A review of consumer preferences of and interactions with the infrastructure

Transportation Research, Part D: Transport and Environment 62, 508-523

DOI: 10.1016/j.trd.2018.04.002

Citation Report

#	Article	IF	CITATIONS
1	Driven by Change: Commercial Drivers' Acceptance and Perceived Efficiency of Using Light-Duty Electric Vehicles in Germany. SSRN Electronic Journal, 2018, , .	0.4	4
2	Estimating Real-World Emissions of PHEVs in Norway by Combining Laboratory Measurement with User Surveys. World Electric Vehicle Journal, 2018, 9, 31.	1.6	7
3	Spatial Markov chain model for electric vehicle charging in cities using geographical information system (GIS) data. Applied Energy, 2018, 231, 1089-1099.	5.1	77
4	Policy Considerations for Zero-Emission Vehicle Infrastructure Incentives: Case Study in Canada. World Electric Vehicle Journal, 2018, 9, 38.	1.6	12
5	Who are the early adopters of fuel cell vehicles?. International Journal of Hydrogen Energy, 2018, 43, 17857-17866.	3.8	82
6	Anxiety vs reality – Sufficiency of battery electric vehicle range in Switzerland and Finland. Transportation Research, Part D: Transport and Environment, 2018, 65, 101-115.	3.2	93
7	Real-time renewable energy incentive system for electric vehicles using prioritization and cryptocurrency. Applied Energy, 2018, 226, 582-594.	5.1	116
8	Assessing the Impacts of Electric Vehicle Recharging Infrastructure Deployment Efforts in the European Union. Energies, 2019, 12, 2409.	1.6	13
9	How many fast-charging stations do we need along European highways?. Transportation Research, Part D: Transport and Environment, 2019, 73, 120-129.	3.2	62
10	The impact of ambitious fuel economy standards on the market uptake of electric vehicles and specific CO2 emissions. Energy Policy, 2019, 135, 111006.	4.2	42
11	Demand drivers for charging infrastructure-charging behavior of plug-in electric vehicle commuters. Transportation Research, Part D: Transport and Environment, 2019, 76, 255-272.	3.2	83
12	Perspectives on Electrification for the Automotive Sector: A Critical Review of Average Daily Distances by Light-Duty Vehicles, Required Range, and Economic Outcomes. Sustainability, 2019, 11, 5784.	1.6	15
13	Public perceptions of electric vehicles and vehicle-to-grid (V2G): Insights from a Nordic focus group study. Transportation Research, Part D: Transport and Environment, 2019, 74, 277-293.	3.2	52
14	Driven by change: Commercial drivers' acceptance and efficiency perceptions of light-duty electric vehicle usage in Germany. Transportation Research Part C: Emerging Technologies, 2019, 105, 262-282.	3.9	42
15	Who is buying electric vehicles in California? Characterising early adopter heterogeneity and forecasting market diffusion. Energy Research and Social Science, 2019, 55, 218-226.	3.0	83
16	Consumer preferences for public charging infrastructure for electric vehicles. Transport Policy, 2019, 81, 54-63.	3.4	75
17	Understanding potential for battery electric vehicle adoption using large-scale consumer profile data. Energy Reports, 2019, 5, 515-524.	2.5	41
18	A review of available chargers for electric vehicles: United States of America, European Union, and Asia. Renewable and Sustainable Energy Reviews, 2019, 109, 284-293.	8.2	60

#	Article	IF	CITATIONS
19	Analysing online behaviour to determine Chinese consumers' preferences for electric vehicles. Journal of Cleaner Production, 2019, 229, 244-255.	4.6	72
20	Modeling electric vehicle adoption considering a latent travel pattern construct and charging infrastructure. Transportation Research, Part D: Transport and Environment, 2019, 72, 65-82.	3.2	45
21	Two-stage stochastic optimization for cost-minimal charging of electric vehicles at public charging stations with photovoltaics. Applied Energy, 2019, 242, 769-781.	5.1	82
22	Evolution of plug-in electric vehicle demand: Assessing consumer perceptions and intent to purchase over time. Transportation Research, Part D: Transport and Environment, 2019, 70, 94-111.	3.2	71
23	Modeling charging behavior of battery electric vehicle drivers: A cumulative prospect theory based approach. Transportation Research Part C: Emerging Technologies, 2019, 102, 474-489.	3.9	85
24	A systematic review of the evidence on plug-in electric vehicle user experience. Transportation Research, Part D: Transport and Environment, 2019, 71, 22-36.	3.2	55
25	Simulating Electric Vehicle Diffusion and Charging Activities in France and Germany. World Electric Vehicle Journal, 2019, 10, 73.	1.6	12
26	Quo Vadis Smart Charging? A Literature Review and Expert Survey on Technical Potentials and User Acceptance of Smart Charging Systems. World Electric Vehicle Journal, 2019, 10, 85.	1.6	11
27	BEV Remaining Range Estimation Based on Modern Control Theory - Initial Study. IFAC-PapersOnLine, 2019, 52, 86-91.	0.5	5
28	How much charging infrastructure do electric vehicles need? â€ ⁻ A review of the evidence and international comparison. Transportation Research, Part D: Transport and Environment, 2019, 77, 224-242.	3.2	162
29	Recent status of electric vehicle charging infrastructure in Jeju Island. , 2019, , .		0
30	Environmental and economic impacts of expanding electric vehicle public charging infrastructure in California′s counties. Transportation Research, Part D: Transport and Environment, 2019, 77, 320-334.	3.2	19
31	Literature vs. Twitter: Empirical insights on customer needs in e-mobility. Journal of Cleaner Production, 2019, 213, 508-520.	4.6	34
32	Understanding the impact of reoccurring and non-financial incentives on plug-in electric vehicle adoption $\hat{a} \in \mathcal{C}$ A review. Transportation Research, Part A: Policy and Practice, 2019, 119, 1-14.	2.0	73
33	Invest in fast-charging infrastructure or in longer battery ranges? A cost-efficiency comparison for Germany. Applied Energy, 2019, 235, 888-899.	5.1	38
34	Multi-day scenario analysis for battery electric vehicle feasibility assessment and charging infrastructure planning. Transportation Research Part C: Emerging Technologies, 2020, 111, 439-457.	3.9	21
35	Solving Overstay and Stochasticity in PEV Charging Station Planning With Real Data. IEEE Transactions on Industrial Informatics, 2020, 16, 3504-3514.	7.2	28
36	Global electric car market deployment considering endogenous battery price development. , 2020, , 281-305.		8

	Сіта	tion Report	
#	Article	IF	CITATIONS
37	Electric vehicle charging station locations: Elastic demand, station congestion, and network equilibrium. Transportation Research, Part D: Transport and Environment, 2020, 78, 102179.	3.2	112
38	Multiple roads ahead: How charging behavior can guide charging infrastructure roll-out policy. Transportation Research, Part D: Transport and Environment, 2020, 85, 102452.	3.2	23
39	Impact of Smart Charging for Consumers in a Real World Pilot. World Electric Vehicle Journal, 2020, 11, 21.	1.6	10
40	A review and simple meta-analysis of factors influencing adoption of electric vehicles. Transportation Research, Part D: Transport and Environment, 2020, 86, 102436.	3.2	140
41	A deployment model of EV charging piles and its impact on EV promotion. Energy Policy, 2020, 146, 111777.	4.2	33
42	Forecasting of electrical vehicle impact on infrastructure: Markov chains model of charging stations occupation. ETransportation, 2020, 6, 100083.	6.8	17
43	Effects of Charging Infrastructure Characteristics on Electric Vehicle Preferences of New and Used Car Buyers in the United States. Transportation Research Record, 2020, 2674, 165-175.	1.0	12
44	Comparing Power-System and User-Oriented Battery Electric Vehicle Charging Representation and Its Implications on Energy System Modeling. Energies, 2020, 13, 1093.	1.6	17
45	Coping with a growing number of e-taxis in Greater Stockholm: A stated adaptation approach. Case Studies on Transport Policy, 2020, 8, 576-585.	1.1	3
46	Comprehensive Pricing Scheme of the EV Charging Station considering Consumer Differences Based on Integrated AHP/DEA Methodology. Mathematical Problems in Engineering, 2020, 2020, 1-11.	0.6	4
47	Investigating the Future of Ultrafast Charging: A Choice Experiment in the Netherlands. World Electric Vehicle Journal, 2020, 11, 70.	1.6	8
48	Many Miles to Paris: A Sectoral Innovation System Analysis of the Transport Sector in Norway and Canada in Light of the Paris Agreement. Sustainability, 2020, 12, 5832.	1.6	14
49	Prospects for a Highly Electric Road Transportation Sector in the USA. Current Sustainable/Renewable Energy Reports, 2020, 7, 84-93.	1.2	14
50	Public charging infrastructure and the market diffusion of electric vehicles. Transportation Research, Part D: Transport and Environment, 2020, 86, 102413.	3.2	42
51	Do policy mix characteristics matter for electric vehicle adoption? A survey-based exploration. Transportation Research, Part D: Transport and Environment, 2020, 87, 102488.	3.2	57
52	Analysis of a Coordinated Infrastructure Development for Supplying Battery and Fuel Cell Electric Vehicles. , 2020, , .		1
53	The potential for community financed electric vehicle charging infrastructure. Transportation Research, Part D: Transport and Environment, 2020, 88, 102541.	3.2	19
54	Impact of electric vehicles: Will German households pay less for electricity?. Energy Strategy Reviews, 2020, 32, 100568.	3.3	15

	CITATION	Report	
#	Article	IF	Citations
55	Analysis of Energy Consumption at Public Charging Stations, a Nebraska Case Study. , 2020, , .		8
56	Data-Driven Charging Demand Prediction at Public Charging Stations Using Supervised Machine Learning Regression Methods. Energies, 2020, 13, 4231.	1.6	94
57	Wind-Energy-Powered Electric Vehicle Charging Stations: Resource Availability Data Analysis. Applied Sciences (Switzerland), 2020, 10, 5654.	1.3	15
58	Crafting strong, integrated policy mixes for deep CO2 mitigation in road transport. Nature Climate Change, 2020, 10, 809-818.	8.1	136
59	Discovering EV Recharging Patterns through an Automated Analytical Workflow. , 2020, , .		3
60	Moving small crafts and services enterprises towards green mobility practices: The role of change agents. Environmental Innovation and Societal Transitions, 2020, 37, 254-266.	2.5	5
61	User Compensation Mechanism and Benefit Analysis under Orderly Charging Mode. Journal of Physics: Conference Series, 2020, 1659, 012046.	0.3	1
62	Wireless Charging of Electric Taxis: Understanding the Facilitators and Barriers to Its Introduction. Sustainability, 2020, 12, 8798.	1.6	5
63	Clean mobility infrastructure and sector integration in long-term energy scenarios: The case of Italy. Renewable and Sustainable Energy Reviews, 2020, 133, 110086.	8.2	15
64	What influences sales market of new energy vehicles in China? Empirical study based on survey of consumers' purchase reasons. Energy Policy, 2020, 142, 111484.	4.2	48
65	Battery Electric Vehicle Fast Charging–Evidence from the Norwegian Market. World Electric Vehicle Journal, 2020, 11, 38.	1.6	34
66	Mind the gap- open communication protocols for vehicle grid integration. Energy Informatics, 2020, 3, .	1.4	52
67	Electric Vehicle User Behaviour and Demand Response: A Strive for Energy Autonomy. , 2020, , .		1
68	Promoting electric vehicle charging infrastructure considering policy incentives and user preferences: An evolutionary game model in a small-world network. Journal of Cleaner Production, 2020, 258, 120753.	4.6	95
69	Moving a Taxi Sector to Become Electric: Characterizing Taxi Drivers Interested in Purchasing a Full Electric Vehicle. World Electric Vehicle Journal, 2020, 11, 20.	1.6	5
70	Creating a qualitative typology of electric vehicle driving: EV journey-making mapped in a chronological framework. Transportation Research Part F: Traffic Psychology and Behaviour, 2020, 69, 159-186.	1.8	10
71	A multi-criteria decision method for performance evaluation of public charging service quality. Energy, 2020, 195, 116958.	4.5	17
72	EV driver characteristics: Evidence from Hawaii. Transport Policy, 2020, 87, 33-40.	3.4	15

#	Article	IF	CITATIONS
73	Exploring electric vehicle charging patterns: Mixed usage of charging infrastructure. Transportation Research, Part D: Transport and Environment, 2020, 79, 102249.	3.2	120
74	Which plug-in electric vehicle policies are best? A multi-criteria evaluation framework applied to Canada. Energy Research and Social Science, 2020, 64, 101411.	3.0	32
75	Probabilistic forecasts of time and energy flexibility in battery electric vehicle charging. Applied Energy, 2020, 262, 114525.	5.1	55
76	The Impacts of Electric Vehicle Growth on Wholesale Electricity Prices in Wisconsin. World Electric Vehicle Journal, 2020, 11, 32.	1.6	6
77	Why have multiple climate policies for light-duty vehicles? Policy mix rationales, interactions and research gaps. Transportation Research, Part A: Policy and Practice, 2020, 135, 309-326.	2.0	21
78	The role of charging and refuelling infrastructure in supporting zero-emission vehicle sales. Transportation Research, Part D: Transport and Environment, 2020, 81, 102275.	3.2	45
79	Two-Stage Stochastic Choice Modeling Approach for Electric Vehicle Charging Station Network Design in Urban Communities. IEEE Transactions on Intelligent Transportation Systems, 2021, 22, 3038-3053.	4.7	28
80	Economic benefit analysis of battery charging and swapping station for pure electric bus based on differential power purchase policy: a new power trading model. Sustainable Cities and Society, 2021, 64, 102570.	5.1	25
81	Drivers of the electric vehicle market: A systematic literature review of empirical studies. Finance Research Letters, 2021, 41, 101846.	3.4	23
82	Data-driven framework for large-scale prediction of charging energy in electric vehicles. Applied Energy, 2021, 282, 116175.	5.1	28
83	Prospects of the hydrogen-based mobility in the private vehicle market. A social perspective in Denmark. International Journal of Hydrogen Energy, 2021, 46, 6885-6900.	3.8	42
84	Decentralized Charging of Plug-In Electric Vehicles and Impact on Transmission System Dynamics. IEEE Transactions on Smart Grid, 2021, 12, 1772-1781.	6.2	17
85	The slow uptake of electric cars in Italy and Slovenia. Evidence from a stated-preference survey and the role of knowledge and environmental awareness. Transportation Research, Part A: Policy and Practice, 2021, 144, 1-18.	2.0	28
86	Battery electric vehicle adoption in Denmark and Sweden: Recent changes, related factors and policy implications. Energy Policy, 2021, 149, 112096.	4.2	55
87	Exploring the factors influencing electric vehicle adoption: an empirical investigation in the emerging economy context of India. Foresight, 2021, 23, 311-326.	1.2	22
88	Business Information Through Choice-Based Conjoint Analysis: The Case of Electric Vehicle Home Charging. Studies in Systems, Decision and Control, 2021, , 357-379.	0.8	Ο
89	Battery Electric Vehicle adoption in regions without strong policies. Transportation Research, Part D: Transport and Environment, 2021, 90, 102615.	3.2	55
90	Impact of Charging Infrastructure Surroundings on Temporal Characteristics of Electric Vehicle Charging Sessions. Lecture Notes of the Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering, 2021, , 160-174.	0.2	0

ARTICLE IF CITATIONS # Designing Electric Vehicle Incentives to Meet Emissions Reduction Targets. SSRN Electronic Journal, 0, 91 0.4 0 The Factor That Affects the City's Readiness to Adopt Electric Vehicles: A Conceptual Paper. , 0, , . A techno-economic evaluation of the impact of electric vehicles diffusion on Italian customer billing 93 0.2 4 tariffs. E3S Web of Conferences, 2021, 238, 07003. Electric Vehicles and Psychology. Sustainability, 2021, 13, 719. 94 High-Voltage Stations for Electric Vehicle Fast-Charging: Trends, Standards, Charging Modes and 95 2.6 42 Comparison of Unity Power-Factor Rectifiers. IEEE Access, 2021, 9, 102177-102194. Overcoming range limits. Nature Energy, 2021, 6, 17-18. 19.8 97 The Impact of Electric Vehicles on Energy Systems., 2021, , 560-565. 1 Topic classification of electric vehicle consumer experiences with transformer-based deep learning. 3.1 Patterns, 2021, 2, 100195. Challenges and enabling features of small and medium infrastructure publicâ€"private partnerships 99 (P3s): a case study of the US P3 infrastructure market. Engineering, Construction and Architectural 2 1.8 Management, 2021, ahead-of-print, . Integrated modelling of autonomous electric vehicle diffusion: From review to conceptual design. 3.2 Transportation Research, Part D: Transport and Environment, 2021, 91, 102679. On the sustainability of electric vehicles: What about their impacts on land use?. Sustainable Cities 101 17 5.1and Society, 2021, 66, 102680. Electric Vehicles in Jordan: Challenges and Limitations. Sustainability, 2021, 13, 3199. 1.6 Control and modelling evaluation of a piezoelectric harvester system. International Journal of 103 1.5 11 Dynamics and Control, 2021, 9, 1559-1575. The rise of electric vehiclesâ€"2020 status and future expectations. Progress in Energy, 2021, 3, 022002. 104 4.6 132 Technical Economic Analysis of Photovoltaic-Powered Electric Vehicle Charging Stations under 105 1.6 48 Different Solar Irradiation Conditions in Vietnam. Sustainability, 2021, 13, 3528. Review of Renewable Energy-Based Charging Infrastructure for Electric Vehicles. Applied Sciences 1.3 (Switzerland), 2021, 11, 3847. 107 On Psychological Aspects about Electric Vehicles, Part 1., 2021, , . 0 Do more chargers mean more electric cars?. Environmental Research Letters, 2021, 16, 064092. 2.2

	C	CITATION REPORT	
#	Article	IF	CITATIONS
109	The Development of Decarbonisation Strategies: A Three-Step Methodology for the Suitable Analysis of Current EVCS Locations Applied to Istanbul, Turkey. Energies, 2021, 14, 2756.	1.6	24
110	Electrification and renewable energy nexus in developing countries; an overarching analysis of hydrogen production and electric vehicles integrality in renewable energy penetration. Energy Conversion and Management, 2021, 236, 114023.	4.4	53
111	Behavioral and technology implications of electromobility on household travel emissions. Transportation Research, Part D: Transport and Environment, 2021, 94, 102792.	3.2	5
112	Electric vehicles and consumer choices. Renewable and Sustainable Energy Reviews, 2021, 142, 1108	374. 8.2	38
113	Machine Learning for Solving Charging Infrastructure Planning: A Comprehensive Review. , 2021, , .		3
114	Consumer preferences for hybrid and electric vehicles and deployment of the charging infrastructure: A case study of Lebanon. Case Studies on Transport Policy, 2021, 9, 466-476.	1.1	18
115	Impact of lower and higher alcohols on the physicochemical properties of particulate matter from diesel engines: A review. Renewable and Sustainable Energy Reviews, 2021, 143, 110970.	8.2	42
116	Experimental investigation of subcooled flow boiling in annuli with reference to thermal management of ultra-fast electric vehicle charging cables. International Journal of Heat and Mass Transfer, 2021, 172, 121176.	2.5	20
117	Health and Climate Impacts from Long-Haul Truck Electrification. Environmental Science & Technology, 2021, 55, 8514-8523.	4.6	13
118	Uncovering travel and charging patterns of private electric vehicles with trajectory data: evidence and policy implications. Transportation, 2022, 49, 1409-1439.	2.1	7
119	Investigating the Sensitivity of Electric Vehicle Out-of-Home Charging Demand to Changes in Light-Duty Vehicle Fleet Makeup and Usage: A Case Study for California 2030. Transportation Resear Record, 2021, 2675, 1384-1395.	ch 1.0	2
120	Consumer Preferences for Electric Vehicle Charging Infrastructure Based on the Text Mining Method. Energies, 2021, 14, 4598.	1.6	8
121	The Feasibility Study on the Infrastructure of Swapping Battery Station for Electric Motorcycles in Thailand. IOP Conference Series: Earth and Environmental Science, 2021, 811, 012014.	0.2	0
122	Why is the world not yet ready to use alternative fuel vehicles?. Heliyon, 2021, 7, e07527.	1.4	31
123	Electric vehicle charging strategies for Urban freight transport: concept and typology. Transport Reviews, 2022, 42, 157-180.	4.7	10
124	Vehicle-to-X (V2X) implementation: An overview of predominate trial configurations and technical, social and regulatory challenges. Renewable and Sustainable Energy Reviews, 2021, 145, 110977.	8.2	49
125	Estimating the Total Number of Workplace and Public Electric Vehicle Chargers in California. Transportation Research Record, 2021, 2675, 759-770.	1.0	1
126	Electrification of personal vehicle travels in cities - Quantifying the public charging demand. ETransportation, 2021, 9, 100125.	6.8	24

#	Article	IF	CITATIONS
127	Smarter charging: Power allocation accounting for travel time of electric vehicle drivers. Transportation Research, Part D: Transport and Environment, 2021, 97, 102916.	3.2	9
128	Determinants of Electric Vehicle Diffusion in China. Environmental and Resource Economics, 2021, 80, 473-510.	1.5	15
129	Proposal of a load curve modeling applied to Highway EV Fast Charging Stations. , 2021, , .		1
130	Recharging scenarios for differently electrified road vehicles: A methodology and its application to the Italian grid. Transportation Research Interdisciplinary Perspectives, 2021, 11, 100454.	1.6	0
131	Stochastic analysis of future scenarios for battery electric vehicle deployment and the upgrade of the electricity generation system in Spain. Journal of Cleaner Production, 2021, 316, 128101.	4.6	16
132	Impact of electric vehicle charging on the power demand of retail buildings. Advances in Applied Energy, 2021, 4, 100062.	6.6	58
133	Urban air mobility: A comprehensive review and comparative analysis with autonomous and electric ground transportation for informing future research. Transportation Research Part C: Emerging Technologies, 2021, 132, 103377.	3.9	128
134	Political, economic, social, technological, legal and environmental dimensions of electric vehicle adoption in the United States: A social-media interaction analysis. Renewable and Sustainable Energy Reviews, 2021, 152, 111707.	8.2	40
135	Multivariate copula procedure for electric vehicle charging event simulation. Energy, 2022, 238, 121718.	4.5	9
136	Multi-Criteria, Co-Evolutionary Charging Behavior: An Agent-Based Simulation of Urban Electromobility. World Electric Vehicle Journal, 2021, 12, 18.	1.6	11
137	Anatomy of electric vehicle fast charging: Peak shaving through a battery energy storage—A case study from Oslo. IET Electrical Systems in Transportation, 2021, 11, 69-80.	1.5	5
138	The usual policy levers are not engaging consumers in the transition to electric vehicles: a case of Sacramento, California. Environmental Research Communications, 2020, 2, 085001.	0.9	7
139	Energy policy and public opinion: patterns, trends and future directions. Progress in Energy, 2020, 2, 032003.	4.6	33
140	System Planning of Grid-Connected Electric Vehicle Charging Stations and Key Technologies: A Review. Energies, 2019, 12, 4201.	1.6	55
141	Comprehensive Analyses of the Spatio-Temporal Variation of New-Energy Vehicle Charging Piles in China: A Complex Network Approach. Frontiers in Physics, 2021, 9, .	1.0	6
142	Identifying Factors Associated with Consumers' Adoption of e-Mobility—A Systematic Literature Review. Sustainability, 2021, 13, 10975.	1.6	27
143	Paving the road for electric vehicles: Lessons from a randomized experiment in an introduction stage market. Transportation Research, Part A: Policy and Practice, 2021, 153, 326-340.	2.0	3
144	Charged up? Preferences for Electric Vehicle Charging and Implications for Charging Infrastructure Planning. SSRN Electronic Journal, 0, , .	0.4	10

#	Article	IF	CITATIONS
145	Smart Payment Terminal in energy payment for electric and hybrid cars. Informatyka Ekonomiczna, 2020, 2020, 111-126.	0.1	4
146	A Decision Support Tool for Optimal Charging Scheduling for Individual Electric Vehicle Users. , 2020, , .		0
147	On the Impact of PEV Charging on Transmission System: Static and Dynamic Limits. , 2020, , .		0
148	Spatial equity analysis of urban public services for electric vehicle charging—Implications of Chinese cities. Sustainable Cities and Society, 2022, 76, 103519.	5.1	31
149	Is resale anxiety an obstacle to electric vehicle adoption? Results from a survey experiment in Switzerland. Environmental Research Letters, 0, , .	2.2	6
150	Integrating plug-in electric vehicles (PEVs) into household fleets- factors influencing miles traveled by PEV owners in California. Travel Behaviour & Society, 2022, 26, 67-83.	2.4	18
151	Dynamic subsidies for synergistic development of charging infrastructure and electric vehicle adoption. SSRN Electronic Journal, 0, , .	0.4	2
152	Analysis of microgrid integrated Photovoltaic (PV) Powered Electric Vehicle Charging Stations (EVCS) under different solar irradiation conditions in India: A way towards sustainable development and growth. Energy Reports, 2021, 7, 8534-8547.	2.5	20
153	Analysing the Cost-Effectiveness of Charging Stations for Electric Vehicles in the U.K.'s Rural Areas. World Electric Vehicle Journal, 2021, 12, 232.	1.6	5
154	A Review of Extremely Fast Charging Stations for Electric Vehicles. Energies, 2021, 14, 7566.	1.6	31
155	Integrated Urban Mobility for Our Health and the Climate: Recommended Approaches from an Interdisciplinary Consortium. Sustainability, 2021, 13, 12717.	1.6	2
156	Modeling the Impact of Electric Vehicle Charging Infrastructure on Regional Energy Systems: Fields of Action for an Improved e-Mobility Integration. Energies, 2021, 14, 7992.	1.6	3
157	Current Readiness Status of Electric Vehicles in Indonesia: Multistakeholder Perceptions. Sustainability, 2021, 13, 13177.	1.6	16
158	Barriers to Electric Vehicle Adoption in Thailand. Sustainability, 2021, 13, 12839.	1.6	26
159	Climate change mitigation efficiency of electric vehicle charging infrastructure in China: From the perspective of energy transition and circular economy. Resources, Conservation and Recycling, 2022, 179, 106048.	5.3	15
160	A smart discrete charging method for optimum electric vehicles integration in the distribution system in presence of demand response program. Journal of Energy Storage, 2022, 47, 103577.	3.9	9
161	Machine Learning for Solving Charging Infrastructure Planning Problems: A Comprehensive Review. Energies, 2021, 14, 7833.	1.6	7
162	The Economics of Electric Vehicles. SSRN Electronic Journal, 0, , .	0.4	0

# 163	ARTICLE Plug-in electric vehicle diffusion in California: Role of exposure to new technology at home and	IF 2.0	CITATIONS
164	Key Security Challenges for Electric Vehicle Charging System. , 2020, , .		2
165	An Information Fusion Charging Optimization Model. , 2020, , .		0
166	Technoâ€economic analysis of a hybrid solar wind electric vehicle charging station in highway roads. International Journal of Energy Research, 2022, 46, 7883-7903.	2.2	26
167	Determining the Social, Economic, Political and Technical Factors Significant to the Success of Dynamic Wireless Charging Systems through a Process of Stakeholder Engagement. Energies, 2022, 15, 930.	1.6	4
168	Willingness to delay charging of electric vehicles. Research in Transportation Economics, 2022, 94, 101177.	2.2	4
169	A Study to Investigate What Tempts Consumers to Adopt Electric Vehicles. World Electric Vehicle Journal, 2022, 13, 26.	1.6	21
170	An electric vehicle charging station access equilibrium model with M/D/C queueing. International Journal of Sustainable Transportation, 2023, 17, 228-244.	2.1	6
171	What do we really know about the acceptance of battery electric vehicles? – Turns out, not much. Transport Reviews, 2023, 43, 62-87.	4.7	25
172	Evaluating Electric Vehicle Policy Effectiveness and Equity. Annual Review of Resource Economics, 2022, 14, 669-688.	1.5	16
173	Mobility at the crossroads – Electric mobility policy and charging infrastructure lessons from across Europe. Transportation Research, Part A: Policy and Practice, 2022, 157, 144-159.	2.0	6
174	I'm coming home (to charge): The relation between commuting practices and peak energy demand in the United Kingdom. Energy Research and Social Science, 2022, 88, 102502.	3.0	5
175	Electric vehicle charging infrastructure: positioning in India. Management of Environmental Quality, 2022, 33, 776-799.	2.2	12
176	The role of human influences on adoption and rejection of energy technology: A systematised critical review of the literature on household energy transitions. Energy Research and Social Science, 2022, 89 102528	3.0	25
177	Deploying Battery Swap Stations for Electric Freight Vehicles Based on Trajectory Data Analysis. IEEE Transactions on Transportation Electrification, 2022, 8, 3782-3800.	5.3	9
178	Electric Vehicle Charging Right Trading: Concept, Mechanism, and Methodology. IEEE Transactions on Smart Grid, 2022, 13, 3094-3105.	6.2	0
179	Energy Prices and Electric Vehicle Adoption. SSRN Electronic Journal, 0, , .	0.4	0
180	Ev Drivers' Willingness to Accept Smart Charging: Measuring Preferences of Potential Adopters. SSRN Electronic Journal, 0, , .	0.4	0

#	Article	IF	CITATIONS
181	Mobile-Energy-as-a-Service (MEaaS): Sustainable Electromobility via Integrated Energy–Transport–Urban Infrastructure. Sustainability, 2022, 14, 2796.	1.6	11
182	Analysis of barriers to adopt electric vehicles in India using fuzzy DEMATEL and Relative importance Index approaches. Case Studies on Transport Policy, 2022, 10, 795-810.	1.1	22
183	An integrated optimization platform for spatial-temporal modeling of electric vehicle charging infrastructure. Transportation Research, Part D: Transport and Environment, 2022, 104, 103177.	3.2	20
184	Planning of High-Power Charging Stations for Electric Vehicles: A Review. Applied Sciences (Switzerland), 2022, 12, 3214.	1.3	13
185	Mode shift behaviour and user willingness to adopt the electric two-wheeler: A study based on Indian road user preferences. International Journal of Transportation Science and Technology, 2023, 12, 428-446.	2.0	8
186	A spatio-temporal approach to electric vehicle uptake: Evidence from New Zealand. Transportation Research, Part D: Transport and Environment, 2022, 105, 103256.	3.2	8
187	Inequitable access to EV charging infrastructure. Electricity Journal, 2022, 35, 107096.	1.3	26
188	A validated agent-based model for stress testing charging infrastructure utilization. Transportation Research, Part A: Policy and Practice, 2022, 159, 237-262.	2.0	1
189	Electric vehicle charging infrastructure planning for integrated transportation and power distribution networks: A review. ETransportation, 2022, 12, 100163.	6.8	67
190	Planning and establishment of battery swapping station - A support for faster electric vehicle adoption. Journal of Energy Storage, 2022, 51, 104351.	3.9	17
191	Charging Stations for Electric Vehicles; a Comprehensive Review on Planning, Operation, Configurations, Codes and Standards, Challenges and Future Research Directions. Smart Science, 2022, 10, 213-245.	1.9	4
192	Distribution feeder-level multi-temporal coordination of electric vehicle charging flexibilities considering rebound impact and vehicle owner preferences. CIRED - Open Access Proceedings Journal, 2020, 2020, 487-489.	0.1	0
193	Energy, Emissions, and Cost Impacts of Charging Price Strategies for Electric Vehicles. Environmental Science & Technology, 2022, 56, 5724-5733.	4.6	8
194	How to accelerate the uptake of electric cars? Insights from a choice experiment. Journal of Cleaner Production, 2022, 355, 131774.	4.6	19
195	Spatial and temporal patterns of electric vehicle charging station utilization: a nationwide case study of Switzerland. Environmental Research: Infrastructure and Sustainability, 2022, 2, 021003.	0.9	4
196	Analysis of activity duration-related charging behavioral responses of electric vehicle travelers to charging services. Transport Policy, 2022, 123, 73-81.	3.4	5
197	Test-drives & information might not boost actual battery electric vehicle uptake?. Transportation Research, Part A: Policy and Practice, 2022, 160, 204-218.	2.0	5
198	What Do We Know about Zero-Emission Vehicle Mandates?. Environmental Science & Technology, 2022, 56, 7553-7563.	4.6	10

#	Article	IF	CITATIONS
199	Designing electric vehicle incentives to meet emission reduction targets. Transportation Research, Part D: Transport and Environment, 2022, 107, 103320.	3.2	19
200	Perceived usefulness and intentions to adopt autonomous vehicles. Transportation Research, Part A: Policy and Practice, 2022, 161, 170-185.	2.0	20
201	How Many Chargers Must California Install to Complete the Transition to Electric Vehicles? An Analysis of Electric Vehicle Adoption and Potential Charging Infrastructure Needs 2022-2045. SSRN Electronic Journal, 0, , .	0.4	0
202	Evaluating good practices for the promotion of electromobility using multi criteria analysis methods. Case Studies on Transport Policy, 2022, 10, 1602-1610.	1.1	2
203	Electromobility in Australia: Tariff Design Structure and Consumer Preferences for Mobile Distributed Energy Storage. Sustainability, 2022, 14, 6631.	1.6	6
204	A map matching-based method for electric vehicle charging station placement at directional road segment level. Sustainable Cities and Society, 2022, 84, 103987.	5.1	9
205	Empirical charging behavior of plug-in hybrid electric vehicles. Applied Energy, 2022, 321, 119293.	5.1	10
206	Electric Vehicle Charging Modes, Technologies and Applications in Smart Cities. SSRN Electronic Journal, 0, , .	0.4	5
207	Resilience of urban public electric vehicle charging infrastructure to flooding. Nature Communications, 2022, 13, .	5.8	12
208	Eâ€mobility in Slovakia by 2030—End of oil dependency?. IET Smart Cities, 2022, 4, 127-142.	1.6	1
209	How can new energy vehicles become qualified relays from the perspective of carbon neutralization? Literature review and research prospect based on the CiteSpace knowledge map. Environmental Science and Pollution Research, 2022, 29, 55473-55491.	2.7	16
210	Unraveling the role of biofuels in road transport under rapid electrification. Biofuels, Bioproducts and Biorefining, 0, , .	1.9	4
211	Push and Pull Strategies to Increase the Uptake of Small Electric Vehicles. SSRN Electronic Journal, 0, , .	0.4	0
212	Managed Residential Electric Vehicle Charging Minimizes Electricity Bills While Meeting Driver and Community Preferences. SSRN Electronic Journal, 0, , .	0.4	0
213	Integration of Charging Behavior into Infrastructure Planning of Electric Vehicles: A Systematic Review and Framework. SSRN Electronic Journal, 0, , .	0.4	1
214	Why German households won't cover their roofs in photovoltaic panels: And whether policy interventions, rebound effects and heat pumps might change their minds. Renewable Energy Focus, 2022, 42, 236-252.	2.2	6
215	Assessing the economic premium of electric vehicle charging points: a hedonic price analysis in Beijing, China. Environmental Science and Pollution Research, 0, , .	2.7	0
216	EVStationSIM: An end-to-end platform to identify and interpret similar clustering patterns of EV charging stations across multiple time slices. Applied Energy, 2022, 322, 119491.	5.1	1

#	Article	IF	CITATIONS
217	Electric vehicle charging station diffusion: An agent-based evolutionary game model in complex networks. Energy, 2022, 257, 124700.	4.5	16
218	Investigating the Individual house holders' preference to adopt home-based charging and solar rooftop facility for electric vehicle charging. Transportation Letters, 0, , 1-15.	1.8	1
219	Peak Shaving for Electric Vehicle Charging Infrastructure—A Case Study in a Parking Garage in Uppsala, Sweden. World Electric Vehicle Journal, 2022, 13, 152.	1.6	3
220	Improving future travel demand projections: a pathway with an open science interdisciplinary approach. Progress in Energy, 2022, 4, 043002.	4.6	6
221	Energy and Demand Forecasting Based on Logistic Growth Method for Electric Vehicle Fast Charging Station Planning with PV Solar System. Energies, 2022, 15, 6106.	1.6	6
222	Charging-Related State Prediction for Electric Vehicles Using the Deep Learning Model. Journal of Advanced Transportation, 2022, 2022, 1-12.	0.9	0
223	EV drivers' willingness to accept smart charging: Measuring preferences of potential adopters. Transportation Research, Part D: Transport and Environment, 2022, 109, 103396.	3.2	15
224	Identification of Potential Barriers to Electric Vehicle Adoption in Oil-Producing Nations—The Case of Saudi Arabia. Electricity, 2022, 3, 365-395.	1.4	10
225	Booking Public Charging: User Preferences and Behavior towards Public Charging Infrastructure with a Reservation Option. Electronics (Switzerland), 2022, 11, 2476.	1.8	1
226	Techno-economic modelling for energy cost optimisation of households with electric vehicles and renewable sources under export limits. Renewable Energy, 2022, 198, 1254-1266.	4.3	9
227	Electric vehicles adoption behaviour: Synthesising the technology readiness index with environmentalism values and instrumental attributes. Transportation Research, Part A: Policy and Practice, 2022, 164, 60-81.	2.0	13
228	Requesting control and flexibility: Exploring Swedish user perspectives of electric vehicle smart charging. Energy Research and Social Science, 2022, 92, 102774.	3.0	8
229	A review on electric vehicle: Technologies, energy trading, and cyber security. Energy Reports, 2022, 8, 9662-9685.	2.5	37
230	An assessment of barriers and solutions for the deployment of electric vehicles in the Brazilian market. Transport Policy, 2022, 127, 218-229.	3.4	14
231	User preferences for EV charging, pricing schemes, and charging infrastructure. Transportation Research, Part A: Policy and Practice, 2022, 165, 120-143.	2.0	15
232	Optimal sizing of country-scale renewable energy systems towards green transportation sector in developing countries. Case Studies in Thermal Engineering, 2022, 39, 102442.	2.8	18
233	Battery electric vehicles: Progress, power electronic converters, strength (S), weakness (W), opportunity (O), and threats (T). International Journal of Thermofluids, 2022, 16, 100212.	4.0	24
234	Zero-Emission Delivery for Logistics and Transportation. , 2022, , 1-21.		1

	CITATION	CITATION REPORT	
#	Article	IF	CITATIONS
235	EV Charging on Ferries and in Terminals—A Business Model Perspective. Energies, 2022, 15, 6723.	1.6	0
236	An enhanced eco-driving strategy based on reinforcement learning for connected electric vehicles: cooperative velocity and lane-changing control. Journal of Intelligent and Connected Vehicles, 2022, 5, 316-332.	3.6	17
237	Electric Vehicle Cost in 2035: The impact of market penetration and charging strategies. Energy Economics, 2022, 114, 106263.	5.6	5
238	Multicriteria decision making and goal programming for determination of electric automobile aimed at sustainable green environment: a case study. Environment Systems and Decisions, 2023, 43, 211-231.	1.9	4
239	Attitudes of Drivers towards Electric Vehicles in Kuwait. Sustainability, 2022, 14, 12163.	1.6	7
240	Charging infrastructure access and operation to reduce the grid impacts of deep electric vehicle adoption. Nature Energy, 2022, 7, 932-945.	19.8	53
241	Microgrid Energy Management Using Electric Vehicles. Lecture Notes in Electrical Engineering, 2023, , 629-635.	0.3	1
242	Electric Vehicle Community Charging Hubs in Multi-Unit Dwellings: Scheduling and Techno-Economic Assessment. SSRN Electronic Journal, 0, , .	0.4	0
243	Decarbonising Hong Kong's Roads: Pathways Towards a Net-Zero Road Transport System. , 0, , .		1
244	Evaluation of Electric Vehicles Travel Capabilities in Relation to Charging Infrastructure in the Spanish Context. , 2022, , .		1
245	Application of Renewable Energy in Charging Station for Electric Vehicles: A Comprehensive Review. Lecture Notes in Electrical Engineering, 2023, , 221-240.	0.3	0
246	Empirical Analysis of the User Needs and the Business Models in the Norwegian Charging Infrastructure Ecosystem. World Electric Vehicle Journal, 2022, 13, 185.	1.6	5
247	The impact of plug-in behavior on the spatial–temporal flexibility of electric vehicle charging load. Sustainable Cities and Society, 2023, 88, 104263.	5.1	16
248	Are consumers in China's major cities happy with charging infrastructure for electric vehicles?. Applied Energy, 2022, 327, 120082.	5.1	8
249	Dynamic subsidies for synergistic development of charging infrastructure and electric vehicle adoption. Transport Policy, 2022, 129, 117-136.	3.4	6
250	Integration of charging behavior into infrastructure planning and management of electric vehicles: A systematic review and framework. Sustainable Cities and Society, 2023, 88, 104265.	5.1	22
251	Regional Electric Vehicle Fast Charging Network Design Using Common Public Data. World Electric Vehicle Journal, 2022, 13, 212.	1.6	3
252	A Critical Review on Charging Technologies of Electric Vehicles. Energies, 2022, 15, 8239.	1.6	18

		CITATION REPORT		
#	Article		IF	CITATIONS
253	Global Perspectives on and Research Challenges for Electric Vehicles. Vehicles, 2022, 4	, 1246-1276.	1.7	2
254	Consumers' preferences for electric vehicles: The role of status and reputation. Transport Research, Part D: Transport and Environment, 2023, 114, 103530.	ortation	3.2	12
255	What EV users say about policy efficacy: Evidence from Shanghai. Transport Policy, 20.	23, 132, 16-26.	3.4	4
256	Synthetic control methods for estimating the effect of purchase incentives on plug-in ovehicles sales in the United States. Transportation, 0, , .	electric	2.1	0
257	A Review on Standardizing Electric Vehicles Community Charging Service Operator Inf Applied Sciences (Switzerland), 2022, 12, 12096.	rastructure.	1.3	3
258	Powering the transition: Public charging stations and electric vehicle adoption in Mont International Journal of Sustainable Transportation, 2023, 17, 1097-1112.	real, Canada.	2.1	4
259	A Bibliometric Analysis and Review of Adoption Behaviour of Electric Vehicles. Transpo Developing Economies, 2023, 9, .	tation in	0.9	7
260	Real-world charging behavior and preferences of electric vehicles users in Germany. Int Journal of Sustainable Transportation, 2023, 17, 1032-1046.	ernational	2.1	4
261	Electric Vehicle Charging Modes, Technologies and Applications of Smart Charging. En 9471.	ergies, 2022, 15,	1.6	2
262	Mind the goal: Trade-offs between flexibility goals for controlled electric vehicle chargin strategies. IScience, 2023, 26, 105937.	ng	1.9	2
263	Planning for the majorities: are the charging needs and preferences of electric vehicle e similar to those of mainstream consumers?. , 2023, 2, .	arly adopters		2
264	Deciphering the factors associated with adoption of alternative fuel vehicles in Califorr investigation of latent attitudes, socio-demographics, and neighborhood effects. Trans Research, Part A: Policy and Practice, 2023, 168, 103535.	nia: An portation	2.0	0
265	Numerical modeling and performance analysis of an acid-alkaline aluminum-air cell. Ele Acta, 2023, 440, 141729.	ctrochimica	2.6	1
266	Electric vehicle behavior modeling and applications in vehicle-grid integration: An overv 2023, 268, 126647.	view. Energy,	4.5	18
267	Cloud based Smart EV Charging Station Recommender. , 2022, , .			3
268	Electric Vehicles-Building Nexus: Optimal Charging and Load Management Solutions. S Journal, 0, , .	SRN Electronic	0.4	0
269	Estimation of Public Charging Demand Using Cellphone Data and Points of Interest-Ba Segmentation. World Electric Vehicle Journal, 2023, 14, 35.	sed	1.6	0
270	Effects of expanding electric vehicle charging stations in California on the housing mar Sustainability, 2023, 6, 549-558.	ket. Nature	11.5	5

#	Article	IF	CITATIONS
271	Charging Infrastructure for Electric Vehicles: Problems and Development Prospects. Lecture Notes in Networks and Systems, 2023, , 239-248.	0.5	1
272	A Comprehensive Data Analysis of Electric Vehicle User Behaviors Toward Unlocking Vehicle-to-Grid Potential. IEEE Access, 2023, 11, 9149-9165.	2.6	8
273	Rural EV charging: The effects of charging behaviour and electricity tariffs. Energy Reports, 2023, 9, 2321-2334.	2.5	8
274	If the Government Pays for Full Home-Charger Installation, Would Affordable-Housing and Middle-Income Residents Buy Electric Vehicles?. Sustainability, 2023, 15, 4436.	1.6	0
275	An experimental analysis of consumer preferences towards public charging infrastructure. Transportation Research, Part D: Transport and Environment, 2023, 116, 103626.	3.2	3
276	Building-centric investigation into electric vehicle behavior: A survey-based simulation method for charging system design. Energy, 2023, 271, 127010.	4.5	15
277	Exploring the willingness of consumers to electrify their homes. Applied Energy, 2023, 338, 120791.	5.1	5
278	Seasonal hydrogen storage for residential on- and off-grid solar photovoltaics prosumer applications: Revolutionary solution or niche market for the energy transition until 2050?. Applied Energy, 2023, 340, 121009.	5.1	10
279	Emissions of electric vehicles in California's transition to carbon neutrality. Applied Energy, 2023, 339, 120974.	5.1	9
280	The configuration of charging stations: What do potential users want?. Travel Behaviour & Society, 2023, 32, 100579.	2.4	1
281	An agent-based simulation study for escaping the "chicken-egg―dilemma between electric vehicle penetration and charging infrastructure deployment. Resources, Conservation and Recycling, 2023, 194, 106966.	5.3	5
282	Charging private electric vehicles solely by photovoltaics: A battery-free direct-current microgrid with distributed charging strategy. Applied Energy, 2023, 341, 121058.	5.1	10
283	Value of different electric vehicle charging facility types under different availability situations: A South Korean case study of electric vehicle and internal combustion engine vehicle owners. Energy Policy, 2023, 174, 113436.	4.2	4
285	Isolated DC-DC Power Converters for Simultaneous Charging of Electric Vehicle Batteries: Research Review, Design, High-Frequency Transformer Testing, Power Quality Concerns, and Future. Sustainability, 2023, 15, 2813.	1.6	3
286	How to Cross the Chasm for the Electric Vehicle World's Laggards—A Case Study in Kuwait. World Electric Vehicle Journal, 2023, 14, 45.	1.6	3
287	Impacts of charging behavior on BEV charging infrastructure needs and energy use. Transportation Research, Part D: Transport and Environment, 2023, 116, 103645.	3.2	4
288	Push and pull strategies to increase the uptake of small electric vehicles. Transportation Research, Part D: Transport and Environment, 2023, 116, 103638.	3.2	0
289	Smart Mobility for Smart Cities—Electromobility Solution Analysis and Development Directions. Energies, 2023, 16, 1958.	1.6	3

#	Article	IF	CITATIONS
290	Willingness of Chinese households to pay extra for hydrogen-fuelled buses: A survey based on willingness to pay. Frontiers in Environmental Science, 0, 11, .	1.5	2
291	Strategies for beneficial electric vehicle charging to reduce peak electricity demand and store solar energy. Cell Reports Physical Science, 2023, 4, 101287.	2.8	9
292	Data-Driven Model for Identifying Factors Influencing Electric Vehicle Charging Demand: A Comparative Analysis of Early- and Maturity-Phases of Electric Vehicle Programs in Korea. Applied Sciences (Switzerland), 2023, 13, 3760.	1.3	3
293	Electric Vehicle Charging Scheduling Problem: Heuristics and Metaheuristic Approaches. SN Computer Science, 2023, 4, .	2.3	2
294	Zero-Emission Delivery for Logistics and Transportation. , 2023, , 1729-1749.		0
295	Optimal Deployment of Electric Vehicles' Fast-Charging Stations. Journal of Advanced Transportation, 2023, 2023, 1-14.	0.9	5
296	A Novel Strategy for Electric Vehicle Home Charging to Defer Investment on Distributed Energy Resources. , 2023, , .		1
318	A Study of Solar Powerd Charge Controlled Station For Electric Vehicles. , 2022, , .		0
322	Electric Vehicles Charging System for Fast and Safe Charging using LSTM based Gradient Boosted Regression Tree. , 2023, , .		3
331	Detection of e-Mobility-Based Attacks on the Power Grid. , 2023, , .		2
341	Promoting Sustainable Charging Through User Interface Interventions. , 2023, , .		0
345	Ladebedarf und Ladeinfrastrukturbedarf. , 2024, , 467-486.		0
358	Smart Charging Station for Electric Vehicles Using Solar Power. , 2023, , .		0
359	Modeling the Supply Chain Risk and Barriers to Electric Vehicle Technology Adoption in India. IFIP Advances in Information and Communication Technology, 2024, , 202-214.	0.5	0
366	Sustainable plug-in electric vehicle integration into power systems. , 2024, 1, 35-52.		0
370	The Impact of Electric Vehicles Insertion in the Brazilian Electric Matrix. , 2023, , .		0
376	Diffusion of Electric Vehicles and Public and Home Charging Stations in a Two-Sided Market. , 2023, , .		0
377	Spatio-temporal Flexibility Evaluation of Electric Taxi Fleets Using Taxi Travel Data in Beijing. , 2023, , .		0

#	Article	IF	CITATIONS
382	Increasing Equity in Access to Electric vehicles and Electrified infrastructure through Perceptions, Opinions and Knowledge of Underrepresented Communities in the Paso del Norte Region. , 0, , .		0
384	Electric Charging Demand Forecast and Capture for Infrastructure Placement Using Gravity Modelling: A Case Study. , 2023, , .		0