Effects of metformin, rosiglitazone and insulin on bone diabetes

Bone 112, 35-41 DOI: 10.1016/j.bone.2018.04.004

Citation Report

#	Article	IF	CITATIONS
1	Skeletal Fragility in Type 2 Diabetes Mellitus. Endocrinology and Metabolism, 2018, 33, 339.	1.3	24
2	Clinical utility of bone markers in various diseases. Bone, 2018, 114, 215-225.	1.4	50
3	The use of metformin, insulin, sulphonylureas, and thiazolidinediones and the risk of fracture: Systematic review and metaâ€analysis of observational studies. Obesity Reviews, 2019, 20, 1494-1503.	3.1	44
4	Diabetes and bone. Osteoporosis and Sarcopenia, 2019, 5, 29-37.	0.7	52
5	Protective influence of rosiglitazone against timeâ€dependent deterioration of boar spermatozoa preserved at 17°C. Reproduction in Domestic Animals, 2019, 54, 1069-1077.	0.6	6
6	Association between glycosylated hemoglobin A1c and bone biochemical markers in type 2 diabetic postmenopausal women: a cross-sectional study. BMC Endocrine Disorders, 2019, 19, 31.	0.9	23
7	Role of Metformin on Osteoblast Differentiation in Type 2 Diabetes. BioMed Research International, 2019, 2019, 1-6.	0.9	49
8	Relationships of social support, healthâ€promoting lifestyles, glycemic control, and bone turnover among adults with type 2 diabetes. Japan Journal of Nursing Science, 2020, 17, e12280.	0.5	3
9	Skeletal effects of plyometric exercise and metformin in ovariectomized rats. Bone, 2020, 132, 115193.	1.4	11
10	Metformin attenuates traumaâ€induced heterotopic ossification via inhibition of Bone Morphogenetic Protein signalling. Journal of Cellular and Molecular Medicine, 2020, 24, 14491-14501.	1.6	7
11	The effects of metformin on the bone filling ration around of TiAl6Va4 implants in non diabetic rats. Journal of Oral Biology and Craniofacial Research, 2020, 10, 474-477.	0.8	6
12	Glucose-Lowering Drugs and Fracture Risk—a Systematic Review. Current Osteoporosis Reports, 2020, 18, 737-758.	1.5	11
13	Effect of Metformin vs. Placebo in Combination with Insulin Analogues on Bone Markers P1NP and CTX in Patients with Type 2 Diabetes Mellitus. Calcified Tissue International, 2020, 107, 160-169.	1.5	7
14	Pathophysiology and Management of Type 2 Diabetes Mellitus Bone Fragility. Journal of Diabetes Research, 2020, 2020, 1-18.	1.0	55
15	Natural plant-derived polygalacturonic acid-oleanolic acid assemblies as oral-delivered nanomedicine for insulin resistance treatment. Chemical Engineering Journal, 2020, 390, 124630.	6.6	20
16	<p>Chitosan Coating of TiO2 Nanotube Arrays for Improved Metformin Release and Osteoblast Differentiation</p> . International Journal of Nanomedicine, 2020, Volume 15, 4471-4481.	3.3	28
17	Intelligent therapeutic decision support for 30Âdays readmission of diabetic patients with different comorbidities. Journal of Biomedical Informatics, 2020, 107, 103486.	2.5	9
18	The Interplay Between Bone and Glucose Metabolism. Frontiers in Endocrinology, 2020, 11, 122.	1.5	96

ATION RED

#	ARTICLE	IF	CITATIONS
19	Antidiabetic and antiosteoporotic pharmacotherapies for prevention and treatment of type 2 diabetes-induced bone disease: protocol for two network meta-analyses. BMJ Open, 2020, 10, e034741.	0.8	8
20	High-fat diet effect on periapical lesions and hepatic enzymatic antioxidant in rats. Life Sciences, 2021, 264, 118637.	2.0	6
21	The role of autophagy in bone homeostasis. Journal of Cellular Physiology, 2021, 236, 4152-4173.	2.0	39
22	Association of Insulin Glargine Treatment with Bone Mineral Density in Patients with Type 2 Diabetes Mellitus. Diabetes, Metabolic Syndrome and Obesity: Targets and Therapy, 2021, Volume 14, 1909-1917.	1.1	3
23	Metformin: Is It the Well Wisher of Bone Beyond Glycemic Control in Diabetes Mellitus?. Calcified Tissue International, 2021, 108, 693-707.	1.5	10
24	The forgotten type 2 diabetes mellitus medicine: rosiglitazone. Diabetology International, 2022, 13, 49-65.	0.7	10
25	Hydroxycoumarin Scopoletin Inhibits Bone Loss through Enhancing Induction of Bone Turnover Markers in a Mouse Model of Type 2 Diabetes. Biomedicines, 2021, 9, 648.	1.4	7
26	Management of bone fragility in type 2 diabetes: Perspective from an interdisciplinary expert panel. Nutrition, Metabolism and Cardiovascular Diseases, 2021, 31, 2210-2233.	1.1	7
27	Effects of a Lifestyle Intervention on Bone Turnover in Persons with Type 2 Diabetes: A Post Hoc Analysis of the U-TURN Trial. Medicine and Science in Sports and Exercise, 2022, 54, 38-46.	0.2	4
28	Continuous subcutaneous insulin infusion ameliorates bone structures and mechanical properties in type 2 diabetic rats by regulating bone remodeling. Bone, 2021, 153, 116101.	1.4	9
29	Update on the impact of type 2 diabetes mellitus on bone metabolism and material properties. Endocrine Connections, 2019, 8, R55-R70.	0.8	81
30	The Future of Metformin in the Prevention of Diabetes-Related Osteoporosis. Cureus, 2020, 12, e10412.	0.2	14
32	Combination of metformin and exercise alleviates osteoarthritis in ovariectomized mice fed a high-fat diet. Bone, 2022, 157, 116323.	1.4	7
33	FSH may mediate the association between HbA1c and bone turnover markers in postmenopausal women with type 2 diabetes. Journal of Bone and Mineral Metabolism, 2022, 40, 468-477.	1.3	4
34	The antidiabetic drug metformin acts on the bone microenvironment to promote myeloma cell adhesion to preosteoblasts and increase myeloma tumour burden in vivo. Translational Oncology, 2022, 15, 101301.	1.7	6
35	Evaluation of hypoglycemic therapeutics and nutritional supplementation for type 2 diabetes mellitus management: An insight on molecular approaches. Biotechnology Letters, 2022, 44, 203-238.	1.1	7
36	Rosiglitazone ameliorates acute hepatic injury via activating the Nrf2 signaling pathway and inhibiting activation of the NLRP3 inflammasome. Experimental and Therapeutic Medicine, 2022, 23, 300.	0.8	1
37	Bone Density and Structure in Overweight Men With and Without Diabetes. Frontiers in Endocrinology, 2022, 13, 837084.	1.5	4

#	Apticle	IF	CITATIONS
38	Effects of continuous subcutaneous insulin infusion on the microstructures, mechanical properties and bone mineral compositions of lumbar spines in type 2 diabetic rats. BMC Musculoskeletal Disorders, 2022, 23, .	0.8	1
39	OSTEOCALCIN ROLE IN THE REGULATION OF INSULIN SECRETION AND OSTEOTROPIC EFFECTS OF DIFFERENT CLASSES OF ANTI-DIABETIC DRUGS (LITERATURE REVIEW AND OWN RESEARCH). World Science, 2022, , .	0.0	0
40	The Relationships Between Glycated Hemoglobin and Bone Turnover Markers in Patients with Type 2 Diabetes but No Diabetic Nephropathy. International Journal of General Medicine, 0, Volume 15, 5591-5598.	0.8	1
41	Metformin activates Wnt/l²-catenin for the treatment of diabetic osteoporosis. BMC Endocrine Disorders, 2022, 22, .	0.9	17
42	Role of Nitric Oxide in Type 2 Diabetes-Induced Osteoporosis. , 2022, , 161-189.		0
43	Association of metformin use with fracture risk in type 2 diabetes: A systematic review and meta-analysis of observational studies. Frontiers in Endocrinology, 0, 13, .	1.5	4
44	Low Bone Turnover Associates with Lower Insulin Sensitivity in Newly Diagnosed Drug-naÃ ⁻ ve Persons with Type 2 Diabetes. Journal of Clinical Endocrinology and Metabolism, 0, , .	1.8	3
45	Anti-diabetic effects of fungal Ergosta-4, 6, 8(14), 22-tetraen-3-one from Pholiota adiposa. Steroids, 2023, 192, 109185.	0.8	3
51	Progress in the preparation and evaluation of glucose-sensitive microneedle systems and their blood glucose regulation. Biomaterials Science, 2023, 11, 5410-5438.	2.6	4