Contextual determinants of TGFÎ² action in development

Nature Reviews Molecular Cell Biology

19, 419-435

DOI: 10.1038/s41580-018-0007-0

Citation Report

#	Article	IF	CITATIONS
1	microRNAs: Novel regulators of the TGF-β pathway in pancreatic ductal adenocarcinoma. Molecular and Cellular Oncology, 2018, 5, e1499066.	0.3	6
2	WDR74 functions as a novel coactivator in TGF-Î ² signaling. Journal of Genetics and Genomics, 2018, 45, 639-650.	1.7	10
3	Epithelial-Mesenchymal Transition and Metastasis under the Control of Transforming Growth Factor β. International Journal of Molecular Sciences, 2018, 19, 3672.	1.8	117
4	Modulation of Host Immunity by Helminths: The Expanding Repertoire of Parasite Effector Molecules. Immunity, 2018, 49, 801-818.	6.6	287
5	The Dynamics of TGF-Î ² Signaling Are Dictated by Receptor Trafficking via the ESCRT Machinery. Cell Reports, 2018, 25, 1841-1855.e5.	2.9	26
6	Artemisinin derivatives inactivate cancer-associated fibroblasts through suppressing TGF-β signaling in breast cancer. Journal of Experimental and Clinical Cancer Research, 2018, 37, 282.	3.5	67
7	Structural basis of latent TGF-β1 presentation and activation by GARP on human regulatory T cells. Science, 2018, 362, 952-956.	6.0	103
8	Aberrant Regulation of mRNA m6A Modification in Cancer Development. International Journal of Molecular Sciences, 2018, 19, 2515.	1.8	48
9	Reevaluation of Pluripotent Cytokine TGF-β3 in Immunity. International Journal of Molecular Sciences, 2018, 19, 2261.	1.8	28
10	TGF-Î ² in T Cell Biology: Implications for Cancer Immunotherapy. Cancers, 2018, 10, 194.	1.7	132
11	MicroRNA Control of TGF-Î ² Signaling. International Journal of Molecular Sciences, 2018, 19, 1901.	1.8	102
13	TGF-Î ² signaling in cell fate control and cancer. Current Opinion in Cell Biology, 2019, 61, 56-63.	2.6	89
14	Immune landscape of hepatocellular carcinoma microenvironment: Implications for prognosis and therapeutic applications. Liver International, 2019, 39, 1608-1621.	1.9	67
15	A New Switch for TGF $\hat{1}^2$ in Cancer. Cancer Research, 2019, 79, 3797-3805.	0.4	77
16	Immunomodulatory TGF-β Signaling in Hepatocellular Carcinoma. Trends in Molecular Medicine, 2019, 25, 1010-1023.	3.5	157
17	Interactions between TGF-Î ² type I receptor and hypoxia-inducible factor-α mediates a synergistic crosstalk leading to poor prognosis for patients with clear cell renal cell carcinoma. Cell Cycle, 2019, 18, 2141-2156.	1.3	34
18	Non-canonical Hedgehog Signaling Pathway in Cancer: Activation of GLI Transcription Factors Beyond Smoothened. Frontiers in Genetics, 2019, 10, 556.	1.1	203
19	Breast Cancer Stem Cells with Tumor- versus Metastasis-Initiating Capacities Are Modulated by TGFBR1 Inhibition. Stem Cell Reports, 2019, 13, 1-9.	2.3	24

		CITATION REPORT	
#	ARTICLE Contextual Regulation of TGF-Ĵ² Signaling in Liver Cancer, Cells, 2019, 8, 1235,	IF 1.8	CITATIONS
		110	
21	Pancreatic Ductal Adenocarcinoma: MicroRNAs Affecting Tumor Growth and Metastasis in Preclinical In Vivo Models. Cancer Genomics and Proteomics, 2019, 16, 451-464.	1.0	17
22	TGF-Î ² Signaling in Cellular Senescence and Aging-Related Pathology. International Journal of Molecular Sciences, 2019, 20, 5002.	1.8	185
23	If we build it they will come: targeting the immune response to breast cancer. Npj Breast Cancer, 2019, 5, 37.	2.3	132
24	JMJD3 in the regulation of human diseases. Protein and Cell, 2019, 10, 864-882.	4.8	68
25	Targeting <scp>TGF</scp> βR2â€mutant tumors exposes vulnerabilities to stromal <scp>TGF</scp> β blockade in pancreatic cancer. EMBO Molecular Medicine, 2019, 11, e10515.	3.3	56
26	Structural basis for distinct roles of SMAD2 and SMAD3 in FOXH1 pioneer-directed TGF-Î ² signaling. Genes and Development, 2019, 33, 1506-1524.	2.7	61
27	Dualism of FGF and TGF-Î ² Signaling in Heterogeneous Cancer-Associated Fibroblast Activation with ETV1 as a Critical Determinant. Cell Reports, 2019, 28, 2358-2372.e6.	2.9	73
28	Transforming Growth Factor-Beta (TGFβ) Signaling Pathway in Cholangiocarcinoma. Cells, 2019, 8, 960.	1.8	25
29	The cross-talk between TGF-β and PDGFRα signaling pathways regulates stromal fibro/adipogenic progenitors' fate. Journal of Cell Science, 2019, 132, .	1.2	70
30	B7-1 drives TGF-β stimulated pancreatic carcinoma cell migration and expression of EMT target genes. PLoS ONE, 2019, 14, e0222083.	1.1	8
31	Interplay of TGFÎ ² signaling and microRNA in thyroid cell loss of differentiation and cancer progression. Archives of Endocrinology and Metabolism, 2019, 63, 536-544.	0.3	5
32	Endoglin Trafficking/Exosomal Targeting in Liver Cells Depends on N-Glycosylation. Cells, 2019, 8, 997.	1.8	17
33	<p>Total extract of Xin Jia Xuan Bai Cheng Qi decoction inhibits pulmonary fibrosis via the TGF-12/Smad signaling pathways in vivo and in vitro</p> . Drug Design, Development and Therapy, 2019, Volume 13, 2873-2886.	2.0	19
34	The Drosophila Model in Cancer. Advances in Experimental Medicine and Biology, 2019, , .	0.8	4
35	TGFβ signaling in germinal center B cells promotes the transition from light zone to dark zone. Journal of Experimental Medicine, 2019, 216, 2531-2545.	4.2	26
36	The TGFB2-AS1 lncRNA Regulates TGF-Î ² Signaling by Modulating Corepressor Activity. Cell Reports, 2019, 28, 3182-3198.e11.	2.9	26
37	The Interactivity between TGFÎ ² and BMP Signaling in Organogenesis, Fibrosis, and Cancer. Cells, 2019, 8, 1130.	1.8	94

#	Article	IF	CITATIONS
38	Epigenetic Regulation of Inflammatory Cytokine-Induced Epithelial-To-Mesenchymal Cell Transition and Cancer Stem Cell Generation. Cells, 2019, 8, 1143.	1.8	63
39	H3K18ac Primes Mesendodermal Differentiation upon Nodal Signaling. Stem Cell Reports, 2019, 13, 642-656.	2.3	16
40	Smad7 Binds Differently to Individual and Tandem WW3 and WW4 Domains of WWP2 Ubiquitin Ligase Isoforms. International Journal of Molecular Sciences, 2019, 20, 4682.	1.8	11
41	Mediator Condensates Localize Signaling Factors to Key Cell Identity Genes. Molecular Cell, 2019, 76, 753-766.e6.	4.5	188
42	ALK phosphorylates SMAD4 on tyrosine to disable TGF-β tumour suppressor functions. Nature Cell Biology, 2019, 21, 179-189.	4.6	41
43	Current status and future prospects of transforming growth factorâ€Î² as a potential prognostic and therapeutic target in the treatment of breast cancer. Journal of Cellular Biochemistry, 2019, 120, 6962-6971.	1.2	8
44	Molecular Engineering of the TGF-Î ² Signaling Pathway. Journal of Molecular Biology, 2019, 431, 2644-2654.	2.0	31
45	Loss-of-Function in SMAD4 Might Not Be Critical for Human Natural Killer Cell Responsiveness to TGF-β. Frontiers in Immunology, 2019, 10, 904.	2.2	0
46	Paeonol alleviates CCl ₄ -induced liver fibrosis through suppression of hepatic stellate cells activation via inhibiting the TGF-β/Smad3 signaling. Immunopharmacology and Immunotoxicology, 2019, 41, 438-445.	1.1	16
47	Epigenetic Reprogramming of TGF-Î ² Signaling in Breast Cancer. Cancers, 2019, 11, 726.	1.7	53
48	TGF-β-Mediated Epithelial-Mesenchymal Transition and Cancer Metastasis. International Journal of Molecular Sciences, 2019, 20, 2767.	1.8	635
49	The Vicious Cross-Talk between Tumor Cells with an EMT Phenotype and Cells of the Immune System. Cells, 2019, 8, 460.	1.8	68
50	Activation of PPARÎ ³ in Myeloid Cells Promotes Progression of Epithelial Lung Tumors through TGFÎ ² 1. Molecular Cancer Research, 2019, 17, 1748-1758.	1.5	12
51	Thymus Transcriptome of TGF-Î ² Superfamily. , 2019, , 247-254.		0
52	ALK7 Signaling Manifests a Homeostatic Tissue Barrier That Is Abrogated during Tumorigenesis and Metastasis. Developmental Cell, 2019, 49, 409-424.e6.	3.1	30
53	Sequential Targeting TGFâ€Î² Signaling and KRAS Mutation Increases Therapeutic Efficacy in Pancreatic Cancer. Small, 2019, 15, e1900631.	5.2	61
55	Transforming Growth Factor-Î ² Signaling in Immunity and Cancer. Immunity, 2019, 50, 924-940.	6.6	1,360
56	Integrin Signaling in Cancer: Mechanotransduction, Stemness, Epithelial Plasticity, and Therapeutic Resistance. Cancer Cell, 2019, 35, 347-367.	7.7	533

#	Article	IF	CITATIONS
57	Quantitative Measurement of Functional Activity of the PI3K Signaling Pathway in Cancer. Cancers, 2019, 11, 293.	1.7	32
58	Overexpression of RNF38 facilitates TGF-β signaling by Ubiquitinating and degrading AHNAK in hepatocellular carcinoma. Journal of Experimental and Clinical Cancer Research, 2019, 38, 113.	3.5	41
59	Genome-wide interaction and pathway-based identification of key regulators in multiple myeloma. Communications Biology, 2019, 2, 89.	2.0	14
60	Signaling pathways in context. Current Opinion in Biotechnology, 2019, 58, 155-160.	3.3	2
61	Long Noncoding RNA <i>ELIT-1</i> Acts as a Smad3 Cofactor to Facilitate TGFβ/Smad Signaling and Promote Epithelial–Mesenchymal Transition. Cancer Research, 2019, 79, 2821-2838.	0.4	84
62	Beyond leukotriene formation—The noncanonical functions of 5-lipoxygenase. Prostaglandins and Other Lipid Mediators, 2019, 142, 24-32.	1.0	26
63	Brain Tumor Microenvironment and Host State: Implications for Immunotherapy. Clinical Cancer Research, 2019, 25, 4202-4210.	3.2	207
64	Enabling precision medicine by unravelling disease pathophysiology: quantifying signal transduction pathway activity across cell and tissue types. Scientific Reports, 2019, 9, 1603.	1.6	49
65	POH1 contributes to hyperactivation of TGF-β signaling and facilitates hepatocellular carcinoma metastasis through deubiquitinating TGF-β receptors and caveolin-1. EBioMedicine, 2019, 41, 320-332.	2.7	28
66	Impairment of NKG2D-Mediated Tumor Immunity by TGF-β. Frontiers in Immunology, 2019, 10, 2689.	2.2	92
67	Hexokinase 2 couples glycolysis with the profibrotic actions of TGF- $\hat{1}^2$. Science Signaling, 2019, 12, .	1.6	71
68	<p>Blocking TGF-l ² Signaling To Enhance The Efficacy Of Immune Checkpoint Inhibitor</p>. OncoTargets and Therapy, 2019, Volume 12, 9527-9538.	1.0	93
69	JNK-Dependent cJun Phosphorylation Mitigates TGFÎ ² - and EGF-Induced Pre-Malignant Breast Cancer Cell Invasion by Suppressing AP-1-Mediated Transcriptional Responses. Cells, 2019, 8, 1481.	1.8	11
70	A Perspective on the Development of TGF-Î ² Inhibitors for Cancer Treatment. Biomolecules, 2019, 9, 743.	1.8	138
71	NK Cell Metabolism and TGFβ – Implications for Immunotherapy. Frontiers in Immunology, 2019, 10, 2915.	2.2	36
72	TGFβ, smooth muscle cells and coronary artery disease: a review. Cellular Signalling, 2019, 53, 90-101.	1.7	75
73	High expression levels of SMAD3 and SMAD7 at diagnosis predict poor prognosis in acute myeloid leukemia patients undergoing chemotherapy. Cancer Gene Therapy, 2019, 26, 119-127.	2.2	9
74	Starvation and Pseudo-Starvation as Drivers of Cancer Metastasis through Translation Reprogramming. Cell Metabolism, 2019, 29, 254-267.	7.2	88

#	ARTICLE	IF	CITATIONS
75	Targeted and Immune-Based Therapies for Hepatocellular Carcinoma. Gastroenterology, 2019, 156, 510-524.	0.6	179
76	The Role of TGF-β and Its Receptors in Gastrointestinal Cancers. Translational Oncology, 2019, 12, 475-484.	1.7	71
77	The missing heritability of familial colorectal cancer. Mutagenesis, 2020, 35, 221-231.	1.0	29
78	Increased stiffness of the tumor microenvironment in colon cancer stimulates cancer associated fibroblast-mediated prometastatic activin A signaling. Scientific Reports, 2020, 10, 50.	1.6	72
79	TGF-β orchestrates fibrogenic and developmental EMTs via the RAS effector RREB1. Nature, 2020, 577, 566-571.	13.7	271
80	TGF-β1 – A truly transforming growth factor in fibrosis and immunity. Seminars in Cell and Developmental Biology, 2020, 101, 123-139.	2.3	264
81	Controlling Immunity and Inflammation through Integrin-Dependent Regulation of TGF-β. Trends in Cell Biology, 2020, 30, 49-59.	3.6	71
82	Photodynamic Therapy and the Biophysics of the Tumor Microenvironment. Photochemistry and Photobiology, 2020, 96, 232-259.	1.3	55
83	TGFβ-induced metabolic reprogramming during epithelial-to-mesenchymal transition in cancer. Cellular and Molecular Life Sciences, 2020, 77, 2103-2123.	2.4	152
84	Metabolic rewiring and redox alterations in malignant pleural mesothelioma. British Journal of Cancer, 2020, 122, 52-61.	2.9	22
85	GSTZ1â€1 downregulates Wnt/β atenin signalling in hepatocellular carcinoma cells. FEBS Open Bio, 2020, 10, 6-17.	1.0	7
86	Cancer stem cell secretome in the tumor microenvironment: a key point for an effective personalized cancer treatment. Journal of Hematology and Oncology, 2020, 13, 136.	6.9	128
87	Fine-Tuning the TGFÎ ² Signaling Pathway by SARA During Neuronal Development. Frontiers in Cell and Developmental Biology, 2020, 8, 550267.	1.8	3
88	Cancer stem cells and their niche in the progression of squamous cell carcinoma. Cancer Science, 2020, 111, 3985-3992.	1.7	23
89	LEFTY1 Is a Dual-SMAD Inhibitor that Promotes Mammary Progenitor Growth and Tumorigenesis. Cell Stem Cell, 2020, 27, 284-299.e8.	5.2	12
90	Tumor-initiating cells establish an IL-33–TGF-β niche signaling loop to promote cancer progression. Science, 2020, 369, .	6.0	134
91	BMP signaling: at the gate between activated melanocyte stem cells and differentiation. Genes and Development, 2020, 34, 1713-1734.	2.7	35
92	TGFβ promotes widespread enhancer chromatin opening and operates on genomic regulatory domains. Nature Communications, 2020, 11, 6196.	5.8	21

	CITA	CITATION REPORT	
#	Article	IF	Citations
93	TGF-Î ² Pathway in Salivary Gland Fibrosis. International Journal of Molecular Sciences, 2020, 21, 9138.	1.8	24
94	Different Regulation of Glut1 Expression and Glucose Uptake during the Induction and Chronic Stages of TGFβ1-Induced EMT in Breast Cancer Cells. Biomolecules, 2020, 10, 1621.	1.8	11
95	Hereditary diffuse gastric cancer therapeutic roadmap: current and novel approaches in a nutshell. Therapeutic Advances in Medical Oncology, 2020, 12, 175883592096723.	1.4	9
96	Microenvironmental modulation of the developing tumour: an immuneâ€stromal dialogue. Molecular Oncology, 2021, 15, 2600-2633.	2.1	8
97	Commercially available transfection reagents and negative control siRNA are not inert. Analytical Biochemistry, 2020, 606, 113828.	1.1	4
98	Biophysical properties of AKAP95 protein condensates regulate splicing and tumorigenesis. Nature Cell Biology, 2020, 22, 960-972.	4.6	97
100	Micro-environmental sensing by bone marrow stroma identifies IL-6 and TGFβ1 as regulators of hematopoietic ageing. Nature Communications, 2020, 11, 4075.	5.8	66
101	Roles of TGF-Î ² signaling pathway in tumor microenvirionment and cancer therapy. International Immunopharmacology, 2020, 89, 107101.	1.7	44
102	Somatic <i>SMAD3</i> -activating mutations cause melorheostosis by up-regulating the TGF-β/SMAD pathway. Journal of Experimental Medicine, 2020, 217, .	4.2	24
103	The Roles of TGF-Î ² Signaling in Cerebrovascular Diseases. Frontiers in Cell and Developmental Biology, 2020, 8, 567682.	1.8	20
104	Mesenchymal stem cell-based Smad7 gene therapy for experimental liver cirrhosis. Stem Cell Research and Therapy, 2020, 11, 395.	2.4	14
105	Inhibition of FGF and TGF-β Pathways in hESCs Identify STOX2 as a Novel SMAD2/4 Cofactor. Biology, 2020, 9, 470.	1.3	3
106	The dichotomous role of TGF-Î ² in controlling liver cancer cell survival and proliferation. Journal of Genetics and Genomics, 2020, 47, 497-512.	1.7	21
107	Endoglin: An â€~Accessory' Receptor Regulating Blood Cell Development and Inflammation. Internat Journal of Molecular Sciences, 2020, 21, 9247.	ional 1.8	25
108	Tumor Cellular and Microenvironmental Cues Controlling Invadopodia Formation. Frontiers in Cell and Developmental Biology, 2020, 8, 584181.	1.8	35
109	R-spondins are BMP receptor antagonists in Xenopus early embryonic development. Nature Communications, 2020, 11, 5570.	5.8	32
110	Urethane-induced Mammary Carcinogenesis Susceptibility in Transgenic Mice Expressing a Dominant-negative TGF-Î ² Type II Receptor. Anticancer Research, 2020, 40, 2687-2694.	0.5	1
111	The effect of exosomes derived from mesenchymal stem cells in the treatment of induced type 1 diabetes mellitus in rats. Biotechnology Letters, 2020, 42, 1597-1610.	1.1	33

#	Article	IF	CITATIONS
112	TGFB2 serves as a link between epithelial-mesenchymal transition and tumor mutation burden in gastric cancer. International Immunopharmacology, 2020, 84, 106532.	1.7	25
113	Fibroblasts from Distinct Pancreatic Pathologies Exhibit Disease-Specific Properties. Cancer Research, 2020, 80, 2861-2873.	0.4	19
114	The evolutionarily conserved deubiquitinase UBH1/UCH-L1 augments DAF7/TGF-β signaling, inhibits dauer larva formation, and enhances lung tumorigenesis. Journal of Biological Chemistry, 2020, 295, 9105-9120.	1.6	9
115	Encapsulating TGF-β1 Inhibitory Peptides P17 and P144 as a Promising Strategy to Facilitate Their Dissolution and to Improve Their Functionalization. Pharmaceutics, 2020, 12, 421.	2.0	13
116	Dissociation of the AhR/ARNT complex by TGF-β/Smad signaling represses CYP1A1 gene expression and inhibits benze[a]pyrene-mediated cytotoxicity. Journal of Biological Chemistry, 2020, 295, 9033-9051.	1.6	21
117	TGFβ regulates NK1R-Tr to affect the proliferation and apoptosis of breast cancer cells. Life Sciences, 2020, 256, 117674.	2.0	7
118	Smad2/4 Signaling Pathway Is Critical for Epidermal Langerhans Cell Repopulation Under Inflammatory Condition but Not Required for Their Homeostasis at Steady State. Frontiers in Immunology, 2020, 11, 912.	2.2	6
119	TGFβ Signaling Increases Net Acid Extrusion, Proliferation and Invasion in Panc-1 Pancreatic Cancer Cells: SMAD4 Dependence and Link to Merlin/NF2 Signaling. Frontiers in Oncology, 2020, 10, 687.	1.3	19
120	Reticular Fibroblasts Expressing the Transcription Factor WT1 Define a Stromal Niche that Maintains and Replenishes Splenic Red Pulp Macrophages. Immunity, 2020, 53, 127-142.e7.	6.6	63
121	Multiple Roles of Transforming Growth Factor Beta in Amyotrophic Lateral Sclerosis. International Journal of Molecular Sciences, 2020, 21, 4291.	1.8	27
122	NK Cell Function Regulation by TGF-β-Induced Epigenetic Mechanisms. Frontiers in Immunology, 2020, 11, 311.	2.2	55
123	Tumor Plasticity and Resistance to Immunotherapy. Trends in Cancer, 2020, 6, 432-441.	3.8	88
124	TGF-β Signaling. Biomolecules, 2020, 10, 487.	1.8	347
125	Immunotherapeutic Potential of TGF-Î ² Inhibition and Oncolytic Viruses. Trends in Immunology, 2020, 41, 406-420.	2.9	55
126	Intracellular Communication among Morphogen Signaling Pathways during Vertebrate Body Plan Formation. Genes, 2020, 11, 341.	1.0	9
127	Epigenetic regulation of epithelial-mesenchymal transition: focusing on hypoxia and TGF-Î ² signaling. Journal of Biomedical Science, 2020, 27, 39.	2.6	106
128	MIR22HG acts as a tumor suppressor via TGFβ/SMAD signaling and facilitates immunotherapy in colorectal cancer. Molecular Cancer, 2020, 19, 51.	7.9	83
129	Oxidative Stress in Cancer. Cancer Cell, 2020, 38, 167-197.	7.7	1,203

#	Article	IF	CITATIONS
130	Multimodal Analysis of Composition and Spatial Architecture in Human Squamous Cell Carcinoma. Cell, 2020, 182, 497-514.e22.	13.5	508
131	The myofibroblast at a glance. Journal of Cell Science, 2020, 133, .	1.2	167
132	Modulation of the Systemic Immune Response in Suckling Rats by Breast Milk TGF-β2, EGF and FGF21 Supplementation. Nutrients, 2020, 12, 1888.	1.7	7
133	Ubiquitin-specific proteases as targets for anticancer drug therapies. , 2020, , 73-120.		2
134	Oncolytic adenovirus targeting TGF-β enhances anti-tumor responses of mesothelin-targeted chimeric antigen receptor T cell therapy against breast cancer. Cellular Immunology, 2020, 348, 104041.	1.4	52
135	Salt-inducible kinases (SIKs) regulate TGFβ-mediated transcriptional and apoptotic responses. Cell Death and Disease, 2020, 11, 49.	2.7	11
136	EMT signaling: potential contribution of CRISPR/Cas gene editing. Cellular and Molecular Life Sciences, 2020, 77, 2701-2722.	2.4	22
137	Monoubiquitination of p120-catenin is essential for TGFβ-induced epithelial-mesenchymal transition and tumor metastasis. Science Advances, 2020, 6, eaay9819.	4.7	16
138	Multiple MuSK signaling pathways and the aging neuromuscular junction. Neuroscience Letters, 2020, 731, 135014.	1.0	20
139	TGFÎ ² and EGF signaling orchestrates the AP-1- and p63 transcriptional regulation of breast cancer invasiveness. Oncogene, 2020, 39, 4436-4449.	2.6	52
140	KLF2 inhibits TGF- <roman><bold>β</bold></roman> -m cancer cell motility in hepatocellular carcinoma. Acta Biochimica Et Biophysica Sinica, 2020, 52, 485-494.	edjated	19
141	Two Sides of the Same Coin: The Roles of Transforming Growth Factor-Î ² in Colorectal Carcinogenesis. Gastroenterology, 2020, 159, 397-398.	0.6	0
142	Smad3 Regulates Neuropilin 2 Transcription by Binding to its 5′ Untranslated Region. Journal of the American Heart Association, 2020, 9, e015487.	1.6	7
143	Critical Steps in Epithelial-Mesenchymal Transition as Target for Cancer Treatment. Human Perspectives in Health Sciences and Technology, 2020, , 213-244.	0.2	2
144	Targeting the E3 Ubiquitin Ligase PJA1 Enhances Tumor-Suppressing TGFβ Signaling. Cancer Research, 2020, 80, 1819-1832.	0.4	17
145	Overcoming stromal barriers to immuno-oncological responses via fibroblast activation protein-targeted therapy. Immunotherapy, 2021, 13, 155-175.	1.0	12
146	Multiomics data reveals the influences of myasthenia gravis on thymoma and its precision treatment. Journal of Cellular Physiology, 2021, 236, 1214-1227.	2.0	6
147	TGFβ-Directed Therapeutics: 2020. , 2021, 217, 107666.		52

#	Article	IF	CITATIONS
148	Increased immunosuppression impairs tissue homeostasis with aging and age-related diseases. Journal of Molecular Medicine, 2021, 99, 1-20.	1.7	61
149	Inhibition of TGFβ1 and TGFβ3 promotes hematopoiesis in Fanconi anemia. Experimental Hematology, 2021, 93, 70-84.e4.	0.2	8
150	YAP/TAZ and EZH2 synergize to impair tumor suppressor activity of TGFBR2 in non-small cell lung cancer. Cancer Letters, 2021, 500, 51-63.	3.2	54
151	Development and validation of a novel survival model for head and neck squamous cell carcinoma based on autophagy-related genes. Genomics, 2021, 113, 1166-1175.	1.3	26
152	Antiâ€pyroptotic function of TGFâ€Î² is suppressed by a synthetic dsRNA analogue in triple negative breast cancer cells. Molecular Oncology, 2021, 15, 1289-1307.	2.1	14
153	Targeting transforming growth factor-β signaling for enhanced cancer chemotherapy. Theranostics, 2021, 11, 1345-1363.	4.6	33
154	Association of Foxp3 rs3761548 polymorphism with cytokines concentration in gastric adenocarcinoma patients. Cytokine, 2021, 138, 155351.	1.4	10
155	Corneal stromal wound healing: Major regulators and therapeutic targets. Ocular Surface, 2021, 19, 290-306.	2.2	68
156	Targeting Smad-Mediated TGFß Pathway in Coronary Artery Bypass Graft. Journal of Cardiovascular Pharmacology and Therapeutics, 2021, 26, 119-130.	1.0	5
157	E3 Ubiquitin Ligases: Key Regulators of TGFβ Signaling in Cancer Progression. International Journal of Molecular Sciences, 2021, 22, 476.	1.8	18
158	Combination of molecularly targeted therapies and immune checkpoint inhibitors in the new era of unresectable hepatocellular carcinoma treatment. Therapeutic Advances in Medical Oncology, 2021, 13, 175883592110180.	1.4	10
159	TGF-β in Cancer: Metabolic Driver of the Tolerogenic Crosstalk in the Tumor Microenvironment. Cancers, 2021, 13, 401.	1.7	34
160	Targeting TGFÎ ² signal transduction for cancer therapy. Signal Transduction and Targeted Therapy, 2021, 6, 8.	7.1	186
161	TGFBR2 mutation predicts resistance to immune checkpoint inhibitors in patients with non-small cell lung cancer. Therapeutic Advances in Medical Oncology, 2021, 13, 175883592110384.	1.4	15
162	Scutellarin-induced A549 cell apoptosis depends on activation of the transforming growth factor-β1/smad2/ROS/caspase-3 pathway. Open Life Sciences, 2021, 16, 961-968.	0.6	8
164	The construction, expression, and enhanced anti-tumor activity of YM101: a bispecific antibody simultaneously targeting TGF-β and PD-L1. Journal of Hematology and Oncology, 2021, 14, 27.	6.9	118
165	Integrin β5 enhances the malignancy of human colorectal cancer by increasing the TGF-β signaling. Anti-Cancer Drugs, 2021, 32, 717-726.	0.7	9
166	TGF-β1-mediated transition of resident fibroblasts to cancer-associated fibroblasts promotes cancer metastasis in gastrointestinal stromal tumor. Oncogenesis, 2021, 10, 13.	2.1	53

#	Article	IF	CITATIONS
167	TGFβ1 neutralization displays therapeutic efficacy through both an immunomodulatory and a non-immune tumor-intrinsic mechanism. , 2021, 9, e001798.		13
168	Actin Cytoskeleton and Regulation of TGF \hat{I}^2 Signaling: Exploring Their Links. Biomolecules, 2021, 11, 336.	1.8	17
169	TGFβ signalling acts as a molecular brake of myoblast fusion. Nature Communications, 2021, 12, 749.	5.8	31
170	PTPL1 suppresses lung cancer cell migration via inhibiting TGF.β1-induced activation of p38 MAPK and Smad 2/3 pathways and EMT. Acta Pharmacologica Sinica, 2021, 42, 1280-1287.	2.8	11
171	The TGF-β superfamily cytokine Activin-A is induced during autoimmune neuroinflammation and drives pathogenic Th17 cell differentiation. Immunity, 2021, 54, 308-323.e6.	6.6	46
172	Condensing and constraining WNT by TGF-β. Nature Cell Biology, 2021, 23, 213-214.	4.6	3
173	Whole-organ analysis of TGF-Î ² -mediated remodelling of the tumour microenvironment by tissue clearing. Communications Biology, 2021, 4, 294.	2.0	14
174	Prominent Role of Histone Modifications in the Regulation of Tumor Metastasis. International Journal of Molecular Sciences, 2021, 22, 2778.	1.8	19
176	<scp>BMP/TGFâ€Ĵ²</scp> signaling as a modulator of neurodegeneration in <scp>ALS</scp> . Developmental Dynamics, 2022, 251, 10-25.	0.8	5
177	Natural killer cell therapy for hematologic malignancies: successes, challenges, and the future. Stem Cell Research and Therapy, 2021, 12, 211.	2.4	33
178	ATAD2 interacts with C/EBPβ to promote esophageal squamous cell carcinoma metastasis via TGF-β1/Smad3 signaling. Journal of Experimental and Clinical Cancer Research, 2021, 40, 109.	3.5	19
179	Targeting UCHL1 Induces Cell Cycle Arrest in High-Risk Multiple Myeloma with t(4;14). Pathology and Oncology Research, 2021, 27, 606567.	0.9	0
180	The role of P53 up-regulated modulator of apoptosis (PUMA) in ovarian development, cardiovascular and neurodegenerative diseases. Apoptosis: an International Journal on Programmed Cell Death, 2021, 26, 235-247.	2.2	42
181	Ubiquitinâ€dependent regulation of transcription in development and disease. EMBO Reports, 2021, 22, e51078.	2.0	16
182	TGFβ2 and TGFβ3 mediate appropriate context-dependent phenotype of rat valvular interstitial cells. IScience, 2021, 24, 102133.	1.9	4
184	Mechanosensitive Regulation of Fibrosis. Cells, 2021, 10, 994.	1.8	23
185	Rat Milk and Plasma Immunological Profile throughout Lactation. Nutrients, 2021, 13, 1257.	1.7	9
186	Metastasis-Initiating Cells and Ecosystems. Cancer Discovery, 2021, 11, 971-994.	7.7	134

#	Article	IF	CITATIONS
187	ZNF37A promotes tumor metastasis through transcriptional control of THSD4/TGF-Î ² axis in colorectal cancer. Oncogene, 2021, 40, 3394-3407.	2.6	15
188	Chimeric antigen receptor-engineered natural killer cells: a promising cancer immunotherapy. Expert Review of Clinical Immunology, 2021, 17, 643-659.	1.3	5
189	Functional similarity between TGF-beta type 2 and type 1 receptors in the female reproductive tract. Scientific Reports, 2021, 11, 9294.	1.6	8
190	Squamous cell carcinoma subverts adjacent histologically normal epithelium to promote lateral invasion. Journal of Experimental Medicine, 2021, 218, .	4.2	12
191	High androgen level causes recurrent miscarriage and impairs endometrial receptivity. Tropical Journal of Pharmaceutical Research, 2021, 18, 1547-1552.	0.2	2
192	Interplay between transforming growth factor-Î ² and Nur77 in dual regulations of inhibitor of differentiation 1 for colonic tumorigenesis. Nature Communications, 2021, 12, 2809.	5.8	22
193	Loss of CD73 shifts transforming growth factor-β1 (TGF-β1) from tumor suppressor to promoter in endometrial cancer. Cancer Letters, 2021, 505, 75-86.	3.2	13
194	Targeting Jab1 using hesperidin (dietary phytocompound) for inducing apoptosis in HeLa cervical cancer cells. Journal of Food Biochemistry, 2021, 45, e13800.	1.2	17
195	The Role of Bone Morphogenetic Protein 4 in Ovarian Function and Diseases. Reproductive Sciences, 2021, 28, 3316-3330.	1.1	7
196	The noncoding MIR100HG RNA enhances the autocrine function of transforming growth factor Î ² signaling. Oncogene, 2021, 40, 3748-3765.	2.6	18
197	Notch-ing up knowledge on molecular mechanisms of skin fibrosis: focus on the multifaceted Notch signalling pathway. Journal of Biomedical Science, 2021, 28, 36.	2.6	33
198	Latent TGF-Î ² Activation Is a Hallmark of the Tenascin Family. Frontiers in Immunology, 2021, 12, 613438.	2.2	20
199	LTBP4 in Health and Disease. Genes, 2021, 12, 795.	1.0	15
200	TSHZ2 is an EGF-regulated tumor suppressor that binds to the cytokinesis regulator PRC1 and inhibits metastasis. Science Signaling, 2021, 14, .	1.6	7
201	Bi-allelic variants in IPO8 cause a connective tissue disorder associated with cardiovascular defects, skeletal abnormalities, and immune dysregulation. American Journal of Human Genetics, 2021, 108, 1126-1137.	2.6	14
202	The Role of BMP Signaling in Endothelial Heterogeneity. Frontiers in Cell and Developmental Biology, 2021, 9, 673396.	1.8	3
203	The pancreatic cancer genome revisited. Nature Reviews Gastroenterology and Hepatology, 2021, 18, 469-481.	8.2	100
204	Tumor microenvironment in head and neck squamous cell carcinoma: Functions and regulatory mechanisms. Cancer Letters, 2021, 507, 55-69.	3.2	53

#	Article	IF	CITATIONS
205	Insight into the role of multiple signaling pathways in regulating cancer stem cells of gynecologic cancers. Seminars in Cancer Biology, 2022, 85, 219-233.	4.3	6
206	Bifunctional TGF-β trap/IL-15 protein complex elicits potent NK cell and CD8+ TÂcell immunity against solid tumors. Molecular Therapy, 2021, 29, 2949-2962.	3.7	20
207	TRIM37 orchestrates renal cell carcinoma progression via histone H2A ubiquitination-dependent manner. Journal of Experimental and Clinical Cancer Research, 2021, 40, 195.	3.5	16
208	The TGF-Î ² Pathway: A Pharmacological Target in Hepatocellular Carcinoma?. Cancers, 2021, 13, 3248.	1.7	37
209	Roles for growth factors and mutations in metastatic dissemination. Biochemical Society Transactions, 2021, 49, 1409-1423.	1.6	6
210	Mechanisms and Molecular Targets of Artemisinin in Cancer Treatment. Cancer Investigation, 2021, 39, 675-684.	0.6	20
211	The parasite cytokine mimic <i>Hp</i> â€TGM potently replicates the regulatory effects of TGFâ€Î² on murine CD4 ⁺ T cells. Immunology and Cell Biology, 2021, 99, 848-864.	1.0	17
212	Fibroblast growth factorÂand kidney disease: Updates for emerging novel therapeutics. Journal of Cellular Physiology, 2021, 236, 7909.	2.0	1
213	Harnessing Carcinoma Cell Plasticity Mediated by TGF-Î ² Signaling. Cancers, 2021, 13, 3397.	1.7	9
214	A cytokine in turmoil: Transforming growth factor beta in cancer. Biomedicine and Pharmacotherapy, 2021, 139, 111657.	2.5	7
215	TGF-β Signaling: From Tissue Fibrosis to Tumor Microenvironment. International Journal of Molecular Sciences, 2021, 22, 7575.	1.8	87
216	Origins, potency, and heterogeneity of skeletal muscle fibro-adipogenic progenitors—time for new definitions. Skeletal Muscle, 2021, 11, 16.	1.9	60
217	Effects of bone morphogenetic proteins on epithelial repair. Experimental Biology and Medicine, 2021, 246, 2269-2277.	1.1	0
218	Endogenous and Therapeutic Estrogens: Maestro Conductors of the Microenvironment of ER+ Breast Cancers. Cancers, 2021, 13, 3725.	1.7	7
219	AMBRA1 Promotes TGFÎ ² Signaling via Nonproteolytic Polyubiquitylation of Smad4. Cancer Research, 2021, 81, 5007-5020.	0.4	8
220	The Multifaceted Role of TGF- \hat{l}^2 in Gastrointestinal Tumors. Cancers, 2021, 13, 3960.	1.7	18
222	DNA Methylation of TGFβ Target Genes: Epigenetic Control of TGFβ Functional Duality in Liver Cancer. Cells, 2021, 10, 2207.	1.8	7
223	TGF-β Signaling in Liver, Pancreas, and Gastrointestinal Diseases and Cancer. Gastroenterology, 2021, 161, 434-452.e15.	0.6	81

-		_	
C 1^{-}		Drnc	NDT.
	IAL	REPU	ואכ

#	Article	IF	CITATIONS
224	Regulatory mechanism of oral mucosal rete peg formation. Journal of Molecular Histology, 2021, 52, 859-868.	1.0	4
225	KAT6A Acetylation of SMAD3 Regulates Myeloidâ€Derived Suppressor Cell Recruitment, Metastasis, and Immunotherapy in Tripleâ€Negative Breast Cancer. Advanced Science, 2021, 8, e2100014.	5.6	30
226	Canonical TGFβ Signaling and Its Contribution to Endometrial Cancer Development and Progression—Underestimated Target of Anticancer Strategies. Journal of Clinical Medicine, 2021, 10, 3900.	1.0	12
227	Smad2 inhibition of MET transcription potentiates human vascular smooth muscle cell apoptosis. Atherosclerosis Plus, 2021, 44, 31-42.	0.3	1
229	Human cytomegalovirus blocks canonical TGFβ signaling during lytic infection to limit induction of type I interferons. PLoS Pathogens, 2021, 17, e1009380.	2.1	2
230	Classification of Estrogen Receptor-Positive Breast Cancer Based on Immunogenomic Profiling and Validation at Single-Cell Resolution. Frontiers in Cell and Developmental Biology, 2021, 9, 722841.	1.8	0
231	p62/Sequestosome 1 regulates transforming growth factor beta signaling and epithelial to mesenchymal transition in A549 cells. Cellular Signalling, 2021, 85, 110040.	1.7	1
232	miR-2337 induces TGF-β1 production in granulosa cells by acting as an endogenous small activating RNA. Cell Death Discovery, 2021, 7, 253.	2.0	8
233	Metabolic Reprogramming of Mammary Epithelial Cells during TGF-β-Induced Epithelial-to-Mesenchymal Transition. Metabolites, 2021, 11, 626.	1.3	7
234	CD137 Costimulation Counteracts TGF \hat{I}^2 Inhibition of NK-cell Antitumor Function. Cancer Immunology Research, 2021, 9, 1476-1490.	1.6	15
235	Negative regulation of TGFβ-induced apoptosis by RAC1B enhances intestinal tumourigenesis. Cell Death and Disease, 2021, 12, 873.	2.7	6
236	Disulfiram Sensitizes a Therapeutic-Resistant Glioblastoma to the TGF-Î ² Receptor Inhibitor. International Journal of Molecular Sciences, 2021, 22, 10496.	1.8	12
237	Role of TGF-β signaling in the mechanisms of tamoxifen resistance. Cytokine and Growth Factor Reviews, 2021, 62, 62-69.	3.2	8
238	The transcription factor BACH1 at the crossroads of cancer biology: From epithelial–mesenchymal transition to ferroptosis. Journal of Biological Chemistry, 2021, 297, 101032.	1.6	44
239	Screening and Bioinformatics Analysis of Competitive Endogenous RNA Regulatory Network ––Related to Circular RNA in Breast Cancer. BioMed Research International, 2021, 2021, 1-13.	0.9	3
240	SMAD2 regulates testicular development and testosterone synthesis in Hu sheep. Theriogenology, 2021, 174, 139-148.	0.9	9
241	Targeting immunosuppression by TGF-β1 for cancer immunotherapy. Biochemical Pharmacology, 2021, 192, 114697.	2.0	38
242	Oral delivery of a functional algal-expressed TGF-β mimic halts colitis in a murine DSS model. Journal of Biotechnology, 2021, 340, 1-12.	1.9	15

#	Article	IF	CITATIONS
243	Transforming Growth Factor- \hat{l}^2 (TGF- \hat{l}^2) Family of Molecule. , 2022, , 308-313.		0
244	Transforming growth factor- \hat{l}^2 and its signaling pathway in skeletal complications of malignancy. , 2022, , 253-273.		Ο
245	Identification of Potential Risk Genes and the Immune Landscape of Idiopathic Pulmonary Arterial Hypertension via Microarray Gene Expression Dataset Reanalysis. Genes, 2021, 12, 125.	1.0	7
246	Autocrine TGF-β in Cancer: Review of the Literature and Caveats in Experimental Analysis. International Journal of Molecular Sciences, 2021, 22, 977.	1.8	31
247	Targeting metastatic cancer. Nature Medicine, 2021, 27, 34-44.	15.2	447
248	The multi-faceted roles of TGF-Î ² in regulation of immunity to infection. Advances in Immunology, 2021, 150, 1-42.	1.1	8
249	Conformational landscape of multidomain SMAD proteins. Computational and Structural Biotechnology Journal, 2021, 19, 5210-5224.	1.9	9
250	Ras inhibits TGFâ€Î²â€induced KLF5 acetylation and transcriptional complex assembly via regulating SMAD2/3 phosphorylation in epithelial cells. Journal of Cellular Biochemistry, 2020, 121, 2197-2208.	1.2	13
251	Understanding Obesity as a Risk Factor for Uterine Tumors Using Drosophila. Advances in Experimental Medicine and Biology, 2019, 1167, 129-155.	0.8	5
252	Gastric Tumor Microenvironment. Advances in Experimental Medicine and Biology, 2020, 1226, 23-35.	0.8	51
253	KAP1 Is a Chromatin Reader that Couples Steps of RNA Polymerase II Transcription to Sustain Oncogenic Programs. Molecular Cell, 2020, 78, 1133-1151.e14.	4.5	26
254	The role of DUBs in the post-translational control of cell migration. Essays in Biochemistry, 2019, 63, 579-594.	2.1	8
255	EHF promotes colorectal carcinoma progression by activating TGFâ€Î²1 transcription and canonical TGFâ€Î² signaling. Cancer Science, 2020, 111, 2310-2324.	1.7	16
256	Long nonâ€coding RNAs and TGFâ€Î² signaling in cancer. Cancer Science, 2020, 111, 2672-2681.	1.7	38
257	TGF-β/SMAD signaling regulation of mesenchymal stem cells in adipocyte commitment. Stem Cell Research and Therapy, 2020, 11, 41.	2.4	95
258	TGF-β-driven downregulation of the Wnt/β-Catenin transcription factor TCF7L2/TCF4 in PDGFRα+ fibroblasts. Journal of Cell Science, 2020, 133, .	1.2	26
259	Recent advances in understanding intestinal stem cell regulation. F1000Research, 2019, 8, 72.	0.8	7
260	Oncogenic RUNX3: A Link between p53 Deficiency and MYC Dysregulation. Molecules and Cells, 2020, 43, 176-181.	1.0	23

#	Article	IF	CITATIONS
261	Recent Advances in the Development of TGF-Î ² Signaling Inhibitors for Anticancer Therapy. Journal of Cancer Prevention, 2020, 25, 213-222.	0.8	16
262	Novel approaches to combat chemoresistance against glioblastomas. , 2020, 3, 686-698.		5
263	ADAP1 promotes invasive squamous cell carcinoma progression and predicts patient survival. Life Science Alliance, 2019, 2, e201900582.	1.3	5
264	Role of TGF-Beta and Smad7 in Gut Inflammation, Fibrosis and Cancer. Biomolecules, 2021, 11, 17.	1.8	47
265	Compensatory growth renders Tcf7l1a dispensable for eye formation despite its requirement in eye field specification. ELife, 2019, 8, .	2.8	21
266	Flura-seq identifies organ-specific metabolic adaptations during early metastatic colonization. ELife, 2019, 8, .	2.8	46
267	Regulation of stem/progenitor cell maintenance by BMP5 in prostate homeostasis and cancer initiation. ELife, 2020, 9, .	2.8	19
268	A narrative review of the relationship between TGF-β signaling and gynecological malignant tumor. Annals of Translational Medicine, 2021, 9, 1601-1601.	0.7	7
269	Phosphoinositide-binding activity of Smad2 is essential for its function in TGF-β signaling. Journal of Biological Chemistry, 2021, 297, 101303.	1.6	5
271	Long noncoding RNAs: fine-tuners hidden in the cancer signaling network. Cell Death Discovery, 2021, 7, 283.	2.0	17
272	Exosome-transmitted circCOG2 promotes colorectal cancer progression via miR-1305/TGF-β2/SMAD3 pathway. Cell Death Discovery, 2021, 7, 281.	2.0	19
273	Epigenetic Signaling of Cancer Stem Cells During Inflammation. Frontiers in Cell and Developmental Biology, 2021, 9, 772211.	1.8	12
274	Taking the road less traveled – the therapeutic potential of CBP/β-catenin antagonists. Expert Opinion on Therapeutic Targets, 2021, 25, 701-719.	1.5	6
275	Next frontier in tumor immunotherapy: macrophage-mediated immune evasion. Biomarker Research, 2021, 9, 72.	2.8	61
276	Overcoming TGFÎ ² -mediated immune evasion in cancer. Nature Reviews Cancer, 2022, 22, 25-44.	12.8	122
280	BIOMARKERS, NEOANGIOGENESIS AND GROWTH FACTORS IN PANCREATIC CANCER. Issledovani $ ilde{A}$ ¢ I Praktika V Medicine, 2019, 6, 51-64.	0.1	1
283	Expression and clinical significance of paired- related homeobox 1 and Smad2 in gastric cancer. European Journal of Cancer Prevention, 2021, 30, 154-160.	0.6	0
285	VGLL3 activates inflammatory responses by inducing interleukinâ€lα secretion. FASEB Journal, 2021, 35, e21996.	0.2	11

#	Article	IF	CITATIONS
288	Lys63-Linked Polyubiquitination of Transforming Growth Factor β Type I Receptor (TβRI) Specifies Oncogenic Signaling. , 0, , .		0
290	Smad4 controls signaling robustness and morphogenesis by differentially contributing to the Nodal and BMP pathways. Nature Communications, 2021, 12, 6374.	5.8	18
291	The Role of TGF-Î ² in Bone Metastases. Biomolecules, 2021, 11, 1643.	1.8	35
293	Cilostazol eliminates radiation-resistant glioblastoma by re-evoking big conductance calcium-activated potassium channel activity. American Journal of Cancer Research, 2021, 11, 1148-1169.	1.4	1
294	TGF-β signaling and the interaction between platelets and T-cells in tumor microenvironment: Foes or friends?. Cytokine, 2022, 150, 155772.	1.4	6
295	Collagen XII Regulates Corneal Stromal Structure by Modulating Transforming Growth Factor-Î ² Activity. American Journal of Pathology, 2022, 192, 308-319.	1.9	10
296	Pluripotency transcription factors at the focus: the phase separation paradigm in stem cells. Biochemical Society Transactions, 2021, 49, 2871-2878.	1.6	4
297	Advances in Immunotherapy and the TGF-Î ² Resistance Pathway in Metastatic Bladder Cancer. Cancers, 2021, 13, 5724.	1.7	13
298	Cancer-associated fibroblasts in colorectal cancer. Clinical and Translational Oncology, 2022, 24, 757-769.	1.2	29
299	Identification of a TGF-β/SMAD/Inc-UTGF positive feedback loop and its role in hepatoma metastasis. Signal Transduction and Targeted Therapy, 2021, 6, 395.	7.1	18
300	Methods of Modification of Mesenchymal Stem Cells and Conditions of Their Culturing for Hyaline Cartilage Tissue Engineering. Biomedicines, 2021, 9, 1666.	1.4	5
301	A mechanistic basis for the malignant progression of salivary gland tumors. IScience, 2021, 24, 103508.	1.9	1
302	Integrated Transcriptome and Multiple Activated Pathways in Endometrial Cancer. Frontiers in Genetics, 2021, 12, 680331.	1.1	2
303	Endothelial-specific depletion of TGF-l ² signaling affects lymphatic function. Inflammation and Regeneration, 2021, 41, 35.	1.5	8
304	pVHL-mediated SMAD3 degradation suppresses TGF- \hat{l}^2 signaling. Journal of Cell Biology, 2022, 221, .	2.3	11
305	TGFβ2 Induces the Soluble Isoform of CTLA-4 – Implications for CTLA-4 Based Checkpoint Inhibitor Antibodies in Malignant Melanoma. Frontiers in Immunology, 2021, 12, 763877.	2.2	5
306	TGF-β1/SMADs signaling involved in alleviating inflammation induced by nanoparticulate titanium dioxide in BV2 cells. Toxicology in Vitro, 2022, 80, 105303.	1.1	5
308	Multiple roles of mothers against decapentaplegic homolog 4 in tumorigenesis, stem cells, drug resistance, and cancer therapy. World Journal of Stem Cells, 2022, 14, 41-53.	1.3	5

#	Article	IF	CITATIONS
309	Uncoupling the BMP receptor antagonist function from the WNT agonist function of R-spondin 2 using the inhibitory peptide dendrimer RWd. Journal of Biological Chemistry, 2022, 298, 101586.	1.6	3
310	SMAD proteins: Mediators of diverse outcomes during infection. European Journal of Cell Biology, 2022, 101, 151204.	1.6	7
311	Targeted Deletion of Kindlin-2 in Mouse Mammary Glands Inhibits Tumor Growth, Invasion, and Metastasis Downstream of a TGF-β/EGF Oncogenic Signaling Pathway. Cancers, 2022, 14, 639.	1.7	4
312	Pathophysiology and Therapeutics of Thoracic Aortic Aneurysm in Marfan Syndrome. Biomolecules, 2022, 12, 128.	1.8	14
313	Histone Acetylation Regulator-Mediated Acetylation Patterns Define Tumor Malignant Pathways and Tumor Microenvironment in Hepatocellular Carcinoma. Frontiers in Immunology, 2022, 13, 761046.	2.2	19
315	Role of Cardiac Fibroblasts in Cardiac Injury and Repair. Current Cardiology Reports, 2022, 24, 295-304.	1.3	10
316	Roles of Podoplanin in Malignant Progression of Tumor. Cells, 2022, 11, 575.	1.8	29
317	TGF-β1 Disrupts redox balance in PCCL3 thyroid cell and is sexually dimorphic expressed in rat thyroid gland. Molecular and Cellular Endocrinology, 2022, 546, 111593.	1.6	0
318	HDAC2 Facilitates Pancreatic Cancer Metastasis. Cancer Research, 2022, 82, 695-707.	0.4	19
319	Strategies to Modulate the Redifferentiation of Chondrocytes. Frontiers in Bioengineering and Biotechnology, 2021, 9, 764193.	2.0	12
320	Mechanisms and clinical significance of TGF-β in hepatocellular cancer progression. Advances in Cancer Research, 2022, , 227-248.	1.9	3
321	Signaling Pathways Tuning Innate Lymphoid Cell Response to Hepatocellular Carcinoma. Frontiers in Immunology, 2022, 13, 846923.	2.2	5
322	The Bright and the Dark Side of TGF-β Signaling in Hepatocellular Carcinoma: Mechanisms, Dysregulation, and Therapeutic Implications. Cancers, 2022, 14, 940.	1.7	16
323	Co-transcriptional splicing efficiency is a gene-specific feature that can be regulated by TGFβ. Communications Biology, 2022, 5, 277.	2.0	4
324	Oncogenic Pathways in Neurodegenerative Diseases. International Journal of Molecular Sciences, 2022, 23, 3223.	1.8	9
325	Comprehensive Characterization of Transforming Growth Factor Beta Receptor 1 in Stomach Adenocarcinoma Identifies a Prognostic Signature for Predicting Clinical Outcomes and Immune Infiltrates. International Journal of General Medicine, 2022, Volume 15, 3375-3391.	0.8	3
326	GC-MS Profile of Hua-Feng-Dan and RNA-Seq Analysis of Induced Adaptive Responses in the Liver. Frontiers in Pharmacology, 2022, 13, 730318.	1.6	2
327	Natural plant extracts mediated expression regulation of TGF-Î ² receptors and SMAD genes in human cancer cell lines. Molecular Biology Reports, 2022, , 1.	1.0	0

		CITATION R	EPORT	
#	Article		IF	Citations
328	Tumor in the Crossfire: Inhibiting TGF-Î ² to Enhance Cancer Immunotherapy. BioDrugs,	2022, 36, 153-180.	2.2	19
329	The Interplay Between TGF-Î ² Signaling and Cell Metabolism. Frontiers in Cell and Devel Biology, 2022, 10, 846723.	opmental	1.8	24
330	Intraâ€epithelial nonâ€canonical Activin A signaling safeguards prostate progenitor qui Reports, 2022, 23, e54049.	escence. EMBO	2.0	8
331	Traditional Chinese Medicines as Effective Reversals of Epithelial-Mesenchymal Transition Induced-Metastasis of Colorectal Cancer: Molecular Targets and Mechanisms. Frontiers Pharmacology, 2022, 13, 842295.	bn in	1.6	15
332	Rhoifolin from Plumula Nelumbinis exhibits anti-cancer effects in pancreatic cancer via <i>i</i> signaling pathways. Scientific Reports, 2022, 12, 5654.	AKT/JNK	1.6	13
333	Vestigialâ€like family member 3 stimulates cell motility by inducing highâ€mobility gro expression in cancer cells. Journal of Cellular and Molecular Medicine, 2022, 26, 2686-2	up ATâ€hook 2 697.	1.6	5
334	Epithelial–Mesenchymal Plasticity in Tumor Immune Evasion. Cancer Research, 2022,	, 82, 2329-2343.	0.4	23
335	Exosomal circGSE1 promotes immune escape of hepatocellular carcinoma by inducing regulatory T cells. Cancer Science, 2022, 113, 1968-1983.	the expansion of	1.7	38
336	BMP7-based peptide agonists of BMPR1A protect the left ventricle against pathologica induced by pressure overload. Biomedicine and Pharmacotherapy, 2022, 149, 112910.	l remodeling	2.5	8
337	M2-Type Macrophages Induce Tregs Generation by Activating the TGF-Î ² /Smad Signallir Promote Colorectal Cancer Development. OncoTargets and Therapy, 2021, Volume 14,	ig Pathway to 5391-5402.	1.0	15
338	Cross-talk of pyroptosis and tumor immune landscape in lung adenocarcinoma. Transla Cancer Research, 2021, 10, 4423-4444.	tional Lung	1.3	6
339	Emerging Role of EGFR Mutations in Creating an Immune Suppressive Tumour Microen Biomedicines, 2022, 10, 52.	vironment.	1.4	4
340	EMT-Related Markers in Serum Exosomes are Potential Diagnostic Biomarkers for Invas Adenomas. Neuropsychiatric Disease and Treatment, 2021, Volume 17, 3769-3780.	ive Pituitary	1.0	6
341	KDM6 Demethylases and Their Roles in Human Cancers. Frontiers in Oncology, 2021, 1	1, 779918.	1.3	11
342	Engineering Cancer Antigen-Specific T Cells to Overcome the Immunosuppressive Effec Journal of Immunology, 2022, 208, 169-180.	ts of TGF-β.	0.4	10
343	SMAD4 mutations do not preclude epithelial–mesenchymal transition in colorectal ca Oncogene, 2022, 41, 824-837.	ancer.	2.6	12
344	NF-кB c-Rel modulates pre-fibrotic changes in human fibroblasts. Archives of Dermatol 2022, 314, 943-951.	ogical Research,	1.1	3
345	Cancer-Homing CAR-T Cells and Endogenous Immune Population Dynamics. Internation Molecular Sciences, 2022, 23, 405.	hal Journal of	1.8	11

# 346	ARTICLE CircSEC24A upregulates TGFBR2 expression to accelerate pancreatic cancer proliferation and migration via sponging to miR-606. Cancer Cell International, 2021, 21, 671.	IF 1.8	CITATIONS
347	Extracellular Vesicles and Transforming Growth Factor Î ² Signaling in Cancer. Frontiers in Cell and Developmental Biology, 2022, 10, 849938.	1.8	14
348	Identification and validation of EMT-immune-related prognostic biomarkers CDKN2A, CMTM8 and ILK in colon cancer. BMC Gastroenterology, 2022, 22, 190.	0.8	14
349	Ligand-receptor promiscuity enables cellular addressing. Cell Systems, 2022, 13, 408-425.e12.	2.9	34
350	The context-dependent, combinatorial logic of BMP signaling. Cell Systems, 2022, 13, 388-407.e10.	2.9	38
358	CRISPR-Based Screening in Three-Dimensional Organoid Cultures to Identify TGF-β Pathway Regulators. Methods in Molecular Biology, 2022, 2488, 99-111.	0.4	2
359	The histone demethylase PHF8 regulates TGFÎ ² signaling and promotes melanoma metastasis. Science Advances, 2022, 8, eabi7127.	4.7	17
360	Targeting TGF-Î ² signal transduction for fibrosis and cancer therapy. Molecular Cancer, 2022, 21, 104.	7.9	222
362	Effects of TGF-β and IL-6 on the Development and Metastasis of Gastric Cancer. Medical Diagnosis, 2022, 12, 65-71.	0.0	0
363	TGFβ2 is a Prognostic Biomarker for Gastric Cancer and is Associated With Methylation and Immunotherapy Responses. Frontiers in Genetics, 2022, 13, .	1.1	5
364	Combined Transcriptomic and Protein Array Cytokine Profiling of Human Stem Cells from Dental Apical Papilla Modulated by Oral Bacteria. International Journal of Molecular Sciences, 2022, 23, 5098.	1.8	3
365	Targeting the nasty nestin to shoot lung fibrosis. European Respiratory Journal, 2022, 59, 2103146.	3.1	1
366	The short-chain fatty acid acetate modulates epithelial-to-mesenchymal transition. Molecular Biology of the Cell, 2022, 33, mbcE22020066.	0.9	6
367	Targeted Drug/Gene/Photodynamic Therapy via a Stimuliâ€Responsive Dendriticâ€Polymerâ€Based Nanococktail for Treatment of EGFRâ€TKIâ€Resistant Nonâ€Smallâ€Cell Lung Cancer. Advanced Materials, 2022, 34, e2201516.	11.1	49
368	PNMA5 accelerated cellular proliferation, invasion and migration in colorectal cancer American Journal of Translational Research (discontinued), 2022, 14, 2231-2243.	0.0	0
369	TGF-β as a Key Modulator of Astrocyte Reactivity: Disease Relevance and Therapeutic Implications. Biomedicines, 2022, 10, 1206.	1.4	25
370	TGFβ-Associated Signature Predicts Prognosis and Tumor Microenvironment Infiltration Characterization in Gastric Carcinoma. Frontiers in Genetics, 2022, 13, .	1.1	1
371	Autophagy regulates transforming growth factor β signaling and receptor trafficking. Biochimica Et Biophysica Acta - Molecular Cell Research, 2022, 1869, 119284.	1.9	6

#	Article	IF	CITATIONS
372	The Love-Hate Relationship Between TGF-β Signaling and the Immune System During Development and Tumorigenesis. Frontiers in Immunology, 0, 13, .	2.2	15
373	Expression Profile of mRNAs and miRNAs Related to the Oxidative-Stress Phenomenon in the Ishikawa Cell Line Treated Either Cisplatin or Salinomycin. Biomedicines, 2022, 10, 1190.	1.4	3
374	The Scientific Rationale for the Introduction of Renalase in the Concept of Cardiac Fibrosis. Frontiers in Cardiovascular Medicine, 2022, 9, .	1.1	4
375	Obesity induces adipose fibrosis and collagen cross-linking through suppressing AMPK and enhancing lysyl oxidase expression. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2022, 1868, 166454.	1.8	4
376	Epigenetic Regulation of Inflammatory Signaling and Inflammation-Induced Cancer. Frontiers in Cell and Developmental Biology, 0, 10, .	1.8	15
377	Sirtuins and Hypoxia in EMT Control. Pharmaceuticals, 2022, 15, 737.	1.7	2
378	SMAD4 Controls Cancer Cell Metabolism by Regulating Methylmalonic Aciduria Cobalamin Deficiency (cbl) B Type. Molecules and Cells, 2022, 45, 413-424.	1.0	2
379	Genome-wide transcriptome profiling of human trabecular meshwork cells treated with TGF-β2. Scientific Reports, 2022, 12, .	1.6	8
380	SHR-1701, a Bifunctional Fusion Protein Targeting PD-L1 and TGFβ, for Recurrent or Metastatic Cervical Cancer: A Clinical Expansion Cohort of a Phase I Study. Clinical Cancer Research, 2022, 28, 5297-5305.	3.2	20
381	Derivation and Characterization of Endothelial Cells from Porcine Induced Pluripotent Stem Cells. International Journal of Molecular Sciences, 2022, 23, 7029.	1.8	3
382	HMCES modulates the transcriptional regulation of nodal/activin and BMP signaling in mESCs. Cell Reports, 2022, 40, 111038.	2.9	1
383	Differentially Expressed Inflammation-Regulating MicroRNAs in Oligoarticular Juvenile Idiopathic Arthritis. Journal of Rheumatology, 2023, 50, 227-235.	1.0	4
384	Endogenous Neural Stem Cell Mediated Oligodendrogenesis in the Adult Mammalian Brain. Cells, 2022, 11, 2101.	1.8	5
385	A Nodal enhanced micropeptide NEMEP regulates glucose uptake during mesendoderm differentiation of embryonic stem cells. Nature Communications, 2022, 13, .	5.8	7
386	Long noncoding RNA Smyca coactivates TGF- \hat{l}^2 /Smad and Myc pathways to drive tumor progression. Journal of Hematology and Oncology, 2022, 15, .	6.9	9
387	Cytokine storm and targeted therapy in hemophagocytic lymphohistiocytosis. Immunologic Research, 2022, 70, 566-577.	1.3	9
388	The ubiquitin-ligase TRAF6 and TGFÎ ² type I receptor form a complex with Aurora kinase B contributing to mitotic progression and cytokinesis in cancer cells. EBioMedicine, 2022, 82, 104155.	2.7	5
389	Differential effects of Smad2 and Smad3 in regulation of macrophage phenotype and function in the infarcted myocardium. Journal of Molecular and Cellular Cardiology, 2022, 171, 1-15.	0.9	7

#	Article	IF	Citations
390	Prolonged proteasome inhibition antagonizes TGFÎ ² 1-dependent signalling by promoting the lysosomal-targeting of TGFÎ ² receptors. Cellular Signalling, 2022, 98, 110414.	1.7	3
391	SMAD4, activated by the TCR-triggered MEK/ERK signaling pathway, critically regulates CD8 ⁺ T cell cytotoxic function. Science Advances, 2022, 8, .	4.7	4
392	Reciprocal SOX2 regulation by SMAD1-SMAD3 is critical for anoikis resistance and metastasis in cancer. Cell Reports, 2022, 40, 111066.	2.9	16
393	Breast cancer cell-derived extracellular vesicles promote CD8+ T cell exhaustion via TGF-β type II receptor signaling. Nature Communications, 2022, 13, .	5.8	43
394	TGFÎ ² signaling activation correlates with immune-inflamed tumor microenvironment across human cancers and predicts response to immunotherapy. Cell Cycle, 0, , 1-16.	1.3	2
395	Specificity of TGF-Î ² 1 signal designated by LRRC33 and integrin Î $\pm V$ Î ² 8. Nature Communications, 2022, 13, .	5.8	8
397	Biological effects and regulation of IGFBP5 in breast cancer. Frontiers in Endocrinology, 0, 13, .	1.5	6
398	DNA methylome and single-cell transcriptome analyses reveal CDA as a potential druggable target for ALK inhibitor–resistant lung cancer therapy. Experimental and Molecular Medicine, 2022, 54, 1236-1249.	3.2	8
399	Targeted therapeutics and novel signaling pathways in non-alcohol-associated fatty liver/steatohepatitis (NAFL/NASH). Signal Transduction and Targeted Therapy, 2022, 7, .	7.1	90
401	Dysregulated glucuronic acid metabolism exacerbates hepatocellular carcinoma progression and metastasis through the TGF \hat{I}^2 signalling pathway. Clinical and Translational Medicine, 2022, 12, .	1.7	6
402	ID1 marks the tumorigenesis of pancreatic ductal adenocarcinoma in mouse and human. Scientific Reports, 2022, 12, .	1.6	3
403	<scp>GDF11</scp> inhibits adipogenesis and improves mature adipocytes metabolic function via <scp>WNT</scp> /l2â€catenin and <scp>ALK5</scp> / <scp>SMAD2</scp> /3 pathways. Cell Proliferation, 2022, 55, .	2.4	8
404	Resistance to CDK4/6 inhibition: Mechanisms and strategies to overcome a therapeutic problem in the treatment of hormone receptor-positive metastatic breast cancer. Biochimica Et Biophysica Acta - Molecular Cell Research, 2022, 1869, 119346.	1.9	13
405	Wnt signaling promotes tooth germ development through YAP1-TGF-β signaling. Biochemical and Biophysical Research Communications, 2022, 630, 64-70.	1.0	7
406	Survival estimation in patients with stomach and esophageal carcinoma using miRNA expression profiles. Computational and Structural Biotechnology Journal, 2022, 20, 4490-4500.	1.9	5
407	TGF-β Family Signaling. , 2022, , .		0
408	LncRNA SEMA3B-AS1 inhibits breast cancer progression by targeting miR-3940/KLLN axis. Cell Death and Disease, 2022, 13, .	2.7	15
409	Prenatal lead (Pb) exposure is associated with differential placental DNA methylation and hydroxymethylation in a human population. Epigenetics, 2022, 17, 2404-2420.	1.3	3

#	Article	IF	CITATIONS
410	Targeting epigenetic alterations in cancer stem cells. Frontiers in Molecular Medicine, 0, 2, .	0.6	3
411	Exhaust the exhausters: Targeting regulatory T cells in the tumor microenvironment. Frontiers in Immunology, 0, 13, .	2.2	17
412	CAR-T cell therapy for hematological malignancies: Limitations and optimization strategies. Frontiers in Immunology, 0, 13, .	2.2	10
413	Downregulation of Elovl5 promotes breast cancer metastasis through a lipid-droplet accumulation-mediated induction of TGF-β receptors. Cell Death and Disease, 2022, 13, .	2.7	8
414	Editorial: TGF- \hat{l}^2 and BMP signaling in cancer. Frontiers in Cell and Developmental Biology, 0, 10, .	1.8	0
415	The TGF-β Receptor Gene Saxophone Influences Larval-Pupal-Adult Development in Tribolium castaneum. Molecules, 2022, 27, 6017.	1.7	1
416	TGF-Î ² in developmental and fibrogenic EMTs. Seminars in Cancer Biology, 2022, 86, 136-145.	4.3	58
417	Overcoming resistance to immune checkpoint inhibitors in hepatocellular carcinoma: Challenges and opportunities. Frontiers in Oncology, 0, 12, .	1.3	6
418	<i>LncRNA-Smad7</i> mediates cross-talk between Nodal/TGF-Î ² and BMP signaling to regulate cell fate determination of pluripotent and multipotent cells. Nucleic Acids Research, 2022, 50, 10526-10543.	6.5	2
419	Deciphering the role of transforming growth factor-beta 1 as a diagnostic-prognostic-therapeutic candidate against hepatocellular carcinoma. World Journal of Gastroenterology, 0, 28, 5250-5264.	1.4	8
420	Transforming growth factorâ€Î² receptor type 2 is required for heparinâ€binding protein–induced acute lung injury and vascular leakage for transforming growth factorâ€Î²/Smad/Rho signaling pathway activation. FASEB Journal, 2022, 36, .	0.2	2
421	Loss of endothelial EMCN drives tumor lung metastasis through the premetastatic niche. Journal of Translational Medicine, 2022, 20, .	1.8	5
422	Transforming growth factor- \hat{l}^2 in tumour development. Frontiers in Molecular Biosciences, 0, 9, .	1.6	18
423	TGF- \hat{I}^2 in patients with hematologic malignancies. K'art'veli Mec'nierebi, 0, , .	0.0	0
424	Functional role of lncRNAs in gastrointestinal malignancies: the peculiar case of small nucleolar RNA host gene family. FEBS Journal, 0, , .	2.2	4
425	Bifunctional anti-PD-L1/TGF-βRII agent SHR-1701 in advanced solid tumors: a dose-escalation, dose-expansion, and clinical-expansion phase 1 trial. BMC Medicine, 2022, 20, .	2.3	16
426	A multi-omic analysis of MCF10A cells provides a resource for integrative assessment of ligand-mediated molecular and phenotypic responses. Communications Biology, 2022, 5, .	2.0	14
427	Transcriptome Changes in Glioma Cells Cultivated under Conditions of Neurosphere Formation. Cells, 2022, 11, 3106.	1.8	4

#	Article	IF	CITATIONS
429	Bone morphogenetic proteins, activins, and growth and differentiation factors in tumor immunology and immunotherapy resistance. Frontiers in Immunology, 0, 13, .	2.2	3
430	The type II TGF-β receptor phosphorylates Tyr ¹⁸² in the type I receptor to activate downstream Src signaling. Science Signaling, 2022, 15, .	1.6	3
431	APOBEC3B expression is promoted by <i>lincNMR</i> collaborating with TGF-β-Smad pathway. Carcinogenesis, 0, , .	1.3	1
432	TGFβ control of immune responses in cancer: a holistic immuno-oncology perspective. Nature Reviews Immunology, 2023, 23, 346-362.	10.6	23
433	ADAMTS6 cleaves the large latent TGFβ complex and increases the mechanotension of cells to activate TGFβ. Matrix Biology, 2022, 114, 18-34.	1.5	5
435	The role of TGF-Î ² in the tumor microenvironment of pancreatic cancer. Genes and Diseases, 2023, 10, 1513-1524.	1.5	4
436	ABC transporters affects tumor immune microenvironment to regulate cancer immunotherapy and multidrug resistance. Drug Resistance Updates, 2023, 66, 100905.	6.5	31
437	Transforming growth factor-l ² signaling: From tissue fibrosis to therapeutic opportunities. Chemico-Biological Interactions, 2023, 369, 110289.	1.7	39
438	The role of erythrocytes and erythroid progenitor cells in tumors. Open Life Sciences, 2022, 17, 1641-1656.	0.6	1
439	Study Progress on TGF-Î ² Promoting the Development of Pancreatic Cancer. Advances in Clinical Medicine, 2022, 12, 11405-11411.	0.0	0
440	TGFβ pathway is required for viable gestation of Fanconi anemia embryos. PLoS Genetics, 2022, 18, e1010459.	1.5	1
441	Multiprotein GLI Transcriptional Complexes as Therapeutic Targets in Cancer. Life, 2022, 12, 1967.	1.1	0
442	New roles for AP-1/JUNB in cell cycle control and tumorigenic cell invasion via regulation of cyclin E1 and TGF-β2. Genome Biology, 2022, 23, .	3.8	12
443	Reprograming immune microenvironment modulates CD47 cancer stem cells in hepatocellular carcinoma. International Immunopharmacology, 2022, 113, 109475.	1.7	3
444	Recruitment of <scp>TRIM33</scp> to cellâ€context specific <scp>PML</scp> nuclear bodies regulates nodal signaling in <scp>mESCs</scp> . EMBO Journal, 2023, 42, .	3.5	5
445	TGF-β signaling in lymphatic vascular vessel formation and maintenance. Frontiers in Physiology, 0, 13, .	1.3	3
446	Immunomodulatory role of metalloproteases in cancers: Current progress and future trends. Frontiers in Immunology, 0, 13, .	2.2	8
447	Breast cancer prevention by short-term inhibition of TGFÎ ² signaling. Nature Communications, 2022, 13, .	5.8	4

#	Article	IF	CITATIONS
448	Rebalancing TGFβ1/BMP signals in exhausted T cells unlocks responsiveness to immune checkpoint blockade therapy. Nature Immunology, 2023, 24, 280-294.	7.0	11
449	Novel Roles of Nanog in Cancer Cells and Their Extracellular Vesicles. Cells, 2022, 11, 3881.	1.8	3
450	Emerging role of transforming growth factor- \hat{l}^2 -regulated long non-coding RNAs in prostate cancer pathogenesis. , 2023, 1, 195-204.		3
451	Transcription networks in liver development and acute liver failure. Liver Research, 2023, 7, 47-55.	0.5	2
452	Novel strategies to improve efficacy of treatment with tumor-infiltrating lymphocytes (TILs) for patients with solid cancers. Current Opinion in Oncology, 2023, 35, 107-113.	1.1	4
453	ATOH8 binds SMAD3 to induce cellular senescence and prevent Ras-driven malignant transformation. Proceedings of the National Academy of Sciences of the United States of America, 2023, 120, .	3.3	3
454	Mechanisms driving the immunoregulatory function of cancer cells. Nature Reviews Cancer, 2023, 23, 193-215.	12.8	40
455	The paracaspase MALT1 is a downstream target of Smad3 and potentiates the crosstalk between TGF-Î ² and NF-kB signaling pathways in cancer cells. Cellular Signalling, 2023, 105, 110611.	1.7	1
456	Traditional Chinese medicine for colorectal cancer treatment: potential targets and mechanisms of action. Chinese Medicine, 2023, 18, .	1.6	7
457	TGF-β signaling pathway: Therapeutic targeting and potential for anti-cancer immunity. European Journal of Pharmacology, 2023, 947, 175678.	1.7	12
458	Exposure to Moringa oleifera microRNAs induces proteomic changes linked to tumorigenesis and epithelial-mesenchymal transition in HeLa cells. Advances in Cancer Biology Metastasis, 2023, 7, 100097.	1.1	0
459	Deciphering the role of lipoproteins and lipid metabolic alterations in ageing and ageing-associated renal fibrosis. Ageing Research Reviews, 2023, 85, 101861.	5.0	8
460	Macrophage and monocyte subsets as new therapeutic targets in cancer immunotherapy. ESMO Open, 2023, 8, 100776.	2.0	9
461	E3 ubiquitin ligases in cancer stem cells: key regulators of cancer hallmarks and novel therapeutic opportunities. Cellular Oncology (Dordrecht), 0, , .	2.1	5
462	Tea domain transcription factor TEAD4 mitigates TGF-β signaling and hepatocellular carcinoma progression independently of YAP. Journal of Molecular Cell Biology, 2023, 15, .	1.5	7
463	Antagonism between Prdm16 and Smad4 specifies the trajectory and progression of pancreatic cancer. Journal of Cell Biology, 2023, 222, .	2.3	1
464	Cancer Pathways. , 2023, , 121-151.		0
465	State- and stimulus-specific dynamics of SMAD signaling determine fate decisions in individual cells. Proceedings of the National Academy of Sciences of the United States of America, 2023, 120, .	3.3	3

#	Article	IF	CITATIONS
466	Glucose oxidase as an alternative to antibiotic growth promoters improves the immunity function, antioxidative status, and cecal microbiota environment in white-feathered broilers. Frontiers in Microbiology, 0, 14, .	1.5	1
467	Up-regulated Circular RNAs in Colorectal Cancer: New Entities for Therapy and Tools for Identification of Therapeutic Targets. Cancer Genomics and Proteomics, 2023, 20, 132-153.	1.0	0
468	Correlation between SMADs and Colorectal Cancer Expression, Prognosis, and Immune Infiltrates. International Journal of Analytical Chemistry, 2023, 2023, 1-13.	0.4	2
469	Novel strategy for oncogenic alteration-induced lipid metabolism reprogramming in pancreatic cancer. Acta Biochimica Et Biophysica Sinica, 2023, , .	0.9	1
470	<scp>ZNF32</scp> prevents the activation of cancerâ€associated fibroblasts through negative regulation of <scp>TGFB1</scp> transcription in breast cancer. FASEB Journal, 2023, 37, .	0.2	3
471	TGF-β as A Master Regulator of Aging-Associated Tissue Fibrosis. , 2023, 14, 1633.		10
472	circNEIL3 inhibits tumor metastasis through recruiting the E3 ubiquitin ligase Nedd4L to degrade YBX1. Proceedings of the National Academy of Sciences of the United States of America, 2023, 120, .	3.3	12
473	Targeted Demethylation of the TGFβ1 mRNA Promotes Myoblast Proliferation via Activating the SMAD2 Signaling Pathway. Cells, 2023, 12, 1005.	1.8	0
474	STING inhibits the reactivation of dormant metastasis in lung adenocarcinoma. Nature, 2023, 616, 806-813.	13.7	38
475	Pan-cancer analysis of <i>BRK1</i> as a potential immunotherapeutic target. Biotechnology and Genetic Engineering Reviews, 0, , 1-23.	2.4	1
476	Hyperprogressive disease after immune checkpoint inhibitor therapy in a patient with nonâ€'small cell lung cancer who harbors a TGFBR2 mutation: A case report. Experimental and Therapeutic Medicine, 2023, 25, .	0.8	4
477	Circulating Cell-Free Nucleic Acids as Biomarkers for Diagnosis and Prognosis of Pancreatic Cancer. Biomedicines, 2023, 11, 1069.	1.4	1
478	Dysfunction of programmed embryo senescence is linked to genetic developmental defects. Development (Cambridge), 2023, 150, .	1.2	1
479	MiR-146b-5p/SEMA3C regulates epithelial-mesenchymal transition in clear cell renal cell carcinoma. Cell Division, 2023, 18, .	1.1	3
480	p53 Deficiency-Dependent Oncogenicity of Runx3. Cells, 2023, 12, 1122.	1.8	1
481	Hesperetin and Capecitabine Abate 1,2 Dimethylhydrazine-Induced Colon Carcinogenesis in Wistar Rats via Suppressing Oxidative Stress and Enhancing Antioxidant, Anti-Inflammatory and Apoptotic Actions. Life, 2023, 13, 984.	1.1	5
482	Effects of advanced glycation end products (AGEs) on the differentiation potential of primary stem cells: a systematic review. Stem Cell Research and Therapy, 2023, 14, .	2.4	2
485	TGFÎ ² and the Tumor Microenvironment in Colorectal Cancer. Cells, 2023, 12, 1139.	1.8	1

#	Article	IF	CITATIONS
487	Therapeutic targeting approach on epithelial-mesenchymal plasticity to combat cancer metastasis. , 2023, 40, .		1
488	Voies des Transforming Growth Factorsl ² (TGFl ²). , 2023, , 49-52.		0
503	Context-dependent TGFÎ ² family signalling in cell fate regulation. Nature Reviews Molecular Cell Biology, 2023, 24, 876-894.	16.1	4
529	The interplay between cell wall integrity and cell cycle progression in plants. Plant Molecular Biology, 2023, 113, 367-382.	2.0	Ο
545	Krebssignalwege. , 2024, , 143-177.		0