Targeting NAD+/PARP DNA Repair Pathway as a Novel <i>SDHB</i>-Mutated Cluster I Pheochromocytoma an

Clinical Cancer Research 24, 3423-3432 DOI: 10.1158/1078-0432.ccr-17-3406

Citation Report

#	Article	IF	CITATIONS
1	Update of Pheochromocytoma Syndromes: Genetics, Biochemical Evaluation, and Imaging. Frontiers in Endocrinology, 2018, 9, 515.	1.5	82
2	Synergistic Highly Potent Targeted Drug Combinations in Different Pheochromocytoma Models Including Human Tumor Cultures. Endocrinology, 2019, 160, 2600-2617.	1.4	24
3	Therapies targeting the signal pathways of pheochromocytoma and paraganglioma. OncoTargets and Therapy, 2019, Volume 12, 7227-7241.	1.0	14
4	Combination of PARP inhibitor and temozolomide to suppress chordoma progression. Journal of Molecular Medicine, 2019, 97, 1183-1193.	1.7	22
5	Pheochromocytomas and Paragangliomas: Bypassing Cellular Respiration. Cancers, 2019, 11, 683.	1.7	22
6	A Developmental Perspective on Paragangliar Tumorigenesis. Cancers, 2019, 11, 273.	1.7	11
7	Pheochromocytomas and Paragangliomas: From Genetic Diversity to Targeted Therapies. Cancers, 2019, 11, 436.	1.7	33
8	Metastatic Phaeochromocytoma: Spinning Towards More Promising Treatment Options. Experimental and Clinical Endocrinology and Diabetes, 2019, 127, 117-128.	0.6	40
9	Clinical implications of the oncometabolite succinate in <i>SDHx</i> â€mutation carriers. Clinical Genetics, 2020, 97, 39-53.	1.0	39
10	Succinate dehydrogenase deficiency in a chromaffin cell model retains metabolic fitness through the maintenance of mitochondrial NADH oxidoreductase function. FASEB Journal, 2020, 34, 303-315.	0.2	17
11	Malignant pheochromocytoma and paraganglioma: management options. Current Opinion in Oncology, 2020, 32, 20-26.	1.1	28
12	Blockade of Glutathione Metabolism in <i>IDH1</i> -Mutated Glioma. Molecular Cancer Therapeutics, 2020, 19, 221-230.	1.9	55
13	Amplifying the Noise: Oncometabolites Mask an Epigenetic Signal of DNA Damage. Molecular Cell, 2020, 79, 368-370.	4.5	3
14	Emerging Treatments for Advanced/Metastatic Pheochromocytoma and Paraganglioma. Current Treatment Options in Oncology, 2020, 21, 85.	1.3	43
15	Metabolomics, machine learning and immunohistochemistry to predict succinate dehydrogenase mutational status in phaeochromocytomas and paragangliomas. Journal of Pathology, 2020, 251, 378-387.	2.1	23
16	Glutaminases as a Novel Target for SDHB-Associated Pheochromocytomas/Paragangliomas. Cancers, 2020, 12, 599.	1.7	15
17	Therapeutic Targeting of <i>SDHB</i> -Mutated Pheochromocytoma/Paraganglioma with Pharmacologic Ascorbic Acid. Clinical Cancer Research, 2020, 26, 3868-3880.	3.2	29
18	A Comprehensive Analysis Identified the Key Differentially Expressed Circular Ribonucleic Acids and Methylation-Related Function in Pheochromocytomas and Paragangliomas. Frontiers in Genetics, 2020, 11, 15	1.1	8

CITATION REPORT

#	Article	IF	CITATIONS
19	Targeting NRF2-Governed Glutathione Synthesis for SDHB-Mutated Pheochromocytoma and Paraganglioma. Cancers, 2020, 12, 280.	1.7	23
20	mTORC2/Rac1 Pathway Predisposes Cancer Aggressiveness in IDH1-Mutated Glioma. Cancers, 2020, 12, 787.	1.7	22
21	IDH mutation in glioma: molecular mechanisms and potential therapeutic targets. British Journal of Cancer, 2020, 122, 1580-1589.	2.9	301
22	MicroRNAs, Long Non-Coding RNAs, and Circular RNAs: Potential Biomarkers and Therapeutic Targets in Pheochromocytoma/Paraganglioma. Cancers, 2021, 13, 1522.	1.7	17
23	Emerging considerations on mitochondrial and cytosolic metabolic features in SDH-deficient cancer cells. Molecular Genetics and Metabolism Reports, 2021, 26, 100721.	0.4	0
24	Multidisciplinary practice guidelines for the diagnosis, genetic counseling and treatment of pheochromocytomas and paragangliomas. Clinical and Translational Oncology, 2021, 23, 1995-2019.	1.2	69
25	Personalized Management of Pheochromocytoma and Paraganglioma. Endocrine Reviews, 2022, 43, 199-239.	8.9	127
26	Loss of SDHB Promotes Dysregulated Iron Homeostasis, Oxidative Stress, and Sensitivity to Ascorbate. Cancer Research, 2021, 81, 3480-3494.	0.4	26
27	Reactive Oxygen Species: A Promising Therapeutic Target for SDHx-Mutated Pheochromocytoma and Paraganglioma. Cancers, 2021, 13, 3769.	1.7	3
28	High throughput proteomic and metabolic profiling identified target correction of metabolic abnormalities as a novel therapeutic approach in head and neck paraganglioma. Translational Oncology, 2021, 14, 101146.	1.7	7
29	HEREDITARY ENDOCRINE TUMOURS: CURRENT STATE-OF-THE-ART AND RESEARCH OPPORTUNITIES: Metastatic pheochromocytomas and paragangliomas: proceedings of the MEN2019 workshop. Endocrine-Related Cancer, 2020, 27, T41-T52.	1.6	33
30	A xenograft and cell line model of SDH-deficient pheochromocytoma derived from Sdhb+/â^ rats. Endocrine-Related Cancer, 2020, 27, 337-354.	1.6	16
31	Pheochromocytoma/paraganglioma: recent updates in genetics, biochemistry, immunohistochemistry, metabolomics, imaging and therapeutic options. Gland Surgery, 2020, 9, 105-123.	0.5	37
32	An update on adult forms of hereditary pheochromocytomas and paragangliomas. Current Opinion in Oncology, 2021, 33, 23-32.	1.1	9
33	Oncometabolites as Regulators of DNA Damage Response and Repair. Seminars in Radiation Oncology, 2022, 32, 82-94.	1.0	3
34	Precision Medicine in Phaeochromocytoma and Paraganglioma. Journal of Personalized Medicine, 2021, 11, 1239.	1.1	7
35	New Insights on the Genetics of Pheochromocytoma and Paraganglioma and Its Clinical Implications. Cancers, 2022, 14, 594.	1.7	33
36	New Directions in Treatment of Metastatic or Advanced Pheochromocytomas and Sympathetic Paragangliomas: an American, Contemporary, Pragmatic Approach. Current Oncology Reports, 2022, 24, 89-98.	1.8	7

CITATION REPORT

#	ARTICLE	IF	CITATIONS
37	Complex roles of nicotinamide N-methyltransferase in cancer progression. Cell Death and Disease, 2022, 13, 267.	2.7	31
38	Model systems in SDHx-related pheochromocytoma/paraganglioma. Cancer and Metastasis Reviews, 2021, 40, 1177-1201.	2.7	7
45	Metastatic pheochromocytomas and paragangliomas: where are we?. Tumori, 2022, 108, 526-540.	0.6	4
46	Pharmacogenetic Review: Germline Genetic Variants Possessing Increased Cancer Risk With Clinically Actionable Therapeutic Relationships. Frontiers in Genetics, 2022, 13, .	1.1	1
47	Hypothesis: Why Different Types of SDH Gene Variants Cause Divergent Tumor Phenotypes. Genes, 2022, 13, 1025.	1.0	3
48	Mitochondrial adaptation in cancer drug resistance: prevalence, mechanisms, and management. Journal of Hematology and Oncology, 2022, 15, .	6.9	53
49	Pediatric Metastatic Pheochromocytoma and Paraganglioma: Clinical Presentation and Diagnosis, Genetics, and Therapeutic Approaches. Frontiers in Endocrinology, 0, 13, .	1.5	6
50	Targeted Therapies in Pheochromocytoma and Paraganglioma. Journal of Clinical Endocrinology and Metabolism, 2022, 107, 2963-2972.	1.8	18
51	Paraganglioma of the Head and Neck: A Review. Endocrine Practice, 2023, 29, 141-147.	1.1	8
52	Neuroendocrine Neoplasms. PET Clinics, 2023, 18, 169-187.	1.5	0
53	Metabolomics in paraganglioma: applications and perspectives from genetics to therapy. Endocrine-Related Cancer, 2023, 30, .	1.6	3

2.1.400.....0 1.0.4004 04.1001, 2020,