Structural basis for ATP-dependent chromatin remodel

Nature 556, 386-390 DOI: 10.1038/s41586-018-0029-y

Citation Report

#	Article	IF	CITATIONS
1	Regulation of ATP-dependent chromatin remodelers: accelerators/brakes, anchors and sensors. Biochemical Society Transactions, 2018, 46, 1423-1430.	1.6	29
2	Chromatin remodelers couple inchworm motion with twist-defect formation to slide nucleosomal DNA. PLoS Computational Biology, 2018, 14, e1006512.	1.5	39
3	Advances on the Structure of the R2TP/Prefoldin-like Complex. Advances in Experimental Medicine and Biology, 2018, 1106, 73-83.	0.8	15
4	Structural basis of the nucleosome transition during RNA polymerase II passage. Science, 2018, 362, 595-598.	6.0	157
5	Structure and dynamics of the yeast SWR1-nucleosome complex. Science, 2018, 362, .	6.0	131
6	Movement of the RecG Motor Domain upon DNA Binding Is Required for Efficient Fork Reversal. International Journal of Molecular Sciences, 2018, 19, 3049.	1.8	13
7	The nuclear actin-containing Arp8 module is a linker DNA sensor driving INO80 chromatin remodeling. Nature Structural and Molecular Biology, 2018, 25, 823-832.	3.6	63
8	A twist defect mechanism for ATP-dependent translocation of nucleosomal DNA. ELife, 2018, 7, .	2.8	45
9	The Arp8 and Arp4 module acts as a DNA sensor controlling INO80 chromatin remodeling. Nature Communications, 2018, 9, 3309.	5.8	54
10	The in situ structures of mono-, di-, and trinucleosomes in human heterochromatin. Molecular Biology of the Cell, 2018, 29, 2450-2457.	0.9	73
11	The Benefits of Cotranslational Assembly: A Structural Perspective. Trends in Cell Biology, 2019, 29, 791-803.	3.6	62
12	LncRNA HAND2â€AS1 promotes liver cancer stem cell selfâ€renewal via BMP signaling. EMBO Journal, 2019, 38, e101110.	3.5	117
13	Ubiquitin-proteasomal regulation of chromatin remodeler INO80 in the nucleus accumbens mediates persistent cocaine craving. Science Advances, 2019, 5, eaay0351.	4.7	19
14	Structure of the primed state of the ATPase domain of chromatin remodeling factor ISWI bound to the nucleosome. Nucleic Acids Research, 2019, 47, 9400-9409.	6.5	30
15	Structural transition of the nucleosome during chromatin remodeling and transcription. Current Opinion in Structural Biology, 2019, 59, 107-114.	2.6	42
16	Retroviral integration into nucleosomes through DNA looping and sliding along the histone octamer. Nature Communications, 2019, 10, 4189.	5.8	43
17	Roles of the INO80 and SWR1 Chromatin Remodeling Complexes in Plants. International Journal of Molecular Sciences, 2019, 20, 4591.	1.8	24
18	Structural mechanism for regulation of the AAA-ATPases RUVBL1-RUVBL2 in the R2TP co-chaperone revealed by cryo-EM. Science Advances, 2019, 5, eaaw1616.	4.7	33

#	Article	IF	CITATIONS
19	Molecular recognition of nucleosomes by binding partners. Current Opinion in Structural Biology, 2019, 56, 164-170.	2.6	21
20	Nuclear actin interactome analysis links actin to KAT14 histone acetyl transferase and mRNA splicing. Journal of Cell Science, 2019, 132, .	1.2	38
21	MultiBac: Baculovirus-Mediated Multigene DNA Cargo Delivery in Insect and Mammalian Cells. Viruses, 2019, 11, 198.	1.5	25
22	Structures of the ISWI–nucleosome complex reveal a conserved mechanism of chromatin remodeling. Nature Structural and Molecular Biology, 2019, 26, 258-266.	3.6	75
23	Nucleosome remodelling: structural insights into ATP-dependent remodelling enzymes. Essays in Biochemistry, 2019, 63, 45-58.	2.1	10
24	Transient Kinetic Analysis of SWR1C-Catalyzed H2A.Z Deposition Unravels the Impact of Nucleosome Dynamics and the Asymmetry of Histone Exchange. Cell Reports, 2019, 27, 374-386.e4.	2.9	26
25	Conformational flexibility of fork-remodeling helicase Rad5 shown by full-ensemble hybrid methods. PLoS ONE, 2019, 14, e0223875.	1.1	7
26	Structural Basis of Poxvirus Transcription: Vaccinia RNA Polymerase Complexes. Cell, 2019, 179, 1537-1550.e19.	13.5	41
27	Nuclear actin switch of the INO80 remodeler. Journal of Molecular Cell Biology, 2019, 11, 343-344.	1.5	1
28	Structure and functional interactions of INO80 actin/Arp module. Journal of Molecular Cell Biology, 2019, 11, 345-355.	1.5	19
29	Elucidation of the functional roles of the Q and I motifs in the human chromatin-remodeling enzyme BRG1. Journal of Biological Chemistry, 2019, 294, 3294-3310.	1.6	6
30	Molecular basis for chromatin assembly and modification by multiprotein complexes. Protein Science, 2019, 28, 329-343.	3.1	11
31	Nucleosome structure and dynamics are coming of age. Nature Structural and Molecular Biology, 2019, 26, 3-13.	3.6	233
32	A Unifying Mechanism of DNA Translocation Underlying Chromatin Remodeling. Trends in Biochemical Sciences, 2020, 45, 217-227.	3.7	42
33	Near-infrared spectroscopy in evaluating psychogenic pseudosyncope—a novel diagnostic approach. QJM - Monthly Journal of the Association of Physicians, 2020, 113, 239-244.	0.2	8
34	H2A Variants in Arabidopsis: Versatile Regulators of Genome Activity. Plant Communications, 2020, 1, 100015.	3.6	40
35	Nucleosomes as allosteric scaffolds for genetic regulation. Current Opinion in Structural Biology, 2020, 62, 93-101.	2.6	14
36	Structure of H3K36-methylated nucleosome–PWWP complex reveals multivalent cross-gyre binding. Nature Structural and Molecular Biology, 2020, 27, 8-13.	3.6	57

#	Article	IF	CITATIONS
37	Different mechanisms for translocation by monomeric and hexameric helicases. Current Opinion in Structural Biology, 2020, 61, 25-32.	2.6	37
38	A Structural Model of the Endogenous Human BAF Complex Informs Disease Mechanisms. Cell, 2020, 183, 802-817.e24.	13.5	100
39	The Nucleosome Remodeling and Deacetylase Complex Has an Asymmetric, Dynamic, and Modular Architecture. Cell Reports, 2020, 33, 108450.	2.9	37
40	The Mechanism of Chromatin Remodeler SMARCAD1/Fun30 in Response to DNA Damage. Frontiers in Cell and Developmental Biology, 2020, 8, 560098.	1.8	8
41	NAP1-Related Protein 1 (NRP1) has multiple interaction modes for chaperoning histones H2A-H2B. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 30391-30399.	3.3	13
42	Megadalton chromatin remodelers: common principles for versatile functions. Current Opinion in Structural Biology, 2020, 64, 134-144.	2.6	22
43	Restraining and unleashing chromatin remodelers – structural information guides chromatin plasticity. Current Opinion in Structural Biology, 2020, 65, 130-138.	2.6	3
44	The chromatin remodeler <scp>SRCAP</scp> promotes selfâ€renewal of intestinal stem cells. EMBO Journal, 2020, 39, e103786.	3.5	10
45	Assembly of the asymmetric human γ-tubulin ring complex by RUVBL1-RUVBL2 AAA ATPase. Science Advances, 2020, 6, .	4.7	34
46	High-Throughput Flow Cytometry Combined with Genetic Analysis Brings New Insights into the Understanding of Chromatin Regulation of Cellular Quiescence. International Journal of Molecular Sciences, 2020, 21, 9022.	1.8	10
47	Chromatin Remodelers in the 3D Nuclear Compartment. Frontiers in Genetics, 2020, 11, 600615.	1.1	35
48	An improved functional analysis of linker-mediated complex (iFALC) strategy. Biochemical and Biophysical Research Communications, 2020, 526, 1164-1169.	1.0	4
49	Optical Manipulation of F-Actin with Photoswitchable Small Molecules. Journal of the American Chemical Society, 2020, 142, 9240-9249.	6.6	63
50	RPAP3 C-Terminal Domain: A Conserved Domain for the Assembly of R2TP Co-Chaperone Complexes. Cells, 2020, 9, 1139.	1.8	10
51	Structural Basis of Nucleosome Recognition and Modulation. BioEssays, 2020, 42, e1900234.	1.2	12
52	Chromatin-remodeling links metabolic signaling to gene expression. Molecular Metabolism, 2020, 38, 100973.	3.0	37
53	Modeling of a 14 kDa RUVBL2-Binding Domain with Medium Resolution Cryo-EM Density. Journal of Chemical Information and Modeling, 2020, 60, 2541-2551.	2.5	3
54	Cryo-EM structure of SWI/SNF complex bound to a nucleosome. Nature, 2020, 579, 452-455.	13.7	113

#	Article	IF	CITATIONS
55	Structure of SWI/SNF chromatin remodeller RSC bound to a nucleosome. Nature, 2020, 579, 448-451.	13.7	106
56	Comprehensive nucleosome interactome screen establishes fundamental principles of nucleosome binding. Nucleic Acids Research, 2020, 48, 9415-9432.	6.5	67
57	Recognition of Nucleosomes by Chromatin Factors: Lessons from Data-Driven Docking-Based Structures of Nucleosome-Protein Complexes. , 2020, , .		2
58	Cryo-EM structures of the XPF-ERCC1 endonuclease reveal how DNA-junction engagement disrupts an auto-inhibited conformation. Nature Communications, 2020, 11, 1120.	5.8	24
59	Invited Review: Dysregulation of chromatin remodellers in paediatric brain tumours – SMARCB1 and beyond. Neuropathology and Applied Neurobiology, 2020, 46, 57-72.	1.8	10
60	Nucleosomes Meet Their Remodeler Match. Trends in Biochemical Sciences, 2021, 46, 41-50.	3.7	23
61	Emerging Properties and Functions of Actin and Actin Filaments Inside the Nucleus. Cold Spring Harbor Perspectives in Biology, 2021, 13, a040121.	2.3	30
62	Measuring DNA mechanics on the genome scale. Nature, 2021, 589, 462-467.	13.7	81
63	RUVBL1–RUVBL2 AAA-ATPase: a versatile scaffold for multiple complexes and functions. Current Opinion in Structural Biology, 2021, 67, 78-85.	2.6	29
64	Structural basis of nucleosome dynamics modulation by histone variants H2A.B andÂH2A.Z.2.2. EMBO Journal, 2021, 40, e105907.	3.5	33
65	Nucleosomes and Epigenetics from a Chemical Perspective. ChemBioChem, 2021, 22, 595-612.	1.3	7
66	Regulation of the Dot1 histone H3K79 methyltransferase by histone H4K16 acetylation. Science, 2021, 371, .	6.0	70
67	Reconstitution of the recombinant human \hat{l}^3 -tubulin ring complex. Open Biology, 2021, 11, 200325.	1.5	11
69	Structure and Function of Chromatin Remodelers. Journal of Molecular Biology, 2021, 433, 166929.	2.0	62
72	Ruler elements in chromatin remodelers set nucleosome array spacing and phasing. Nature Communications, 2021, 12, 3232.	5.8	34
73	Biophysics of Chromatin Remodeling. Annual Review of Biophysics, 2021, 50, 73-93.	4.5	31
74	Sophisticated Conversations between Chromatin and Chromatin Remodelers, and Dissonances in Cancer. International Journal of Molecular Sciences, 2021, 22, 5578.	1.8	27
75	Genome information processing by the INO80 chromatin remodeler positions nucleosomes. Nature Communications, 2021, 12, 3231.	5.8	27

#	Article	IF	CITATIONS
76	PHYTOCHROME-INTERACTING FACTORs trigger environmentally responsive chromatin dynamics in plants. Nature Genetics, 2021, 53, 955-961.	9.4	54
77	Structural basis for inhibition of the AAA-ATPase Drg1 by diazaborine. Nature Communications, 2021, 12, 3483.	5.8	10
78	The gammaâ€ŧubulin ring complex: Deciphering the molecular organization and assembly mechanism of a major vertebrate microtubule nucleator. BioEssays, 2021, 43, e2100114.	1.2	8
79	Histone "acidic patchâ€: a hotspot in chromatin biology. Nucleus (India), 2021, 64, 271-275.	0.9	7
81	The Active Mechanism of Nucleosome Depletion by Poly(dA:dT) Tracts In Vivo. International Journal of Molecular Sciences, 2021, 22, 8233.	1.8	11
82	COMPASS functions as a module of the INO80 chromatin remodeling complex to mediate histone H3K4 methylation in Arabidopsis. Plant Cell, 2021, 33, 3250-3271.	3.1	17
83	Distinct requirements for Pho, Sfmbt, and Ino80 for cell survival in <i>Drosophila</i> . Genetics, 2021, 219, .	1.2	3
84	AAA ATPases as therapeutic targets: Structure, functions, and small-molecule inhibitors. European Journal of Medicinal Chemistry, 2021, 219, 113446.	2.6	28
85	The BAF chromatin remodeling complexes: structure, function, and synthetic lethalities. Biochemical Society Transactions, 2021, 49, 1489-1503.	1.6	13
86	The limits of clinical findings in similar phenotypes, from Carpenter to ATRX syndrome using a whole exome sequencing approach: a case review. Human Genomics, 2021, 15, 49.	1.4	3
87	Structural basis of the complete poxvirus transcription initiation process. Nature Structural and Molecular Biology, 2021, 28, 779-788.	3.6	12
88	Structure and dynamics of the chromatin remodeler ALC1 bound to a PARylated nucleosome. ELife, 2021, 10, .	2.8	21
89	Structural features of nucleosomes in interphase and metaphase chromosomes. Molecular Cell, 2021, 81, 4377-4397.e12.	4.5	27
90	A structural framework for DNA replication and transcription through chromatin. Current Opinion in Structural Biology, 2021, 71, 51-58.	2.6	6
91	Principles of nucleosome recognition by chromatin factors and enzymes. Current Opinion in Structural Biology, 2021, 71, 16-26.	2.6	73
92	Structural insights into the interaction between transcription factors and the nucleosome. Current Opinion in Structural Biology, 2021, 71, 171-179.	2.6	11
93	Structural basis for the multi-activity factor Rad5 in replication stress tolerance. Nature Communications, 2021, 12, 321.	5.8	10
94	Chromatin Dynamics. Learning Materials in Biosciences, 2021, , 29-47.	0.2	0

		CITATION REPORT		
#	Article		IF	CITATIONS
95	Spanning the gap: unraveling RSC dynamics in vivo. Current Genetics, 2021, 67, 399-4	.06.	0.8	3
96	Mechanistic Insights into Regulation of the ALC1 Remodeler by the Nucleosome Acidic Reports, 2020, 33, 108529.	Patch. Cell	2.9	20
97	INO80 and SWR1 complexes: the non-identical twins of chromatin remodelling. Currer Structural Biology, 2020, 61, 50-58.	ול Opinion in	2.6	36
98	NOPCHAP1 is a PAQosome cofactor that helps loading NOP58 on RUVBL1/2 during be biogenesis. Nucleic Acids Research, 2021, 49, 1094-1113.	x C/D snoRNP	6.5	14
106	Chromatin remodelling comes into focus. F1000Research, 2020, 9, 1011.		0.8	14
107	Lincâ€ <scp>MYH</scp> configures <scp>INO</scp> 80 to regulate muscle stem cell nu muscle hypertrophy. EMBO Journal, 2020, 39, e105098.	mbers and skeletal	3.5	20
108	Structure of the chromatin remodelling enzyme Chd1 bound to a ubiquitinylated nucle 2018, 7, .	osome. ELife,	2.8	72
109	Crystal structure of the full Swi2/Snf2 remodeler Mot1 in the resting state. ELife, 2018	,7,.	2.8	4
110	Cryo-EM structures of remodeler-nucleosome intermediates suggest allosteric control nucleosome. ELife, 2019, 8, .	through the	2.8	70
111	Epigenetic silencing of a multifunctional plant stress regulator. ELife, 2019, 8, .		2.8	28
112	The nucleosome DNA entry-exit site is important for transcription termination and prevention transcription. ELife, 2020, 9, .	ention of	2.8	11
114	SMARCAD1 is an ATP-dependent histone octamer exchange factor with de novo nuclea activity. Science Advances, 2021, 7, eabk2380.	bsome assembly	4.7	13
118	The â€~Complex World' of the Hsp90 Co-chaperone R2TP. Heat Shock Proteins, 20)19, , 297-316.	0.2	0
122	The MultiBac system: a perspective. Emerging Topics in Life Sciences, 2019, 3, 477-48.	2.	1.1	3
130	Regulation of RUVBL1-RUVBL2 AAA-ATPases by the nonsense-mediated mRNA decay fa evidenced by Cryo-EM. ELife, 2020, 9, .	actor DHX34, as	2.8	9
131	The biogenesis and function of nucleosome arrays. Nature Communications, 2021, 12	, 7011.	5.8	12
132	DNA Double Strand Break Repair and Its Control by Nucleosome Remodeling. Frontiers 2021, 12, 821543.	in Genetics,	1.1	8
133	The biological function of metazoan-specific subunit nuclear factor related to kappaB to of INO80 complex. International Journal of Biological Macromolecules, 2022, 203, 176	binding protein -183.	3.6	4

#	Article	IF	CITATIONS
134	Acidic patch histone mutations and their effects on nucleosome remodeling. Biochemical Society Transactions, 2022, 50, 907-919.	1.6	5
135	Coordinated DNA and histone dynamics drive accurate histone H2A.Z exchange. Science Advances, 2022, 8, eabj5509.	4.7	11
136	A Homologous Recombination System to Generate Epitope-Tagged Target Genes in Chaetomium thermophilum: A Genetic Approach to Investigate Native Thermostable Proteins. International Journal of Molecular Sciences, 2022, 23, 3198.	1.8	2
139	CryoEM of RUVBL1–RUVBL2–ZNHIT2, a complex that interacts with pre-mRNA-processing-splicing factor 8. Nucleic Acids Research, 2022, 50, 1128-1146.	6.5	6
140	Transformation of Chaetomium thermophilum and Affinity Purification of Native Thermostable Protein Complexes. Methods in Molecular Biology, 2022, 2502, 35-50.	0.4	0
142	Cytoplasmic gene expression: lessons from poxviruses. Trends in Biochemical Sciences, 2022, 47, 892-902.	3.7	8
144	A hexasome is the preferred substrate for the INO80 chromatin remodeling complex, allowing versatility of function. Molecular Cell, 2022, 82, 2098-2112.e4.	4.5	11
145	Ino80 is required for <scp>H2A</scp> .Z eviction from hyphaâ€specific promoters and hyphal development of <i>Candida albicans</i> . Molecular Microbiology, 0, , .	1.2	5
147	Histone tail network and modulation in a nucleosome. Current Opinion in Structural Biology, 2022, 75, 102436.	2.6	8
148	Deciphering cellular and molecular determinants of human DPCD protein in complex with RUVBL1/RUVBL2 AAA-ATPases. Journal of Molecular Biology, 2022, 434, 167760.	2.0	3
149	Partitioned usage of chromatin remodelers by nucleosome-displacing factors. Cell Reports, 2022, 40, 111250.	2.9	12
150	Chromatin structure meets cryo-EM: Dynamic building blocks of the functional architecture. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2022, 1865, 194851.	0.9	14
151	Structure and flexibility of the yeast NuA4 histone acetyltransferase complex. ELife, 0, 11, .	2.8	6
152	Structure of nucleosome-bound human PBAF complex. Nature Communications, 2022, 13, .	5.8	11
153	Structural mechanism of extranucleosomal DNA readout by the INO80 complex. Science Advances, 2022, 8, .	4.7	12
154	ACTR5 controls CDKN2A and tumor progression in an INO80-independent manner. Science Advances, 2022, 8, .	4.7	6
155	Functional crosstalk between the cohesin loader and chromatin remodelers. Nature Communications, 2022, 13, .	5.8	7
156	Long Noncoding RNAs and Cancer Stem Cells: Dangerous Liaisons Managing Cancer. International Journal of Molecular Sciences, 2023, 24, 1828.	1.8	4

#	Article	IF	CITATIONS
157	Small molecule modulators of chromatin remodeling: from neurodevelopment to neurodegeneration. Cell and Bioscience, 2023, 13, .	2.1	12
160	Studies of the Mechanism of Nucleosome Dynamics: A Review on Multifactorial Regulation from Computational and Experimental Cases. Polymers, 2023, 15, 1763.	2.0	0
182	Energy-driven genome regulation by ATP-dependent chromatin remodellers. Nature Reviews Molecular Cell Biology, 0, , .	16.1	2
186	What can molecular assembly learn from catalysed assembly in living organisms?. Chemical Society Reviews, 2024, 53, 1892-1914.	18.7	0