468.	2.2	40
1020	Approaching Electrochemical Limits of Mg _x Cl _y ^{z+} Complex-Based Electrolytes for Mg Batteries by Tailoring the Solution Structure. Journal of the Electrochemical Society, 2020, 167, 160505.	1.3	9
1021	Study of the Binder Influence on Expansion/Contraction Behavior of Silicon Alloy Negative Electrodes for Lithium-Ion Batteries. Journal of the Electrochemical Society, 2020, 167, 160537.	1.3	17
1022	Stable silicon electrodes with vinylidene fluoride polymer binder for lithium-ion batteries. Himia, Fizika Ta Tehnologia Poverhni, 2020, 11, 58-71.	0.2	5
1024	A Model-Based Design Approach for a Parallel Hybrid Electric Tractor Energy Management Strategy Using Hardware in the Loop Technique. Vehicles, 2021, 3, 1-19.	1.7	21
1025	Stabilizing electrode–electrolyte interfaces to realize high-voltage Li LiCoO ₂ batteries by a sulfonamide-based electrolyte. Energy and Environmental Science, 2021, 14, 6030-6040.	15.6	84
1026	Strategies for improving electrochemical reaction kinetics of cathode materials for subzero-temperature Li-ion batteries: A review. Energy Storage Materials, 2022, 44, 390-407.	9.5	42
1027	Self-supported metal-organic framework nanoarrays for alkali metal ion batteries. Journal of Alloys and Compounds, 2022, 894, 162415.	2.8	10
1028	Natural Lepidolite Enables Fast Polysulfide Redox for Highâ€Rate Lithium Sulfur Batteries. Advanced Energy Materials, 2021, 11, 2102058.	10.2	47
1029	Phase separation induces congestion waves in electric vehicle charging. Physical Review E, 2021, 104, L042302.	0.8	1
1030	Bismuth Nanoparticles Anchored on Ti ₃ C ₂ T _x MXene Nanosheets for Highâ€Performance Sodiumâ€lon Batteries. Chemistry - an Asian Journal, 2021, 16, 3774-3780.	1.7	17

	CITATION REI	PORT	
#	Article	IF	CITATIONS
1031	Graphene-Based Cathode Materials for Lithium-Ion Capacitors: A Review. Nanomaterials, 2021, 11, 2771.	1.9	18
1032	Environmental Impacts of Graphite Recycling from Spent Lithium-Ion Batteries Based on Life Cycle Assessment. ACS Sustainable Chemistry and Engineering, 2021, 9, 14488-14501.	3.2	60
1033	Understanding the formation of antiphase boundaries in layered oxide cathode materials and their evolution upon electrochemical cycling. Matter, 2021, 4, 3953-3966.	5.0	20
1034	Lithiophilic Property of Artificial Alkoxides and Mercaptide Layers to Guide Uniform Li Nucleation for Stable Lithium Metal Anodes. Journal of Physical Chemistry C, 2021, 125, 22493-22501.	1.5	3
1035	2D Molecular Sheets of Hydrogenâ€Bonded Organic Frameworks for Ultrastable Sodiumâ€ion Storage. Advanced Materials, 2021, 33, e2106079.	11.1	55
1036	Solvent Coâ€Intercalationâ€Induced Activation and Capacity Fade Mechanism of Fewâ€/Multiâ€Layered MXenes in Lithium Ion Batteries. Small, 2021, 17, e2104130.	5.2	12
1037	Supramolecular Viologen–Cyclodextrin Electrolytes for Aqueous Organic Redox Flow Batteries. ACS Applied Energy Materials, 2021, 4, 12353-12364.	2.5	11
1038	Low Power Modular Battery Management System with a Wireless Communication Interface. Energies, 2021, 14, 6320.	1.6	9
1039	Principles and Applications of Galvanostatic Intermittent Titration Technique for Lithium-ion Batteries. Journal of Electrochemical Science and Technology, 2022, 13, 19-31.	0.9	44
1040	Thermodynamic Perspective: Insights into the Capacity Increase Phenomenon and Regulation of the Capacity Tendency of MnO for Lithium-Ion Battery Anodes. ACS Applied Energy Materials, 2021, 4, 12662-12670.	2.5	2
1041	Compatibility of Various Electrolytes with Cation Disordered Rocksalt Cathodes in Lithium Ion Batteries. ACS Applied Energy Materials, 2021, 4, 10909-10920.	2.5	9
1042	Dense Silicon Nanowire Networks Grown on a Stainlessâ€Steel Fiber Cloth: A Flexible and Robust Anode for Lithiumâ€Ion Batteries. Advanced Materials, 2021, 33, e2105917.	11.1	46
1043	Enhanced electrochemical performance of Li1.2(Ni0.17Co0.07Mn0.56)O2 via constructing double protection layers by facile phytic acid treatment. Ceramics International, 2022, 48, 3374-3382.	2.3	12
1044	Lithiation Mechanism and Improved Electrochemical Performance of TiSnSb-Based Negative Electrodes for Lithium-Ion Batteries. Chemistry of Materials, 2021, 33, 8173-8182.	3.2	2
1045	Cation Vacancy-Boosted Lewis Acid–Base Interactions in a Polymer Electrolyte for High-Performance Lithium Metal Batteries. ACS Applied Materials & Interfaces, 2021, 13, 51107-51116.	4.0	15
1046	Grainâ€Boundaryâ€Rich Artificial SEI Layer for Highâ€Rate Lithium Metal Anodes. Advanced Functional Materials, 2022, 32, 2107249.	7.8	97
1047	Multisalt chemistry in ion transport and interface of lithium metal polymer batteries. Energy Storage Materials, 2022, 44, 263-277.	9.5	17
1048	Rational design of mechanically robust Ni-rich cathode materials via concentration gradient strategy. Nature Communications, 2021, 12, 6024.	5.8	80

# 1049	ARTICLE Online sample pretreatment for analysis of decomposition products in lithium ion battery by liquid chromatography hyphenated with ion trap-time of flight-mass spectrometry or inductively coupled plasma-sector field-mass spectrometry. Journal of Chromatography A, 2021, 1658, 462594.	IF 1.8	CITATIONS
1050	Impact of secondary particle size and two-layer architectures on the high-rate performance of thick electrodes in lithium-ion battery pouch cells. Journal of Power Sources, 2021, 515, 230429.	4.0	41
1051	Ionic liquid plasticizers comprising solvating cations for lithium metal polymer batteries. Electrochimica Acta, 2021, 398, 139333.	2.6	10
1052	Quantitative determination of solid electrolyte interphase and cathode electrolyte interphase homogeneity in multi-layer lithium ion cells. Journal of Energy Storage, 2021, 44, 103208.	3.9	17
1053	Synergistic effect of vinylene carbonate (VC) and LiNO3 as functional additives on interphase modulation for high performance SiO anodes. Journal of Power Sources, 2021, 514, 230595.	4.0	14
1054	Si–C/G based anode swelling and porosity evolution in 18650 casing and in pouch cell. Journal of Power Sources, 2021, 514, 230552.	4.0	24
1055	New High-energy Anode Materials. , 2019, , 1-25.		1
1056	Lithium-Ion Batteries for Automotive Applications: Life Cycle Analysis. , 2019, , 1-12.		0
1057	Deposition and Compositional Analysis of Garnet Solid Electrolyte Thin Films. , 2019, , 129-154.		0
1058	Improved cyclability of Nickel-rich layered oxides. MRS Advances, 2020, 5, 1433-1440.	0.5	2
1059	Lithium-Ion Batteries for Electric Vehicle Application. Annals of Chemical Science Research, 2020, 2, .	0.1	0
1060	Metal–Organic Frameworkâ€Templated Graphitic Carbon Confining MnO/Mn ₃ O ₄ Nanoparticles via Direct Laser Printing for Electrocatalysis and Supercapacitor. Advanced Materials Interfaces, 2021, 8, .	1.9	4
1061	Improving Electrochemical Performance of High-Voltage Spinel LiNi _{0.5} Mn _{1.5} O ₄ Cathodes by Silicon Oxide Surface Modification. ACS Applied Energy Materials, 2021, 4, 12201-12210.	2.5	11
1062	An integrated surface coating strategy to enhance the electrochemical performance of nickel-rich layered cathodes. Nano Energy, 2022, 91, 106665.	8.2	143
1063	Bayesian learning for rapid prediction of lithium-ion battery-cycling protocols. Joule, 2021, 5, 3187-3203.	11.7	51
1064	Fast-chargeable N-doped multi-oriented graphitic carbon as a Li-intercalation compound. Energy Storage Materials, 2022, 44, 416-424.	9.5	21
1065	Anionâ€Rectifying Polymeric Single Lithiumâ€lon Conductors. Advanced Functional Materials, 2022, 32, 2107753.	7.8	25
1066	Understanding the Impact of Convective Transport on Intercalation Batteries Through Dimensional Analysis. Journal of the Electrochemical Society, 2020, 167, 140551.	1.3	2

~			~
	TATI	ON	Report
<u> </u>			NEFORT

#	Article	IF	CITATIONS
1067	Exploiting the Degradation Mechanism of NCM523   Graphite Lithiumâ€Ion Full Cells Operated at High Voltage. ChemSusChem, 2021, 14, 491-491.	3.6	2
1068	Design of an Unmanned Ground Vehicle and LiDAR Pipeline for the High-Throughput Phenotyping of Biomass in Perennial Ryegrass. Remote Sensing, 2021, 13, 20.	1.8	13
1069	Molten salt strategy and plasma technology induced MnO ₂ with oxygen vacancy for high performance Zn-ion batteries. New Journal of Chemistry, 2021, 45, 22202-22207.	1.4	2
1070	The role and the necessary features of electrolytes for microsupercapacitors. , 2022, , 47-116.		3
1071	Elevated stability of nickel-rich oxide cathode material with concentration gradient of transition metals via a novel size-controllable calcination method. Journal of Alloys and Compounds, 2022, 893, 162252.	2.8	3
1072	Expanded graphite confined SnO2 as anode for lithium ion batteries with low average working potential and enhanced rate capability. Journal of Materials Science and Technology, 2022, 107, 165-171.	5.6	9
1073	Optical Diagnostics of Isooctane and n-Heptane Isobaric Combustion. , 0, , .		5
1074	A Lithiumâ€Silicon Microbattery with Anode and Housing Directly Made from Semiconductor Grade Monocrystalline Si. Advanced Materials Technologies, 2022, 7, .	3.0	8
1075	Second life and recycling: Energy and environmental sustainability perspectives for high-performance lithium-ion batteries. Science Advances, 2021, 7, eabi7633.	4.7	94
1076	Seeking direct cathode regeneration for more efficient lithium-ion battery recycling. Current Opinion in Electrochemistry, 2022, 31, 100875.	2.5	12
1077	Multifunctional Separator Allows Stable Cycling of Potassium Metal Anodes and of Potassium Metal Batteries. Advanced Materials, 2022, 34, e2105855.	11.1	45
1078	Synergy Effects in Blended Electrodes for Liâ€ion Batteries: A Conceptual Clarification. Batteries and Supercaps, 2022, 5, e202100171.	2.4	3
1079	Template-free synthesis of Co-based oxides nanotubes as potential anodes for lithium-ion batteries. Journal of Alloys and Compounds, 2022, 895, 162611.	2.8	21
1080	Data-driven systematic parameter identification of an electrochemical model for lithium-ion batteries with artificial intelligence. Energy Storage Materials, 2022, 44, 557-570.	9.5	62
1081	High-Performance PDB Organic Cathodes Reinforced by 3D Flower-like Carbon for Lithium-/Sodium-Ion Batteries. ACS Applied Energy Materials, 2021, 4, 12641-12648.	2.5	16
1082	Al2O3 protective coating on silicon thin film electrodes and its effect on the aging mechanisms of lithium metal and lithium ion cells. Journal of Energy Storage, 2021, 44, 103479.	3.9	13
1084	Past, present, and future of electrochemical energy storage: A brief perspective. Frontiers of Nanoscience, 2021, , 1-28.	0.3	2
1085	A truncated octahedron metal-organic framework derived TiO2@C@MoS2 composite with superior lithium-ion storage properties. Journal of Power Sources, 2022, 518, 230746.	4.0	10

#	Article	IF	CITATIONS
1086	Running battery electric vehicles with extended range: Coupling cost and energy analysis. Applied Energy, 2022, 306, 118116.	5.1	46
1087	Enhance performances of Co-free Li-rich cathode by eutesctic melting salt treatment. Nano Energy, 2022, 92, 106760.	8.2	40
1088	Improving ultra-fast charging performance and durability of all solid state thin film Li-NMC battery-on-chip systems by in situ TEM lamella analysis. Applied Materials Today, 2022, 26, 101282.	2.3	2
1090	SnO2/Bi2O3/NF heterojunction with ordered macro/meso-pore structure as an advanced binder-free anode for lithium ion batteries. Journal of Electroanalytical Chemistry, 2021, 907, 115894.	1.9	7
1091	Optimization of hydrogen-ion storage performance of tungsten trioxide nanowires by niobium doping. Nanotechnology, 2022, 33, 105403.	1.3	3
1092	Reversible Conversion Reactions of Mesoporous Iron Oxide with High Initial Coulombic Efficiency for Lithium-Ion Batteries. ACS Sustainable Chemistry and Engineering, 0, , .	3.2	8
1093	Storage of Lithium Metal: The Role of the Native Passivation Layer for the Anode Interface Resistance in Solid State Batteries. ACS Applied Energy Materials, 2021, 4, 12798-12807.	2.5	43
1094	Long-Term Cycling of a Mn-Rich High-Voltage Spinel Cathode by Stabilizing the Surface with a Small Dose of Iron. ACS Applied Energy Materials, 2021, 4, 13297-13306.	2.5	7
1095	Sparse data machine learning for battery health estimation and optimal design incorporating material characteristics. Applied Energy, 2022, 307, 118165.	5.1	1
1096	Liquid lithium metal processing into ultrathin metal anodes for solid state batteries. Chemical Engineering Journal Advances, 2022, 9, 100218.	2.4	23
1097	Carbothermal shock-induced bifunctional Pt-Co alloy electrocatalysts for high-performance seawater batteries. Energy Storage Materials, 2022, 45, 281-290.	9.5	11
1098	Stable Electrode/Electrolyte Interface for High-Voltage NCM 523 Cathode Constructed by Synergistic Positive and Passive Approaches. ACS Applied Materials & Interfaces, 2021, 13, 57107-57117.	4.0	23
1099	Construction of hierarchical flowerâ€shaped (NH4)2V3O8/rGO with enhanced zinc storage performance. ChemElectroChem, 0, , .	1.7	1
1100	On the Origin of Reversible and Irreversible Reactions in LiNi _x Co _{(1â^'x)/2} Mn _{(1â^'x)/2} O ₂ . Journal of the Electrochemical Society, 2021, 168, 120533.	1.3	15
1101	Electrochromic-Hybrid energy storage material consisting of triphenylamine and dithienothiophene. Chemical Engineering Journal, 2022, 434, 133868.	6.6	20
1102	Highâ€Throughput Experimentation and Computational Freeway Lanes for Accelerated Battery Electrolyte and Interface Development Research. Advanced Energy Materials, 2022, 12, 2102678.	10.2	40
1103	Microstructure-optimized concentration-gradient NCM cathode for long-life Li-ion batteries. Materials Today, 2022, 52, 9-18.	8.3	43
1104	Dual impact of superior SEI and separator wettability to inhibit lithium dendrite growth. Rare Metals, 2022, 41, 353-355.	3.6	26

#	Article	IF	CITATIONS
1105	Selective cobalt and nickel electrodeposition for lithium-ion battery recycling through integrated electrolyte and interface control. Nature Communications, 2021, 12, 6554.	5.8	56
1106	Critical Review on Lowâ€Temperature Liâ€lon/Metal Batteries. Advanced Materials, 2022, 34, e2107899.	11.1	204
1107	Synergistic Effects of Surface Coating and Bulk Doping in Niâ€Rich Lithium Nickel Cobalt Manganese Oxide Cathode Materials for Highâ€Energy Lithium Ion Batteries. ChemSusChem, 2022, 15, .	3.6	9
1108	Understanding the Role of Commercial Separators and Their Reactivity toward LiPF ₆ on the Failure Mechanism of Highâ€Voltage NCM523 Graphite Lithium Ion Cells. Advanced Energy Materials, 2022, 12, 2102599.	10.2	35
1109	Dual-layer carbon protected coaxial cable-like Si-based composites as high-performance anodes for lithium-ion batteries. Journal of Alloys and Compounds, 2022, 896, 163069.	2.8	5
1110	Understanding the microstructure behaviour of the Li-ion battery separator under compression using 3D image-based modelling. International Journal of Mechanical Sciences, 2022, 216, 106976.	3.6	5
1111	A Perspective on Li/S Battery Design: Modeling and Development Approaches. Batteries, 2021, 7, 82.	2.1	10
1112	Improving cycle stability of Ni-rich LiNi0.8Mn0.1Co0.1O2 cathode materials by Li4Ti5O12 coating. Ionics, 2022, 28, 1047-1054.	1.2	4
1113	Covalent Pinning of Highly Dispersed Ultrathin Metallic-Phase Molybdenum Disulfide Nanosheets on the Inner Surface of Mesoporous Carbon Spheres for Durable and Rapid Sodium Storage. ACS Applied Materials & Interfaces, 2021, 13, 58652-58664.	4.0	13
1114	Single-atom catalysts for next-generation rechargeable batteries and fuel cells. Energy Storage Materials, 2022, 45, 301-322.	9.5	67
1115	Beyond fluorine: sustainable ternary polymer electrolytes for lithium batteries. Green Chemistry, 2021, 23, 9935-9944.	4.6	7
1116	DEM Simulations of the Calendering Process: Parameterization of the Electrode Material of Lithium-Ion Batteries. Procedia CIRP, 2021, 104, 91-97.	1.0	6
1117	A comparative overview of carbon anodes for nonaqueous alkali metal-ion batteries. Journal of Materials Chemistry A, 2021, 9, 27140-27169.	5.2	25
1118	Determinants of lithium-ion battery technology cost decline. Energy and Environmental Science, 2021, 14, 6074-6098.	15.6	46
1119	State-of-Health Estimation for LiFePO ₄ Battery System on Real-World Electric Vehicles Considering Aging Stage. IEEE Transactions on Transportation Electrification, 2022, 8, 1724-1733.	5.3	18
1120	Contribution of nano-design approaches to future electrochemical energy storage systems. Frontiers of Nanoscience, 2021, 19, 273-325.	0.3	2
1121	Interfacing Siâ€Based Electrodes: Impact of Liquid Electrolyte and Its Components. Advanced Materials Interfaces, 2022, 9, .	1.9	9
1123	A transferable lithium-ion battery remaining useful life prediction method from cycle-consistency of degradation trend. Journal of Power Sources, 2022, 521, 230975.	4.0	32

#	Article	IF	CITATIONS
1124	A deep learning method for lithium-ion battery remaining useful life prediction based on sparse segment data via cloud computing system. Energy, 2022, 241, 122716.	4.5	47
1125	Cost-effective technology choice in a decarbonized and diversified long-haul truck transportation sector: A U.S. case study. Journal of Energy Storage, 2022, 46, 103891.	3.9	21
1126	Multidimensional VO2 nanotubes/Ti3C2 MXene composite for efficient electrochemical lithium/sodium-ion storage. Journal of Power Sources, 2022, 521, 230946.	4.0	14
1127	Advances in and prospects of nanomaterials' morphological control for lithium rechargeable batteries. Nano Energy, 2022, 93, 106860.	8.2	40
1128	Correlating the dispersion of Li@Mn6 superstructure units with the oxygen activation in Li-rich layered cathode. Energy Storage Materials, 2022, 45, 422-431.	9.5	23
1129	Gold-incorporated porous hollow carbon nanofiber for reversible magnesium-metal batteries. Chemical Engineering Journal, 2022, 431, 133968.	6.6	18
1130	Protective and ion conductive: High-Rate Ni-Rich cathode with enhanced cyclic stability via One-Step bifunctional dual-layer coating. Chemical Engineering Journal, 2022, 431, 134031.	6.6	13
1131	Density functional theory guidance on rare earth doping—inhibition of lattice oxygen evolution in lithium-rich layered manganese oxide materials. Journal of Alloys and Compounds, 2022, 899, 163311.	2.8	8
1132	Adaptive deterministic approach for optimized sizing of high-energy battery system applied in electric-powered application. Applied Energy, 2022, 309, 118498.	5.1	7
1133	Advanced red phosphorus/carbon composites with practical application potential for sodium ion batteries. Energy Storage Materials, 2022, 46, 20-28.	9.5	13
1134	A generalizable, data-driven online approach to forecast capacity degradation trajectory of lithium batteries. Journal of Energy Chemistry, 2022, 68, 548-555.	7.1	46
1135	Quasi-Solid-State Polymer Electrolyte Based on High-Concentrated LiTFSI Complexing DMF for Ambient-Temperature Rechargeable Lithium Batteries. SSRN Electronic Journal, 0, , .	0.4	0
1136	Charging Optimization for Li-Ion Battery in Electric Vehicles: A Review. IEEE Transactions on Transportation Electrification, 2022, 8, 3068-3089.	5.3	29
1137	Remaining Useful Life Prediction of Lithium-ion Battery Based on Cycle-consistency Learning. , 2021, , .		1
1138	Potential use of magnesium industrial waste for synthesis of Li and Mg co-doped LiMn2O4 nanoparticles as cathode material for Li-ion batteries: Effect of sintering temperature. Nano Research, 2022, 15, 4500-4516.	5.8	7
1139	Boron-doping-induced defect engineering enables high performance of a graphene cathode for aluminum batteries. Inorganic Chemistry Frontiers, 2022, 9, 925-934.	3.0	16
1140	One-Pot Pyrolysis to Nitrogen-Doped Hierarchically Porous Carbon Nanosheets as Sulfur-Host in Lithium–Sulfur Batteries. Journal of Electrochemical Energy Conversion and Storage, 2022, 19, .	1.1	2
1141	Recycling of Lithiumâ€ion Batteries—Current State of the Art, Circular Economy, and Next Generation Recycling. Advanced Energy Materials, 2022, 12, .	10.2	268

#	Article	IF	CITATIONS
1142	In-situ self-assembly synthesis of low-cost, long-life, shape-controllable spherical Li4Ti5O12 anode material for Li-ion batteries. Journal of Alloys and Compounds, 2022, 904, 164026.	2.8	7
1143	Boundaries of charge–discharge curves of batteries. Sustainable Energy and Fuels, 2022, 6, 879-893.	2.5	12
1144	Does Cell Polarization Matter in Single-Ion Conducting Electrolytes?. ACS Applied Materials & Interfaces, 2022, 14, 5211-5222.	4.0	13
1145	Prediction for the Remaining Useful Life of Lithium–Ion Battery Based on RVM-GM with Dynamic Size of Moving Window. World Electric Vehicle Journal, 2022, 13, 25.	1.6	6
1146	Electrolyte engineering on a porphyrin-based electrode for lithium–organic charge storage. Sustainable Energy and Fuels, 2022, 6, 361-370.	2.5	2
1147	The Role of Silicon in Silicon-Graphite Composite Electrodes Regarding Specific Capacity, Cycle Stability, and Expansion. Journal of the Electrochemical Society, 2022, 169, 010504.	1.3	28
1148	Techno-economic analysis of renewable fuels for ships carrying bulk cargo in Europe. Nature Energy, 2022, 7, 203-212.	19.8	51
1149	Project portfolio planning under CO ₂ fleet emission restrictions in the automotive industry. Journal of Industrial Ecology, 2022, 26, 937-951.	2.8	5
1150	Liquid electrolyte: The nexus of practical lithium metal batteries. Joule, 2022, 6, 588-616.	11.7	191
1151	Aluminum-copper alloy anode materials for high-energy aqueous aluminum batteries. Nature Communications, 2022, 13, 576.	5.8	61
1152	Magnesium Substitution in Niâ€Rich NMC Layered Cathodes for Highâ€Energy Lithium Ion Batteries. Advanced Energy Materials, 2022, 12, .	10.2	63
1153	Mechanistic and nanoarchitectonics insight into Li–host interactions in carbon hosts for reversible Li metal storage. Nano Energy, 2022, 95, 106999.	8.2	22
1155	Delineating the Roles of Mn, Al, and Co by Comparing Three Layered Oxide Cathodes with the Same Nickel Content of 70% for Lithium-Ion Batteries. Chemistry of Materials, 2022, 34, 629-642.	3.2	38
1156	Tetrakis coumarin as efficient electrode material for rechargeable lithium ion battery. Journal of Electroanalytical Chemistry, 2022, 908, 116081.	1.9	2
1157	Technological innovation <i>vs.</i> tightening raw material markets: falling battery costs put at risk. Energy Advances, 2022, 1, 136-145.	1.4	21
1158	Toward a life cycle inventory for graphite production. Journal of Industrial Ecology, 2022, 26, 964-979.	2.8	24
1159	State of charge estimation of an electric vehicle's battery using tiny neural network embedded on small microcontroller units. International Journal of Energy Research, 2022, 46, 8102-8119.	2.2	14
1160	Worldwide ubiquitous utilization of lithium-ion batteries: What we have done, are doing, and could do safely once they are dead?. Journal of Power Sources, 2022, 523, 231015.	4.0	24

		CITATION RE	PORT	
#	Article		IF	CITATIONS
1161	VPO5: An all-climate lithium-storage material. Energy Storage Materials, 2022, 46, 366-373.		9.5	31
1162	High mass loading CaV4O9 microflowers with amorphous phase transformation as cathode f aqueous zinc-ion battery. Chemical Engineering Journal, 2022, 434, 134642.	or	6.6	46
1163	Methane synthesis from CO ₂ and H ₂ O using a phosphate-based electrochemical cell at 210–270 °C with oxide-supported Ru catalysts. Sustainable Energy 2022, 6, 1362-1372.	y and Fuels,	2.5	4
1164	Dendriteâ€Free Zinc Deposition Induced by Zincâ€Phytate Coating for Longâ€Life Aqueous Z Batteries and Supercaps, 2022, 5, .	inc Batteries.	2.4	7
1165	Micrometerâ€5ized SiMg <i>_y</i> O <i>_x</i> with Stable Internal Str Evolution for Highâ€Performance Liâ€Ion Battery Anodes. Advanced Materials, 2022, 34, e22	ucture 00672.	11.1	83
1166	An Allâ€Fluorinated Electrolyte Toward High Voltage and Long Cycle Performance Dualâ€Ion Advanced Energy Materials, 2022, 12, .	Batteries.	10.2	27
1167	Memory Effects' Mechanism in the Intercalation Batteries: The Particles' Bipolarizatio Materials & Interfaces, 2022, 14, 9249-9263.	n. ACS Applied	4.0	8
1168	Scalable synthesis of novel V2O3/carbon composite as advanced cathode material for aqueor zinc-ion batteries. Ceramics International, 2022, 48, 15594-15602.	ε	2.3	19
1169	A review of concepts and contributions in lithium metal anode development. Materials Today 173-196.	, 2022, 53,	8.3	74
1170	Pushing Stoichiometries of Lithium-Rich Layered Oxides Beyond Their Limits. ACS Applied Ene Materials, 2022, 5, 1905-1913.	irgy	2.5	10
1171	Challenges, interface engineering, and processing strategies toward practical <scp>sulfideâ€ allâ€solidâ€state</scp> lithium batteries. InformaÄnÃ-Materiály, 2022, 4, .	based	8.5	92
1172	Amorphous fluorine glaze for crack-free nickel-rich layered cathode grains under electrochem cycling. Chemical Engineering Journal, 2022, 436, 135227.	ical	6.6	7
1173	The Battery Component Readiness Level (BC-RL) framework: A technology-specific developme framework. Journal of Power Sources Advances, 2022, 14, 100089.	ent	2.6	8
1174	An integrated interfacial engineering for efficiently confining the asymmetric strain in scalable silicon anode. Journal of Power Sources, 2022, 524, 231086.	2	4.0	3
1175	Salt-in-Ionic-Liquid Electrolytes: Ion Network Formation and Negative Effective Charges of Alk Metal Cations. Journal of Physical Chemistry B, 2021, 125, 13752-13766.	ali	1.2	21
1176	Prussian Blue Analogues for Sodiumâ€lon Batteries: Past, Present, and Future. Advanced Mat 34, e2108384.	erials, 2022,	11.1	252
1177	Amorphous Fluorine Glaze Protected Nickel-Rich Layered Cathode Grains and No Cracks Und Electrochemical Long Cycle. SSRN Electronic Journal, 0, , .	2r	0.4	0
1178	Artificial Cathode Electrolyte Interphase for Improving High Voltage Cycling Stability of Thick Electrode with Co-Free 5 V Spinel Oxides. SSRN Electronic Journal, 0, , .		0.4	0

#	Article	IF	CITATIONS
1179	Poly(viologen halide)s: both cationic main-chain and counter anions are active for high-performance organic cathodes. Journal of Materials Chemistry A, 2022, 10, 10026-10032.	5.2	11
1180	One-step fabrication of robust lithium ion battery separators by polymerization-induced phase separation. Journal of Materials Chemistry A, 2022, 10, 10557-10568.	5.2	10
1181	Regulation of Dual-Ion Batteries Via the Defects Design in Carbon Electrode Based on the Different Storage Behaviors of Pf6- and Li+. SSRN Electronic Journal, 0, , .	0.4	0
1182	Effective Stabilization of Ncm622 Cathodes in Aqueous/Non-Aqueous Hybrid Electrolytes by Adding a Phosphazene Derivate as Co-Solvent. SSRN Electronic Journal, 0, , .	0.4	0
1183	Green RecyclingÂAnd RegenerationÂOf Lini0.5co0.2mn0.3o2ÂFrom SpentÂLithium-Ion Batteries Assisted by Sodium Sulfate Electrolysis. SSRN Electronic Journal, 0, , .	0.4	0
1184	Reinforced concrete inspired Si/rGO/cPAN hybrid electrode: highly improved lithium storage <i>via</i> Si electrode nanoarchitecture engineering. Nanoscale, 2022, 14, 6488-6496.	2.8	11
1185	A novel PdC monolayer with fully dispersed Pd atoms and a rigid carbon backbone: an intrinsic versatile electrocatalyst for overall water splitting and the corresponding reverse reaction. Physical Chemistry Chemical Physics, 2022, 24, 6811-6819.	1.3	1
1186	Methodology for a combined uncertainty analysis and data quality rating of existing graphite datasets in context of battery LCAs. Procedia CIRP, 2022, 105, 577-582.	1.0	5
1187	Suppressing Surface Lattice Oxygen Evolution by Fluorinated Graphene-Scaffolded Lithium-Rich Manganese-Based Cathode for Enhanced Stability. SSRN Electronic Journal, 0, , .	0.4	0
1189	Challenges and advances in wide-temperature rechargeable lithium batteries. Energy and Environmental Science, 2022, 15, 1711-1759.	15.6	138
1190	Roomâ€ŧemperature metal–sulfur batteries: What can we learn from <scp>lithium–sulfur</scp> ?. InformaÄnÃ-Materiály, 2022, 4, .	8.5	45
1191	Identification of Soluble Degradation Products in Lithium–Sulfur and Lithium-Metal Sulfide Batteries. Separations, 2022, 9, 57.	1.1	0
1192	Single-Ion <i>versus</i> Dual-Ion Conducting Electrolytes: The Relevance of Concentration Polarization in Solid-State Batteries. ACS Applied Materials & Interfaces, 2022, 14, 11559-11566.	4.0	34
1193	Predicting the Remaining Life of Lithium-ion Batteries Using a CNN-LSTM Model. , 2022, , .		5
1194	Enhancing the Electrochemical Performance of Ni-Rich LiNi0.88Co0.09Al0.03O2 Cathodes through Tungsten-Doping for Lithium-Ion Batteries. Nanomaterials, 2022, 12, 729.	1.9	6
1195	Solid/Quasiâ€Solid Phase Conversion of Sulfur in Lithium–Sulfur Battery. Small, 2022, 18, e2106970.	5.2	21
1196	Amorphous Lithium-Phosphate-Encapsulated Fe ₂ O ₃ as a High-Rate and Long-Life Anode for Lithium-Ion Batteries. ACS Applied Energy Materials, 2022, 5, 3463-3470.	2.5	16
1197	Impact of Degree of Graphitization, Surface Properties and Particle Size Distribution on Electrochemical Performance of Carbon Anodes for Potassiumâ€Ion Batteries. Batteries and Supercaps, 2022, 5, .	2.4	9

#	Article	IF	CITATIONS
1198	A dual-function liquid electrolyte additive for high-energy non-aqueous lithium metal batteries. Nature Communications, 2022, 13, 1297.	5.8	56
1199	Lithium superionic conductors with corner-sharing frameworks. Nature Materials, 2022, 21, 924-931.	13.3	67
1200	Research progress of nano-silicon-based materials and silicon-carbon composite anode materials for lithium-ion batteries. Journal of Solid State Electrochemistry, 2022, 26, 1125-1136.	1.2	18
1201	Facile, Atom-Economic, Chemical Thinning Strategy for Ultrathin Lithium Foils. Nano Letters, 2022, 22, 3047-3053.	4.5	16
1202	Applications of polymers in lithium-ion batteries with enhanced safety and cycle life. Journal of Polymer Research, 2022, 29, 1.	1.2	11
1203	Ag ₂ S-modified 3D Carbon Cloth as a Dendrite Suppressing Framework for High Energy Lithium-Sulfur Batteries. Chemistry Letters, 2022, 51, 504-507.	0.7	2
1204	Highâ€Performance Microsized Si Anodes for Lithiumâ€ion Batteries: Insights into the Polymer Configuration Conversion Mechanism. Advanced Materials, 2022, 34, e2109658.	11.1	81
1205	Elucidating the Implications of Morphology on Fundamental Characteristics of Nickel-Rich NCMs: Cracking, Gassing, Rate Capability, and Thermal Stability of Poly- and Single-Crystalline NCM622. Journal of the Electrochemical Society, 2022, 169, 050501.	1.3	11
1206	Reproducible long-term cycling data of Al2O3 coated LiNi0.70Co0.15Mn0.15O2 cathodes for lithium-ion batteries. Scientific Data, 2022, 9, 127.	2.4	5
1207	Electro-Driven Materials and Processes for Lithium Recovery—A Review. Membranes, 2022, 12, 343.	1.4	7
1208	Online Prediction of Remaining Useful Life for Li-Ion Batteries Based on Discharge Voltage Data. Energies, 2022, 15, 2237.	1.6	7
1209	Editors' Choice—Lithium Primary Batteries Employing Multi-Electron Carbon-Fluorine Bond Cleavage in Perfluoroalkylated Reactants. Journal of the Electrochemical Society, 2022, 169, 030535.	1.3	2
1210	Morphological Evolution and Solid–Electrolyte Interphase Formation on LiNi _{0.6} Mn _{0.2} Co _{0.2} O ₂ Cathodes Using Highly Concentrated Ionic Liquid Electrolytes. ACS Applied Materials & Interfaces, 2022, 14, 13196-13205.	4.0	9
1211	Effect of Cr doping on Li2ZnTi3O8 as alternative anode material to enhance electrochemical properties of lithium-ion batteries. Applied Physics A: Materials Science and Processing, 2022, 128, 1.	1.1	2
1212	Mitigation of rapid capacity decay in silicon- LiNi0.6Mn0.2Co0.2O2 full batteries. Energy Storage Materials, 2022, 49, 111-121.	9.5	8
1213	Experimental study on the combustion characteristics of carbonate solvents under different thermal radiation by cone calorimeter. Applied Thermal Engineering, 2022, 211, 118428.	3.0	9
1214	Comprehensive Characterization of Shredded Lithiumâ€ion Battery Recycling Material. Chemistry - A European Journal, 2022, 28, .	1.7	8
1215	Building Practical Highâ€Voltage Cathode Materials for Lithiumâ€Ion Batteries. Advanced Materials, 2022, 34, e2200912.	11.1	86

#	Article	IF	CITATIONS
1216	Preâ€Lithiation of Silicon Anodes by Thermal Evaporation of Lithium for Boosting the Energy Density of Lithium Ion Cells. Advanced Functional Materials, 2022, 32, .	7.8	32
1217	Review of modification strategies in emerging inorganic solid-state electrolytes for lithium, sodium, and potassium batteries. Joule, 2022, 6, 543-587.	11.7	90
1218	Different Positive Electrodes for Anode-Free Lithium Metal Cells. Journal of the Electrochemical Society, 2022, 169, 040517.	1.3	30
1219	Dilute Electrolyte to Mitigate Capacity Decay and Voltage Fading of Co-Free Li-Rich Cathode for Next-Generation Li-Ion Batteries. ACS Applied Materials & Interfaces, 2022, 14, 12264-12275.	4.0	11
1220	Fast Charging Anode Materials for Lithiumâ€lon Batteries: Current Status and Perspectives. Advanced Functional Materials, 2022, 32, .	7.8	185
1221	Investigation of Lithium Polyacrylate Binders for Aqueous Processing of Niâ€Rich Lithium Layered Oxide Cathodes for Lithiumâ€Ion Batteries. ChemSusChem, 2022, 15, .	3.6	5
1222	Battery technology and recycling alone will not save the electric mobility transition from future cobalt shortages. Nature Communications, 2022, 13, 1341.	5.8	107
1223	Enhancing the Cyclability of VS ₄ Positive Electrode in Carbonateâ€Based Electrolyte using Fluoroethylene Carbonate Additive. Batteries and Supercaps, 2022, 5, .	2.4	1
1224	Fluorine $\hat{a} \in F$ ree Electrolytes for Lithium and Sodium Batteries. Batteries and Supercaps, 2022, 5, .	2.4	27
1225	Regulation of dual-ion batteries via the defects design in carbon electrode based on the different storage behaviors of PF6â^' and Li+. Journal of Power Sources, 2022, 527, 231169.	4.0	6
1226	Exploring the characteristics of technological knowledge interaction dynamics in the field of solid-state batteries: A patent-based approach. Journal of Cleaner Production, 2022, 353, 131689.	4.6	10
1227	Taming the chemical instability of lithium hexafluorophosphate-based electrolyte with lithium fluorosulfonimide salts. Journal of Power Sources, 2022, 526, 231105.	4.0	20
1228	A machine learning-based framework for online prediction of battery ageing trajectory and lifetime using histogram data. Journal of Power Sources, 2022, 526, 231110.	4.0	55
1229	Passive direct methanol fuel cells as a sustainable alternative to batteries in hearing aid devices – An overview. International Journal of Hydrogen Energy, 2022, 47, 16552-16567.	3.8	20
1230	Nano one Structured Lithiophilic Ni Film on Cu Current Collector Facilitates Li ⁺ Ion Diffusion Toward Uniform Lithium Deposition. Advanced Materials Interfaces, 2022, 9, .	1.9	6
1231	Direct investigation of the interparticle-based state-of-charge distribution of polycrystalline NMC532 in lithium ion batteries by classification-single-particle-ICP-OES. Journal of Power Sources, 2022, 527, 231204.	4.0	6
1232	A significant enhancement of cycling stability at fast charging rate through incorporation of Li3N into LiF-based SEI in SiO anode for Li-ion batteries. Electrochimica Acta, 2022, 412, 140107.	2.6	17
1233	Classification of Heat Evolution Terms in Li-Ion Batteries Regarding the OCV Hysteresis in a Li- and Mn-Rich NCM Cathode Material in Comparison to NCA. Journal of the Electrochemical Society, 2022, 169, 040547.	1.3	5

		CITATION R	EPORT	
#	Article		IF	CITATIONS
1234	Artificial cathode electrolyte interphase for improving high voltage cycling stability of t electrode with Co-free 5 V spinel oxides. Energy Storage Materials, 2022, 49, 77-84.	hick	9.5	22
1235	Understanding the electrochemical properties of Mn7O8SiO4 as promising anode mat low-cost batteries applications: Redox reation and structural failure. Materials Letters, 2 132231.	erial for 2022, 320,	1.3	0
1236	Square Wave Anodic Stripping Voltammetry for Localized Detection of Mn2+ in Li-Ion B Environments. Journal of the Electrochemical Society, 0, , .	3attery	1.3	0
1237	Designing Nanoconfined LiBH4 for Solid-State Electrolytes. Frontiers in Chemistry, 202	2, 10, 866959.	1.8	3
1238	A facile method to fabricate lightweight copper coated polyimide film current collector lithium-ion batteries. Journal of Power Sources, 2022, 528, 231207.	s for	4.0	16
1239	Understanding high-temperature cycling-induced crack evolution and associated atomi structure in a Ni-rich LiNi0.8Co0.1Mn0.1O2 layered cathode material. Nano Energy, 20	c-scale 22, 98, 107222.	8.2	23
1240	Recent Advances in Antimony Sulfide-Based Nanomaterials for High-Performance Sodiu A Mini Review. Frontiers in Chemistry, 2022, 10, 870564.	ım-lon Batteries:	1.8	2
1242	Thermal energy storage for electric vehicles at low temperatures: Concepts, systems, d materials. Renewable and Sustainable Energy Reviews, 2022, 160, 112263.	evices and	8.2	28
1243	Complex gas formation during combined mechanical and thermal treatments of spent lithium-ion-battery cells. Journal of Hazardous Materials, 2022, 431, 128541.		6.5	18
1244	Ion-conductive gradient sodiophilic 3D scaffold induced homogeneous sodium deposit stable sodium metal batteries. Nano Energy, 2022, 97, 107202.	ion for highly	8.2	26
1245	Green recycling and regeneration of LiNi0.5Co0.2Mn0.3O2 from spent Lithium-ion bath sodium sulfate electrolysis. Chemical Engineering Journal, 2022, 440, 135880.	teries assisted by	6.6	30
1246	Towards rechargeable Na-SexSy batteries: From fundamental insights to improvement Chemical Engineering Journal, 2022, 442, 136189.	strategies.	6.6	5
1247	Overview of batteries and battery management for electric vehicles. Energy Reports, 20 4058-4084.)22, 8,	2.5	184
1248	The Effect of the Lithium Borate Surface Layer on the Electrochemical Properties of the Battery Positive Electrode Material LiNi1/3Mn1/3Co1/3O2. Russian Journal of Electroch 1055-1069.	Lithium-lon emistry, 2021, 57,	0.3	0
1249	Technologies for Electric Vehicle Utilization for Electric Power Optimal Management. , 2	2021,,.		0
1250	Investigation of Fast-Charging and Degradation Processes in 3D Silicon–Graphite An Nanomaterials, 2022, 12, 140.	odes.	1.9	9
1251	Flexible, solid-state, fiber-network-reinforced composite solid electrolyte for long lifespa lithium-sulfurized polyacrylonitrile battery. Nano Research, 2022, 15, 3290-3298.	an solid	5.8	10
1252	Taloring solid state electrodes for the development of next generation asymmetric sup 2021, , .	ercapacitors. ,		0

#	Article	IF	Citations
1253	Enhancement of electrochemical performance in lithium-ion battery via tantalum oxide coated nickel-rich cathode materials. Chinese Physics B, 2022, 31, 058101.	0.7	2
1254	Anthraquinone-Enriched Conjugated Microporous Polymers as Organic Cathode Materials for High-Performance Lithium-Ion Batteries. ACS Applied Energy Materials, 2021, 4, 14628-14639.	2.5	41
1255	Digitalization of Battery Manufacturing: Current Status, Challenges, and Opportunities. Advanced Energy Materials, 2022, 12, .	10.2	51
1256	Geometrical engineering of a SPAN–graphene composite cathode for practical Li–S batteries. Journal of Materials Chemistry A, 2022, 10, 10844-10853.	5.2	15
1257	Novel Method for Monitoring the Electrochemical Capacitance by In Situ Impedance Spectroscopy as Indicator for Particle Cracking of Nickel-Rich NCMs: Part III. Development of a Simplified Measurement Setup. Journal of the Electrochemical Society, 2022, 169, 040552.	1.3	4
1258	Built-in electric field accelerated polysulfide conversion for advanced lithium-sulfur batteries. Materials Letters, 2022, , 132265.	1.3	3
1259	Multi-Role Surface Modification of Single-Crystalline Nickel-Rich Lithium Nickel Cobalt Manganese Oxides Cathodes with WO3 to Improve Performance for Lithium-Ion Batteries. Nanomaterials, 2022, 12, 1324.	1.9	8
1260	Critical review of life cycle assessment of lithium-ion batteries for electric vehicles: A lifespan perspective. ETransportation, 2022, 12, 100169.	6.8	151
1261	Enhanced Capacity and Cycle Stability of a Pomegranate-Like Si/rGO Composite Anode by Electrostatic Self-Assembly and Spray-Drying Processes. Industrial & Engineering Chemistry Research, 2022, 61, 5712-5722.	1.8	2
1262	Boosting Lithium Storage in Graphene‣andwiched Cathodes Containing Multiâ€Carbonyl Polyquinoneimine Nanosheets. Energy and Environmental Materials, 2023, 6, .	7.3	7
1263	Thickness dependence of high volumetric energy density lithium ion battery based on Sn–Zn eutectic alloy foil anode. Ionics, 2022, 28, 2685-2692.	1.2	4
1264	Nonlinear health evaluation for lithium-ion battery within full-lifespan. Journal of Energy Chemistry, 2022, 72, 333-341.	7.1	69
1265	Influence of external pressure on silicon electrodes in lithium-ion cells. Electrochimica Acta, 2022, 419, 140354.	2.6	9
1266	Phosphorusâ€Based Anodes for Fast Charging Lithiumâ€lon Batteries: Challenges and Opportunities. Small Science, 2022, 2, .	5.8	25
1267	Health factor analysis and remaining useful life prediction for batteries based on a cross-cycle health factor clustering framework. Journal of Energy Storage, 2022, 50, 104661.	3.9	2
1268	Solid state lithium metal batteries – Issues and challenges at the lithium-solid electrolyte interface. Current Opinion in Solid State and Materials Science, 2022, 26, 100999.	5.6	29
1269	Beneficial impact of incorporating spinel lithium manganate and samarium oxide into high performance positive materials through ultrasonic cavitation strategy. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 646, 128985.	2.3	3
1270	Nanoscale interface engineering of inorganic Solid-State electrolytes for High-Performance alkali metal batteries. Journal of Colloid and Interface Science, 2022, 621, 41-66.	5.0	12

щ		IF	CITATION
#	ARTICLE In-situ construction of extra ion-store sites and fast ion-diffusion channels for lithium-rich	IF	CITATIONS
1271	manganese-based oxides cathode. Journal of Power Sources, 2022, 535, 231437.	4.0	2
1274	Fabrication of Naâ€lon Fullâ€Cells using Carbonâ€Coated Na ₃ V ₂ (PO ₄) ₂ O ₂ F Cathode with Conversion Type CuO Nanoparticles from Spent Liâ€lon Batteries. Small Methods, 2022, 6, e2200257.	4.6	14
1275	Sustainability of lithium–sulfur batteries. , 2022, , 603-626.		0
1276	Exploring the physicochemical role of Pd dopant in promoting Li-ion diffusion dynamics and storage performance of NbS ₂ at the atomic scale. Physical Chemistry Chemical Physics, 2022, 24, 14877-14885.	1.3	2
1277	Defect-Abundant Commercializable 3d Carbon Papers for Fabricating Composite Li Anode with High Loading and Long Life. SSRN Electronic Journal, 0, , .	0.4	0
1278	The generalized solubility limit approach for vanadium based cathode materials for lithium-ion batteries. Journal of Materials Chemistry A, 2022, 10, 11636-11650.	5.2	1
1279	Green Synthesis of High-Performance Porous Carbon Coated Silicon Composite Anode for Lithium Storage Based on Recycled Silicon Kerf Waste. SSRN Electronic Journal, 0, , .	0.4	0
1280	Formulating energy density for designing practical lithium–sulfur batteries. Nature Energy, 2022, 7, 312-319.	19.8	342
1281	Stabilized cobalt-free lithium-rich cathode materials with an artificial lithium fluoride coating. International Journal of Minerals, Metallurgy and Materials, 2022, 29, 917-924.	2.4	11
1282	Lithium-Rich Rock Salt Type Sulfides-Selenides (Li2TiSexS3â^'x): High Energy Cathode Materials for Lithium-Ion Batteries. Materials, 2022, 15, 3037.	1.3	2
1283	Toward Practical Highâ€Energyâ€Density Lithium–Sulfur Pouch Cells: A Review. Advanced Materials, 2022, 34, e2201555.	11.1	112
1284	Enhancing performance of anode-free Li-metal batteries by addition of ceramic nanoparticles Part II. Journal of Solid State Electrochemistry, 2022, 26, 2027-2038.	1.2	1
1285	Investigation of a Fluorine-Free Phosphonium-Based Ionic Liquid Electrolyte and Its Compatibility with Lithium Metal. ACS Applied Materials & Interfaces, 2022, 14, 20888-20895.	4.0	4
1286	Assessment of optimization strategies for battery electrode active particles based on chemo-mechanical analysis. Journal of Electrochemical Energy Conversion and Storage, 0, , 1-26.	1.1	0
1287	Study and Characterization of the Porous Silicon Membrane Anode for LITHIUM-Ion Batteries. Silicon, 0, , .	1.8	0
1288	Regulating the Molecular Interactions in Polymer Binder for High-Performance Lithium–Sulfur Batteries. ACS Nano, 2022, 16, 8449-8460.	7.3	52
1289	Microrecycled Co3O4 from waste lithium-ion battery: Synthesis, characterisation and implication in environmental application. Journal of Environmental Chemical Engineering, 2022, 10, 107858.	3.3	12
1290	Oneâ€pot synthesis of highâ€capacity silicon anodes via onâ€copper growth of a semiconducting, porous polymer. Natural Sciences, 2022, 2, .	1.0	0

#	Article	IF	CITATIONS
1291	Defining Aging Marker Molecules of 1,3â€Propane Sultone for Targeted Identification in Spent LiNi _{0.6} Co _{0.2} Mn _{0.2} O ₂ AG Cells. Energy Technology, 0, , 2200189.	1.8	0
1292	Sustainable Electric Vehicle Batteries for a Sustainable World: Perspectives on Battery Cathodes, Environment, Supply Chain, Manufacturing, Life Cycle, and Policy. Advanced Energy Materials, 2022, 12,	10.2	72
1293	Recovery of Degraded Ni-Rich NMC811 Particles for Lithium-Ion Batteries. Journal of the Electrochemical Society, 2022, 169, 050520.	1.3	6
1294	High-performance lithium-ion batteries with gel polymer electrolyte based on ultra-thin PVDF film. Ionics, 2022, 28, 3269-3276.	1.2	1
1295	Redox-homogeneous, gel electrolyte-embedded high-mass-loading cathodes for high-energy lithium metal batteries. Nature Communications, 2022, 13, 2541.	5.8	22
1296	Global Minima Search for Sodium- and Magnesium-Adsorbed Polymorphic Borophene. Journal of Physical Chemistry C, 2022, 126, 8605-8614.	1.5	5
1297	Electrolytes for high-voltage lithium batteries. Trends in Chemistry, 2022, 4, 627-642.	4.4	25
1298	Surface Stabilization with Fluorine of Layered Ultrahigh-Nickel Oxide Cathodes for Lithium-Ion Batteries. Chemistry of Materials, 2022, 34, 4514-4522.	3.2	9
1299	A novel coating method for MoO ₃ to improve the electrochemical performance of regenerated Li(Ni _{0.8} Co _{0.1} Mn _{0.1})O ₂ cathode material from spent Liâ€ion Batteries. ChemistrySelect, 2022, 7, .	0.7	1
1300	Understanding the nucleation and growth of the degenerated surface structure of the layered transition metal oxide cathodes for lithium-ion batteries by operando Raman spectroscopy. Journal of Electroanalytical Chemistry, 2022, 915, 116340.	1.9	1
1301	High safety and electrochemical performance electrospun para-aramid nanofiber composite separator for lithium-ion battery. Composites Science and Technology, 2022, 225, 109479.	3.8	19
1302	Recycling of lithium iron phosphate batteries: Status, technologies, challenges, and prospects. Renewable and Sustainable Energy Reviews, 2022, 163, 112515.	8.2	87
1303	Suppressing Surface Lattice Oxygen Evolution by Fluorinated Graphene-Scaffolded Lithium-Rich Manganese-Based Cathode for Enhanced Stability. Energy Storage Materials, 2022, 49, 555-563.	9.5	10
1304	A self-purifying electrolyte enables high energy Li ion batteries. Energy and Environmental Science, 2022, 15, 3331-3342.	15.6	40
1305	Nickel-rich and cobalt-free layered oxide cathode materials for lithium ion batteries. Energy Storage Materials, 2022, 50, 274-307.	9.5	72
1306	Recent advances in kinetic optimizations of cathode materials for rechargeable magnesium batteries. Coordination Chemistry Reviews, 2022, 466, 214597.	9.5	19
1307	Toward practical lithium-ion battery recycling: adding value, tackling circularity and recycling-oriented design. Energy and Environmental Science, 2022, 15, 2732-2752.	15.6	110
1308	Active material and interphase structures governing performance in sodium and potassium ion batteries. Chemical Science, 2022, 13, 6121-6158.	3.7	41

#	Article	IF	CITATIONS
1309	Kinetic square scheme in oxygen-redox battery electrodes. Energy and Environmental Science, 2022, 15, 2591-2600.	15.6	21
1310	Defect-abundant commercializable 3D carbon papers for fabricating composite Li anode with high loading and long life. Energy Storage Materials, 2022, 50, 407-416.	9.5	4
1311	Quasi-Solid-State Polymer Electrolyte Based on Highly Concentrated LiTFSI Complexing DMF for Ambient-Temperature Rechargeable Lithium Batteries. Industrial & Engineering Chemistry Research, 2022, 61, 7971-7981.	1.8	6
1312	Operando detection of Li plating during fast charging of Li-ion batteries using incremental capacity analysis. Journal of Power Sources, 2022, 539, 231601.	4.0	21
1313	Axially and radially inhomogeneous swelling in commercial 18650 Li-ion battery cells. Journal of Energy Storage, 2022, 52, 104563.	3.9	12
1314	Thermal runaway and fire of electric vehicle lithium-ion battery and contamination of infrastructure facility. Renewable and Sustainable Energy Reviews, 2022, 165, 112474.	8.2	40
1315	Processing of Lithium Metal for the Production of Post-Lithium-Ion Batteries Using a Pulsed Nanosecond Fiber Laser. SSRN Electronic Journal, 0, , .	0.4	1
1316	Three-Dimensional Ti3c2 Mxene@Silicon@Nitrogen-Doped Carbon Foam as High Performance Self-Standing Lithium-Ion Battery Anodes. SSRN Electronic Journal, 0, , .	0.4	0
1317	Towards Low-Voltage and High-Capacity Conversion-Based Oxide Anodes Via Configuration Entropy Optimization. SSRN Electronic Journal, 0, , .	0.4	0
1318	An Overview on Medium Voltage Grid Integration of Ultra-Fast Charging Stations: Current Status and Future Trends. IEEE Open Journal of the Industrial Electronics Society, 2022, 3, 420-447.	4.8	48
1319	A greyscale erosion algorithm for tomography (GREAT) to rapidly detect battery particle defects. Npj Materials Degradation, 2022, 6, .	2.6	3
1320	LiNi _{0.6} Co _{0.2} Mn _{0.2} O ₂ Cathodes Coated with Dual-Conductive Polymers for High-Rate and Long-Life Solid-State Lithium Batteries. ACS Applied Materials & Interfaces, 2022, 14, 24929-24937.	4.0	13
1321	Battery Management System Design for Industrial Manufacture. , 2022, , .		1
1322	Improves electrode properties by sputtering Ge on SiO anode surface. Ceramics International, 2022, , .	2.3	4
1323	Degradation of ciprofloxacin by peroxymonosulfate activation using catalyst derived from spent lithium-ion batteries. Journal of Cleaner Production, 2022, 362, 132442.	4.6	14
1324	Facile and Scalable Fabrication of Subâ€Micro MnS@Nitrogenâ€Sulfurâ€Codopedâ€Carbon Composites for Highâ€Performance Lithiumâ€Ion Half and Fullâ€Cell Batteries. ChemElectroChem, 2022, 9, .	1.7	1
1325	3D electrode architectures for high energy and high power lithium-ion batteries. , 2022, , .		0
1326	Room-temperature synthesis of layered open framework cathode for sodium-ion batteries. Chinese Chemical Letters, 2023, 34, 107580.	4.8	4

#	Article	IF	CITATIONS
1327	Enhanced electrochemical performance of vanadium carbide MXene composites for supercapacitors. APL Materials, 2022, 10, .	2.2	32
1328	Carbon-coated MoSe2/MXene heterostructures as active materials for high-performance Na+ batteries. Materials Today Communications, 2022, 31, 103740.	0.9	7
1329	Carbon binder domain networks and electrical conductivity in lithium-ion battery electrodes: A critical review. Renewable and Sustainable Energy Reviews, 2022, 166, 112624.	8.2	41
1330	Effective stabilization of NCM622 cathodes in aqueous/non-aqueous hybrid electrolytes by adding a phosphazene derivate as Co-solvent. Journal of Power Sources, 2022, 541, 231670.	4.0	3
1331	Construction of Highly Stable and Fast Kinetic Interfacial Films on the Electrodes of Lini0.5mn1.5o4/Graphite Cells by Introducing a Novel Additive of 2-Thiophene Boric Acid (2-Tpba). SSRN Electronic Journal, 0, , .	0.4	0
1332	In-Situ Polymerized Electrolyte Modified with Oligomeric Cyclotetrasiloxane for All-Solid-State Lithium Metal Batteries. SSRN Electronic Journal, 0, , .	0.4	0
1333	Review of various sulfide electrolyte types for solid-state lithium-ion batteries. Open Engineering, 2022, 12, 409-423.	0.7	17
1334	Learning the laws of lithium-ion transport in electrolytes using symbolic regression. , 2022, 1, 440-447.		6
1335	TFSI Anion Grafted Polymer as an Ion-Conducting Protective Layer on Magnesium Metal for Rechargeable Magnesium Batteries. Energy Storage Materials, 2022, 51, 108-121.	9.5	17
1336	Metallic Sodium Anodes for Advanced Sodium Metal Batteries: Progress, Challenges and Perspective. Chemical Record, 2022, 22, .	2.9	10
1337	Current Insight into 3D Printing in Solidâ€State Lithiumâ€Ion Batteries: A Perspective. Batteries and Supercaps, 2022, 5, .	2.4	19
1338	Two-dimensional polymers made of carbonyl-bridged heterotriangulenes are promising anode materials for Li-ion batteries. 2D Materials, 2022, 9, 034003.	2.0	6
1339	Specific Surface Area and Bulk Strain: Important Material Metrics Determining the Electrochemical Performance of Li- and Mn-Rich Layered Oxides. Journal of the Electrochemical Society, 2022, 169, 060521.	1.3	4
1340	Temperature-Dependent Reaction Pathways in FeS ₂ : Reversibility and the Electrochemical Formation of Fe ₃ S ₄ . Chemistry of Materials, 2022, 34, 5422-5432.	3.2	7
1341	Graphite Recycling from Endâ€ofâ€Life Lithiumâ€lon Batteries: Processes and Applications. Advanced Materials Technologies, 2023, 8, .	3.0	36
1342	Sodiophilic skeleton based on the packing of hard carbon microspheres for stable sodium metal anode without dead sodium. Journal of Energy Chemistry, 2022, 73, 400-406.	7.1	11
1343	Assessing (Mo _{2/3} Sc _{1/3}) ₂ C and (Mo _{2/3} Sc _{1/3}) ₂ CT ₂ (T = â^'O, â^'OH, and â^'F) i-MXenes as High-Performance Electrode Materials for Lithium and Non-Lithium Ion Batteries. Journal of Physical Chemistry C, 2022, 126, 10273-10286.	1.5	5
1344	In Situ Construction of a LiF-Enriched Interfacial Modification Layer for Stable All-Solid-State Batteries. ACS Applied Materials & Interfaces, 2022, 14, 29878-29885.	4.0	5

#	Article	IF	Citations
1345	Enhancing Potassium Storage Performance in VO ₂ /V ₂ O ₃ @C Nanosheets by Synergistic Effect of Oxygen Vacancy and Câ€Oâ€V Bond. ChemElectroChem, 2022, 9, .	1.7	6
1346	Cobalt-free nickel-rich layered LiNi0.9Al0.1-xZrxO2 cathode for high energy density and stable lithium-ion batteries. Journal of the Taiwan Institute of Chemical Engineers, 2022, 136, 104421.	2.7	5
1347	Global warming potential of lithium-ion battery energy storage systems: A review. Journal of Energy Storage, 2022, 52, 105030.	3.9	35
1348	Spreading monoclinic boundary network between hexagonal primary grains for high performance Ni-rich cathode materials. Nano Energy, 2022, 100, 107502.	8.2	7
1349	Industrial waste micron-sized silicon use for Si@C microspheres anodes in low-cost lithium-ion batteries. Sustainable Materials and Technologies, 2022, 33, e00454.	1.7	4
1350	Recent advances in lithium-ion battery materials for improved electrochemical performance: A review. Results in Engineering, 2022, 15, 100472.	2.2	51
1351	Green synthesis of high-performance porous carbon coated silicon composite anode for lithium storage based on recycled silicon kerf waste. Journal of Alloys and Compounds, 2022, 919, 165854.	2.8	4
1352	Mn3O4 nanoparticles in situ embedded in TiO2 for High-Performance Na-ion capacitor: Balance between 3D ordered hierarchically porous structure and heterostructured interfaces. Chemical Engineering Journal, 2022, 447, 137450.	6.6	15
1353	Two electrolyte decomposition pathways at nickel-rich cathode surfaces in lithium-ion batteries. Energy and Environmental Science, 2022, 15, 3416-3438.	15.6	65
1354	Influence of amorphous carbon interlayers on nucleation and early growth of lithium metal at the current collector-solid electrolyte interface. Journal of Materials Chemistry A, 2022, 10, 15535-15542.	5.2	8
1355	Materials, electrodes and electrolytes advances for next-generation lithium-based anode-free batteries. Oxford Open Materials Science, 2022, 2, .	0.5	5
1356	Advanced Polyimide Separator Via Co-Precursor Method for Lithium-Ion Batteries with Low Thermal Runaway Risks. SSRN Electronic Journal, 0, , .	0.4	0
1357	Synchrotron radiation based X-ray techniques for analysis of cathodes in Li rechargeable batteries. RSC Advances, 2022, 12, 20360-20378.	1.7	5
1358	Approaching a stable oxygen redox reaction in lithium-rich cathode materials: structural perspectives from mechanism to optimization. Journal of Materials Chemistry A, 2022, 10, 19387-19411.	5.2	6
1359	Lithium-Ion Battery Technologies for Electric Mobility – State-of-the-Art Scenario. , 2022, 2, 233-248.		2
1360	Nanostructuring versus microstructuring in battery electrodes. Nature Reviews Materials, 2022, 7, 736-746.	23.3	92
1361	First-Principles Core Spectroscopy of LiCoO ₂ and CoO ₂ . Journal of Physical Chemistry C, 2022, 126, 10949-10956.	1.5	1
1362	Layered Perovskite Lithium Yttrium Titanate as a Lowâ€Potential and Ultrahighâ€Rate Anode for Lithiumâ€Ion Batteries. Advanced Energy Materials, 2022, 12, .	10.2	17

#	Article	IF	CITATIONS
1363	Multifunctional Surface Construction for Longâ€Term Cycling Stability of Liâ€Rich Mnâ€Based Layered Oxide Cathode for Liâ€Ion Batteries. Small, 2022, 18, .	5.2	10
1364	Extractive Metallurgy of Lithium. , 2022, 31, 3-15.		2
1365	Magnetic Actuation Enables Programmable Lithium Metal Engineering. Advanced Energy Materials, 2022, 12, .	10.2	27
1366	Research on Energy Supply System Applied to Autonomous Underwater Observation Vehicles. Applied Bionics and Biomechanics, 2022, 2022, 1-16.	0.5	0
1367	Mechanistically Novel <scp>Frontalâ€Inspired</scp> In Situ Photopolymerization: An Efficient Electrode Electrolyte Interface Engineering Method for High Energy Lithium Metal Polymer Batteries. Energy and Environmental Materials, 2023, 6, .	7.3	1
1368	Lithium phosphosulfide electrolytes for solid-state batteries: Part I. Functional Materials Letters, 2022, 15, .	0.7	12
1369	Simulation of microalgae oil spray characteristics for mechanical fuel injection and CRDI systems. Biomass Conversion and Biorefinery, 0, , .	2.9	4
1370	Study of influences on the direct electrolysis of silica in molten salt: particle size, temperature, time and voltage. Journal of Electrochemical Energy Conversion and Storage, 0, , 1-11.	1.1	0
1371	A numerical study of mechanical degradation of Carbon-Coated Graphite Active Particles in Li-ion battery anodes. Journal of the Electrochemical Society, 0, , .	1.3	1
1373	Wet-slurry fabrication using PVdF-HFP binder with sulfide electrolytes via synergetic cosolvent approach for all-solid-state batteries. Chemical Engineering Journal, 2022, 450, 138047.	6.6	13
1374	Progress and perspective of high-voltage lithium cobalt oxide in lithium-ion batteries. Journal of Energy Chemistry, 2022, 74, 283-308.	7.1	33
1375	A review of deep learning approach to predicting the state of health and state of charge of lithium-ion batteries. Journal of Energy Chemistry, 2022, 74, 159-173.	7.1	78
1376	Fastâ€Charging Strategies for Lithiumâ€lon Batteries: Advances and Perspectives. ChemPlusChem, 2022, 87, .	1.3	8
1377	Highly crystalline graphite-like carbon from wood via low-temperature catalytic graphitization. Carbon Trends, 2022, 8, 100190.	1.4	7
1378	On the Current and Future Outlook of Battery Chemistries for Electric Vehicles—Mini Review. Batteries, 2022, 8, 70.	2.1	64
1379	Tracking Li-Ion Batteries Using Fiber Optic Sensors. , 0, , .		2
1380	Opportunities and Challenges of Li ₂ C ₄ O ₄ as Preâ€Lithiation Additive for the Positive Electrode in NMC622 Silicon/Graphite Lithium Ion Cells. Advanced Science, 2022, 9, .	5.6	20
1381	Enhanced structure and surface stability of high-nickel cathode materials by AlPO4 modification. lonics, 0, , .	1.2	0

#	Article	IF	CITATIONS
1382	A Method to Determine Fast Charging Procedures by Operando Overvoltage Analysis. Journal of the Electrochemical Society, 2022, 169, 070525.	1.3	5
1383	Rapid battery cost declines accelerate the prospects of all-electric interregional container shipping. Nature Energy, 2022, 7, 664-674.	19.8	36
1384	Preparation of matrix-grafted graphene/poly(poly(ethylene glycol) methyl ether methacrylate) nanocomposite gel polymer electrolytes by reversible addition-fragmentation chain transfer polymerization for lithium ion batteries. European Polymer Journal, 2022, 176, 111419.	2.6	9
1385	Fast capacity estimation for lithium-ion battery based on online identification of low-frequency electrochemical impedance spectroscopy and Gaussian process regression. Applied Energy, 2022, 322, 119516.	5.1	32
1386	Key issues and emerging trends in sulfide all solid state lithium battery. Energy Storage Materials, 2022, 51, 527-549.	9.5	31
1387	Li-Compound Anodes: A Classification for High-Performance Li-Ion Battery Anodes. ACS Nano, 2022, 16, 13704-13714.	7.3	14
1388	Practical Implementation of Magnetite-Based Conversion-Type Negative Electrodes via Electrochemical Prelithiation. ACS Applied Materials & Interfaces, 2022, 14, 34665-34677.	4.0	6
1389	Comparative Study on Chitosans as Green Binder Materials for LiMn2O4 Positive Electrodes in Lithium Ion Batteries. ChemElectroChem, 0, , .	1.7	2
1390	Simple preparation of Si/CNTs/C composite derived from photovoltaic waste silicon powder as high-performance anode material for Li-ion batteries. Powder Technology, 2022, 408, 117744.	2.1	14
1391	Sustainable Green Island in Smart Road: Case Study Applied on Italian Highway Network. , 2022, , .		1
1392	Novel Inorganic–Organic Hybrid Cathode for Aqueous Zinc-Ion Batteries: V ₂ O ₅ Pillared with Diethylenetriamine like a Double-Stud. ACS Sustainable Chemistry and Engineering, 2022, 10, 10243-10251.	3.2	8
1393	Oxide-on-Oxide Porous Electrodes Revealing Superior Reversible Li ⁺ -Coupled Electron-Transfer Properties by Unconventional Heterojunction Effects. ACS Applied Materials & Interfaces, 2022, 14, 35883-35893.	4.0	0
1394	Synthesis of Tantalum Doped NMC811 and Its Impact on Crystal Structure and Electrochemical Performance at Higher Upper Cut-off Voltage. Journal of the Electrochemical Society, 2022, 169, 090504.	1.3	3
1395	Controlled polymerization for lithium-ion batteries. Energy Storage Materials, 2022, 52, 598-636.	9.5	4
1396	Thermally Depolymerizable Polyether Electrolytes for Convenient and Low ost Recycling of LiTFSI. Angewandte Chemie, 0, , .	1.6	6
1397	A Techno-Economic Model for Benchmarking the Production Cost of Lithium-Ion Battery Cells. Batteries, 2022, 8, 83.	2.1	7
1398	Computational investigation of ammonia-hydrogen peroxide blends in HCCI engine mode. International Journal of Engine Research, 2023, 24, 2279-2294.	1.4	2
1399	Radiolysis of Electrolytes in Batteries: A Quick and Efficient Screening Process for the Selection of Electrolyteâ€Additive Formulations. Small Methods, 2022, 6, .	4.6	2

#	Article	IF	CITATIONS
1400	Critical Review on cathode–electrolyte Interphase Toward High-Voltage Cathodes for Li-Ion Batteries. Nano-Micro Letters, 2022, 14, .	14.4	49
1401	Improved electrochemical performance of LiFePO4/carbon cathode for lithium-ion batteries. Ionics, 2022, 28, 4579-4585.	1.2	6
1402	Origin of Lithiophilicity of Lithium Garnets: Compositing or Cleaning?. Advanced Functional Materials, 2022, 32, .	7.8	21
1403	Thermally Depolymerizable Polyether Electrolytes for Convenient and Lowâ€Cost Recycling of LiTFSI. Angewandte Chemie - International Edition, 2022, 61, .	7.2	12
1404	Heat Treatment-Induced Conductivity Enhancement in Sulfide-Based Solid Electrolytes: What is the Role of the Thio-LISICON II Phase and of Other Nanoscale Phases?. Chemistry of Materials, 2022, 34, 7721-7729.	3.2	1
1405	"Zero-strain―K2SrV4O12 as a high-temperature friendly Li+-storage material. Energy Storage Materials, 2022, 52, 637-645.	9.5	13
1406	Priority and Prospect of Sulfideâ€Based Solidâ€Electrolyte Membrane. Advanced Materials, 2023, 35, .	11.1	15
1407	Applicationâ€Based Prospects for Dualâ€lon Batteries. ChemSusChem, 2023, 16, .	3.6	4
1408	Macroscopic Architecture Design of Lithium Metal Electrodes: Impacts of Millimeter-Size Hollows on Economization, Cyclability, and Utilization. Journal of Electrochemical Energy Conversion and Storage, 2023, 20, .	1.1	3
1409	Enabling Long-Cycling Life of Si-on-Graphite Composite Anodes via Fabrication of a Multifunctional Polymeric Artificial Solid–Electrolyte Interphase Protective Layer. ACS Applied Materials & Interfaces, 2022, 14, 38824-38834.	4.0	9
1410	Restraining the escape of lattice oxygen enables superior cyclic performance towards high-voltage Ni-rich cathodes. National Science Review, 2023, 10, .	4.6	37
1411	Tin–Graphite Composite as a High-Capacity Anode for All-Solid-State Li-Ion Batteries. Journal of Physical Chemistry C, 2022, 126, 13043-13052.	1.5	4
1412	ImprovedÂlithium-ion batteries with coral-like anodes made ofÂrecycled spherical porous silicon coated with nitrogen-doped carbon. Environmental Chemistry Letters, 2022, 20, 3377-3385.	8.3	7
1413	Recycling of spent lithium-ion batteries as a sustainable solution to obtain raw materials for different applications. Journal of Energy Chemistry, 2023, 79, 118-134.	7.1	36
1415	Inhibiting intercrystalline reactions of anode with electrolytes for long-cycling lithium batteries. Science Advances, 2022, 8, .	4.7	40
1416	Three-dimensional Ti3C2 MXene@silicon@nitrogen-doped carbon foam for high performance self-standing lithium-ion battery anodes. Journal of Electroanalytical Chemistry, 2022, 921, 116664.	1.9	3
1417	Processing of lithium metal for the production of post-lithium-ion batteries using a pulsed nanosecond fiber laser. Results in Materials, 2022, 15, 100305.	0.9	5
1418	Kinetically optimized copper sulfide cathodes for rechargeable magnesium batteries. Journal of Power Sources, 2022, 546, 231673.	4.0	13

#	Article	IF	CITATIONS
1419	Cobalt in high-energy-density layered cathode materials for lithium ion batteries. Journal of Power Sources, 2022, 544, 231873.	4.0	27
1420	Electrochemical performance of high voltage LiNi0.5Mn1.5O4 based on environmentally friendly binders. Solid State Ionics, 2022, 383, 115989.	1.3	4
1421	Model for payback time of using retired electric vehicle batteries in residential energy storage systems. Energy, 2022, 259, 124975.	4.5	11
1422	Revealing the lithium dendrite deposition/dissolution progression based on Monte Carlo method. Journal of Energy Storage, 2022, 55, 105473.	3.9	4
1423	State of charge estimation for lithium-ion batteries under varying temperature conditions based on adaptive dual extended Kalman filter. Electric Power Systems Research, 2022, 213, 108751.	2.1	9
1424	Low-potential and high-capacity lithium battery anode based on hierarchical assemblies of Na2TiSiO5 nanotubes. Applied Surface Science, 2022, 604, 154409.	3.1	2
1425	Best practices in lithium battery cell preparation and evaluation. Communications Materials, 2022, 3, .	2.9	17
1426	Solvent-free and large-scale synthesis of SiO /C nanocomposite with carbon encapsulation for high-performance lithium-ion battery anodes. Composites Part B: Engineering, 2022, 247, 110308.	5.9	11
1427	Recent progress on enhancing the Lithiophilicity of hosts for dendrite-free lithium metal batteries. Energy Storage Materials, 2022, 53, 156-182.	9.5	8
1428	Microspheres of Si@Carbon-CNTs composites with a stable 3D interpenetrating structure applied in high-performance lithium-ion battery. Journal of Colloid and Interface Science, 2023, 629, 511-521.	5.0	19
1429	Auxiliary thermodynamic analysis support capturing the differences in nanostructured FeVO4•nH2O electrodes between lithium and sodium ions storage mechanism. Chemical Engineering Journal, 2023, 452, 139310.	6.6	3
1430	In-situ preparation of gel polymer electrolytes in a fully-assembled lithium ion battery through deeply-penetrating high-energy electron beam irradiation. Chemical Engineering Journal, 2023, 452, 139339.	6.6	10
1431	Boosting efficient and low-energy solid phase regeneration for single crystal LiNi0.6Co0.2Mn0.2O2 via highly selective leaching and its industrial application. Chemical Engineering Journal, 2023, 451, 139039.	6.6	20
1432	Zinc hexacyanoferrate with a highly reversible open framework for fast aqueous nickel-ion storage. Inorganic Chemistry Frontiers, 2022, 9, 5055-5063.	3.0	3
1433	Different interfacial reactivity of lithium metal chloride electrolytes with high voltage cathodes determines solid-state battery performance. Energy and Environmental Science, 2022, 15, 3933-3944.	15.6	28
1434	Rational engineering of VS ₄ nanorod array on rose-shaped VS ₂ nanosheets for high-performance aluminium-ion batteries. Chemical Communications, 2022, 58, 11677-11680.	2.2	10
1435	Evolving aprotic Li–air batteries. Chemical Society Reviews, 2022, 51, 8045-8101.	18.7	37
1436	Hierarchical nanoporous Ge anodes for lithium-ion batteries <i>via</i> plasma-phase-fabricated Mg ₂ Ge. Materials Advances, 0, , .	2.6	0

#	Article	IF	CITATIONS
1437	Solid electrolytes for solid-state Li/Na–metal batteries: inorganic, composite and polymeric materials. Chemical Communications, 2022, 58, 12035-12045.	2.2	10
1438	Surface-Patterned Graphite Electrode with Hybrid Polymer/Garnet Electrolyte for All-Solid-State Batteries. SSRN Electronic Journal, 0, , .	0.4	0
1439	Li ⁺ -intercalated carbon cloth for anode-free Li-ion batteries with unprecedented cyclability. Journal of Materials Chemistry A, 2022, 10, 21456-21464.	5.2	5
1440	Machine Learning for Battery Research. SSRN Electronic Journal, 0, , .	0.4	0
1441	An Electrochemical Compatibility Study of Rtil-Based Electrolytes with Si-Based Anodes for Advanced Li-Ion Batteries. SSRN Electronic Journal, 0, , .	0.4	0
1442	<i>Eldfellite</i> NaV(SO ₄) ₂ as a versatile cathode insertion host for Li-ion and Na-ion batteries. Journal of Materials Chemistry A, 0, , .	5.2	1
1443	Enabling high-capacity Li metal battery with PVDF sandwiched type polymer electrolyte. Journal of Colloid and Interface Science, 2023, 629, 980-988.	5.0	12
1444	A novel state-of-health prediction method based on long short-term memory network with attention mechanism for lithium-ion battery. Frontiers in Energy Research, 0, 10, .	1.2	4
1445	Improved electrochemical performance of silicon-carbon anodes by different conductive agents. Journal of Materials Science: Materials in Electronics, 2022, 33, 21311-21320.	1.1	2
1446	Simulation of the Calendering Process of NMCâ€622 Cathodes for Lithiumâ€lon Batteries. Energy Technology, 2023, 11, .	1.8	2
1447	Grid scale energy storage: The alkali-ion battery systems of choice. Current Opinion in Electrochemistry, 2022, 36, 101130.	2.5	4
1448	Battery Digital Twin. Key Technologies on New Energy Vehicles, 2023, , 281-300.	0.2	0
1449	Introducing high-valence elements into cobalt-free layered cathodes for practical lithium-ion batteries. Nature Energy, 2022, 7, 946-954.	19.8	103
1450	Rechargeable Dualâ€Carbon Batteries: A Sustainable Battery Technology. Advanced Energy Materials, 2022, 12, .	10.2	19
1451	Lithiumâ€Metal Batteries: From Fundamental Research to Industrialization. Advanced Materials, 2023, 35,	11.1	36
1452	Prospective Life Cycle Assessment of Synthetic Graphite Manufactured via Electrochemical Graphitization. ACS Sustainable Chemistry and Engineering, 2022, 10, 13607-13618.	3.2	5
1453	Bismuth Nanoparticles Encapsulated in Mesoporous Carbon Nanofibers for Efficient Potassium-Ion Storage. ACS Applied Nano Materials, 2022, 5, 13171-13179.	2.4	8
1454	Toward Highâ€Areal apacity Electrodes for Lithium and Sodium Ion Batteries. Advanced Energy Materials, 2022, 12, .	10.2	28

#	Article	IF	Citations
1455	Redox Evolution of Li-Rich Layered Cathode Materials. Batteries, 2022, 8, 132.	2.1	10
1456	A Singleâ€Pot Coâ€Precipitation Synthesis Route for Niâ€Rich Layered Oxide Materials with High Cycling Stability. ChemElectroChem, 2022, 9, .	1.7	3
1457	Research Progress of Anode-Free Lithium Metal Batteries. Crystals, 2022, 12, 1241.	1.0	6
1458	Probing the Functionality of LiFSI Structural Derivatives as Additives for Li Metal Anodes. ACS Energy Letters, 2022, 7, 3378-3385.	8.8	12
1459	Conformal PEDOT Coating Enables Ultra-High-Voltage and High-Temperature Operation for Single-Crystal Ni-Rich Cathodes. ACS Nano, 2022, 16, 14527-14538.	7.3	16
1460	State-of-Charge Estimation of Lithium-Ion Batteries Using Machine Learning Based on Augmented Data. , 2022, , .		3
1461	Smart Manufacturing Processes of Low-Tortuous Structures for High-Rate Electrochemical Energy Storage Devices. Micromachines, 2022, 13, 1534.	1.4	1
1462	Anion Donicity of Liquid Electrolytes for Lithium Carbon Fluoride Batteries. Angewandte Chemie - International Edition, 2022, 61, .	7.2	11
1463	Pre-constructed SEI on graphite-based interface enables long cycle stability for dual ion sodium batteries. Chinese Chemical Letters, 2023, 34, 107832.	4.8	1
1464	Boosting Charge Transfer Via Heterostructure Engineering of Ti ₂ CT <i>_x</i> /Na ₂ Ti ₃ O ₇ Nanobelts Array for Superior Sodium Storage Performance. Small, 2022, 18, .	5.2	8
1465	Anion Donicity of Liquid electrolytes for Lithium Carbon Fluoride Batteries. Angewandte Chemie, 0, , .	1.6	0
1466	Achieving Ultrahigh-Rate and Low-Temperature Sodium Storage of FePS ₃ via In Situ Construction of Graphitized Porous N-Doped Carbon. ACS Applied Materials & Interfaces, 2022, 14, 42048-42056.	4.0	7
1467	Insights into the Impact of Activators on the â€~Catalytic' Graphitization to Design Anode Materials for Lithium Ion Batteries. ChemElectroChem, 0, , .	1.7	2
1468	A sustainable chitosan-zinc electrolyte for high-rate zinc-metal batteries. Matter, 2022, 5, 3402-3416.	5.0	97
1469	Effect of fluoroethylene carbonate additive on the low–temperature performance of lithium–ion batteries. Journal of Electroanalytical Chemistry, 2022, 925, 116870.	1.9	6
1470	¹⁷ O NMR Spectroscopy in Lithium-Ion Battery Cathode Materials: Challenges and Interpretation. Journal of the American Chemical Society, 2022, 144, 18714-18729.	6.6	6
1471	Life Cycle Assessment of the Battery Cell Production: Using a Modular Material and Energy Flow Model to Assess Product and Process Innovations. Energy Technology, 2023, 11, .	1.8	7
1472	Predicting Capacity Fading Behaviors of Lithium Ion Batteries: An Electrochemical Protocol-Integrated Digital-Twin Solution. Journal of the Electrochemical Society, 2022, 169, 100504.	1.3	2

#	Article	IF	CITATIONS
1473	Interfacial Stability of Layered LiNi _{<i>x</i>} Mn _{<i>y</i>} Co _{1–<i>x</i>–<i>y</i>} O ₂ Cathodes with Sulfide Solid Electrolytes in All-Solid-State Rechargeable Lithium-Ion Batteries from First-Principles Calculations. Journal of Physical Chemistry C, 2022, 126, 17482-17489.	1.5	6
1474	Ethyleneâ€Carbonateâ€Free Electrolytes for Rechargeable Liâ€Ion Pouch Cells at Subâ€Freezing Temperatures. Advanced Materials, 2022, 34, .	11.1	50
1475	Slurry solvent content influence on electrode preparation, microstructure and performance. Journal of the Ceramic Society of Japan, 2022, 130, 832-836.	0.5	0
1476	Machine learning for battery research. Journal of Power Sources, 2022, 549, 232125.	4.0	22
1477	Strategies for formulation optimization of composite positive electrodes for lithium ion batteries based on layered oxide, spinel, and olivine-type active materials. Journal of Power Sources, 2022, 551, 232179.	4.0	5
1478	Materials synthesis for Na-ion batteries. , 2023, , 199-215.		2
1479	Towards the Intercalation and Lithium Plating Mechanism for High Safety and Fast-Charging Lithium-ion Batteries: A Review. , 0, 1, .		1
1480	Biomass-Derived Materials for Lithium Secondary Batteries. , 2022, , 1-7.		0
1481	Bayesian optimisation with transfer learning for NASICON-type solid electrolytes for all-solid-state Li-metal batteries. RSC Advances, 2022, 12, 30696-30703.	1.7	4
1482	Battery materials. , 2023, , 308-363.		0
1483	Perspectives on Lithium-Based Batteries and Post-Lithium Batteries for Electric Vehicles. , 2022, , .		0
1484	Route Towards Road Freight Electrification in India: Examining Battery Electric Truck Powertrain and Energy Consumption. Chinese Journal of Electrical Engineering, 2022, 8, 57-75.	2.3	0
1485	A Carboxylic Ester-Based Electrolyte with Additive to Improve Performance of Lithium Batteries at Ultra-Low Temperature. Journal of the Electrochemical Society, 2022, 169, 100539.	1.3	3
1486	Prussian Blue Analogueâ€Derived ZnO/ZnFe ₂ O ₄ Coreâ€Shell Nanospheres as Highâ€Performance Anodes for Lithiumâ€Ion and Potassiumâ€Ion Batteries. Batteries and Supercaps, 2023, 6, .	2.4	8
1487	Novel Materials and Advanced Characterization for Energy Storage and Conversion. Energies, 2022, 15, 7536.	1.6	0
1488	Thermalâ€Stable Separators: Design Principles and Strategies Towards Safe Lithiumâ€Ion Battery Operations. ChemSusChem, 2022, 15, .	3.6	13
1489	Uniformly MXeneâ€Grafted Eutectic Aluminumâ€Cerium Alloys as Flexible and Reversible Anode Materials for Rechargeable Aluminumâ€Ion Battery. Advanced Functional Materials, 2023, 33, .	7.8	28
1490	Silicon as Emerging Anode in Solid-State Batteries. ACS Energy Letters, 2022, 7, 4005-4016.	8.8	59

#	Article	IF	CITATIONS
1491	Thermally Stable Polymerâ€Rich Solid Electrolyte Interphase for Safe Lithium Metal Pouch Cells. Angewandte Chemie - International Edition, 2022, 61, .	7.2	51
1492	Thermally Stable Polymerâ€Rich Solid Electrolyte Interphase for Safe Lithium Metal Pouch Cells. Angewandte Chemie, 2022, 134, .	1.6	4
1493	Numerical Models of the Electrolyte Filling Process of Lithium-Ion Batteries to Accelerate and Improve the Process and Cell Design. Batteries, 2022, 8, 159.	2.1	6
1494	Atomic-Scale Cryo-TEM Studies of the Thermal Runaway Mechanism of Li _{1.3} Al _{0.3} Ti _{1.7} P ₃ O ₁₂ Solid Electrolyte. ACS Energy Letters, 2022, 7, 3855-3863.	8.8	12
1495	Benefits of an Electric Road System for Battery Electric Vehicles. World Electric Vehicle Journal, 2022, 13, 197.	1.6	9
1496	Size controllable single-crystalline Ni-rich cathodes for high-energy lithium-ion batteries. National Science Review, 2023, 10, .	4.6	26
1497	Electrolyte design for rechargeable anion shuttle batteries. EScience, 2022, 2, 573-590.	25.0	18
1498	Fluoro-organosulfur catholytes to boost lithium primary battery energy. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	3
1499	Impact of a PEO-based Interphase at the Negative Electrode of "Zero Excess―Lithium-Metal Batteries. Journal of the Electrochemical Society, 2022, 169, 110521.	1.3	2
1500	Recent progress in constructing halogenated interfaces for highly stable lithium metal anodes. Energy Storage Materials, 2023, 54, 732-775.	9.5	22
1501	Improving electrochemical properties of LiNi0.8Mn0.1Co0.1O2 cathode materials for lithium ion batteries by controlling calcination gas atmosphere. Solid State Ionics, 2022, 386, 116031.	1.3	2
1502	Optimization of graphite/silicon-based composite electrodes for lithium ion batteries regarding the interdependencies of active and inactive materials. Journal of Power Sources, 2022, 552, 232252.	4.0	5
1503	Kinetically accelerated lithium storage in dumbbell-like Co/Cu@CN composite derived from a bimetallic-organic framework. Electrochimica Acta, 2022, 435, 141355.	2.6	3
1504	Implication of magnetic property on the degradation process of layered Ni-rich transition metal oxide cathode for high-capacity lithium-ion batteries. Journal of Magnetism and Magnetic Materials, 2022, 564, 170107.	1.0	1
1505	Durable flexible dual-layer and free-standing silicon/carbon composite anode for lithium-ion batteries. Journal of Alloys and Compounds, 2023, 932, 167687.	2.8	13
1506	New strategy for enhancing the electrochemical performance of LiMn2O4 cathode material. Journal of Alloys and Compounds, 2023, 932, 167642.	2.8	8
1507	All 3D printing lithium metal batteries with hierarchically and conductively porous skeleton for ultrahigh areal energy density. Energy Storage Materials, 2023, 54, 304-312.	9.5	18
1508	Feature disentanglement and tendency retainment with domain adaptation for Lithium-ion battery capacity estimation. Reliability Engineering and System Safety, 2023, 230, 108897.	5.1	5

ARTICLE IF CITATIONS Enabling robust anionic redox structure via tuning the symmetry of locally ordered lattice in Li-rich 1509 4 6.6 Li-Mn-O cathodes. Chemical Engineering Journal, 2023, 454, 140327. Cell Selection Based on Chemistry and Key Parameters for Electric Vehicle., 2021, , . Surface Analysis of Pristine and Cycled NMC/Graphite Lithium-Ion Battery Electrodes: Addressing the 1511 4.0 6 Measurement Challenges. ACS Applied Materials & amp; Interfaces, 2022, 14, 52779-52793. Electrochemical Performance of LBO-coated Ni-rich NCM Cathode Material: Experimental and 1.3 Numerical Approaches. Journal of the Electrochemical Society, 2022, 169, 110533. Prospects of LLZO type solid electrolyte: From material design to battery application. Chemical 1513 6.6 20 Engineering Journal, 2023, 454, 140375. Mn-Rich NMC Cathode for Lithium-Ion Batteries at High-Voltage Operation. Energies, 2022, 15, 8357. 1.6 Entropy Stabilization Strategy for Enhancing the Local Structural Adaptability of Liâ€Rich Cathode 1515 11.1 28 Materials. Advanced Materials, 2023, 35, . Evolution of ternary LixSnyOz artificial cathode-electrolyte interphase (ACEI) through ALD: a surface strengthened NCM811 with enhanced electrochemical performances for Li-ion batteries. Materials 2.5 Today Energy, 2023, 31, 101207 Lithium hexamethyldisilazide as electrolyte additive for efficient cycling of high-voltage non-aqueous 1517 5.8 54 lithium metal batteries. Nature Communications, 2022, 13, . Advanced polyimide separator via co-precursor method for lithium-ion batteries with low thermal runaway risks. Journal of Energy Storage, 2022, 56, 106100. Replacing batteries with water by an innovative evaporative cooling process for vehicle air 1519 0.2 1 conditioning. IOP Conference Series: Earth and Environmental Science, 2022, 1106, 012020. Accommodation of Two-Dimensional SiO<sub><i>x</i>x</i>b> in a Point-to-Plane Conductive Network Composed of Graphene and Nitrogen-Doped Carbon for Robust Lithium Storage. ACS Applied Materials 4.0 & Interfaces, 2022, 14, 53658-53666. Prospective strategies for extending long-term cycling performance of anode-free lithium metal 1521 9.5 11 batteries. Energy Storage Materials, 2023, 54, 689-712. In-situ polymerized electrolyte modified with oligomeric cyclotetrasiloxane for all-solid-state 4.0 lithium metal batteries. Journal of Power Sources, 2023, 555, 232346. High-performance pyrrolidinium-based poly(ionic liquid) binders for Li-ion and Li-air batteries. 1523 1.7 6 Materials Today Chemistry, 2023, 27, 101293. Dipole–dipole interactions for inhibiting solvent co-intercalation into a graphite anode to extend the 1524 33 horizon of electrolyte design. Energy and Environmental Science, 2023, 16, 546-556. Battery capacity estimation using 10-second relaxation voltage and a convolutional neural network. 1525 5.115 Applied Energy, 2023, 330, 120308. Search for stable host materials as low-voltage anodes for lithium-ion batteries: A mini-review. Energy Storage Materials, 2023, 55, 364-387.

#	Article	IF	Citations
1527	Micron SiOx encapsulated into amorphous B, N Co-doped carbon nanotube network for high-capacity and long-durable Li-ion half/full batteries. Chemical Engineering Journal, 2023, 455, 140820.	6.6	5
1528	Proof-of-Concept study of ion-exchange method for the recycling of LiFePO4 cathode. Waste Management, 2023, 157, 1-7.	3.7	11
1529	Cryogenic electron microscopy workflows for the characterization of electrochemical interfaces and interphases in batteries. Journal of Power Sources, 2023, 556, 232515.	4.0	1
1530	Selective and uniform Li-ion boosting polymer electrolytes for dendrite-less quasi-solid-state batteries. Journal of Membrane Science, 2023, 668, 121258.	4.1	5
1531	Construction of porous Si/Ag@C anode for lithium-ion battery by recycling volatile deposition waste derived from refining silicon. Waste Management, 2023, 156, 22-32.	3.7	5
1532	Capacity and Internal Resistance of lithium-ion batteries: Full degradation curve prediction from Voltage response at constant Current at discharge. Journal of Power Sources, 2023, 556, 232477.	4.0	10
1533	A method for the lifetime sensorless estimation of surface and core temperature in lithium-ion batteries via online updating of electrical parameters. Journal of Energy Storage, 2023, 58, 106260.	3.9	4
1534	Improved interfacial compatibility between flame-retardant electrolytes and graphite electrodes by tuning the solvation structure of Li+. Applied Surface Science, 2023, 612, 155936.	3.1	4
1535	Carbon nanotubes intertwined porous vanadium oxide heterostructured microfibers as high-performance cathodes for aqueous zinc-ion batteries. Applied Surface Science, 2023, 612, 155791.	3.1	4
1536	Electrochemical lithium storage performance at high voltage and temperature of LiNi0.6Co0.2Mn0.2O2 cathode for Lithium-ion batteries by facile Mn3(PO4)2 dry coating. Applied Surface Science, 2023, 613, 156018.	3.1	4
1537	Synthesis and electrochemical properties of multi-layered SnO/rGO composite as anode materials for sodium ion batteries. Applied Surface Science, 2023, 612, 155859.	3.1	4
1538	Robust Fuzzy Entropy-Based SOH Estimation for Different Lithium-Ion Battery Chemistries. , 2022, , .		1
1539	On the Practical Applicability of the Li Metalâ€Based Thermal Evaporation Prelithiation Technique on Si Anodes for Lithium Ion Batteries. Advanced Energy Materials, 2023, 13, .	10.2	12
1540	Mechanical Failure of Cu Current Collector Films Affecting Li Plating/Stripping Cycles at Cu/LiPON Interfaces. Journal of the Electrochemical Society, 2023, 170, 012503.	1.3	1
1541	Atomic Layer Deposition for Electrochemical Energy: from Design to Industrialization. Electrochemical Energy Reviews, 2022, 5, .	13.1	21
1542	Insights into Enhancing Electrochemical Performance of Li-Ion Battery Anodes via Polymer Coating. Energies, 2022, 15, 8791.	1.6	8
1543	Bonding Heterogeneity Leads to Hierarchical and Ultralow Lattice Thermal Conductivity in Sodium Metavanadate. Journal of Physical Chemistry Letters, 2022, 13, 11160-11168.	2.1	2
1544	Unraveling the degradation mechanism of LiNi0.8Co0.1Mn0.1O2 at the high cut-off voltage for lithium ion batteries. Journal of Energy Chemistry, 2023, 77, 428-437.	7.1	8

#	Article	IF	Citations
1545	Microspherical assembly of selectively pyridinic N-doped nanoperforated graphene for stable Li-metal anodes: Synergistic coupling of lithiophilic pyridinic N on perforation edges and low tortuosity via graphene nanoperforation. Chemical Engineering Journal, 2023, 455, 140770.	6.6	3
1546	Selfâ€Repairable Silicon Anodes Using a Multifunctional Binder for Highâ€Performance Lithiumâ€lon Batteries. Small, 2023, 19, .	5.2	17
1547	A holistic review on the synthesis techniques of spinel structured lithium cobalt manganese tetroxide. , 2022, 32, 59-70.		0
1548	Firstâ€Principles Investigation of Charged GermaGraphene as a Novel Cathode Material for Dualâ€Carbon Batteries. ChemSusChem, 0, , .	3.6	0
1549	Stainless Steelâ€Like Passivation Inspires Persistent Silicon Anodes for Lithiumâ€Ion Batteries. Angewandte Chemie, 2023, 135, .	1.6	2
1550	Longâ€Range Cationic Disordering Induces two Distinct Degradation Pathways in Coâ€Free Niâ€Rich Layered Cathodes. Angewandte Chemie - International Edition, 2023, 62, .	7.2	35
1551	Longâ€Range Cationic Disordering Induces two Distinct Degradation Pathways in Coâ€Free Niâ€Rich Layered Cathodes. Angewandte Chemie, 0, , .	1.6	2
1552	An electrochemical compatibility investigation of RTIL-based electrolytes with Si-based anodes for advanced Li-ion batteries. Materials Today Sustainability, 2023, 21, 100299.	1.9	2
1553	Enabling Aqueous Processing of Niâ€Rich Layered Oxide Cathode Materials by Addition of Lithium Sulfate. ChemSusChem, 2023, 16, .	3.6	2
1554	Optimized synthesis of Na2/3Ni1/3Mn2/3O2 as cathode for sodium-ion batteries by rapid microwave calcination. Ceramics International, 2023, 49, 12452-12461.	2.3	5
1555	Mechanism, quantitative characterization, and inhibition of corrosion in lithium batteries. , 2023, 2, e9120046.		22
1556	Insights into the use of polyepichlorohydrin polymer in lithium battery energy storage/conversion devices: review. SN Applied Sciences, 2023, 5, .	1.5	3
1557	Insights into Capacity Fading Mechanism and Coating Modification of High-Nickel Cathodes in Lithium-Ion Batteries. ACS Applied Materials & amp; Interfaces, 2022, 14, 55491-55502.	4.0	3
1558	Enhancing the Moisture Stability and Electrochemical Performances of Li6PS5Cl Solid Electrolytes through Ga Substitution. Electrochimica Acta, 2023, 441, 141757.	2.6	7
1559	Data driven discovery of an analytic formula for the life prediction of Lithium-ion batteries. Progress in Natural Science: Materials International, 2022, 32, 793-799.	1.8	3
1560	Highly improved structural stability and electrochemical properties of Ni-rich NCM cathode materials. Ceramics International, 2023, 49, 12138-12143.	2.3	6
1561	Enhanced Cyclability of LiNi _{0.6} Co _{0.2} Mn _{0.2} O ₂ Cathodes by Integrating a Spinel Interphase in the Grain Boundary. ACS Applied Materials & Interfaces, 2023, 15, 1592-1600.	4.0	3
1562	Oxygen-Tuned Na ₃ V ₂ (PO ₄) ₂ F _{3–2<i>y</i>} O _{2<i>y</i> (0 ≤i>y < 1) as High-Rate Cathode Materials for Rechargeable Sodium Batteries. ACS Applied Energy Materials. 2022. 5. 15799-15808.}		9

#	Article	IF	CITATIONS
1563	Stainless Steelâ€Like Passivation Inspires Persistent Silicon Anodes for Lithiumâ€Ion Batteries. Angewandte Chemie - International Edition, 2023, 62, .	7.2	3
1564	Present and future of functionalized Cu current collectors for stabilizing lithium metal anodes. , 2023, 2, e9120048.		26
1565	Investigation of mass loading of cathode materials for high energy lithium-ion batteries. Electrochemistry Communications, 2023, 147, 107437.	2.3	9
1566	Ultrathin porous MnO2@C nanosheets for high-performance lithium-ion battery anodes. Journal of Electroanalytical Chemistry, 2023, 930, 117173.	1.9	5
1567	Mechanical densification synthesis of single-crystalline Ni-rich cathode for high-energy lithium-ion batteries. Journal of Energy Chemistry, 2023, 79, 562-568.	7.1	6
1568	Deciphering the Thermal Failure Mechanism of Anodeâ€Free Lithium Metal Pouch Batteries. Advanced Energy Materials, 2023, 13, .	10.2	14
1569	Processing Black Mass into a Mixed Nickel/Cobalt Hydroxide Precipitate and Industrial-Grade Lithium Carbonate: A Techno-Economic Analysis Perspective. , 2023, , 627-635.		2
1570	Intertwining porous silicon with conducting polymer for high-efficiency stable Li-ion battery anodes. Korean Journal of Chemical Engineering, 2023, 40, 497-503.	1.2	4
1571	Ultrafast Charge and Long Life of Highâ€Voltage Cathodes for Dualâ€Ion Batteries via a Bifunctional Interphase Nanolayer on Graphite Particles. Small, 2023, 19, .	5.2	9
1572	Failure mechanism of LiNi0.6Co0.2Mn0.2O2 cathodes in aqueous/non-aqueous hybrid electrolyte. Journal of Materials Chemistry A, 0, , .	5.2	0
1573	Excellent electrochemical properties of Ni-rich LiNi _{0.88} Co _{0.09} Al _{0.03} O ₂ cathode materials co-modified with Mg-doping and LiBO ₂ -coating for lithium ion batteries. New Journal of Chemistry, 0, , .	1.4	0
1574	Surface Stabilization of Cobalt-Free LiNiO ₂ with Niobium for Lithium-Ion Batteries. ACS Applied Materials & amp; Interfaces, 2023, 15, 1442-1451.	4.0	9
1575	Rejuvenating LiNi0.5Co0.2Mn0.3O2 cathode directly from battery scraps. EScience, 2023, 3, 100091.	25.0	17
1576	Hydrothermal synthesis, characterization, electrochemical, and optical properties of 2D sheet-like CuO nanostructures. Journal of Materials Science: Materials in Electronics, 2023, 34, .	1.1	4
1577	Insights in Utilizing NiCo ₂ O ₄ /Co ₃ O ₄ Nanowires as Anode Material in Lithiumâ€lon Batteries. Batteries and Supercaps, 2023, 6, .	2.4	2
1578	Partially Lithiated Microscale Silicon Particles as Anode Material for Highâ€Energy Solidâ€State Lithiumâ€Ion Batteries. Energy Technology, 2023, 11, .	1.8	8
1579	Dual-Salt Localized High-Concentration Electrolyte for Long Cycle Life Silicon-Based Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2023, 15, 3586-3598.	4.0	12
1580	Selecting the Optimal Fluorinated Ether Co-Solvent for Lithium Metal Batteries. ACS Applied Materials & Interfaces, 2023, 15, 2804-2811.	4.0	8

#	Article	IF	CITATIONS
1581	Dual Modification of Olivine LiFe _{0.5} Mn _{0.5} PO ₄ Cathodes with Accelerated Kinetics for High-Rate Lithium-Ion Batteries. Industrial & Engineering Chemistry Research, 2023, 62, 1029-1034.	1.8	6
1582	Carbon neutrality strategies for sustainable batteries: from structure, recycling, and properties to applications. Energy and Environmental Science, 2023, 16, 745-791.	15.6	48
1583	Novel single-ion conducting polymer electrolytes with high toughness and high resistance against lithium dendrites. Nano Research, 2023, 16, 8457-8468.	5.8	4
1584	Low Concentration Sulfolaneâ€Based Electrolyte for High Voltage Lithium Metal Batteries. Angewandte Chemie - International Edition, 2023, 62, .	7.2	13
1585	Stabilizing the Interphase in Cobaltâ€Free, Ultrahighâ€Nickel Cathodes for Lithiumâ€Ion Batteries. Advanced Functional Materials, 2023, 33, .	7.8	17
1586	Thermal stability as well as electrochemical performance of Li-rich and Ni-rich cathode materials—a comparative study. Ionics, 2023, 29, 983-992.	1.2	9
1587	Revealing the Impact of Different Ironâ€Based Precursors on the â€~Catalytic' Graphitization for Synthesis of Anode Materials for Lithium Ion Batteries. ChemElectroChem, 2023, 10, .	1.7	1
1588	Understanding the failure process of sulfide-based all-solid-state lithium batteries via operando nuclear magnetic resonance spectroscopy. Nature Communications, 2023, 14, .	5.8	25
1589	Rational design of artificial interphase buffer layer with 3D porous channel for uniform deposition in magnesium metal anodes. Energy Storage Materials, 2023, 55, 816-825.	9.5	21
1590	Low Concentration Sulfolaneâ€based Electrolyte for High Voltage Lithium Metal Batteries. Angewandte Chemie, 0, , .	1.6	0
1591	Machine learning-based fast charging of lithium-ion battery by perceiving and regulating internal microscopic states. Energy Storage Materials, 2023, 56, 62-75.	9.5	18
1592	Al-doped Nb2O5/carbon micro-particles anodes for high rate lithium-ion batteries. Electrochimica Acta, 2023, 441, 141796.	2.6	2
1593	Fast and reliable calibration of thermal-physical model of lithium-ion battery: a sensitivity-based method. Journal of Energy Storage, 2023, 59, 106435.	3.9	4
1594	Explainability-driven model improvement for SOH estimation of lithium-ion battery. Reliability Engineering and System Safety, 2023, 232, 109046.	5.1	22
1595	Alternative vehicular fuels for environmental decarbonization: A critical review of challenges in using electricity, hydrogen, and biofuels as a sustainable vehicular fuel. Chemical Engineering Journal Advances, 2023, 14, 100442.	2.4	33
1596	Inner Lithium Fluoride (LiF)-Rich Solid Electrolyte Interphase Enabled by a Smaller Solvation Sheath for Fast-Charging Lithium Batteries. ACS Applied Materials & Interfaces, 2023, 15, 1201-1209.	4.0	3
1597	Anode-free sodium metal batteries as rising stars for lithium-ion alternatives. IScience, 2023, 26, 105982.	1.9	12
1598	A non-academic perspective on the future of lithium-based batteries. Nature Communications, 2023, 14,	5.8	135

#	Article	IF	CITATIONS
1599	Polypropylene carbonate-based electrolytes as model for a different approach towards improved ion transport properties for novel electrolytes. Physical Chemistry Chemical Physics, 2023, 25, 4810-4823.	1.3	6
1600	Through-hole graphite made from waste graphite for high-rate lithium-ion battery anodes. Journal of Materials Chemistry A, 2023, 11, 4729-4738.	5.2	6
1601	Integration of Electrode Markings into the Manufacturing Process of Lithium-Ion Battery Cells for Tracking and Tracing Applications. Batteries, 2023, 9, 89.	2.1	4
1602	Early stage techno-economic and environmental analysis of aluminium batteries. Energy Advances, 0, , .	1.4	0
1603	Voltage-dependent formation of cathode–electrolyte interphase with independent metallic layer in LiNi0.8Mn0.1Co0.1O2 cathode for high-energy density lithium-ion batteries. Materials Today Sustainability, 2023, 21, 100326.	1.9	2
1604	Preparing La-Doped LiAl ₅ O ₈ from the Electrode Materials of Waste Lithium-Ion Batteries. ACS Sustainable Chemistry and Engineering, 2023, 11, 1386-1393.	3.2	0
1605	Surface-patterned graphite electrode with hybrid polymer/garnet electrolyte for all-solid-state batteries. Materials Today Sustainability, 2023, 22, 100338.	1.9	1
1606	Elucidating Concentration-Dependent Energy Limitations in Li Primary Battery Fluoro-organosulfur Catholytes. Journal of Physical Chemistry C, 2023, 127, 1722-1732.	1.5	1
1607	2D Dynamic Heterogeneous Interface Coupling Endowing Extra Zn ²⁺ Storage. Advanced Functional Materials, 2023, 33, .	7.8	13
1608	Improved Cycling of Li NMC811 Batteries under Practical Conditions by a Localized Highâ€Concentration Electrolyte. Small, 2023, 19, .	5.2	2
1609	Engineering the Electronic Interaction between Atomically Dispersed Fe and RuO ₂ Attaining High Catalytic Activity and Durability Catalyst for Liâ€O ₂ Battery. Advanced Science, 2023, 10, .	5.6	20
1610	Two-Dimensional VO2 Nanosheets with a Controllable Crystalline-Preferred Orientation for High-Performance Zinc-Ion Batteries. Batteries, 2023, 9, 95.	2.1	2
1611	Nanotwinned Copper Foil for "Zero Excess―Lithium–Metal Batteries. ACS Applied Energy Materials, 2023, 6, 2140-2150.	2.5	5
1612	Efficient Utilization of Macropores as Artificial Solid–Electrolyte Interphase Channels for High-Capacity Silicon/Graphite Anode Materials. ACS Sustainable Chemistry and Engineering, 2023, 11, 2623-2633.	3.2	3
1613	Facile preparation of regular truncated octahedral LiMn2O4 cathode with high rate cyclability and stability for Li-ion batteries. Journal of Alloys and Compounds, 2023, 943, 169162.	2.8	9
1614	Biofuels, electrofuels, electric or hydrogen?: A review of current and emerging sustainable aviation systems. Progress in Energy and Combustion Science, 2023, 96, 101073.	15.8	31
1615	A ﬕst-principle study of bilayer black phosphorene as a potential anode material in sodium-ion batteries. Physical Chemistry Chemical Physics, 0, , .	1.3	0
1616	Designing of a Decentralized Pretreatment Line for EOL-LIBs Based on Recent Literature of LIB Recycling for Black Mass. Metals, 2023, 13, 374.	1.0	7

#	Article	IF	CITATIONS
1617	Preferential Pyrolysis Construction of Carbon Anodes with 8400â€h Lifespan for Highâ€Energyâ€Density Kâ€ion Batteries. Angewandte Chemie, 2023, 135, .	1.6	1
1618	Analysis of Differences in Electrochemical Performance Between Coin and Pouch Cells for <scp>Lithiumâ€lon</scp> Battery Applications. Energy and Environmental Materials, 0, , .	7.3	10
1619	Dynamic early recognition of abnormal lithium-ion batteries before capacity drops using self-adaptive quantum clustering. Applied Energy, 2023, 336, 120841.	5.1	3
1620	Dynamic phase evolution of MoS ₃ accompanied by organodiselenide mediation enables enhanced performance rechargeable lithium battery. Proceedings of the National Academy of Sciences of the United States of America, 2023, 120, .	3.3	6
1621	Green and sustainably designed intercalation-type anodes for emerging lithium dual-ion batteries with high energy density. Journal of Energy Chemistry, 2023, 80, 466-478.	7.1	8
1622	Geometrical design of top-to-bottom magnesiophilicity-gradient host for reversible Mg-metal batteries. Energy Storage Materials, 2023, 59, 102762.	9.5	4
1623	Reduction kinetics of porous silicon synthesis for lithium battery anodes. Electrochimica Acta, 2023, 454, 142374.	2.6	0
1624	Multi-hierarchical heterostructure of GO/ NiCo2O4/Co3O4 for high power lithium-ion batteries. Journal of Alloys and Compounds, 2023, 946, 169447.	2.8	3
1625	Time and space resolved operando synchrotron X-ray and Neutron diffraction study of NMC811/Si–Gr 5 Ah pouch cells. Journal of Power Sources, 2023, 570, 232993.	4.0	3
1626	Delineating the relationship between separator parameters and practical lithium metal batteries characteristics. Journal of Power Sources, 2023, 566, 232931.	4.0	5
1627	High performance of Co-free LiNi Mn1-O2 cathodes realized by nonmagnetic ion substitution for Li-ion batteries. Chemical Engineering Journal, 2023, 465, 142926.	6.6	2
1628	Nano SnO2 loaded on N-doped carbon nanorods derived from metal-complex covalent organic frameworks for anode in lithium ion batteries. Journal of Alloys and Compounds, 2023, 945, 169302.	2.8	14
1629	Binders for Si based electrodes: Current status, modification strategies and perspective. Energy Storage Materials, 2023, 59, 102776.	9.5	3
1630	A bibliometric analysis of lithium-ion batteries in electric vehicles. Journal of Energy Storage, 2023, 63, 107109.	3.9	8
1631	Recovering Fe, Mn and Li from LiMn1-xFexPO4 cathode material of spent lithium-ion battery by gradient precipitation. Sustainable Materials and Technologies, 2023, 36, e00625.	1.7	2
1632	Life cycle assessment of a lithium-ion battery with a silicon anode for electric vehicles. Journal of Energy Storage, 2023, 60, 106635.	3.9	7
1633	Synthesis of LiFePO4/carbon/graphene for high-performance Li-ion battery. Journal of Electroanalytical Chemistry, 2023, 932, 117205.	1.9	9
1634	Recent progress of theoretical research on inorganic solid state electrolytes for Li metal batteries. Journal of Power Sources, 2023, 561, 232720.	4.0	6

#	Article	IF	CITATIONS
1635	Deciphering reduction stability of sulfone and fluorinated sulfone electrolytes:Insight from quantum chemical calculations. Chemical Physics, 2023, 568, 111840.	0.9	2
1636	Manta ray foraging optimization algorithmâ€based load frequency control for hybrid modern power systems. IET Renewable Power Generation, 2023, 17, 1466-1487.	1.7	4
1637	Nanostructure Engineering and Electronic Modulation of a PtNi Alloy Catalyst for Enhanced Oxygen Reduction Electrocatalysis in Zinc–Air Batteries. Journal of Physical Chemistry Letters, 2023, 14, 1740-1747.	2.1	11
1638	Composite cathode for all-solid-state lithium batteries: Progress and perspective. Materials Today Physics, 2023, 32, 101009.	2.9	10
1639	Battery-Type-Behavior-Retention Ni(OH) ₂ –rGO Composite for an Ultrahigh-Specific-Capacity Asymmetric Electrochemical Capacitor Electrode. ACS Omega, 2023, 8, 6289-6301.	1.6	2
1640	Three-Dimensional Carbon Foam Modified with Mg ₃ N ₂ for Ultralong Cyclability of a Dendrite-Free Li Metal Anode. ACS Applied Materials & Interfaces, 2023, 15, 9421-9430.	4.0	6
1641	Construction of Lithium Metal Anode with High Lithium Utilization and its Application in Lithium-Sulfur Batteries. Hans Journal of Nanotechnology, 2023, 13, 7-28.	0.1	0
1642	Electrochemical tailoring MXene terminal to elevate operation voltage of Mo2CTx-protected current collector over 5ÂV. Applied Surface Science, 2023, 619, 156754.	3.1	0
1643	New insights into orthophosphoric acid assisted rapid aqueous processing of NMC622 cathodes. , 2023, 1, 378-387.		0
1644	A review of all-solid-state electrolytes for lithium batteries: high-voltage cathode materials, solid-state electrolytes and electrode–electrolyte interfaces. Materials Chemistry Frontiers, 2023, 7, 1268-1297.	3.2	13
1645	Current Status and Future Perspective on Lithium Metal Anode Production Methods. Advanced Energy Materials, 2023, 13, .	10.2	38
1646	Enhanced Cycling Stability of Lithiumâ€Rich Cathode Materials Achieved by inâ€situ Formation of LiErO ₂ Coating. Batteries and Supercaps, 2023, 6, .	2.4	1
1647	A Review of Renewable Energy and Storage Technologies for Automotive Applications. , 0, , 10.		1
1648	LiF-Rich Interfaces and HF Elimination Achieved by a Multifunctional Additive Enable High-Performance Li/LiNi _{0.8} Co _{0.1} Mn _{0.1} O ₂ Batteries. ACS Applied Materials & Interfaces, 2023, 15, 11777-11786.	4.0	6
1649	Carbon-Coated CuNb13O33 as A New Anode Material for Lithium Storage. Materials, 2023, 16, 1818.	1.3	1
1650	Controlled Isotropic Canalization of Microsized Silicon Enabling Stable Highâ€Rate and High‣oading Lithium Storage. Advanced Materials, 2023, 35, .	11.1	10
1651	Metalâ€Redox Bicatalysis Batteries for Energy Storage and Chemical Production. Advanced Materials, 2023, 35, .	11.1	8
1652	Enhanced Cycling and Structure Stability of an Electron Transfer-Accelerating Polymer Poly(3,4-ethylenedioxythiophene):Poly(styrenesulfonate)-Covered Mn-Based Layered Cathode with Ga ³⁺ Doping for a Li-Ion Battery. Langmuir, 2023, 39, 4662-4675.	1.6	2

#	Article	IF	CITATIONS
1653	Construction of highly stable and fast kinetic interfacial films on the electrodes of graphite//LiNi0.5Mn1.5O4 cells by introducing a novel additive of 2-thiophene boric acid (2-TPBA). Journal of Power Sources, 2023, 564, 232848.	4.0	5
1654	Preferential Pyrolysis Construction of Carbon Anodes with 8400â€h Lifespan for Highâ€Energyâ€Density Kâ€ion Batteries. Angewandte Chemie - International Edition, 2023, 62, .	7.2	24
1655	Design of a 350 kW DC/DC Converter in 1200-V SiC Module Technology for Automotive Component Testing. Energies, 2023, 16, 2341.	1.6	1
1656	Comparative sustainability assessment of lithium-ion, lithium-sulfur, and all-solid-state traction batteries. International Journal of Life Cycle Assessment, 2023, 28, 462-477.	2.2	5
1657	Timely or early? Breaking away from cobalt-reliant lithium-ion batteries. , 2023, 1, 100004.		0
1658	Current Status and Enhancement Strategies for All-Solid-State Lithium Batteries. Accounts of Materials Research, 2023, 4, 472-483.	5.9	21
1659	Synthesis of vanadium-doped Ti ₃ C ₂ Tx MXene for enhanced lithium storage. Functional Materials Letters, 2023, 16, .	0.7	1
1660	Petroleum-Pitch-Based Carbon Nanocages Encapsulated Few-Layer MoS ₂ with S Vacancies for a High-Performance Sodium-Ion Battery. Energy & Fuels, 2023, 37, 4641-4649.	2.5	7
1661	Li-Ion Battery Cathode Recycling: An Emerging Response to Growing Metal Demand and Accumulating Battery Waste. Electronics (Switzerland), 2023, 12, 1152.	1.8	6
1662	Upcycling of Acid-Leaching Solutions from Li-Ion Battery Waste Treatment through the Facile Synthesis of Magnetorheological Fluid. Molecules, 2023, 28, 2558.	1.7	2
1663	Less is more: a perspective on thinning lithium metal towards high-energy-density rechargeable lithium batteries. Chemical Society Reviews, 2023, 52, 2553-2572.	18.7	36
1664	Electrochemical profiling method for diagnosis of inhomogeneous reactions in lithium-ion batteries. Cell Reports Physical Science, 2023, 4, 101331.	2.8	2
1665	The effect of sulfonated copolymer as a binder on the electrochemical performance of LiFePO4 cathode for lithium-ion batteries. Journal of Electroanalytical Chemistry, 2023, 936, 117342.	1.9	2
1666	Electrochemistryâ€Driven Interphase Doubly Protects Graphite Cathodes for Ultralong Life and Fast Charge of Dualâ€ion Batteries. ChemSusChem, 2023, 16, .	3.6	5
1667	batP2dFoam: An Efficient Segregated Solver for the Pseudo-2-Dimensional (P2D) Model of Li-Ion Batteries. Journal of the Electrochemical Society, 2023, 170, 030521.	1.3	2
1668	Extending the 3D-battery concept: large areal ultrashort pulsed laser structuring of multilayered electrode coatings. , 2023, , .		0
1669	Quantum Chemical Characteristics of Additives That Enable the Use of Propylene Carbonate-Based Electrolytes. International Journal of Energy Research, 2023, 2023, 1-14.	2.2	2
1670	Challenges and strategies of formulating lowâ€ŧemperature electrolytes in lithiumâ€ion batteries. , 2023, 2, 308-336.		14

#	Article	IF	CITATIONS
1671	Stabilizing Ni-rich high energy cathodes for advanced lithium-ion batteries: the case of LiNi _{0.9} Co _{0.1} O ₂ . Journal of Materials Chemistry A, 2023, 11, 12958-12972.	5.2	5
1672	Metal-organic frameworks for fast electrochemical energy storage: Mechanisms and opportunities. CheM, 2023, 9, 798-822.	5.8	11
1673	Development of Silicon Polymer Electrodes with a Hybrid Polymer Electrolyte for All-Solid-State Lithium-Ion Batteries. Journal of the Electrochemical Society, 2023, 170, 030541.	1.3	0
1674	An electrolyte additive for the improved high voltage performance of LiNi _{0.5} Mn _{1.5} 0 ₄ (LNMO) cathodes in Li-ion batteries. Journal of Materials Chemistry A, 2023, 11, 7670-7678.	5.2	6
1675	Comprehensive Review of Recent Advancements in Battery Technology, Propulsion, Power Interfaces, and Vehicle Network Systems for Intelligent Autonomous and Connected Electric Vehicles. Energies, 2023, 16, 2925.	1.6	4
1676	Electrolytes, Additives and Binders for NMC Cathodes in Li-Ion Batteries—A Review. Batteries, 2023, 9, 193.	2.1	11
1677	Surface Lattice Modulation through Chemical Delithiation toward a Stable Nickel-Rich Layered Oxide Cathode. Journal of the American Chemical Society, 2023, 145, 7397-7407.	6.6	11
1678	Ti3CNT MXene/rGO scaffolds directing the formation of a robust, layered SEI toward high-rate and long-cycle lithium metal batteries. Energy Storage Materials, 2023, 58, 322-331.	9.5	10
1679	Integrated Photo - rechargeable Batteries: Photoactive Nanomaterials and Opportunities. E3S Web of Conferences, 2023, 375, 02010.	0.2	0
1680	Constructing a conductive and buffer network on microscale silicon-based anodes for high-performance lithium-ion batteries. Journal of Alloys and Compounds, 2023, 949, 169846.	2.8	4
1681	A Microporous Bifunctional Electrochromic Energy‣torage Polymer of Thiophene, Triphenylamine, and Thienothiophene. Energy Technology, 2023, 11, .	1.8	0
1682	From laboratory innovations to materials manufacturing for lithium-based batteries. Nature Energy, 2023, 8, 329-339.	19.8	69
1683	The role of ceramic composite materials in achieving next-generation electrochemical energy storage devices. , 2023, , 335-370.		0
1684	Issues Related to Power Supply Reliability in Integrated Electronic Security Systems Operated in Buildings and Vast Areas. Energies, 2023, 16, 3351.	1.6	1
1685	Reversible cationic-anionic redox in disordered rocksalt cathodes enabled by fluorination-induced integrated structure design. Journal of Energy Chemistry, 2023, 82, 158-169.	7.1	6
1686	Spinodal Decomposition Method for Structuring Germanium–Carbon Li-Ion Battery Anodes. ACS Nano, 2023, 17, 8403-8410.	7.3	4
1687	Investigation of LiFePO4/MWCNT cathode-based half-cell lithium-ion batteries in subzero temperature environments. Ionics, 2023, 29, 2163-2174.	1.2	3
1688	Dual Role of Bis(borate) Additive in Electrode/Electrolyte Interface Layer Construction for High-Voltage NCM 523 Cathode. ACS Applied Energy Materials, 2023, 6, 4817-4824.	2.5	4

#	Article	IF	CITATIONS
1689	Mechanisms of Electronic and Ionic Transport during Mg Intercalation in Mg–S Cathode Materials and Their Decomposition Products. Chemistry of Materials, 2023, 35, 3503-3512.	3.2	4
1690	Highâ€Power and Ultrastable Aqueous Calciumâ€ŀon Batteries Enabled by Small Organic Molecular Crystal Anodes. Advanced Functional Materials, 2023, 33, .	7.8	10
1691	Study of polyethylene coating to improve the cycle stability of Ni-rich cathode for Li-ion batteries. Journal of Solid State Electrochemistry, 2023, 27, 2251-2261.	1.2	1
1692	Development of Cell Free Hearing Aid Device. , 2023, , .		0
1693	Advanced characterization guiding rational design of regeneration protocol for spent-LiCoO2. Nano Energy, 2023, 112, 108465.	8.2	5
1694	Construction of oxygen vacancy-rich ZnO@carbon nanofiber aerogels as a free-standing anode for superior lithium storage. Journal of Colloid and Interface Science, 2023, 644, 177-185.	5.0	8
1705	Electrostatic Covalent Organic Frameworks as On-Demand Molecular Traps for High-Energy Li Metal Battery Electrodes. ACS Energy Letters, 2023, 8, 2463-2474.	8.8	9
1718	Hyperparameter Optimization in Bagging-Based ELM Algorithm for Lithium-Ion Battery State of Health Estimation. , 2023, , .		0
1723	Building Better Full Manganese-Based Cathode Materials for Next-Generation Lithium-Ion Batteries. Electrochemical Energy Reviews, 2023, 6, .	13.1	10
1728	Rapid, Direct Regeneration of Spent LiCoO ₂ Cathodes for Li-Ion Batteries. ACS Energy Letters, 2023, 8, 3005-3012.	8.8	15
1731	Activation of trace LiNO ₃ additives by BF ₃ in high-concentration electrolytes towards stable lithium metal batteries. Chemical Communications, 0, , .	2.2	1
1740	Targeted Functionalization of Cyclic Ether Solvents for Controlled Reactivity in High-Voltage Lithium Metal Batteries. ACS Energy Letters, 2023, 8, 3180-3187.	8.8	8
1745	Size Effect on the Lithium Storage Properties of Si/rGO Composites. Environmental Science and Engineering, 2023, , 251-257.	0.1	0
1791	Nanotechnology in Renewable Energy Conversion and Storage Process. , 2023, , 245-266.		1
1807	Feature Selection for Cycle Life Prediction of Fast-Charged Lithium-ion Batteries. , 2023, , .		0
1809	Mn-based cathode materials for rechargeable batteries. Science China Chemistry, 2024, 67, 87-105.	4.2	3
1819	LCA and LCC of a Li-ion Battery Pack for Automotive Application. , 0, , .		1
1820	Issues impeding the commercialization of laboratory innovations for energy-dense Si-containing lithium-ion batteries. Nature Energy, 2023, 8, 921-933.	19.8	14

#	Article	IF	CITATIONS
1823	Small-molecule organic electrode materials for rechargeable batteries. Science China Chemistry, 2023, 66, 3070-3104.	4.2	6
1829	Liquid electrolyte chemistries for solid electrolyte interphase construction on silicon and lithium-metal anodes. Chemical Science, 2023, 14, 9996-10024.	3.7	6
1830	A review of polymers in sulfide-based hybrid solid-state electrolytes for all-solid-state lithium batteries. Materials Chemistry Frontiers, 0, , .	3.2	1
1853	The Promise of 3D Printed Solid Polymer Electrolytes for Developing Sustainable Batteries: A Techno-Commercial Perspective. International Journal of Precision Engineering and Manufacturing - Green Technology, 0, , .	2.7	0
1856	Recent status, key strategies and challenging perspectives of fast-charging graphite anodes for lithium-ion batteries. Energy and Environmental Science, 2023, 16, 4834-4871.	15.6	14
1868	Introduction to battery systems. , 2023, , 95-118.		0
1878	Energy Trading Platform Research of Wire/wireless Vehicle-to-vehicle Energy Transfer Technology. , 2023, , .		0
1879	State-of-Charge Estimation of Battery Modular Multilevel Inverter Systems Based on Extended and Dual Extended Kalman Filter. , 2023, , .		0
1894	Artificial Search Algorithm for Parameters Optimization of Li-Ion Battery Electrical Model. , 2023, , .		1
1945	Validation and Verification of Remaining Useful Life Prediction for Lithium-Ion Batteries based on AM-CNN Approach. , 2023, , .		0
1956	Designing electrolytesÂand interphases for high-energy lithium batteries. Nature Reviews Chemistry, 2024, 8, 30-44.	13.8	5
1967	Advance in reversible Zn anodes promoted by 2D materials. Rare Metals, 0, , .	3.6	0
1969	Capacity Loss Modeling of Li-Ion Battery Using Lightweight Neural Network Considering Equivalent Circuit Model. , 2023, , .		0
1980	Sustainable plug-in electric vehicle integration into power systems. , 2024, 1, 35-52.		0
1986	Interface engineering of lithium metal anodes <i>via</i> atomic and molecular layer deposition. Inorganic Chemistry Frontiers, 2024, 11, 659-681.	3.0	0
1992	PNP-Lightweight Model for Predicting Remaining Useful Life of Lithium-Ion Battery to Applying Embedded Systems. , 2023, , .		0
2006	Overview of flow batteries as a new class of polymeric-membrane type device. , 2024, , 283-335.		0
2017	Advanced Electrochemical Energy Sources for Electric and Hybrid Vehicles. Green Energy and Technology, 2024, , 195-218.	0.4	0

#	Article	IF	CITATIONS
2018	Battery Management Technologies in Hybrid and Electric Vehicles. Green Energy and Technology, 2024, , 219-248.	0.4	0
2019	Electrode Conditions of Lithium-Ion Cell for Achieving High Energy Density. Korean Journal of Chemical Engineering, 2024, 41, 43-52.	1.2	0
2051	Polymer Electrolytes for Rechargeable Batteries. , 2024, , 233-292.		0