Fundamental understanding and practical challenges of batteries

Nature Energy 3, 373-386 DOI: 10.1038/s41560-018-0097-0

Citation Report

#	Article	IF	CITATIONS
1	Mitigating oxygen release in anionic-redox-active cathode materials by cationic substitution through rational design. Journal of Materials Chemistry A, 2018, 6, 24651-24659.	10.3	18
2	A high-rate aqueous rechargeable zinc ion battery based on the VS ₄ @rGO nanocomposite. Journal of Materials Chemistry A, 2018, 6, 23757-23765.	10.3	196
3	Cobalt-Free O2-Type Lithium-Rich Layered Oxides. Journal of the Electrochemical Society, 2018, 165, A3630-A3633.	2.9	32
4	Before Li Ion Batteries. Chemical Reviews, 2018, 118, 11433-11456.	47.7	1,492

Anionic Redox Activity in a Newly Znâ€Doped Sodium Layered Oxide 5 P2â€Na_{2/3}Mn_{1â[~]}<i>_y</i>Zn<i>_y</i>O₂</or>

6	Surface Doping to Enhance Structural Integrity and Performance of Liâ€Rich Layered Oxide. Advanced Energy Materials, 2018, 8, 1802105.	19.5	228
7	Direct Quantification of Anionic Redox over Long Cycling of Li-Rich NMC via Hard X-ray Photoemission Spectroscopy. ACS Energy Letters, 2018, 3, 2721-2728.	17.4	97
8	Rotating Ring Disk Electrode for Monitoring the Oxygen Release at High Potentials in Li-Rich Layered Oxides. Journal of the Electrochemical Society, 2018, 165, A3326-A3333.	2.9	6
9	Spectroscopic Signature of Oxidized Oxygen States in Peroxides. Journal of Physical Chemistry Letters, 2018, 9, 6378-6384.	4.6	80
10	Aegis of Lithium-Rich Cathode Materials via Heterostructured LiAlF ₄ Coating for High-Performance Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2018, 10, 33260-33268.	8.0	74
11	Role of disorder in limiting the true multi-electron redox in Îμ-LiVOPO ₄ . Journal of Materials Chemistry A, 2018, 6, 20669-20677.	10.3	21
12	Quantitative Analysis of Large Voltage Hysteresis of Lithium Excess Materials by Backstitch Charge and Discharge Method. Journal of the Electrochemical Society, 2018, 165, A2675-A2681.	2.9	4
13	Surface and Subsurface Reactions of Lithium Transition Metal Oxide Cathode Materials: An Overview of the Fundamental Origins and Remedying Approaches. Advanced Energy Materials, 2018, 8, 1802057.	19.5	207
14	Carbodiimides as energy materials: which directions for a reasonable future?. Dalton Transactions, 2018, 47, 10827-10832.	3.3	51
15	Manganeseâ€Oxideâ€Based Electrode Materials for Energy Storage Applications: How Close Are We to the Theoretical Capacitance?. Advanced Materials, 2018, 30, e1802569.	21.0	94
16	Two-dimensional sulfur-doped Mn3O4 quantum dots/reduced graphene oxide nanosheets as high-rate anode materials for lithium storage. Ceramics International, 2018, 44, 21734-21741.	4.8	14
17	Charge Transport in Single NCM Cathode Active Material Particles for Lithium-Ion Batteries Studied under Well-Defined Contact Conditions. ACS Energy Letters, 2019, 4, 2117-2123.	17.4	48
18	Fast chargeable P2–K~2/3[Ni1/3Mn2/3]O2 for potassium ion battery cathodes. Journal of Power Sources, 2019, 438, 226992.	7.8	31

ARTICLE IF CITATIONS Unraveling the anionic oxygen loss and related structural evolution within O3-type Na layered oxide 19 10.3 23 cathodes. Journal of Materials Chemistry A, 2019, 7, 20405-20413. Lattice doping regulated interfacial reactions in cathode for enhanced cycling stability. Nature 12.8 Communications, 2019, 10, 3447. An oxalate cathode for lithium ion batteries with combined cationic and polyanionic redox. Nature 21 12.8 65 Communications, 2019, 10, 3483. Manganese oxidation as the origin of the anomalous capacity of Mn-containing Li-excess cathode 164 materials. Nature Energy, 2019, 4, 639-646. Alkali-Glass Behavior in Honeycomb-Type Layered Li_{3–<i>x</i>}Na_{ći>x</i>}Ni₂SbO₆ Solid Solution. 23 4.0 15 Inorganic Chemistry, 2019, 58, 11546-11552. Surface-to-Bulk Redox Coupling through Thermally Driven Li Redistribution in Li- and Mn-Rich Layered 13.7 Cathode Materials. Journal of the American Chemical Society, 2019, 141, 12079-12086. Understanding Performance Degradation in Cationâ€Disordered Rockâ€Salt Oxide Cathodes. Advanced 25 19.5 84 Energy Materials, 2019, 9, 1901255. Superior electrochemical properties of Li[Li0.2Ni0.18Mn0.6Mg0.02]O2 cathode material with hierarchical microâ[^] nanostructure for lithium ion batteries. Journal of Alloys and Compounds, 2019, 5.5 26 805, 673-679. Revisiting the charge compensation mechanisms in 27 LiNi_{0.8}Co_{0.2â°y}Al_yO₂ systems. Materials Horizons, 12.2 62 2019, 6, 2112-2123. A 3D Trilayered CNT/MoSe₂/C Heterostructure with an Expanded MoSe₂ Interlayer Spacing for an Efficient Sodium Storage. Advanced Energy Materials, 2019, 9, 1900567. Probing the thermal effects of voltage hysteresis in anionic redox-based lithium-rich cathodes using 29 39.5 126 isothermal calorimetry. Nature Energy, 2019, 4, 647-656. Bismuth Nanoparticle@Carbon Composite Anodes for Ultralong Cycle Life and Highâ€Rate Sodiumâ€Ion 21.0 201 Batteries. Advanced Materials, 2019, 31, e1904771. Cooling Induced Surface Reconstruction during Synthesis of Highâ€Ni Layered Oxides. Advanced Energy $\mathbf{31}$ 19.5 34 Materials, 2019, 9, 1901915. Unraveling the Cationic and Anionic Redox Reactions in a Conventional Layered Oxide Cathode. ACS 17.4 Energy Letters, 2019, 4, 2836-2842. Elucidating and Mitigating the Degradation of Cationicâ€"Anionic Redox Processes in 33 Li_{1.2}Mn_{0.4}Ti_{0.4}O₂ Cation-Disordered Cathode 8.0 31 Materials. ACS Applied Materials & amp; Interfaces, 2019, 11, 45674-45682. Exploring the bottlenecks of anionic redox in Li-rich layered sulfides. Nature Energy, 2019, 4, 977-987. 34 123 35 Optimization for statistical tolerance allocation. Computer Aided Geometric Design, 2019, 75, 101788. 1.2 7 Excess Lithium in Transition Metal Layers of Epitaxially Grown Thin Film Cathodes of Li₂MnO₃ Leads to Rapid Loss of Covalency during First Battery Cycle. Journal 3.1 19 of Physical Chemistry C, 2019, 123, 28519-28526.

#	Article	IF	CITATIONS
37	Enhanced electrochemical performance of Li1.18Ni0.15Co0.15Mn0.52O2 cathode modified with aluminosilicate solid acid. Journal of Materials Science: Materials in Electronics, 2019, 30, 21240-21249.	2.2	1
38	Improved ability of artificial photosynthesis by using InGaN/AlGaN/GaN electrode. Applied Physics Express, 2019, 12, 111003.	2.4	3
39	Voltage fade mitigation in the cationic dominant lithium-rich NCM cathode. Communications Chemistry, 2019, 2, .	4.5	13
40	Restraining Oxygen Loss and Suppressing Structural Distortion in a Newly Ti-Substituted Layered Oxide P2-Na _{0.66} Li _{0.22} Ti _{0.15} Mn _{0.63} O ₂ . ACS Energy Letters, 2019, 4, 2409-2417.	17.4	112
41	Real-time monitoring of stress development during electrochemical cycling of electrode materials for Li-ion batteries: overview and perspectives. Journal of Materials Chemistry A, 2019, 7, 23679-23726.	10.3	56
42	Systematic evaluation of lithium-excess polyanionic compounds as multi-electron reaction cathodes. Nanoscale, 2019, 11, 16991-17003.	5.6	8
43	Review on anionic redox in sodium-ion batteries. Journal of Materials Chemistry A, 2019, 7, 23662-23678.	10.3	77
44	Revealing Electronic Signatures of Lattice Oxygen Redox in Lithium Ruthenates and Implications for High-Energy Li-Ion Battery Material Designs. Chemistry of Materials, 2019, 31, 7864-7876.	6.7	47
45	Lithia/(Ir, Li2IrO3) nanocomposites for new cathode materials based on pure anionic redox reaction. Scientific Reports, 2019, 9, 13180.	3.3	10
46	Stabilizing the oxygen lattice and reversible oxygen redox in Na-deficient cathode oxides. Journal of Power Sources, 2019, 439, 227086.	7.8	27
47	Stabilizing Low-Coordinated O Ions To Operate Cationic and Anionic Redox Chemistry of Li-Ion Battery Materials. ACS Applied Materials & Interfaces, 2019, 11, 37768-37778.	8.0	13
48	Recent advances in nanostructured electrode-electrolyte design for safe and next-generation electrochemical energy storage. Materials Today Nano, 2019, 8, 100057.	4.6	31
49	PEO/LAGP hybrid solid polymer electrolytes for ambient temperature lithium batteries by solvent-free, "one pot―preparation. Journal of Energy Storage, 2019, 26, 100947.	8.1	117
50	A novel P3-type Na _{2/3} Mg _{1/3} Mn _{2/3} O ₂ as high capacity sodium-ion cathode using reversible oxygen redox. Journal of Materials Chemistry A, 2019, 7, 1491-1498.	10.3	122
51	A highly integrated All-manganese battery with oxide nanoparticles supported on the cathode and anode by super-aligned carbon nanotubes. Journal of Materials Chemistry A, 2019, 7, 4494-4504.	10.3	21
52	Defect chemical studies on oxygen release from the Li-rich cathode material Li _{1.2} Mn _{0.6} Ni _{0.2} O _{2â^Î} . Journal of Materials Chemistry A, 2019, 7, 5009-5019.	10.3	47
53	Metal–oxygen decoordination stabilizes anion redox in Li-rich oxides. Nature Materials, 2019, 18, 256-265.	27.5	280
54	Facile synthesis of Li-rich layered oxides with spinel-structure decoration as high-rate cathode for lithium-ion batteries. Electrochimica Acta, 2019, 299, 844-852.	5.2	41

#	Article	IF	CITATIONS
55	Enhanced cycling stability of boron-doped lithium-rich layered oxide cathode materials by suppressing transition metal migration. Journal of Materials Chemistry A, 2019, 7, 3375-3383.	10.3	49
56	Revealing the Electrochemical Mechanism of Cationic/Anionic Redox on Li-Rich Layered Oxides via Controlling the Distribution of Primary Particle Size. ACS Applied Materials & Interfaces, 2019, 11, 25796-25803.	8.0	8
57	Unraveling Oxygen Evolution in Li-Rich Oxides: A Unified Modeling of the Intermediate Peroxo/Superoxo-like Dimers. Journal of the American Chemical Society, 2019, 141, 10751-10759.	13.7	82
58	Atomicâ€Scale Insights into Surface Lattice Oxygen Activation at the Spinel/Perovskite interface of Co ₃ O ₄ /La _{0.3} Sr _{0.7} CoO ₃ . Angewandte Chemie - International Edition, 2019, 58, 11720-11725.	13.8	140
59	Ethylene Carbonateâ€Free Electrolytes for Highâ€Nickel Layered Oxide Cathodes in Lithiumâ€Ion Batteries. Advanced Energy Materials, 2019, 9, 1901152.	19.5	78
60	Atomic cale Insights into Surface Lattice Oxygen Activation at the Spinel/Perovskite interface of Co 3 O 4 /La 0.3 Sr 0.7 CoO 3. Angewandte Chemie, 2019, 131, 11846-11851.	2.0	26
61	Ni-based cathode materials for Na-ion batteries. Nano Research, 2019, 12, 2018-2030.	10.4	67
62	Novel Ordered Rocksalt-Type Lithium-Rich Li ₂ Ru _{1–<i>x</i>/sub>Ni_{<i>x</i>}O_{3â[^]î´} (0.3 ≤i>x â‰∞0.5 Cathode Material with Tunable Anionic Redox Potential. ACS Applied Energy Materials, 2019, 2, 5933-5944.}) _{5.1}	22
63	Cathode coating using LiInO2-LiI composite for stable sulfide-based all-solid-state batteries. Scientific Reports, 2019, 9, 8099.	3.3	30
64	Tracking electrochemical reactions inside organic electrodes by operando IR spectroscopy. Energy Storage Materials, 2019, 21, 347-353.	18.0	32
65	Probing the Structural Transition Kinetics and Charge Compensation of the P2-Na _{0.78} Al _{0.05} Ni _{0.33} Mn _{0.60} O ₂ Cathode for Sodium Ion Batteries. ACS Applied Materials & Interfaces, 2019, 11, 24122-24131.	8.0	51
66	Intercalation of Layered Materials from Bulk to 2D. Advanced Materials, 2019, 31, e1808213.	21.0	120
67	Unveiling the Effect of Voltage Regulation System on the Structure and Electrochemical Properties of Lithium-Rich Cathode Materials. Journal of the Electrochemical Society, 2019, 166, A1481-A1489.	2.9	8
68	Manganeseâ€Based Naâ€Rich Materials Boost Anionic Redox in Highâ€Performance Layered Cathodes for Sodiumâ€Ion Batteries. Advanced Materials, 2019, 31, e1807770.	21.0	113
69	Li+ diffusion kinetics of SnS2 nanoflowers enhanced by reduced graphene oxides with excellent electrochemical performance as anode material for lithium-ion batteries. Journal of Alloys and Compounds, 2019, 794, 285-293.	5.5	26
70	Distinction between Intrinsic and X-ray-Induced Oxidized Oxygen States in Li-Rich 3d Layered Oxides and LiAlO ₂ . Journal of Physical Chemistry C, 2019, 123, 13201-13207.	3.1	33
72	Impact of Structural Transformation on Electrochemical Performances of Li-Rich Cathode Materials: The Case of Li ₂ RuO ₃ . Journal of Physical Chemistry C, 2019, 123, 13491-13499.	3.1	29
73	Investigation of Li 1.17 Ni 0.20 Mn 0.53 Co 0.10 O 2 as an Interesting Li―and Mnâ€Rich Layered Oxide Cathode Material through Electrochemistry, Microscopy, and Inâ€Situ Electrochemical Dilatometry. ChemElectroChem, 2019, 6, 2812-2819.	3.4	16

#	Article	IF	CITATIONS
74	A cross-like hierarchical porous lithium-rich layered oxide with (110)-oriented crystal planes as a high energy density cathode for lithium ion batteries. Journal of Materials Chemistry A, 2019, 7, 13120-13129.	10.3	24
75	The Synergic Effects of Zr Doping and Li ₂ TiO ₃ Coating on the Crystal Structure and Electrochemical Performances of Li-Rich Li _{1.2} Ni _{0.2} Mn _{0.6} O ₂ . Journal of the Electrochemical Society. 2019. 166. A1323-A1329.	2.9	19
76	DABCOnium: Ein effizienter und Hochspannungsâ€stabiler Singulettâ€Sauerstoffâ€ŁÃ¶scher für Metallâ€O 2 â€Zellen. Angewandte Chemie, 2019, 131, 6605-6609.	2.0	10
77	Understanding the Low-Voltage Hysteresis of Anionic Redox in Na ₂ Mn ₃ O ₇ . Chemistry of Materials, 2019, 31, 3756-3765.	6.7	112
78	Morphology inheritance synthesis of carbon-coated Li3VO4 rods as anode for lithium-ion battery. Science China Materials, 2019, 62, 1105-1114.	6.3	16
79	Hierarchical flower-like Fe2O3 mesoporous nanosheets with superior electrochemical lithium storage performance. Journal of Energy Storage, 2019, 23, 363-370.	8.1	22
80	Graphene oxide spontaneous reduction and self-assembly on the zinc metal surface enabling a dendrite-free anode for long-life zinc rechargeable aqueous batteries. Applied Surface Science, 2019, 481, 852-859.	6.1	206
81	Unified picture of anionic redox in Li/Na-ion batteries. Nature Materials, 2019, 18, 496-502.	27.5	335
82	Atomistic insight into ordered defect superstructures at novel grain boundaries in CuO nanosheets: From structures to electronic properties. Nano Research, 2019, 12, 1099-1104.	10.4	6
83	Li-Rich Layered Oxides and Their Practical Challenges: Recent Progress and Perspectives. Electrochemical Energy Reviews, 2019, 2, 277-311.	25.5	158
84	Double-helix-superstructure aqueous binder to boost excellent electrochemical performance in Li-rich layered oxide cathode. Journal of Power Sources, 2019, 420, 29-37.	7.8	32
85	Mesoporous dominant cashewnut sheath derived bio-carbon anode for LIBs and SIBs. Electrochimica Acta, 2019, 304, 175-183.	5.2	24
86	Fast Cationic and Anionic Redox Reactions in Li ₂ RuO ₃ -Li ₂ 4 Positive Electrode Materials. ACS Applied Energy Materials, 2019, 2, 1594-1599.	5.1	6
87	Understanding the Discrepancy of Defect Kinetics on Anionic Redox in Lithium-Rich Cathode Oxides. ACS Applied Materials & Interfaces, 2019, 11, 14023-14034.	8.0	30
88	Chemical and structural origin of lattice oxygen oxidation in Co–Zn oxyhydroxide oxygen evolution electrocatalysts. Nature Energy, 2019, 4, 329-338.	39.5	977
89	DABCOnium: An Efficient and Highâ€Voltage Stable Singlet Oxygen Quencher for Metal–O ₂ Cells. Angewandte Chemie - International Edition, 2019, 58, 6535-6539.	13.8	72
90	Interphases in Electroactive Suspension Systems: Where Chemistry Meets Mesoscale Physics. Batteries and Supercaps, 2019, 2, 579-590.	4.7	9
91	Stabilization of O–O Bonds by d ^O Cations in Li _{4+<i>x</i>} Ni _{1–<i>x</i>} WO ₆ (0 ≤i>x ≤0.25) Rock Salt Oxio as the Origin of Large Voltage Hysteresis. Journal of the American Chemical Society, 2019, 141, 7333-7346.	de t 3.7	61

#	Article	IF	CITATIONS
92	Fundamental insights about interlayer cation migration in Li-ion electrodes at high states of charge. Journal of Materials Chemistry A, 2019, 7, 11996-12007.	10.3	12
93	Tailoring NaVO3 as a novel stable cathode for lithium rechargeable batteries. Electrochimica Acta, 2019, 307, 224-231.	5.2	7
94	Study the Mechanism of Enhanced Li Storage Capacity through Decreasing Internal Resistance by High Electronical Conductivity via Solâ€gel Electrospinning of Co 3 O 4 Carbon Nanofibers. ChemistrySelect, 2019, 4, 3542-3546.	1.5	11
95	Lithium-Doping Stabilized High-Performance P2–Na _{0.66} Li _{0.18} Fe _{0.12} Mn _{0.7} O ₂ Cathode for Sodium Ion Batteries. Journal of the American Chemical Society, 2019, 141, 6680-6689.	13.7	187
96	Thermal and structural instability of sodium-iron carbonophosphate ball milled with carbon. Electrochimica Acta, 2019, 302, 119-129.	5.2	16
97	Remarkable electrochemical performance of 0.5Li2MnO3·0.5LiNi0.5Mn0.3Co0.2O2 synthesized by means of a citric acid–aided route. Journal of Solid State Electrochemistry, 2019, 23, 3383-3389.	2.5	3
98	Unveiling the benefits of potassium doping on the structural integrity of Li–Mn-rich layered oxides during prolonged cycling by dual-mode EPR spectroscopy. Physical Chemistry Chemical Physics, 2019, 21, 24017-24025.	2.8	19
99	Lithia-Based Nanocomposites Activated by Li2RuO3 for New Cathode Materials Rooted in the Oxygen Redox Reaction. Nanoscale Research Letters, 2019, 14, 378.	5.7	8
100	Tuning surface conductivity and stability for high-performance Li- and Mn-rich cathode materials. New Journal of Chemistry, 2019, 43, 18943-18950.	2.8	9
101	Strategies to Break the Scaling Relation toward Enhanced Oxygen Electrocatalysis. Matter, 2019, 1, 1494-1518.	10.0	316
102	Simultaneous Anionic and Cationic Redox in the Mo ₃ S ₁₁ Polymer Electrode of a Sodium-Ion Battery. Journal of Physical Chemistry C, 2019, 123, 30856-30862.	3.1	9
103	Lithiophilic montmorillonite serves as lithium ion reservoir to facilitate uniform lithium deposition. Nature Communications, 2019, 10, 4973.	12.8	144
104	All-temperature batteries enabled by fluorinated electrolytes with non-polar solvents. Nature Energy, 2019, 4, 882-890.	39.5	557
105	Structure and electrochemical performance modulation of a LiNi _{0.8} Co _{0.1} Mn _{0.1} O ₂ cathode material by anion and cation co-doping for lithium ion batteries. RSC Advances, 2019, 9, 36849-36857.	3.6	26
106	Ingestible electronics for diagnostics and therapy. Nature Reviews Materials, 2019, 4, 83-98.	48.7	146
107	Electronic Structure and Properties of Lithium-Rich Complex Oxides. ACS Applied Electronic Materials, 2019, 1, 75-81.	4.3	10
108	A Cobaltâ€Free Li(Li 0.16 Ni 0.19 Fe 0.18 Mn 0.46)O 2 Cathode for Lithiumâ€Ion Batteries with Anionic Redox Reactions. ChemSusChem, 2019, 12, 1162-1168.	6.8	20
109	Facile construction of two-dimensional coordination polymers with a well-designed redox-active organic linker for improved lithium ion battery performance. Science China Chemistry, 2019, 62, 602-608.	8.2	29

#	Article	IF	CITATIONS
110	High Reversibility of Lattice Oxygen Redox Quantified by Direct Bulk Probes of Both Anionic and Cationic Redox Reactions. Joule, 2019, 3, 518-541.	24.0	225
111	Tuning Anionic Redox Activity and Reversibility for a Highâ€Capacity Liâ€Rich Mnâ€Based Oxide Cathode via an Integrated Strategy. Advanced Functional Materials, 2019, 29, 1806706.	14.9	121
112	High-Performance Li-Rich Layered Transition Metal Oxide Cathode Materials for Li-Ion Batteries. Journal of the Electrochemical Society, 2019, 166, A5333-A5342.	2.9	33
113	In operando EPR investigation of redox mechanisms in LiCoO2. Chemical Physics Letters, 2019, 716, 231-236.	2.6	23
114	Interpreting Abnormal Charge–Discharge Plateau Migration in CuxS during Long-Term Cycling. ACS Applied Materials & Interfaces, 2019, 11, 3961-3970.	8.0	31
115	Fingerprint Oxygen Redox Reactions in Batteries through High-Efficiency Mapping of Resonant Inelastic X-ray Scattering. Condensed Matter, 2019, 4, 5.	1.8	44
116	Composite‧tructure Materials for Naâ€lon Batteries. Small Methods, 2019, 3, 1800205.	8.6	36
117	Recent progress of mesoscience in design of electrocatalytic materials for hydrogen energy conversion. Particuology, 2020, 48, 19-33.	3.6	12
118	Strategien für kostengünstige und leistungsstarke Dualâ€lonenâ€Batterien. Angewandte Chemie, 2020, 132 3830-3861.	² , 2.0	40
119	Strategies towards Lowâ€Cost Dualâ€Ion Batteries with High Performance. Angewandte Chemie - International Edition, 2020, 59, 3802-3832.	13.8	242
120	Achieving high energy density and high power density with pseudocapacitive materials. Nature Reviews Materials, 2020, 5, 5-19.	48.7	1,138
121	A review on cathode materials for advanced lithium ion batteries: microstructure designs and performance regulations. Nanotechnology, 2020, 31, 012001.	2.6	45
122	La-doping and carbon-coating collaboratively enhance the cycling and rate properties of LiFeBO3 for Li-ion battery. Chemical Physics Letters, 2020, 741, 137090.	2.6	7
123	Thermally Induced Structural Reordering in Li- and Mn-Rich Layered Oxide Li Ion Cathode Materials. Chemistry of Materials, 2020, 32, 1210-1223.	6.7	16
124	Hierarchical nanoarchitectured hybrid electrodes based on ultrathin MoSe ₂ nanosheets on 3D ordered macroporous carbon frameworks for high-performance sodium-ion batteries. Journal of Materials Chemistry A, 2020, 8, 2843-2850.	10.3	69
125	Influence of Synthesis Routes on the Crystallography, Morphology, and Electrochemistry of Li ₂ MnO ₃ . ACS Applied Materials & Interfaces, 2020, 12, 5939-5950.	8.0	20
126	The Structural Stability of P2-Layered Na-Based Electrodes during Anionic Redox. Joule, 2020, 4, 420-434.	24.0	89
127	Dual-phase MoS ₂ as a high-performance sodium-ion battery anode. Journal of Materials Chemistry A, 2020, 8, 2114-2122.	10.3	160

	CITATION	N REPORT	
#	Article	IF	CITATIONS
128	Elucidation of the origin of voltage hysteresis in xLi2MnO3â^™(1â^'x)LiCoO2 using backstitch charge-discharge method. Electrochimica Acta, 2020, 334, 135623.	5.2	6
129	Anionic and Cationic Redox Processes in β-Li ₂ IrO ₃ and Their Structural Implications on Electrochemical Cycling in a Li-Ion Cell. Journal of Physical Chemistry C, 2020, 124, 2771-2781.	3.1	17
130	A Redoxâ€Active 2D Metal–Organic Framework for Efficient Lithium Storage with Extraordinary High Capacity. Angewandte Chemie, 2020, 132, 5311-5315.	2.0	34
131	A Redoxâ€Active 2D Metal–Organic Framework for Efficient Lithium Storage with Extraordinary High Capacity. Angewandte Chemie - International Edition, 2020, 59, 5273-5277.	13.8	189
132	Electrode Degradation in Lithium-Ion Batteries. ACS Nano, 2020, 14, 1243-1295.	14.6	484
133	Multifunctional inorganic nanomaterials for energy applications. Nanoscale, 2020, 12, 14-42.	5.6	89
134	<i>Ab initio</i> prediction of two-dimensional Si ₃ C enabling high specific capacity as an anode material for Li/Na/K-ion batteries. Journal of Materials Chemistry A, 2020, 8, 4274-4282.	10.3	68
135	In-situ generate spinel phase on a glucose-derived carbon-coated lithium-rich layered oxide cathode materials and its improved electrochemical performance. Ionics, 2020, 26, 2177-2186.	2.4	3
136	Dehydration-triggered electronic structure modulation enables high-performance quasi-solid-state Li-ion capacitors. Chemical Engineering Journal, 2020, 392, 123795.	12.7	4
137	Identifying Anionic Redox Activity within the Related O3- and P2-Type Cathodes for Sodium-Ion Battery. ACS Applied Materials & Interfaces, 2020, 12, 851-857.	8.0	28
138	Reduced Lithium/Nickel Disorder Degree of Sodiumâ€Doped Lithiumâ€Rich Layered Oxides for Cathode Materials: Experiments and Calculations. ChemElectroChem, 2020, 7, 246-251.	3.4	17
139	Nanoscale Phenomena in Lithium-Ion Batteries. Chemical Reviews, 2020, 120, 6684-6737.	47.7	142
140	Ceramics for electrochemical storage. , 2020, , 549-709.		21
141	Charge Compensation Mechanism of Lithium-Excess Metal Oxides with Different Covalent and Ionic Characters Revealed by <i>Operando</i> Soft and Hard X-ray Absorption Spectroscopy. Chemistry of Materials, 2020, 32, 139-147.	6.7	37
142	Proton Inserted Manganese Dioxides as a Reversible Cathode for Aqueous Zn-Ion Batteries. ACS Applied Energy Materials, 2020, 3, 319-327.	5.1	44
143	Insights of the anionic redox in P2–Na0.67Ni0.33Mn0.67O2. Nano Energy, 2020, 78, 105285.	16.0	49
144	Recent developments and challenges of Li-rich Mn-based cathode materials for high-energy lithium-ion batteries. Materials Today Energy, 2020, 18, 100518.	4.7	36
145	Surface Modification of Liâ€Rich Mnâ€Based Layered Oxide Cathodes: Challenges, Materials, Methods, and Characterization. Advanced Energy Materials, 2020, 10, 2002506.	19.5	108

#	Article	IF	CITATIONS
146	Bismuth dots imbedded in ultralong nitrogen-doped carbon tubes for highly efficient lithium ion storage. Inorganic Chemistry Frontiers, 2020, 7, 4854-4864.	6.0	4
147	High-Efficiency Electrolyte for Li-Rich Cathode Materials Achieving Enhanced Cycle Stability and Suppressed Voltage Fading Capable of Practical Applications on a Li-Ion Battery. ACS Applied Materials & Interfaces, 2020, 12, 49666-49679.	8.0	15
148	Improved Adsorption and Migration of Divalent Ions Over C4N Nanosheets: Potential Anode for Divalent Batteries. Surfaces and Interfaces, 2020, 21, 100758.	3.0	5
149	Enabling Facile Anionic Kinetics through Cationic Redox Mediator in Li-Rich Layered Cathodes. ACS Energy Letters, 2020, 5, 3535-3543.	17.4	21
150	Advances in the chemistry and applications of alkali-metal–gas batteries. Nature Reviews Chemistry, 2020, 4, 566-583.	30.2	70
151	High-Performance NaVO ₃ with Mixed Cationic and Anionic Redox Reactions for Na-Ion Battery Applications. Chemistry of Materials, 2020, 32, 8836-8844.	6.7	14
152	Surface Reconstruction and Phase Transition on Vanadium–Cobalt–Iron Trimetal Nitrides to Form Active Oxyhydroxide for Enhanced Electrocatalytic Water Oxidation. Advanced Energy Materials, 2020, 10, 2002464.	19.5	155
153	Vacancy-Enhanced Oxygen Redox Reversibility in P3-Type Magnesium-Doped Sodium Manganese Oxide Na _{0.67} Mg _{0.2} Mn _{0.8} O ₂ . ACS Applied Energy Materials, 2020, 3, 10423-10434.	5.1	17
154	Solid state chemistry for developing better metal-ion batteries. Nature Communications, 2020, 11, 4976.	12.8	125
155	Inhibition of transition metals dissolution in cobalt-free cathode with ultrathin robust interphase in concentrated electrolyte. Nature Communications, 2020, 11, 3629.	12.8	137
156	Anionic redox reactions and structural degradation in a cation-disordered rock-salt Li _{1.2} Ti _{0.4} Mn _{0.4} O ₂ cathode material revealed by solid-state NMR and EPR. Journal of Materials Chemistry A, 2020, 8, 16515-16526.	10.3	37
157	Interpenetrated tunnel routes in silicon/carbon hollow sphere anodes to boost their lithium storage. Materials Chemistry Frontiers, 2020, 4, 2782-2790.	5.9	8
158	Trends in Alkaline Hydrogen Evolution Activity on Cobalt Phosphide Electrocatalysts Doped with Transition Metals. Cell Reports Physical Science, 2020, 1, 100136.	5.6	46
159	Fully Exploited Oxygen Redox Reaction by the Interâ€Diffused Cations in Coâ€Free Liâ€Rich Materials for High Performance Liâ€Ion Batteries. Advanced Science, 2020, 7, 2001658.	11.2	17
160	Stabilizing the cationic/anionic redox chemistry of Li-rich layered cathodes by tuning the upper cut-off voltage for high energy-density lithium-ion batteries. Journal of Materials Chemistry A, 2020, 8, 14214-14222.	10.3	25
161	Chemical Vapor Deposition-Assisted Fabrication of Self-Assembled Co/MnO@C Composite Nanofibers as Advanced Anode Materials for High-Capacity Li-Ion Batteries. Langmuir, 2020, 36, 14342-14351.	3.5	6
162	Probing the charged state of layered positive electrodes in sodium-ion batteries: reaction pathways, stability and opportunities. Journal of Materials Chemistry A, 2020, 8, 24833-24867.	10.3	29
163	Data-driven assessment of electrode calendering process by combining experimental results, in silico mesostructures generation and machine learning, Journal of Power Sources, 2020, 480, 229103.	7.8	70

ARTICLE IF CITATIONS # Improved Electrochemical Performance of 0.5Li2MnO3·0.5LiNi0.5Mn0.5O2 Cathode Materials for Lithium Ion Batteries Synthesized by Ionic-Liquid-Assisted Hydrothermal Method. Frontiers in 36 164 3.6 Chemistry, 2020, 8, 729. A high-capacity cathode for rechargeable K-metal battery based on reversible superoxide-peroxide conversion. National Science Review, 2021, 8, nwaa287. Flexible Phosphorus-Doped Graphene/Metalâ€"Organic Framework-Derived Porous Fe₂O₃ Anode for Lithium-Ion Battery. ACS Applied Energy Materials, 2020, 3, 166 5.164 11900-11906. The impact of oxygen evolution and cation migration on the cycling stability of a Li-rich Li[Li_{0.2}Mn_{0.6}Ni_{0.1}Co_{0.1}]O₂ positive electrode. Journal of Materials Chemistry A, 2020, 8, 18143-18153. Mn⁴⁺-Substituted Li-Rich Li_{1.2}Mn_{0.4}³⁺Mn<i>_x</i>⁴⁺Ti_{0.4–<i>x</&ø/sub>C/sub>2} 168 Materials with High Energy Density. ACS Applied Materials & amp; Interfaces, 2020, 12, 40347-40354. Structural Distortion Induced by Manganese Activation in a Lithium-Rich Layered Cathode. Journal of the American Chemical Society, 2020, 142, 14966-14973. 169 13.7 79 Sulfur-based redox chemistry for electrochemical energy storage. Coordination Chemistry Reviews, 170 18.8 28 2020, 422, 213445. How inactive d0 transition metal controls anionic redox in disordered Li-rich oxyfluoride cathodes. 171 18.0 16 Energy Storage Materials, 2020, 32, 253-260. Impact of Newly Developed Styrene–Butadiene–Rubber Binder on the Electrode Performance of 172 High-Voltage LiNi_{0.5}Mn_{1.5}O₄ Electrode. ACS Applied Energy 22 5.1 Materials, 2020, 3, 7978-7987. Unraveling Na and F coupling effects in stabilizing Li, Mn-rich layered oxide cathodes via local 18.0 ordering modification. Energy Storage Materials, 2020, 31, 459-469. Lattice oxygen activation enabled by high-valence metal sites for enhanced water oxidation. Nature 174 337 12.8 Communications, 2020, 11, 4066. Joint Cationic and Anionic Redox Chemistry for Advanced Mg Batteries. Nano Letters, 2020, 20, 9.1 6852-6858. Advances in soft X-ray RIXS for studying redox reaction states in batteries. Dalton Transactions, 2020, 176 3.3 19 49, 13519-13527. Novel Mg7V4O16(OH)2·H2O and Mg3(VO4)2: preparation, characterization, and performance as lithium-ion anode materials. Journal of Materials Science: Materials in Electronics, 2020, 31, 2.2 19931-19942. Evaluation of oxygen contribution on delithiation process of Li-rich layered 3d transition metal 178 1.9 4 oxides. Materials Today Communications, 2020, 25, 101673. Tuning Both Anionic and Cationic Redox Chemistry of Li-Rich Li_{1.2}Mn_{0.6}Ni_{0.2}O₂ via a "Three-in-One―Strategy. 179 Chemistry of Materials, 2020, 32, 9404-9414. Influence of Microwave Irradiation and Combustion Fuels on the Rate Capability and Cycle 180 Performance of Li 1.2 Mn 0.52 Ni 0.13 Co 0.13 Al 0.02 O 2 Layered Material. Electroanalysis, 2020, 32, 2.9 0 3159-3169. Decoding of Oxygen Network Distortion in a Layered High-Rate Anode by <i>In Situ</i> Investigation of 14.6 a Single Microelectrode. ACS Nano, 2020, 14, 11753-11764.

#	Article	IF	CITATIONS
182	Na ₂ S Treatment and Coherent Interface Modification of the Li-Rich Cathode to Address Capacity and Voltage Decay. ACS Applied Materials & Interfaces, 2020, 12, 42660-42668.	8.0	26
183	First-cycle voltage hysteresis in Li-rich 3d cathodes associated with molecular O2 trapped in the bulk. Nature Energy, 2020, 5, 777-785.	39.5	282
184	Synthesis of Nitrogen and Phosphorus Dual-Doped Graphene Oxide as High-Performance Anode Material for Lithium-Ion Batteries. Journal of Nanoscience and Nanotechnology, 2020, 20, 7673-7679.	0.9	9
185	Li-rich cathodes for rechargeable Li-based batteries: reaction mechanisms and advanced characterization techniques. Energy and Environmental Science, 2020, 13, 4450-4497.	30.8	219
186	Impact of Oxygen Defects on Electrochemical Processes and Charge Compensation of Li-Rich Cathode Material Li _{1.2} Mn _{0.6} Ni _{0.2} O _{2â^îî} . ACS Applied Energy Materials, 2020, 3, 9703-9713.	5.1	24
187	Anion–Cation Synergetic Contribution to High Capacity, Structurally Stable Cathode Materials for Sodiumâ€lon Batteries. Advanced Functional Materials, 2020, 30, 2005164.	14.9	45
188	Insights on the Activation and Stabilization of NCA Cathode Interface: Surface Chemical State Modulations of Aluminum-Mediated Li _{0.73} CoO ₂ Coatings. ACS Sustainable Chemistry and Engineering, 2020, 8, 14975-14984.	6.7	12
189	In Situ Replenishment of Formation Cycle Lithiumâ€lon Loss for Enhancing Battery Life. Advanced Functional Materials, 2020, 30, 2003668.	14.9	29
190	Redox Mechanism in Na-Ion Battery Cathodes Probed by Advanced Soft X-Ray Spectroscopy. Frontiers in Chemistry, 2020, 8, 816.	3.6	12
191	Dislocation and oxygen-release driven delithiation in Li2MnO3. Nature Communications, 2020, 11, 4452.	12.8	41
192	Pseudoâ€Bonding and Electricâ€Field Harmony for Liâ€Rich Mnâ€Based Oxide Cathode. Advanced Functional Materials, 2020, 30, 2004302.	14.9	149
193	Deciphering the Origin of High Electrochemical Performance in a Novel Ti-Substituted P2/O3 Biphasic Cathode for Sodium-Ion Batteries. ACS Applied Materials & Interfaces, 2020, 12, 41485-41494.	8.0	31
194	Influence of the Fe-Si-O framework in crystal structure on the phase stability and electrochemical performance of Li2FeSiO4 cathode. Solid State Ionics, 2020, 356, 115436.	2.7	5
195	Redox Chemistry and the Role of Trapped Molecular O ₂ in Li-Rich Disordered Rocksalt Oxyfluoride Cathodes. Journal of the American Chemical Society, 2020, 142, 21799-21809.	13.7	77
196	Anode Materials for Aqueous Zinc Ion Batteries: Mechanisms, Properties, and Perspectives. ACS Nano, 2020, 14, 16321-16347.	14.6	340
197	Recent Advances in the Development of Singleâ€Atom Catalysts for Oxygen Electrocatalysis and Zinc–Air Batteries. Advanced Energy Materials, 2020, 10, 2003018.	19.5	181
198	Co-Free Layered Cathode Materials for High Energy Density Lithium-Ion Batteries. ACS Energy Letters, 2020, 5, 1814-1824.	17.4	117
199	Role of Redoxâ€Inactive Transitionâ€Metals in the Behavior of Cationâ€Disordered Rocksalt Cathodes. Small, 2020, 16, e2000656.	10.0	37

ARTICLE IF CITATIONS Capacity Improvement by Nitrogen Doping to Lithium-Rich Cathode Materials with Stabilization Effect 200 5.1 18 of Oxide Ions Redox. ACS Applied Energy Materials, 2020, 3, 4162-4167. Highâ€Voltage Oxygenâ€Redoxâ€Based Cathode for Rechargeable Sodiumâ€Ion Batteries. Advanced Energy 19.5 Materials, 2020, 10, 2001111. Uncovering the Structural Evolution in Na-Excess Layered Cathodes for Rational Use of an Anionic 202 8.0 9 Redox Reaction. ACS Applied Materials & amp; Interfaces, 2020, 12, 29203-29211. Superior fast-charging capability of graphite anode via facile surface treatment for lithium-ion 4.4 batteries. Microporous and Mesoporous Materials, 2020, 305, 110325. Toward Establishing Electronic and Phononic Signatures of Reversible Lattice Oxygen Oxidation in 204 6.7 17 Lithium Transition Metal Oxides For Li-Ion Batteries. Chemistry of Materials, 2020, 32, 5502-5514. Exploring the artificially induced nonstoichiometric effect of Li₂RuO₃ as a 30.8 26 reactive promoter on electrocatalytic behavior. Energy and Environmental Science, 2020, 13, 2167-2177. SiO@C/TiO2 nanospheres with dual stabilized architecture as anode material for high-performance 206 5.5 17 Li-ion battery. Journal of Alloys and Compounds, 2020, 836, 155407. Symmetry-Induced Emergent Electrochemical Properties for Rechargeable Batteries. Cell Reports 5.6 Physical Ścience, 2020, 1, 100066. Dual-metal-driven Selective Pathway of Nitrogen Reduction in Orderly Atomic-hybridized 208 9.1 69 Re₂MnS₆ Ultrathin Nanosheets. Nano Letters, 2020, 20, 4960-4967. Synergistic effect of uniform lattice cation/anion doping to improve structural and electrochemical 209 performance stability for Li-rich cathode materials. Nanotechnology, 2020, 31, 455704. Design Rules for High-Valent Redox in Intercalation Electrodes. Joule, 2020, 4, 1369-1397. 210 24.0 80 Anionic Redox Reactions in Manganese-Based Binary Layered Oxides for Advanced Sodium-Ion Batteries. Chemistry of Materials, 2020, 32, 5541-5549. Activating the lattice oxygen in (Bi_{0.5}Co_{0.5})₂O₃ by 212 vacancy modulation for efficient electrochemical water oxidation. Journal of Materials Chemistry A, 10.3 50 2020, 8, 13150-13159. Tuning MnCo2O4 nanowire arrays on carbon cloth as an efficient cathode catalyst for Li–O2 batteries. Electrochimica Acta, 2020, 353, 136572. 5.2 Novel structurally-stable Na-rich Na₄V₂O₇ cathode material 214 with high reversible capacity by utilization of anion redox activity. Chemical Communications, 2020, 4.1 8 56, 8245-8248. Perspectiveâ€"Surface Reactions of Electrolyte with LiNi_xCo_yMn_zO₂ Cathodes for Lithium Ion Batteries. Journal of the Electrochemical Society, 2020, 167, 100519. Recent Developments for Aluminumâ€"Air Batteries. Electrochemical Energy Reviews, 2020, 3, 344-369. 216 25.596

CITATION REPORT

217Computational framework for a systematic investigation of anionic redox process in Li-rich
compounds. Npj Computational Materials, 2020, 6, .8.717

#	Article	IF	CITATIONS
218	The mechanism of V-modification in Li2CoSiO4 cathode material for Li-ion batteries: A combined first-principles and experimental study. Electrochimica Acta, 2020, 353, 136564.	5.2	9
219	Does Spinel Serve as a Rigid Framework for Oxygen Redox?. Chemistry of Materials, 2020, 32, 7181-7187.	6.7	5
220	Flow-Oriented Synthesis of Li ₂ S and Li ₃ PS ₄ ·3THF: Opening Up a Completely Solvent-Based Solid Electrolyte Value Chain. ACS Applied Energy Materials, 2020, 3, 6937-6945.	5.1	17
221	Unraveling the Rapid Redox Behavior of Liâ€Excess 3dâ€Transition Metal Oxides for High Rate Capability. Advanced Energy Materials, 2020, 10, 1904092.	19.5	14
222	Oxygen redox activity with small voltage hysteresis in Na0.67Cu0.28Mn0.72O2 for sodium-ion batteries. Energy Storage Materials, 2020, 28, 300-306.	18.0	105
223	Full Energy Range Resonant Inelastic X-ray Scattering of O ₂ and CO ₂ : Direct Comparison with Oxygen Redox State in Batteries. Journal of Physical Chemistry Letters, 2020, 11, 2618-2623.	4.6	30
224	Multiorbital bond formation for stable oxygen-redox reaction in battery electrodes. Energy and Environmental Science, 2020, 13, 1492-1500.	30.8	60
225	Lightning fast conduction. Nature Energy, 2020, 5, 191-192.	39.5	9
226	Intrinsic Kinetic Limitations in Substituted Lithium-Layered Transition-Metal Oxide Electrodes. Journal of the American Chemical Society, 2020, 142, 7001-7011.	13.7	69
227	A reflection on lithium-ion battery cathode chemistry. Nature Communications, 2020, 11, 1550.	12.8	1,398
227 228	A reflection on lithium-ion battery cathode chemistry. Nature Communications, 2020, 11, 1550. The effect of oxygen vacancy and spinel phase integration on both anionic and cationic redox in Li-rich cathode materials. Journal of Materials Chemistry A, 2020, 8, 7733-7745.	12.8 10.3	1,398 101
	The effect of oxygen vacancy and spinel phase integration on both anionic and cationic redox in		
228	The effect of oxygen vacancy and spinel phase integration on both anionic and cationic redox in Li-rich cathode materials. Journal of Materials Chemistry A, 2020, 8, 7733-7745. Recent advances in dual-carbon based electrochemical energy storage devices. Nano Energy, 2020, 72,	10.3	101
228 229	The effect of oxygen vacancy and spinel phase integration on both anionic and cationic redox in Li-rich cathode materials. Journal of Materials Chemistry A, 2020, 8, 7733-7745. Recent advances in dual-carbon based electrochemical energy storage devices. Nano Energy, 2020, 72, 104728. Mixed anion/cation redox in K _{0.78} Fe _{1.60} S ₂ for a high-performance cathode in potassium ion batteries. Inorganic Chemistry Frontiers, 2020, 7,	10.3 16.0	101 78
228 229 230	The effect of oxygen vacancy and spinel phase integration on both anionic and cationic redox in Li-rich cathode materials. Journal of Materials Chemistry A, 2020, 8, 7733-7745. Recent advances in dual-carbon based electrochemical energy storage devices. Nano Energy, 2020, 72, 104728. Mixed anion/cation redox in K _{0.78} Fe _{1.60} S ₂ for a high-performance cathode in potassium ion batteries. Inorganic Chemistry Frontiers, 2020, 7, 2023-2030. A Twoâ€Dimensional Mesoporous Polypyrrole–Graphene Oxide Heterostructure as a Dualâ€Functional Ion	10.3 16.0 6.0	101 78 8
228 229 230 231	The effect of oxygen vacancy and spinel phase integration on both anionic and cationic redox in Li-rich cathode materials. Journal of Materials Chemistry A, 2020, 8, 7733-7745. Recent advances in dual-carbon based electrochemical energy storage devices. Nano Energy, 2020, 72, 104728. Mixed anion/cation redox in K _{0.78} Fe _{1.60} S ₂ for a high-performance cathode in potassium ion batteries. Inorganic Chemistry Frontiers, 2020, 7, 2023-2030. A Twoâ€Dimensional Mesoporous Polypyrrole–Graphene Oxide Heterostructure as a Dualâ€Functional Ion Redistributor for Dendriteâ€Free Lithium Metal Anodes. Angewandte Chemie, 2020, 132, 12245-12251. A Twoâ€Dimensional Mesoporous Polypyrrole–Graphene Oxide Heterostructure as a Dualâ€Functional Ion Redistributor for Dendriteâ€Free Lithium Metal Anodes. Angewandte Chemie, 1nternational Edition,	10.3 16.0 6.0 2.0	101 78 8 21
228 229 230 231 232	The effect of oxygen vacancy and spinel phase integration on both anionic and cationic redox in Li-rich cathode materials. Journal of Materials Chemistry A, 2020, 8, 7733-7745. Recent advances in dual-carbon based electrochemical energy storage devices. Nano Energy, 2020, 72, 104728. Mixed anion/cation redox in K _{0.78} Fe _{1.60} S ₂ for a high-performance cathode in potassium ion batteries. Inorganic Chemistry Frontiers, 2020, 7, 2023-2030. A Twoâ€Dimensional Mesoporous Polypyrrole–Craphene Oxide Heterostructure as a Dualâ€Functional Ion Redistributor for Dendriteâ€Free Lithium Metal Anodes. Angewandte Chemie, 2020, 132, 12245-12251. A Twoâ€Dimensional Mesoporous Polypyrrole–Graphene Oxide Heterostructure as a Dualâ€Functional Ion Redistributor for Dendriteâ€Free Lithium Metal Anodes. Angewandte Chemie - International Edition, 2020, 59, 12147-12153.	10.3 16.0 6.0 2.0 13.8	101 78 8 21 115

#	Article	IF	CITATIONS
236	Heating-temperature-dependent electrochemical-performance-enhanced surface structural evolution during chemical treatment of Li-rich layered material by sodium thiosulfate. Journal of Power Sources, 2020, 455, 227795.	7.8	10
237	Anionic Redox Processes in Maricite- and Triphylite-NaFePO ₄ of Sodium-Ion Batteries. ACS Omega, 2020, 5, 5192-5201.	3.5	16
238	A review on fundamentals for designing oxygen evolution electrocatalysts. Chemical Society Reviews, 2020, 49, 2196-2214.	38.1	1,466
239	Lithium–Oxygen Batteries and Related Systems: Potential, Status, and Future. Chemical Reviews, 2020, 120, 6626-6683.	47.7	593
240	Structural evolution at the oxidative and reductive limits in the first electrochemical cycle of Li1.2Ni0.13Mn0.54Co0.13O2. Nature Communications, 2020, 11, 1252.	12.8	89
241	Manganeseâ€based layered oxide cathodes for sodium ion batteries. Nano Select, 2020, 1, 200-225.	3.7	25
242	Structural and Thermodynamic Understandings in Mnâ€Based Sodium Layered Oxides during Anionic Redox. Advanced Science, 2020, 7, 2001263.	11.2	38
243	Anionic redox in Na-based layered oxide cathodes: a review with focus on mechanism studies. Materials Today Energy, 2020, 17, 100474.	4.7	32
244	Highly reversible oxygen redox in layered compounds enabled by surface polyanions. Nature Communications, 2020, 11, 3411.	12.8	54
245	An in-depth study of Sn substitution in Li-rich/Mn-rich NMC as a cathode material for Li-ion batteries. Dalton Transactions, 2020, 49, 10486-10497.	3.3	11
246	Multiscale factors in designing alkali-ion (Li, Na, and K) transition metal inorganic compounds for next-generation rechargeable batteries. Energy and Environmental Science, 2020, 13, 4406-4449.	30.8	77
247	Decoupling the effect of vacancies and electropositive cations on the anionic redox processes in Na based P2-type layered oxides. Energy Storage Materials, 2020, 31, 146-155.	18.0	39
248	Anionic Redox Activity Regulated by Transition Metal in Lithiumâ€Rich Layered Oxides. Advanced Energy Materials, 2020, 10, 2001207.	19.5	45
249	Improving Cycling Stability and Rate Capability of High-Voltage LiCoO ₂ Through an Integration of Lattice Doping and Nanoscale Coating. Journal of Nanoscience and Nanotechnology, 2020, 20, 2473-2481.	0.9	7
250	Excess‣i Localization Triggers Chemical Irreversibility in Li―and Mnâ€Rich Layered Oxides. Advanced Materials, 2020, 32, e2001944.	21.0	43
251	Dual-functional ion redistributor for dendrite-free lithium metal anodes. Rare Metals, 2020, 39, 861-862.	7.1	26
252	Illustration of experimental, machine learning, and characterization methods for study of performance of Liâ€ion batteries. International Journal of Energy Research, 2020, 44, 9513-9526.	4.5	15
253	Dissociate lattice oxygen redox reactions from capacity and voltage drops of battery electrodes. Science Advances, 2020, 6, eaaw3871.	10.3	82

#	Article	IF	CITATIONS
254	Stabilizing Reversible Oxygen Redox Chemistry in Layered Oxides for Sodiumâ€lon Batteries. Advanced Energy Materials, 2020, 10, 1903785.	19.5	87
255	How Bulk Sensitive is Hard X-ray Photoelectron Spectroscopy: Accounting for the Cathode–Electrolyte Interface when Addressing Oxygen Redox. Journal of Physical Chemistry Letters, 2020, 11, 2106-2112.	4.6	36
256	Fundamentals and Challenges of Lithium Ion Batteries at Temperatures between â^'40 and 60 °C. Advanced Energy Materials, 2020, 10, 1904152.	19.5	200
257	Recent Progress of P2â€Type Layered Transitionâ€Metal Oxide Cathodes for Sodiumâ€Ion Batteries. Chemistry - A European Journal, 2020, 26, 7747-7766.	3.3	72
258	Reviving reversible anion redox in 3d-transition-metal Li rich oxides by introducing surface defects. Nano Energy, 2020, 71, 104644.	16.0	31
259	Understanding the Enhancement Mechanism of A-Site-Deficient La _{<i>x</i>} NiO ₃ as an Oxygen Redox Catalyst. Chemistry of Materials, 2020, 32, 1864-1875.	6.7	54
260	Dual Elements Coupling Effect Induced Modification from the Surface into the Bulk Lattice for Ni-Rich Cathodes with Suppressed Capacity and Voltage Decay. ACS Applied Materials & Interfaces, 2020, 12, 8146-8156.	8.0	56
261	Effects of Covalency on Anionic Redox Chemistry in Semiquinoid-Based Metal–Organic Frameworks. Journal of the American Chemical Society, 2020, 142, 2653-2664.	13.7	75
262	Effectively suppressing lithium dendrite growth <i>via</i> an es-LiSPCE single-ion conducting nano fiber membrane. Journal of Materials Chemistry A, 2020, 8, 2518-2528.	10.3	33
263	Thermodynamic and experimental analysis of Ni-Co-Mn carbonate precursor synthesis for Li-rich cathode materials. Ionics, 2020, 26, 2747-2755.	2.4	4
264	Understanding the redox process upon electrochemical cycling of the P2-Na0.78Co1/2Mn1/3Ni1/6O2 electrode material for sodium-ion batteries. Communications Chemistry, 2020, 3, .	4.5	41
265	Voltage decay and redox asymmetry mitigation by reversible cation migration in lithium-rich layered oxide electrodes. Nature Materials, 2020, 19, 419-427.	27.5	328
266	Unraveling the Critical Role of Ti Substitution in P ₂ -Na _{<i>x</i>} Li _{<i>y</i>} Mn _{1–<i>y</i>} O ₂ Cathodes for Highly Reversible Oxygen Redox Chemistry. Chemistry of Materials, 2020, 32, 1054-1063.	6.7	74
267	Exploring the origin of electrochemical performance of Cr-doped LiNi0.5Mn1.5O4. Physical Chemistry Chemical Physics, 2020, 22, 3831-3838.	2.8	13
268	Deciphering the role of cationic substitution towards highly stable polyanionic cathodes. Energy Storage Materials, 2020, 29, 223-234.	18.0	10
269	The Decay Mechanism Related to Structural and Morphological Evolution in Lithiumâ€Rich Cathode Materials for Lithiumâ€lon Batteries. ChemSusChem, 2020, 13, 3237-3242.	6.8	11
270	Toward Green Battery Cells: Perspective on Materials and Technologies. Small Methods, 2020, 4, 2000039.	8.6	177
271	Electrolytic-anion-redox adsorption pseudocapacitance in nanosized lithium-free transition metal oxides as cathode materials for Li-ion batteries. Nano Energy, 2020, 72, 104727.	16.0	49

#	Article	IF	CITATIONS
272	Functionalized Two-Dimensional Nanoporous Graphene as Efficient Global Anode Materials for Li-, Na-, K-, Mg-, and Ca-Ion Batteries. Journal of Physical Chemistry C, 2020, 124, 9734-9745.	3.1	28
273	Extended Interfacial Stability through Simple Acid Rinsing in a Li-Rich Oxide Cathode Material. Journal of the American Chemical Society, 2020, 142, 8522-8531.	13.7	88
274	Thermodynamic analysis and kinetic optimization of high-energy batteries based on multi-electron reactions. National Science Review, 2020, 7, 1367-1386.	9.5	31
275	Negligible voltage hysteresis with strong anionic redox in conventional battery electrode. Nano Energy, 2020, 74, 104831.	16.0	72
276	Systematic Study of Different Anion Doping on the Electrochemical Performance of Cobalt-Free Lithium–Manganese-Rich Layered Cathode. ACS Applied Energy Materials, 2020, 3, 4852-4859.	5.1	22
277	Structure and Interface Design Enable Stable Li-Rich Cathode. Journal of the American Chemical Society, 2020, 142, 8918-8927.	13.7	151
278	Feasible engineering of cathode electrolyte interphase enables the profoundly improved electrochemical properties in dual-ion battery. Journal of Energy Chemistry, 2020, 50, 416-423.	12.9	90
279	Towards High-Performance Li-rich NCMâ^£â^£Graphite Cells by Germanium-Polymer Coating of the Positive Electrode Material. Journal of the Electrochemical Society, 2020, 167, 060524.	2.9	14
280	Lithium Manganese Spinel Cathodes for Lithiumâ€ l on Batteries. Advanced Energy Materials, 2021, 11, 2000997.	19.5	177
281	Reaktionsmechanismen Lithiumâ€reicher Schichtâ€Kathodenmaterialien für Hochenergieâ€Lithiumâ€Ionenbatterien. Angewandte Chemie, 2021, 133, 2236-2248.	2.0	4
282	Reaction Mechanisms of Layered Lithiumâ€Rich Cathode Materials for Highâ€Energy Lithiumâ€Ion Batteries. Angewandte Chemie - International Edition, 2021, 60, 2208-2220.	13.8	170
283	Towards high-energy-density lithium-ion batteries: Strategies for developing high-capacity lithium-rich cathode materials. Energy Storage Materials, 2021, 34, 716-734.	18.0	149
284	Insights into the high voltage layered oxide cathode materials in sodium-ion batteries: Structural evolution and anion redox. Journal of Power Sources, 2021, 481, 229139.	7.8	16
285	Fundamental understanding of high-capacity lithium-excess cathodes with disordered rock salt structure. Journal of Materials Science and Technology, 2021, 74, 60-68.	10.7	8
286	Improved Na storage and Coulombic efficiency in TiP2O7@C microflowers for sodium ion batteries. Nano Research, 2021, 14, 139-147.	10.4	18
287	Challenges of today for Na-based batteries of the future: From materials to cell metrics. Journal of Power Sources, 2021, 482, 228872.	7.8	169
288	Enhanced lithiation dynamics in nanostructured Nb18W16O93 anodes. Journal of Power Sources, 2021, 482, 228898.	7.8	15
289	In-situ surface chemical and structural self-reconstruction strategy enables high performance of Li-rich cathode. Nano Energy, 2021, 79, 105459.	16.0	53

#	Article	IF	CITATIONS
290	Current state-of-the-art characterization techniques for probing the layered oxide cathode materials of sodium-ion batteries. Energy Storage Materials, 2021, 35, 400-430.	18.0	45
291	Boosting energy efficiency of Li-rich layered oxide cathodes by tuning oxygen redox kinetics and reversibility. Energy Storage Materials, 2021, 35, 388-399.	18.0	42
292	Toward coupling of electrochemical redox properties with electrostatic potential surfaces tailored by dopant architectures for pyrenetetrone. Energy Storage Materials, 2021, 35, 610-619.	18.0	15
293	Reaction Mechanism and Structural Evolution of Fluorographite Cathodes in Solid‣tate K/Na/Li Batteries. Advanced Materials, 2021, 33, e2006118.	21.0	44
294	Regeneration of degraded Li-rich layered oxide materials through heat treatment-induced transition metal reordering. Energy Storage Materials, 2021, 35, 99-107.	18.0	27
295	A comprehensive understanding of the anionic redox chemistry in layered oxide cathodes for sodium-ion batteries. Science China Chemistry, 2021, 64, 385-402.	8.2	40
296	Recent breakthroughs and perspectives of high-energy layered oxide cathode materials for lithium ion batteries. Materials Today, 2021, 43, 132-165.	14.2	174
297	Chemical and structural origin of hole states in yttria-stabilized zirconia. Acta Materialia, 2021, 203, 116487.	7.9	15
298	Tailoring the 3d-orbital electron filling degree of metal center to boost alkaline hydrogen evolution electrocatalysis. Applied Catalysis B: Environmental, 2021, 284, 119718.	20.2	63
299	Mesoporous design of ultrathin NiO nanosheet-coated vertically aligned hexagonal CoS nanoplate core–shell array for flexible all-solid-state supercapacitors. Journal of Alloys and Compounds, 2021, 863, 158064.	5.5	7
300	Polymerâ€Based Solid Electrolytes: Material Selection, Design, and Application. Advanced Functional Materials, 2021, 31, 2007598.	14.9	164
301	High Pressure Effect on Structural and Electrochemical Properties of Anionic Redox-Based Lithium Transition Metal Oxides. Matter, 2021, 4, 164-181.	10.0	15
302	Na _{0.67} Mn _(1â€<i>x</i>) Fe _{<i>x</i>} O ₂ Compounds as Highâ€Capacity Cathode Materials for Rechargeable Sodiumâ€Ion Batteries. ChemElectroChem, 2021, 8, 508-516.	3.4	8
303	CuCo2S4: Versatile anode for high capacity and high rate for lithium and sodium ion battery application. Journal of Physics and Chemistry of Solids, 2021, 151, 109902.	4.0	10
304	LiMnO2 cathode stabilized by interfacial orbital ordering for sustainable lithium-ion batteries. Nature Sustainability, 2021, 4, 392-401.	23.7	156
305	Recent Advances and Prospects of Atomic Substitution on Layered Positive Materials for Lithiumâ€lon Battery. Advanced Energy Materials, 2021, 11, 2003197.	19.5	31
306	The Role of Metal Substitution in Tuning Anion Redox in Sodium Metal Layered Oxides Revealed by Xâ€Ray Spectroscopy and Theory. Angewandte Chemie, 2021, 133, 10975-10982.	2.0	10
307	Modifying an ultrathin insulating layer to suppress lithium dendrite formation within garnet solid electrolytes. Journal of Materials Chemistry A, 2021, 9, 3576-3583.	10.3	36

#	Article	IF	CITATIONS
308	The Role of Metal Substitution in Tuning Anion Redox in Sodium Metal Layered Oxides Revealed by Xâ€Ray Spectroscopy and Theory. Angewandte Chemie - International Edition, 2021, 60, 10880-10887.	13.8	32
309	Anionic Redox Reactions in Cathodes for Sodiumâ€lon Batteries. ChemElectroChem, 2021, 8, 625-643.	3.4	22
310	Cationic–anionic redox couple gradient to immunize against irreversible processes of Li-rich layered oxides. Journal of Materials Chemistry A, 2021, 9, 2325-2333.	10.3	20
311	Quantumâ€Matter Bi/TiO ₂ Heterostructure Embedded in Nâ€Doped Porous Carbon Nanosheets for Enhanced Sodium Storage. Small Structures, 2021, 2, 2000085.	12.0	77
312	Multiscale Investigation into the Coâ€Đoping Strategy on the Electrochemical Properties of Li ₂ RuO ₃ Cathodes for Liâ€ion Batteries. ChemElectroChem, 2021, 8, 112-124.	3.4	10
313	Sodium transition metal oxides: the preferred cathode choice for future sodium-ion batteries?. Energy and Environmental Science, 2021, 14, 158-179.	30.8	224
314	Deciphering the Oxygen Absorption Preâ€edge: A Caveat on its Application for Probing Oxygen Redox Reactions in Batteries. Energy and Environmental Materials, 2021, 4, 246-254.	12.8	56
315	Interfacial Degradation and Optimization of Liâ€rich Cathode Materials ^{â€} . Chinese Journal of Chemistry, 2021, 39, 402-420.	4.9	11
316	Stabilization of nonâ€native polymorphs for electrocatalysis and energy storage systems. Wiley Interdisciplinary Reviews: Energy and Environment, 2021, 10, e389.	4.1	5
317	Molecular and heterogeneous water oxidation catalysts: recent progress and joint perspectives. Chemical Society Reviews, 2021, 50, 2444-2485.	38.1	102
318	High-voltage liquid electrolytes for Li batteries: progress and perspectives. Chemical Society Reviews, 2021, 50, 10486-10566.	38.1	391
319	Deconvolution of intermixed redox processes in Ni-based cation-disordered Li-excess cathodes. Energy and Environmental Science, 2021, 14, 1553-1562.	30.8	17
320	Could Irradiation Introduce Oxidized Oxygen Signals in Resonant Inelastic X-ray Scattering of Battery Electrodes?. Journal of Physical Chemistry Letters, 2021, 12, 1138-1143.	4.6	7
321	Anionic redox behaviors of layered Li-rich oxide cathodes. Inorganic Chemistry Frontiers, 2021, 8, 4590-4609.	6.0	9
322	Honeycomb layered oxides: structure, energy storage, transport, topology and relevant insights. Chemical Society Reviews, 2021, 50, 3990-4030.	38.1	43
323	Les batteries sont-elles la bonne option pour un développement durableÂÂ?. Comptes Rendus - Geoscience, 2020, 352, 401-414.	1.2	3
324	Coulombically-stabilized oxygen hole polarons enable fully reversible oxygen redox. Energy and Environmental Science, 2021, 14, 4858-4867.	30.8	29
325	Frontiers for Room-Temperature Sodium–Sulfur Batteries. ACS Energy Letters, 2021, 6, 529-536.	17.4	85

#	Article	IF	CITATIONS
326	Electrode materials viewed with transmission electron microscopy. , 2021, , .		0
327	A graphene@framework polymer derived from addition polymerization of phthalocyanine/dicarboxaldehyde as a negative material for lithium-ion batteries. Materials Chemistry Frontiers, 2021, 5, 7291-7305.	5.9	3
329	Lattice oxygen redox chemistry in solid-state electrocatalysts for water oxidation. Energy and Environmental Science, 2021, 14, 4647-4671.	30.8	190
330	Designing positive electrodes with high energy density for lithium-ion batteries. Journal of Materials Chemistry A, 2021, 9, 7407-7421.	10.3	34
331	Understanding cation-disordered rocksalt oxyfluoride cathodes. Journal of Materials Chemistry A, 2021, 9, 7826-7837.	10.3	21
332	Unlocking veiled oxygen redox in Na-based earth-abundant binary layered oxide. Journal of Materials Chemistry A, 2021, 9, 15179-15187.	10.3	10
333	Anti-perovskites for solid-state batteries: recent developments, current challenges and future prospects. Journal of Materials Chemistry A, 2021, 9, 18746-18772.	10.3	68
334	Oxygen defect engineering for the Li-rich cathode material Li _{1.2} Ni _{0.13} Co _{0.13} Mn _{0.54} O _{2â^îî} . Journal of Materials Chemistry A, 2021, 9, 3657-3667.	10.3	46
335	Synergic and coupling effect between SnO ₂ nanoparticles and hierarchical AlV ₃ O ₉ microspheres toward emerging electrode materials for lithium-ion battery devices. Inorganic Chemistry Frontiers, 2021, 8, 2735-2748.	6.0	24
336	Delocalized Metal–Oxygen π-Redox Is the Origin of Anomalous Nonhysteretic Capacity in Li-Ion and Na-Ion Cathode Materials. Journal of the American Chemical Society, 2021, 143, 1908-1916.	13.7	62
337	Electrochemical Utilization of Iron IV in the Li _{1.3} Fe _{0.4} Nb _{0.3} O ₂ Disordered Rocksalt Cathode. Batteries and Supercaps, 2021, 4, 771-777.	4.7	6
338	Long-Term Cycle Stability Enabled by the Incorporation of Ni into Li ₂ MnO ₃ Phase in the Mn-Based Li-Rich Layered Materials. ACS Energy Letters, 2021, 6, 789-798.	17.4	27
339	Electrochemical and Thermal Behavior of Modified Li and Mnâ€Rich Cathode Materials in Battery Prototypes: Impact of Pentasodium Aluminate Coating and Comprehensive Understanding of Its Evolution upon Cycling through Solidâ€State Nuclear Magnetic Resonance Analysis. Advanced Energy and Sustainability Research, 2021, 2, 2000089.	5.8	8
340	A Two-Step Oxidation Mechanism Controlled by Mn Migration Explains the First-Cycle Activation Behavior of Li2MnO3-Based Li-Excess Materials. Chemistry of Materials, 2021, 33, 1625-1636.	6.7	36
341	Oxygen Redox Chemistry in Rechargeable Li-Ion and Na-Ion Batteries. Matter, 2021, 4, 490-527.	10.0	47
342	Understanding Co roles towards developing Co-free Ni-rich cathodes for rechargeable batteries. Nature Energy, 2021, 6, 277-286.	39.5	255
343	Bi8V2O17 hierarchical framework encapsulated in flexible carbon nanotube-interwoven graphene hybrid for advanced lithium/sodium storage: Experimental and theoretical study. Chemical Engineering Journal, 2021, 405, 127032.	12.7	3
344	One-step large-scale fabrication of Bi@N-doped carbon for ultrahigh-rate and long-life sodium-ionAbattery anodes. Journal of Materials Science, 2021, 56, 11000-11010.	3.7	12

		CITATION REPORT		
#	Article		IF	CITATIONS
345	Peroxo Species Formed in the Bulk of Silicate Cathodes. Angewandte Chemie, 2021, 133, 10144-	10151.	2.0	2
346	Peroxo Species Formed in the Bulk of Silicate Cathodes. Angewandte Chemie - International Editio 2021, 60, 10056-10063.	on,	13.8	5
347	Flexible Polyimide Nanorod/Graphene Framework as an Organic Cathode for Rechargeable Sodiun Batteries. Journal of Physical Chemistry C, 2021, 125, 6564-6569.	1-lon	3.1	10
348	Utilizing Oxygen Redox in Layered Cathode Materials from Multiscale Perspective. Advanced Ener Materials, 2021, 11, 2003227.	gy	19.5	39
349	Insights into Liâ€Rich Mnâ€Based Cathode Materials with High Capacity: from Dimension to Latti Atom. Advanced Energy Materials, 2022, 12, 2003885.	ce to	19.5	70
350	Latticeâ€Oxygenâ€Stabilized Li―and Mnâ€Rich Cathodes with Subâ€Micrometer Particles by M Excessâ€Li Distribution. Advanced Materials, 2021, 33, e2100352.	odifying the	21.0	32
351	Unlocking the Intrinsic Origin of the Reversible Oxygen Redox Reaction in Sodiumâ€Based Layere Oxides. ChemElectroChem, 2021, 8, 1464-1472.	d	3.4	14
352	Confined Selenium in N-Doped Mesoporous Carbon Nanospheres for Sodium-Ion Batteries. ACS A Materials & Interfaces, 2021, 13, 16558-16566.	pplied	8.0	27
353	Modulating the Surface Ligand Orientation for Stabilized Anionic Redox in Liâ€Rich Oxide Cathod Advanced Energy Materials, 2021, 11, 2003479.	es.	19.5	45
354	Prospect and Status of Polyanionic Lithium Cobalt Silicates as High Energyâ€Density and Safe Cat Materials for Lithiumâ€Ion Batteries. Physica Status Solidi (B): Basic Research, 2021, 258, 200042	thode 20.	1.5	6
355	Challenges and Recent Advances in High Capacity Liâ€Rich Cathode Materials for High Energy De Lithiumâ€lon Batteries. Advanced Materials, 2021, 33, e2005937.	nsity	21.0	253
356	Nanostructure Transformation as a Signature of Oxygen Redox in Li-Rich 3d and 4d Cathodes. Jou of the American Chemical Society, 2021, 143, 5763-5770.	rnal	13.7	29
357	Cycling mechanism of Li2MnO3: Li–CO2Âbatteries and commonality on oxygen redox in catho materials. Joule, 2021, 5, 975-997.	de	24.0	88
358	Thick electrode with thickness-independent capacity enabled by assembled two-dimensional poro nanosheets. Energy Storage Materials, 2021, 36, 265-271.	us	18.0	30
359	Charge Compensation Mechanism and Structural Change of Li-Rich Layered Oxide Li _{1.23} Mn _{0.46} Fe _{0.15} Ni _{0.15} O ₂ during Charging and Discharging. Journal of the Electrochemical Society, 2021, 168, 040518.	Electrode	2.9	3
360	The Negative Impact of Transition Metal Migration on Oxygen Redox Activity of Layered Cathode Materials for Na-Ion Batteries. Journal of the Electrochemical Society, 2021, 168, 040539.		2.9	16
361	Demystifying the Lattice Oxygen Redox in Layered Oxide Cathode Materials of Lithium-Ion Batteri ACS Nano, 2021, 15, 6061-6104.	es.	14.6	77
362	Suppressing the Voltage Decay Based on a Distinct Stacking Sequence of Oxygen Atoms for Li-Ric Cathode Materials. ACS Applied Materials & Interfaces, 2021, 13, 17639-17648.	ch	8.0	27

#	Article	IF	CITATIONS
363	Exploring the Possible Anionic Redox Mechanism in Li-Rich Transition-Metal Carbodiimides. Journal of Physical Chemistry C, 2021, 125, 8479-8487.	3.1	2
364	Activation Strategies of Perovskiteâ€Type Structure for Applications in Oxygenâ€Related Electrocatalysts. Small Methods, 2021, 5, e2100012.	8.6	29
365	A New Approach to Stable Cationic and Anionic Redox Activity in O3‣ayered Cathode for Sodiumâ€lon Batteries. Advanced Energy Materials, 2021, 11, 2100901.	19.5	24
366	Two-Dimensional π-Conjugated Frameworks as a Model System to Unveil a Multielectron-Transfer-Based Energy Storage Mechanism. Accounts of Chemical Research, 2021, 54, 3003-3015.	15.6	13
367	Manipulating the Local Electronic Structure in Liâ€Rich Layered Cathode Towards Superior Electrochemical Performance. Advanced Functional Materials, 2021, 31, 2100783.	14.9	79
368	Cation-synergy stabilizing anion redox of Chevrel phase Mo6S8 in aluminum ion battery. Energy Storage Materials, 2021, 37, 87-93.	18.0	31
369	Tailoring bulk Li+ ion diffusion kinetics and surface lattice oxygen activity for high-performance lithium-rich manganese-based layered oxides. Energy Storage Materials, 2021, 37, 509-520.	18.0	55
370	Heteroepitaxial interface of layered cathode materials for lithium ion batteries. Energy Storage Materials, 2021, 37, 161-189.	18.0	19
371	Insight of reaction mechanism and anionic redox behavior for Li-rich and Mn-based oxide materials from local structure. Nano Energy, 2021, 83, 105812.	16.0	24
372	Addressing voltage decay in Li-rich cathodes by broadening the gap between metallic and anionic bands. Nature Communications, 2021, 12, 3071.	12.8	81
373	In Situ Carbon Insertion in Laminated Molybdenum Dioxide by Interlayer Engineering Toward Ultrastable "Rockingâ€Chair―Zincâ€Ion Batteries. Advanced Functional Materials, 2021, 31, 2102827.	14.9	64
374	FeS monolayer as a potential anchoring material for lithium-sulfur batteries: A theoretical study. Surface Science, 2021, 707, 121818.	1.9	8
375	Oxygen anionic redox activated high-energy cathodes: Status and prospects. ETransportation, 2021, 8, 100118.	14.8	34
376	The role of M@Ni6 superstructure units in honeycomb-ordered layered oxides for Li/Na ion batteries. Nano Energy, 2021, 83, 105834.	16.0	15
377	Dynamic structural evolution of oxygen vacancies in lithium rich layered composites cathodes for Li-ion batteries. Materials Today Physics, 2021, 18, 100403.	6.0	8
378	The role of covalent bonding and anionic redox for the performance of sodium cobaltate electrode materials. Energy Storage Materials, 2021, 37, 190-198.	18.0	4
379	Phase Compatible NiFe ₂ O ₄ Coating Tunes Oxygen Redox in Li-Rich Layered Oxide. ACS Nano, 2021, 15, 11607-11618.	14.6	95
380	Achieving stable anionic redox chemistry in Li-excess O2-type layered oxide cathode via chemical ion-exchange strategy. Energy Storage Materials, 2021, 38, 1-8.	18.0	46

#	Article	IF	CITATIONS
381	Lattice Oxygen Instability in Oxideâ€Based Intercalation Cathodes: A Case Study of Layered LiNi _{1/3} Co _{1/3} Mn _{1/3} O ₂ . Advanced Energy Materials, 2021, 11, 2101005.	19.5	34
382	Superior Rate Capability and Cycling Stability in Partially Cation-Disordered Co-Free Li-Rich Layered Materials Enabled by an Initial Activation Process. Chemistry of Materials, 2021, 33, 5115-5126.	6.7	5
383	Weakly Solvating Solution Enables Chemical Prelithiation of Graphite–SiO _{<i>x</i>} Anodes for High-Energy Li-Ion Batteries. Journal of the American Chemical Society, 2021, 143, 9169-9176.	13.7	106
384	Tuning of lattice oxygen reactivity and scaling relation to construct better oxygen evolution electrocatalyst. Nature Communications, 2021, 12, 3992.	12.8	151
385	Inâ€Depth Analysis of the Degradation Mechanisms of Highâ€Nickel, Low/Noâ€Cobalt Layered Oxide Cathodes for Lithiumâ€ion Batteries. Advanced Energy Materials, 2021, 11, 2100858.	19.5	79
386	Tomographic reconstruction of oxygen orbitals in lithium-rich battery materials. Nature, 2021, 594, 213-216.	27.8	56
387	Revealing the anionic redox chemistry in O3-type layered oxide cathode for sodium-ion batteries. Energy Storage Materials, 2021, 38, 130-140.	18.0	65
388	Transforming Materials into Practical Automotive Lithiumâ€lon Batteries. Advanced Materials Technologies, 2021, 6, 2100152.	5.8	6
389	Sn and Na Coâ€doping to Suppress Voltage Decay of Liâ€rich Layered Oxide. ChemElectroChem, 2021, 8, 2315-2320.	3.4	4
390	Evolution of Oxygen Ligands upon Large Redox Swings of Li3IrO4. Journal of the Electrochemical Society, 0, , .	2.9	0
391	A novel surface modification strategy for Li-rich Mn-based layered oxide cathodes of high-capacity and high-cyclic stability by an additive of LiBH4 to the electrolyte. Functional Materials Letters, 2021, 14, 2140003.	1.2	3
392	2021 roadmap for sodium-ion batteries. JPhys Energy, 2021, 3, 031503.	5.3	125
393	Revisit Electrolyte Chemistry of Hard Carbon in Ether for Na Storage. Jacs Au, 2021, 1, 1208-1216.	7.9	28
394	Grain Boundaries as a Diffusion-Limiting Factor in Lithium-Rich NMC Cathodes for High-Energy Lithium-Ion Batteries. ACS Applied Energy Materials, 2021, 4, 6777-6786.	5.1	6
395	Recent Advances in Electrode Materials with Anion Redox Chemistry for Sodium-Ion Batteries. Energy Material Advances, 2021, 2021, .	11.0	40
396	Defect-Driven Oxide Transformations and the Electrochemical Interphase. Accounts of Chemical Research, 2021, 54, 3039-3049.	15.6	3
397	Chemical Modulation of Local Transition Metal Environment Enables Reversible Oxygen Redox in Mn-Based Layered Cathodes. ACS Energy Letters, 2021, 6, 2882-2890.	17.4	15
398	Future Material Developments for Electric Vehicle Battery Cells Answering Growing Demands from an End-User Perspective. Energies, 2021, 14, 4223.	3.1	21

#	Article	IF	CITATIONS
399	Study of Rechargeable Batteries Using Advanced Spectroscopic and Computational Techniques. Condensed Matter, 2021, 6, 26.	1.8	1
400	Relationship between Voltage Hysteresis and Voltage Decay in Lithium-Rich Layered Oxide Cathodes. Journal of Physical Chemistry C, 2021, 125, 16913-16920.	3.1	12
401	Synergetic effect of high Ni ratio and low oxygen defect interface zone of single crystals on the capacity retention of lithium rich layered oxides. Journal of Colloid and Interface Science, 2021, 594, 485-492.	9.4	9
402	Effect of Ni Content on Anionic Redox Activity in Ru-Containing Li-Rich Cathode Material. Journal of the Electrochemical Society, 2021, 168, 070552.	2.9	2
403	Surface reinforcement doping to suppress oxygen release of Li-rich layered oxides. Journal of Power Sources, 2021, 503, 230048.	7.8	20
404	The free-standing cathode fabricated with nano-CoSe2 embedded in mesoporous carbon nanosheets towards high performance Li/SeS2 batteries. Chemical Engineering Journal, 2021, 418, 129475.	12.7	11
405	Tailoring Nickel-Rich LiNi _{0.8} Co _{0.1} Mn _{0.1} O ₂ Layered Oxide Cathode Materials with Metal Sulfides (M ₂ S:M = Li, Na) for Improved Electrochemical Properties. Journal of the Electrochemical Society, 2021, 168, 080543.	2.9	4
406	Recent Advances in Application of Ionic Liquids in Electrolyte of Lithium Ion Batteries. Journal of Energy Storage, 2021, 40, 102659.	8.1	80
407	Synthesis and Processing by Design of Highâ€Nickel Cathode Materials. Batteries and Supercaps, 2022, 5, .	4.7	11
408	Oxygen-Storage Materials to Stabilize the Oxygen Redox Activity of Three-Layered Sodium Transition Metal Oxides. Journal of Physical Chemistry Letters, 2021, 12, 7804-7811.	4.6	11
409	Structural and chemical evolution in layered oxide cathodes of lithium-ion batteries revealed by synchrotron techniques. National Science Review, 2022, 9, nwab146.	9.5	27
410	Anionic redox reaction in Na-deficient layered oxide cathodes: Role of Sn/Zr substituents and in-depth local structural transformation revealed by solid-state NMR. Energy Storage Materials, 2021, 39, 60-69.	18.0	35
411	Origin of reversible oxygen redox reactions in high energy density layered oxides. Cell Reports Physical Science, 2021, 2, 100508.	5.6	6
412	Disordered Li-rich, Ti-based oxyfluoride cathode with multiple cation and anion redox chemistry. Chemical Engineering Journal, 2021, 417, 128189.	12.7	11
413	Highly Reversible Anion Redox of Manganeseâ€Based Cathode Material Realized by Electrochemical Ion Exchange for Lithiumâ€lon Batteries. Advanced Functional Materials, 2021, 31, 2103594.	14.9	22
414	Reversible dual anionic-redox chemistry in NaCrSSe with fast charging capability. Journal of Power Sources, 2021, 502, 230022.	7.8	5
415	Improved lithium storage performance of sulfur loaded by CMK-3 with a tailored hierarchical pore structure. Journal of Solid State Electrochemistry, 2021, 25, 2503-2511.	2.5	6
416	Fundamental Understanding and Effect of Anionic Chemistry in Zinc Batteries. Energy and Environmental Materials, 2022, 5, 186-200.	12.8	18

#	Article	IF	CITATIONS
417	Electrochemically Inert Li2MnO3: The Key to Improving the Cycling Stability of Li-Rich Manganese Oxide Used in Lithium-Ion Batteries. Materials, 2021, 14, 4751.	2.9	0
418	Vanadium Metaphosphate V(PO ₃) ₃ Derived from Vâ€MOF as a Novel Anode for Lithiumâ€Ion Batteries. ChemistrySelect, 2021, 6, 8150-8157.	1.5	11
419	Amorphous anion-rich titanium polysulfides for aluminum-ion batteries. Science Advances, 2021, 7, .	10.3	63
420	Science of Electrode Processes in the 21st Century: Fundamental Understanding of Microscopic Mechanisms towards Advancing Electrochemical Technologies. Bulletin of the Chemical Society of Japan, 2021, 94, 2423-2434.	3.2	12
421	Microstructure-Controlled Li-Rich Mn-Based Cathodes by a Gas–Solid Interface Reaction for Tackling the Continuous Activation of Li ₂ MnO ₃ . ACS Applied Materials & Interfaces, 2021, 13, 40995-41003.	8.0	20
422	Metal–Organic Framework Derived Ultrafine Sb@Porous Carbon Octahedron <i>via In Situ</i> Substitution for High-Performance Sodium-Ion Batteries. ACS Nano, 2021, 15, 15104-15113.	14.6	79
423	Intrinsic Origin of Nonhysteretic Oxygen Capacity in Conventional Na-Excess Layered Oxides. ACS Applied Materials & Interfaces, 2021, 13, 46620-46626.	8.0	5
424	Mixed Cationic and Anionic Redox in Ni and Co Free Chalcogen-Based Cathode Chemistry for Li-Ion Batteries. Journal of the American Chemical Society, 2021, 143, 15732-15744.	13.7	19
425	Distinct Oxygen Redox Activities in Li ₂ MO ₃ (M = Mn, Ru, Ir). ACS Energy Letters, 2021, 6, 3417-3424.	17.4	33
426	Accessing the 2ÂV VV/VIV redox process of vanadyl phosphate cathode for aqueous batteries. Journal of Power Sources, 2021, 507, 230270.	7.8	5
427	Activation of anionic redox in d0 transition metal chalcogenides by anion doping. Nature Communications, 2021, 12, 5485.	12.8	26
428	Boron-doped sodium layered oxide for reversible oxygen redox reaction in Na-ion battery cathodes. Nature Communications, 2021, 12, 5267.	12.8	122
429	Diethylzinc-Assisted Atomic Surface Reduction to Stabilize Li and Mn-Rich NCM. ACS Applied Materials & Interfaces, 2021, 13, 44470-44478.	8.0	3
430	Understanding the effect of Nb substitution on Li-Mn-rich layered oxides. Electrochimica Acta, 2021, 390, 138801.	5.2	5
431	What Triggers the Voltage Hysteresis Variation beyond the First Cycle in Li-Rich 3d Layered Oxides with Reversible Cation Migration?. Journal of Physical Chemistry Letters, 2021, 12, 8740-8748.	4.6	21
432	Insights into the Enhanced Structural and Thermal Stabilities of Nb-Substituted Lithium-Rich Layered Oxide Cathodes. ACS Applied Materials & amp; Interfaces, 2021, 13, 45619-45629.	8.0	26
433	First-principles computational insights into lithium battery cathode materials. Electrochemical Energy Reviews, 2022, 5, 1-31.	25.5	21
434	Fundamental understanding and practical challenges of lithium-rich oxide cathode materials: Layered and disordered-rocksalt structure. Energy Storage Materials, 2021, 40, 51-71.	18.0	61

ARTICLE IF CITATIONS # Density-Based Descriptors of Redox Reactions Involving Transition Metal Compounds as a 435 3.8 2 Reality-Anchored Framework: A Perspective. Molecules, 2021, 26, 5541. Correlating ligand-to-metal charge transfer with voltage hysteresis in a Li-rich rock-salt compound exhibiting anionic redox. Nature Chemistry, 2021, 13, 1070-1080. 13.6 P2–Na2/3Mg1/4Mn7/12Co1/6O2 cathode material based on oxygen redox activity with improved 437 7.8 8 first-cycle voltage hysteresis. Journal of Power Sources, 2021, 506, 230104. A Reversible Anodizing Strategy in a Hybrid Electrolyte Zn-Ion Battery through Structural 5.1 Modification of a Vanadium Sulfide Cathode. ACS Ápplied Energy Materials, 2021, 4, 10656-10667. Engineered Three-Electrode Cells for Improving Solid State Batteries. Journal of the Electrochemical 439 2.9 9 Society, 2021, 168, 090508. Electrochemical storage mechanism of sodium in carbon materials: A study from soft carbon to hard carbon. Carbon, 2021, 182, 758-769. 10.3 Reaction inhomogeneity coupling with metal rearrangement triggers electrochemical degradation in 441 12.8 44 lithium-rich layered cathode. Nature Communications, 2021, 12, 5370. Importance of metal<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si4.svg"><mml:mo>â^</mml:mo></mml:math>oxygen bond for stable oxygen-redox reaction in 18.0 Li-excess layered oxides. Energy Storage Materials, 2021, 42, 764-772. Recent advancements in development of different cathode materials for rechargeable lithium ion 443 8.1 32 batteries. Journal of Energy Storage, 2021, 43, 103112. Origin of extra capacity in advanced Li–Rich cathode materials for rechargeable Li–Ion batteries. 444 12.7 Chemical Engineering Journal, 2021, 424, 130293. Mixed polyoxyanion cathode materials. Energy Storage Materials, 2021, 42, 570-593. 445 18.0 7 Stabilizing voltage and prolonged cycling life of Li-rich Mn-based oxides through spinel "lithium ion 446 5.2 pump―heteroepitaxial coating strategy. Scripta Materialia, 2021, 204, 114133. Mitigating voltage decay of Li-Rich layer oxide cathode material via an ultrathin "lithium ion pump― 447 7.8 6 heteroepitaxial surface modification. Journal of Power Sources, 2021, 511, 230427. A comparative study on the effect of pH values and carbonic additives on the supercapacitive 448 8.1 performance of LDH-derived Ni-Co-Al oxide. Journal of Energy Storage, 2021, 43, 103211. Tailoring the redox-active transition metal content to enhance cycling stability in cation-disordered 449 18.0 11 rock-salt oxides. Energy Storage Materials, 2021, 43, 275-283. Optical imaging of nanoscale electrochemical interfaces in energy applications. Nano Energy, 2021, 90, 106539. High-valence Ni and Fe sites on sulfated NiFe-LDH nanosheets to enhance O-O coupling for water 451 12.7 70 oxidation. Chemical Engineering Journal, 2021, 426, 130873. Is it universal that the layered-spinel structure can improve electrochemical performance?. Journal of Energy Chemistry, 2022, 64, 344-353.

#	Article	IF	Citations
т 453	Structural dimension gradient design of oxygen framework to suppress the voltage attenuation and	12.7	9
100	hysteresis in lithium-rich materials. Chemical Engineering Journal, 2022, 427, 130723.	12.7	
454	Identifying the effect of fluorination on cation and anion redox activity in Mn based cation-disordered cathode. Journal of Colloid and Interface Science, 2022, 607, 1333-1342.	9.4	5
455	Li-rich layered oxides: Structure, capacity and voltage fading mechanisms and solving strategies. Particuology, 2022, 61, 1-10.	3.6	21
456	Chemomechanics in Ni–Mn binary cathode for advanced sodium-ion batteries. Journal of Materials Chemistry A, 2021, 9, 24290-24298.	10.3	6
457	Optimized electron occupancy of solid-solution transition metals for suppressing the oxygen evolution of Li ₂ MnO ₃ . Journal of Materials Chemistry A, 2021, 9, 9337-9346.	10.3	7
458	Rational design of Ti-based oxygen redox layered oxides for advanced sodium-ion batteries. Journal of Materials Chemistry A, 2021, 9, 11762-11770.	10.3	11
459	Electrochemical Activity of Positive Electrode Material of P2-Na <i>_x</i> [Mg _{0.33} Mn _{0.67}]O ₂ Sodium Ion Battery. Wuji Cailiao Xuebao/Journal of Inorganic Materials, 2021, 36, 623.	1.3	3
460	A mechanistic study of electrode materials for rechargeable batteries beyond lithium ions by <i>in situ</i> transmission electron microscopy. Energy and Environmental Science, 2021, 14, 2670-2707.	30.8	42
461	A theoretical approach to evaluate and understand the electrical properties of the electrode materials of batteries. Physical Chemistry Chemical Physics, 2021, 23, 16013-16022.	2.8	11
462	Nonpolarizing oxygen-redox capacity without O-O dimerization in Na2Mn3O7. Nature Communications, 2021, 12, 631.	12.8	62
463	Activating Basal Planes of NiPS ₃ for Hydrogen Evolution by Nonmetal Heteroatom Doping. Advanced Functional Materials, 2020, 30, 1908708.	14.9	96
464	Decoupling the Voltage Hysteresis of Liâ€Rich Cathodes: Electrochemical Monitoring, Modulation Anionic Redox Chemistry and Theoretical Verifying. Advanced Functional Materials, 2021, 31, .	14.9	59
465	Lithium/Oxygen Incorporation and Microstructural Evolution during Synthesis of Liâ€Rich Layered Li[Li _{0.2} Ni _{0.2} Mn _{0.6}]O ₂ Oxides. Advanced Energy Materials, 2019, 9, 1803094.	19.5	78
466	Oxygenâ€Deficient Blue TiO ₂ for Ultrastable and Fast Lithium Storage. Advanced Energy Materials, 2020, 10, 1903107.	19.5	83
467	Li1.2Ni0.25Mn0.55O2: A high-capacity cathode material with a homogeneous monoclinic Li2MnO3-like superstructure. Journal of Alloys and Compounds, 2020, 827, 154202.	5.5	19
468	Potassium Prussian blue-coated Li-rich cathode with enhanced lithium ion storage property. Nano Energy, 2020, 75, 104942.	16.0	40
469	Controlling Covalency and Anion Redox Potentials through Anion Substitution in Li-Rich Chalcogenides. Chemistry of Materials, 2021, 33, 378-391.	6.7	20
470	Remaining Li-Content Dependent Structural Evolution during High Temperature Re-Heat Treatment of Quantitatively Delithiated Li-Rich Cathode Materials with Surface Defect-Spinel Phase. ACS Applied Materials & Interfaces, 2020, 12, 27226-27240.	8.0	15

#	Article	IF	CITATIONS
471	Restraining Oxygen Loss and Boosting Reversible Oxygen Redox in a P2-Type Oxide Cathode by Trace Anion Substitution. ACS Applied Materials & Interfaces, 2021, 13, 360-369.	8.0	38
472	Revisiting the Na _{2/3} Ni _{1/3} Mn _{2/3} O ₂ Cathode: Oxygen Redox Chemistry and Oxygen Release Suppression. ACS Central Science, 2020, 6, 232-240.	11.3	145
473	Low-cost descriptors of electrostatic and electronic contributions to anion redox activity in batteries. IOP SciNotes, 2020, 1, 024805.	0.8	5
474	Recent Advances on Surface Modification of Li- and Mn-Rich Cathode Materials. Acta Chimica Sinica, 2019, 77, 1115.	1.4	9
475	A composite surface configuration towards improving cycling stability of Li-rich layered oxide materials. Journal of Materials Chemistry A, 2021, 9, 24426-24437.	10.3	17
476	Coexistence of (O ₂) ^{<i>n</i>â[*]} and Trapped Molecular O ₂ as the Oxidized Species in P2-Type Sodium 3d Layered Oxide and Stable Interface Enabled by Highly Fluorinated Electrolyte. Journal of the American Chemical Society, 2021, 143, 18652-18664.	13.7	55
477	Interfacial thermodynamics-inspired electrolyte strategy to regulate output voltage and energy density of battery chemistry. Science Bulletin, 2022, 67, 626-635.	9.0	16
478	Reversible Cationâ€Mediated Anionic Redox in Defect Spinel Structure for High Power Batteries. Advanced Functional Materials, 2022, 32, 2108278.	14.9	3
479	A Quasiâ€Doubleâ€Layer Solid Electrolyte with Adjustable Interphases Enabling Highâ€Voltage Solidâ€State Batteries. Advanced Materials, 2022, 34, e2107183.	21.0	45
480	Organic Cathode Materials for Sodiumâ€lon Batteries: From Fundamental Research to Potential Commercial Application. Advanced Functional Materials, 2022, 32, 2107718.	14.9	75
481	Dualâ€Salt Electrolyte Additives Enabled Stable Lithium Metal Anode/Lithium–Manganeseâ€Rich Cathode Batteries. Advanced Energy and Sustainability Research, 2022, 3, 2100140.	5.8	9
482	Revealing the Thermodynamics and Kinetics of In-Plane Disordered Li ₂ MnO ₃ Structure in Li-Rich Cathodes. ACS Energy Letters, 2021, 6, 3836-3843.	17.4	32
483	Compatibility of Various Electrolytes with Cation Disordered Rocksalt Cathodes in Lithium Ion Batteries. ACS Applied Energy Materials, 2021, 4, 10909-10920.	5.1	9
484	Poly (methyl vinyl ether-alt-maleic anhydride) as an ecofriendly electrolyte additive for high-voltage lithium-rich oxides with improved stability of interphase. Electrochimica Acta, 2021, 400, 139467.	5.2	4
485	First principles investigation into the interwoven nature of voltage and mechanical properties of the Li <mml:math <br="" display="inline" id="d1e95" xmlns:mml="http://www.w3.org/1998/Math/MathML">altimg="si118.svg"><mml:mibub><mml:mrow /><mml:mrow><mml:mi>x</mml:mi></mml:mrow></mml:mrow </mml:mibub></mml:math> NMC-811 cathode. Journal of	7.8	10
486	Power Sources, 2021, 516, 230620. A symmetric sodium-ion battery based on P2-Na0.67[ZnMn1-]O2 as both positive and negative electrode materials. Electrochimica Acta, 2021, 399, 139421.	5.2	8
487	CHAPTER 3. Modification of Layered Oxide Cathode Materials. , 2019, , 44-71.		0
488	Layered Transition Metal Oxides as Ca Intercalation Cathodes: A Systematic Firstâ€Principles Evaluation. Advanced Energy Materials, 2021, 11, 2101698.	19.5	8

#	Article	IF	CITATIONS
489	Boosting Electrochemical Performance of Lithium-Rich Manganese-Based Cathode Materials through a Dual Modification Strategy with Defect Designing and Interface Engineering. ACS Applied Materials & Interfaces, 2021, 13, 53974-53985.	8.0	28
490	Destabilization of the surface structure of Ni-rich layered materials by water-washing process. Energy Storage Materials, 2022, 44, 441-451.	18.0	61
491	Anionic Redox Regulated via Metal–Ligand Combinations in Layered Sulfides. Advanced Materials, 2022, 34, e2107353.	21.0	11
492	Enhance performances of Co-free Li-rich cathode by eutesctic melting salt treatment. Nano Energy, 2022, 92, 106760.	16.0	40
493	Pushing the boundaries of lithium battery research with atomistic modelling on different scales. Progress in Energy, 2022, 4, 012002.	10.9	12
494	Structural insights into composition design of Li-rich layered cathode materials for high-energy rechargeable battery. Materials Today, 2021, 51, 15-26.	14.2	60
495	Unraveling Anionic Redox for Sodium Layered Oxide Cathodes: Breakthroughs and Perspectives. Advanced Materials, 2022, 34, e2106171.	21.0	97
496	On the Origin of Reversible and Irreversible Reactions in LiNi _x Co _{(1â`x)/2} Mn _{(1â^x)/2} O ₂ . Journal of the Electrochemical Society, 2021, 168, 120533.	2.9	15
497	Electrochemical performance of spherical Li-rich LMNCO cathode materials prepared using a two-step spray-drying method. Ceramics International, 2022, 48, 6302-6312.	4.8	3
498	Revisiting Olivine Phosphate and Blend Cathodes in Lithium Ion Batteries for Electric Vehicles. , 0, , .		0
499	Structure design enables stable anionic and cationic redox chemistry in a T2-type Li-excess layered oxide cathode. Science Bulletin, 2022, 67, 381-388.	9.0	13
500	Bismuth nanorods confined in hollow carbon structures for high performance sodium- and potassium-ion batteries. Journal of Energy Chemistry, 2022, 67, 787-796.	12.9	28
501	Study on the Interfacial Mechanism of Bisalt Polyether Electrolyte for Lithium Metal Batteries. Advanced Functional Materials, 2022, 32, 2109184.	14.9	14
502	New insight into lattice variations of Ni-rich NMC811 cathode induced by Li ₂ ZrO ₃ coating. Materials Technology, 2022, 37, 1926-1935.	3.0	5
503	Synthesis and Performance Optimization of Manganeseâ€based Cathode Materials for Zincâ€Ion Batteries. Batteries and Supercaps, 2022, 5, .	4.7	10
504	Entropy Measurements of Li-Ion Battery Cells with Li- and Mn-Rich Layered Transition Metal Oxides via Linear Temperature Variation. Journal of the Electrochemical Society, 2021, 168, 120502.	2.9	9
505	Unraveling vacancy-induced oxygen redox reaction and structural stability in Na-based layered oxides. Chemical Engineering Journal, 2022, 431, 133962.	12.7	11
506	Building Homogenous Li ₂ TiO ₃ Coating Layer on Primary Particles to Stabilize Liâ€Rich Mnâ€Based Cathode Materials. Small, 2022, 18, e2106337.	10.0	42

#	Article	IF	CITATIONS
507	Estimation of electrochemical cell potentials and reaction energies using Fermi energies. Physical Chemistry Chemical Physics, 2021, 24, 25-29.	2.8	11
508	Na _{2.4} Al _{0.4} Mn _{2.6} O ₇ anionic redox cathode material for sodium-ion batteries – a combined experimental and theoretical approach to elucidate its charge storage mechanism. Journal of Materials Chemistry A, 2022, 10, 7341-7356.	10.3	8
509	Unlocking the origin of triggering hysteretic oxygen capacity in divalent species incorporated O-type sodium layered-oxide cathodes. Energy Storage Materials, 2022, 45, 432-441.	18.0	7
510	Sulfur-doping/leaching induced structural transformation toward boosting electrocatalytic water splitting. Applied Catalysis B: Environmental, 2022, 305, 121030.	20.2	40
511	Impacts of Solvent Washing on the Electrochemical Remediation of Commercial End-Of-Life Cathodes. ACS Applied Energy Materials, 2020, 3, 12212-12229.	5.1	3
513	Two-dimensional titanium carbide (Ti ₃ C ₂ T _{<i>x</i>}) MXenes to inhibit the shuttle effect in sodium sulfur batteries. Physical Chemistry Chemical Physics, 2022, 24, 4187-4195.	2.8	10
514	Elucidating the Effect of Borate Additive in Highâ€Voltage Electrolyte for Liâ€Rich Layered Oxide Materials. Advanced Energy Materials, 2022, 12, .	19.5	38
515	Understanding anion-redox reactions in cathode materials of lithium-ion batteries through in situ characterization techniques: a review. Nanotechnology, 2022, 33, 182003.	2.6	11
516	Intermolecular Energy Gapâ€Induced Formation of Highâ€Valent Cobalt Species in CoOOH Surface Layer on Cobalt Sulfides for Efficient Water Oxidation. Angewandte Chemie, 2022, 134, .	2.0	39
517	Stabilizing effects of atomic Ti doping on high-voltage high-nickel layered oxide cathode for lithium-ion rechargeable batteries. Nano Research, 2022, 15, 4091-4099.	10.4	96
518	Upgrading the Performance and Stability of Lithium, Manganeseâ€Rich Layered Oxide Cathodes with Combinedâ€Formic Acid and Spinel Coating Treatment. Batteries and Supercaps, 2022, 5, .	4.7	4
519	A review of sodium chloride-based electrolytes and materials for electrochemical energy technology. Journal of Materials Chemistry A, 2022, 10, 2637-2671.	10.3	23
520	Anionic Redox Activities Boosted by Aluminum Doping in Layered Sodiumâ€lon Battery Electrode. Small Methods, 2022, 6, e2101524.	8.6	35
521	Intermolecular Energy Gapâ€Induced Formation of Highâ€Valent Cobalt Species in CoOOH Surface Layer on Cobalt Sulfides for Efficient Water Oxidation. Angewandte Chemie - International Edition, 2022, 61,	13.8	97
522	Effects of Mg Doping at Different Positions in Li-Rich Mn-Based Cathode Material on Electrochemical Performance. Nanomaterials, 2022, 12, 156.	4.1	10
523	Optimizing Hydrogen Adsorption by d–d Orbital Modulation for Efficient Hydrogen Evolution Catalysis. Advanced Energy Materials, 2022, 12, .	19.5	57
524	Tuning Bulk O ₂ and Nonbonding Oxygen State for Reversible Anionic Redox Chemistry in P2‣ayered Cathodes. Angewandte Chemie - International Edition, 2022, 61, .	13.8	16
525	A Redox Couple Strategy Enables Longâ€Cycling Li―and Mnâ€Rich Layered Oxide Cathodes by Suppressing Oxygen Release. Advanced Materials, 2022, 34, e2108543.	21.0	24

#	Article	IF	CITATIONS
526	Tuning Bulk O2 and Nonbonding Oxygen State for Reversible Anionic Redox Chemistry in P2‣ayered Cathodes. Angewandte Chemie, 0, , .	2.0	2
527	Controls of oxygen-partial pressure to accelerate the electrochemical activation in Co-free Li-rich layered oxide cathodes. Journal of Power Sources, 2022, 523, 231022.	7.8	14
528	Low-cost layered oxide cathode involving cationic and anionic redox with a complete solid-solution sodium-storage behavior. Energy Storage Materials, 2022, 47, 44-50.	18.0	39
529	Activating Surface Lattice Oxygen of a Cu/Zn _{1<i>–x</i>} Cu _{<i>x</i>} O Catalyst through Interface Interactions for CO Oxidation. ACS Applied Materials & Interfaces, 2022, 14, 9882-9890.	8.0	13
530	Pushing the limit of 3d transition metal-based layered oxides that use both cation and anion redox for energy storage. Nature Reviews Materials, 2022, 7, 522-540.	48.7	92
531	Reversible and Irreversible Redox Processes in Li-Rich Layered Oxides. Chemistry of Materials, 2021, 33, 9534-9545.	6.7	18
532	Topologically protected oxygen redox in a layered manganese oxide cathode for sustainable batteries. Nature Sustainability, 2022, 5, 214-224.	23.7	44
533	Controls of Oxygen-Partial Pressure to Accelerate the Electrochemical Activation in Co-Free Li-Rich Layered Oxide Cathodes. SSRN Electronic Journal, 0, , .	0.4	0
534	Facet-Dependent Thermal and Electrochemical Degradation of Lithium-Rich Layered Oxides. SSRN Electronic Journal, 0, , .	0.4	0
535	Enhanced oxygen redox reversibility and capacity retention of titanium-substituted Na _{4/7} [â–j _{1/7} Ti _{1/7} Mn _{5/7}]O ₂ in sodium-ion batteries. Journal of Materials Chemistry A, 2022, 10, 9941-9953.	10.3	25
536	Suppressing Surface Lattice Oxygen Evolution by Fluorinated Graphene-Scaffolded Lithium-Rich Manganese-Based Cathode for Enhanced Stability. SSRN Electronic Journal, 0, , .	0.4	0
537	Status of Li(Na)-based anionic redox materials for better batteries. , 2023, , 6-45.		4
538	Highly ÂStableÂSurface and Structural Origin for Lithium-Rich Layered Oxide Cathode Materials. SSRN Electronic Journal, 0, , .	0.4	0
539	Regulating Anionic Redox Activity of Lithium-Rich Layered Oxides Via Linbo3 Integrated Modification. SSRN Electronic Journal, 0, , .	0.4	0
540	Rocksalt and Layered Metal Sulfides for Li Storage Applications: LiMe _{0.5} Ti _{0.5} S ₂ (Me = Fe ²⁺ , Mn ²⁺ , and) Tj ETQ	0 0.0 0 rgl	3T\$Overlock
541	Importance of Chemical Distortion on the Hysteretic Oxygen Capacity in Li-Excess Layered Oxides. ACS Applied Materials & Interfaces, 2022, 14, 9057-9065.	8.0	5
542	Oxygen Redox Versus Oxygen Evolution in Aqueous Electrolytes: Critical Influence of Transition Metals. Advanced Science, 2022, 9, e2104907.	11.2	5
543	Cobaltâ€Free Cathode Materials: Families and their Prospects. Advanced Energy Materials, 2022, 12, .	19.5	77

		CITATION REPORT		
#	Article		IF	CITATIONS
544	Advances in carbon materials for stable lithium metal batteries. New Carbon Materials,	2022, 37, 1-24.	6.1	31
545	Unblocking Oxygen Charge Compensation for Stabilized Highâ€Voltage Structure in P. Cathode. Advanced Science, 2022, 9, e2200498.	2â€ ⊺ ype Sodiumâ€ l on	11.2	32
546	Coupling structural evolution and oxygen-redox electrochemistry in layered transition r Nature Materials, 2022, 21, 664-672.	netal oxides.	27.5	89
547	Configurationâ€dependent anionic redox in cathode materials. , 2022, 1, .			28
548	Chemistry, Local Molybdenum Clustering, and Electrochemistry in the Li _{2+<i>x</i>} Mo _{1–<i>x</i>} O ₃ Solid Solutions Chemistry, 2022, 61, 5637-5652.	. Inorganic	4.0	4
549	Improving the oxygen redox reversibility of Li-rich battery cathode materials via Coulon interactions strategy. Nature Communications, 2022, 13, 1123.	ibic repulsive	12.8	81
550	Stackingâ€Fault Enhanced Oxygen Redox in Li ₂ MnO ₃ . Adva Materials, 2022, 12, .	nced Energy	19.5	17
551	Hysteresis in electrochemical systems. , 2022, 1, .			25
552	Optical sensors for operando stress monitoring in lithium-based batteries containing so liquid electrolytes. Nature Communications, 2022, 13, 1153.	olid-state or	12.8	65
553	An analysis of F-doping in Li-rich cathodes. Rare Metals, 2022, 41, 1771-1796.		7.1	15
554	Oxygen Redox Intercalation Cathodes: The Fundamentals and Strategies to Resolve the ACS Applied Energy Materials, 2022, 5, 4522-4535.	2 Challenges.	5.1	1
555	Dilute Electrolyte to Mitigate Capacity Decay and Voltage Fading of Co-Free Li-Rich Cat Next-Generation Li-Ion Batteries. ACS Applied Materials & amp; Interfaces, 2022, 14, 12		8.0	11
556	Modulating the Voltage Decay and Cationic Redox Kinetics of Liâ€Rich Cathodes via Co Local Electronic Structure. Advanced Functional Materials, 2022, 32, .	ontrolling the	14.9	14
557	Enhancing the Reversibility of Lattice Oxygen Redox Through Modulated Transition Me Covalency for Layered Battery Electrodes. Advanced Materials, 2022, 34, e2201152.	tal–Oxygen	21.0	49
558	Promoting Reversibility of Multielectron Redox in Alkali-Rich Sulfide Cathodes through Chemistry of Materials, 2022, 34, 3236-3245.	Cryomilling.	6.7	1
559	Tuning redox activity through delithiation induced protective layer and Fe-O coordinati cathode with improved voltage and cycle performance. Journal of Energy Chemistry, 20		12.9	14
560	Coiled Conformation Hollow Carbon Nanosphere Cathode and Anode for High Energy I Ultrafast Chargeable Hybrid Energy Storage. ACS Nano, 2022, 16, 6552-6564.	Density and	14.6	10
561	Improved Capacity Retention for a Disordered Rocksalt Cathode via Solvate Ionic Liquid Batteries and Supercaps, 0, , .	d Electrolytes.	4.7	2

#	Article	IF	CITATIONS
562	Review—Surface Coatings for Cathodes in Lithium Ion Batteries: From Crystal Structures to Electrochemical Performance. Journal of the Electrochemical Society, 2022, 169, 043504.	2.9	44
563	Oxygen redox chemistry in lithium-rich cathode materials for Li-ion batteries: Understanding from atomic structure to nano-engineering. Nano Materials Science, 2022, 4, 322-338.	8.8	24
565	Stable electronic structure related with Mn4+Oâ^• coupling determines the anomalous nonhysteretic behavior in Na2Mn3O7. Energy Storage Materials, 2022, 48, 290-296.	18.0	16
566	Design and tailoring of carbon-Al2O3 double coated nickel-based cation-disordered cathodes towards high-performance Li-ion batteries. Nano Energy, 2022, 96, 107071.	16.0	26
567	Highly stable surface and structural origin for lithium-rich layered oxide cathode materials. Nano Energy, 2022, 98, 107169.	16.0	17
568	FeS2@N-C nanorattles encapsulated in N/S dual-doped graphene/carbon nanotube network composites for high performance and high rate capability anodes of sodium-ion batteries. Chemical Engineering Journal, 2022, 439, 135678.	12.7	28
569	Restriction of voltage decay by limiting low-voltage reduction in Li-rich oxide materials. Journal of Colloid and Interface Science, 2022, 620, 57-66.	9.4	5
570	Accelerating cathode material discovery through <i>ab initio</i> random structure searching. APL Materials, 2021, 9, 121111.	5.1	13
571	Magnetic Compton Scattering Study of Li-Rich Battery Materials. Condensed Matter, 2022, 7, 4.	1.8	5
572	Ordered Oxygen Vacancies in the Lithium-Rich Oxide Li ₄ CuSbO _{5.5} , a Triclinic Structure Type Derived from the Cubic Rocksalt Structure. Inorganic Chemistry, 2021, 60, 19022-19034.	4.0	0
573	Multiscale computations and artificial intelligent models of electrochemical performance in Liâ€ion battery materials. Wiley Interdisciplinary Reviews: Computational Molecular Science, 2022, 12, .	14.6	6
574	Electronic Structure Reconfiguration of Self-Supported Polyoxometalate-Based Lithium-Ion Battery Anodes for Efficient Lithium Storage. ACS Applied Materials & Interfaces, 2022, 14, 1169-1176.	8.0	13
575	Chemical Design of IrS ₂ Polymorphs to Understand the Charge/Discharge Asymmetry in Anionic Redox Systems. Chemistry of Materials, 2022, 34, 325-336.	6.7	1
576	Improvement of the Electrochemical Performance of LiNi _{0.8} Co _{0.1} Mn _{0.1} O ₂ via Atomic Layer Deposition of Lithium-Rich Zirconium Phosphate Coatings. ACS Applied Materials & Interfaces, 2021, 13, 61733-61741.	8.0	11
577	Importance of Superstructure in Stabilizing Oxygen Redox in P3â€Na _{0.67} Li _{0.2} Mn _{0.8} O ₂ . Advanced Energy Materials, 2022, 12, .	19.5	25
578	Water–Solid Interface Engineering Stabilizes Kâ€Birnessite Cathode. Advanced Functional Materials, 2022, 32, 2108267.	14.9	2
579	Gospel for Improving the Lithium Storage Performance of High-Voltage High-Nickel Low-Cobalt Layered Oxide Cathode Materials. ACS Applied Materials & Interfaces, 2021, 13, 58871-58884.	8.0	26
580	Temperature-Driven Chemical Segregation in Co-Free Li-Rich-Layered Oxides and Its Influence on Electrochemical Performance. Chemistry of Materials, 2022, 34, 3637-3647.	6.7	8

#	Article	IF	CITATIONS
581	Feasibility to Improve the Stability of Lithium-Rich Layered Oxides by Surface Doping. ACS Applied Materials & Interfaces, 2022, 14, 18353-18359.	8.0	21
582	In-situ formation of Li0.5Mn0.5O coating layer through defect controlling for high performance Li-rich manganese-based cathode material. Journal of Energy Chemistry, 2022, 71, 384-391.	12.9	14
583	In-situ construction of extra ion-store sites and fast ion-diffusion channels for lithium-rich manganese-based oxides cathode. Journal of Power Sources, 2022, 535, 231437.	7.8	2
584	Effect of Titanium Doping of Lithium-Rich Cathode Materials. Doklady Physical Chemistry, 2022, 502, 7-10.	0.9	2
585	An orbital principle to design P2-Na _{<i>x</i>} MO ₂ cathode materials for sodium-ion batteries. Physical Chemistry Chemical Physics, 2022, 24, 13201-13209.	2.8	4
586	Oxygen Evolution Reaction in Energy Conversion and Storage: Design Strategies Under and Beyond the Energy Scaling Relationship. Nano-Micro Letters, 2022, 14, 112.	27.0	104
587	Research Progress in Lithiumâ€Excess Disordered Rockâ€Salt Oxides Cathode. Energy and Environmental Materials, 2022, 5, 1139-1154.	12.8	33
588	å±,状氧åŒ−ç‰©åŠæ™®é²å£«è"类似物在é'离å电æ±çš"ç"究进展. Scientia Sinica Chimica, 20	22,4, .	0
589	Direct imaging of oxygen shifts associated with the oxygen redox of Li-rich layered oxides. Joule, 2022, 6, 1049-1065.	24.0	13
590	Unveiling the Complementary Manganese and Oxygen Redox Chemistry for Stabilizing the Sodiumâ€lon Storage Behaviors of Layered Oxide Cathodes. Advanced Functional Materials, 2022, 32, .	14.9	34
591	Stabilizing the Anionic Redox in 4.6 VÂLiCoO ₂ Cathode through Adjusting Oxygen Magnetic Moment. Advanced Functional Materials, 2022, 32, .	14.9	19
592	Effect of lithium doping in P2-Type layered oxide cathodes on the electrochemical performances of Sodium-Ion batteries. Chemical Engineering Journal, 2022, 446, 136923.	12.7	10
593	Suppressing Surface Lattice Oxygen Evolution by Fluorinated Graphene-Scaffolded Lithium-Rich Manganese-Based Cathode for Enhanced Stability. Energy Storage Materials, 2022, 49, 555-563.	18.0	10
594	Coincident formation of trapped molecular O2 in oxygen-redox-active archetypical Li 3d oxide cathodes unveiled by EPR spectroscopy. Energy Storage Materials, 2022, 50, 55-62.	18.0	11
595	Activating Lattice Oxygen in Layered Lithium Oxides through Cation Vacancies for Enhanced Urea Electrolysis. Angewandte Chemie - International Edition, 2022, 61, .	13.8	116
596	Accelerating Oâ€Redox Kinetics with Carbon Nanotubes for Stable Lithiumâ€Rich Cathodes. Small Methods, 2022, 6, e2200449.	8.6	3
597	Manganese-based layered oxides for electrochemical energy storage: a review of degradation mechanisms and engineering strategies at the atomic level. Journal of Materials Chemistry A, 2022, 10, 19231-19253.	10.3	14
598	Modulating anionic activities in layered Li-rich cathode materials with inverse spinel MnFe ₂ O ₄ coating. MATEC Web of Conferences, 2022, 358, 01051.	0.2	0

#	Article	IF	CITATIONS
599	Exceptional Cycling Performance Enabled by Local Structural Rearrangements in Disordered Rocksalt Cathodes. Advanced Energy Materials, 2022, 12, .	19.5	15
600	Coupling core–shell Bi@Void@TiO ₂ heterostructures into carbon nanofibers for achieving fast potassium storage and long cycling stability. Journal of Materials Chemistry A, 2022, 10, 12908-12920.	10.3	12
601	Effects of Triple ModificationÂOf Sodium Hypophosphite on Structure and Electrochemical Performances of Lithium-Rich Manganese-Based Cathode Materials. SSRN Electronic Journal, 0, , .	0.4	0
602	Stabilizing oxygen redox chemistry for the realization of high-capacity batteries. Nature Sustainability, 0, , .	23.7	0
603	Unexpectedly Large Contribution of Oxygen to Charge Compensation Triggered by Structural Disordering: Detailed Experimental and Theoretical Study on a Li ₃ NbO ₄ –NiO Binary System. ACS Central Science, 2022, 8, 775-794.	11.3	10
604	Entropy and crystal-facet modulation of P2-type layered cathodes for long-lasting sodium-based batteries. Nature Communications, 2022, 13, .	12.8	61
605	Activating Lattice Oxygen in Layered Lithium Oxides through Cation Vacancies for Enhanced Urea Electrolysis. Angewandte Chemie, 2022, 134, .	2.0	10
606	Voltage decay for lithium-excess material of Li[Li1/5Co2/5Mn2/5]O2 during cycling analyzed via backstitch method. Journal of Solid State Electrochemistry, 2022, 26, 1519-1526.	2.5	2
607	An Exploration of Sulfur Redox in Lithium Battery Cathodes. Journal of the American Chemical Society, 2022, 144, 10119-10132.	13.7	14
608	Origin and regulation of oxygen redox instability in high-voltage battery cathodes. Nature Energy, 2022, 7, 808-817.	39.5	55
609	Unified Picture of (Non)Hysteretic Oxygen Capacity in O3â€Type Sodium 3 <i>d</i> Layered Oxides. Advanced Energy Materials, 2022, 12, .	19.5	5
610	Elastic Lattice Enabling Reversible Tetrahedral Li Storage Sites in a High apacity Manganese Oxide Cathode. Advanced Materials, 2022, 34, .	21.0	15
611	Design of Transition Metal Carbonitrides (Mcns) as Potential Anchoring and High Catalytic Performance Materials for Lithium-Sulfur Battery. SSRN Electronic Journal, 0, , .	0.4	0
612	Research progress in stable interfacial constructions between composite polymer electrolytes and electrodes. Energy and Environmental Science, 2022, 15, 2753-2775.	30.8	62
613	Theoretical study on Y-doped Na ₂ ZrO ₃ as a high-capacity Na-rich cathode material based on anionic redox. Physical Chemistry Chemical Physics, 2022, 24, 16183-16192.	2.8	7
614	Antifluorite-type Na ₅ FeO ₄ as a low-cost, environment-friendly cathode with combined cationic/anionic redox activity for sodium ion batteries: a first-principles investigation. RSC Advances, 2022, 12, 17410-17421.	3.6	3
615	A review – exploring the performance degradation mechanisms of LiCoO ₂ cathodes at high voltage conditions and some optimizing strategies. Materials Chemistry Frontiers, 2022, 6, 2319-2337.	5.9	9
616	Physicochemical Screen Effect of Li Ions in Oxygen Redox Cathodes for Advanced Sodium-Ion Batteries. Chemistry of Materials, 2022, 34, 5971-5979.	6.7	6

#	Article	IF	CITATIONS
617	Cycling-Driven Electrochemical Activation of Li-Rich NMC Positive Electrodes for Li-Ion Batteries. ACS Applied Energy Materials, 2022, 5, 7758-7769.	5.1	21
618	Capturing dynamic ligand-to-metal charge transfer with a long-lived cationic intermediate for anionic redox. Nature Materials, 2022, 21, 1165-1174.	27.5	34
619	Li-Deficient Materials-Decoration Restrains Oxygen Evolution Achieving Excellent Cycling Stability of Li-Rich Mn-Based Cathode. ACS Applied Materials & Interfaces, 2022, 14, 30133-30143.	8.0	8
620	Effect of the grain arrangements on the thermal stability of polycrystalline nickel-rich lithium-based battery cathodes. Nature Communications, 2022, 13, .	12.8	16
621	Ï€-type orbital hybridization and reactive oxygen quenching induced by Se-doping for Li-rich Mn-based oxide cathode. Energy Storage Materials, 2022, 51, 671-682.	18.0	15
622	Origin of structural degradation in Li-rich layered oxide cathode. Nature, 2022, 606, 305-312.	27.8	206
623	Hysteresis Induced by Incomplete Cationic Redox in Liâ€Rich 3dâ€Transitionâ€Metal Layered Oxides Cathodes. Advanced Science, 2022, 9, .	11.2	7
624	High-performance carbon-coated hollow nanocube ZnSe as cathode material for aluminum batteries. Journal of Alloys and Compounds, 2022, 920, 166006.	5.5	5
625	The interplay between selective etching induced cation defects and active oxygen species for volatile organic compounds degradation. Journal of Colloid and Interface Science, 2022, 625, 363-372.	9.4	8
626	Predict Low Energy Structures of Bsi Monolayer as High-Performance Li/Na/K Ion Battery Anode. SSRN Electronic Journal, 0, , .	0.4	0
627	Chemical and structural evolutions of Li–Mn-rich layered electrodes at different current densities. Energy and Environmental Science, 2022, 15, 4137-4147.	30.8	10
628	Highly reversible Li ₂ RuO ₃ cathodes in sulfide-based all solid-state lithium batteries. Energy and Environmental Science, 2022, 15, 3470-3482.	30.8	17
629	Approaching a stable oxygen redox reaction in lithium-rich cathode materials: structural perspectives from mechanism to optimization. Journal of Materials Chemistry A, 2022, 10, 19387-19411.	10.3	6
630	Structural degradation mechanisms and modulation technologies of layered oxide cathodes for sodiumâ€ion batteries. , 2022, 1, 68-92.		25
631	Liâ€Rich Mn–Mg Layered Oxide as a Novel Niâ€∤Coâ€Free Cathode. Advanced Functional Materials, 2022, 32, .	14.9	13
632	Multifunctional Surface Construction for Longâ€Term Cycling Stability of Liâ€Rich Mnâ€Based Layered Oxide Cathode for Liâ€Ion Batteries. Small, 2022, 18, .	10.0	10
633	Alâ€Doping Driven Suppression of Capacity and Voltage Fadings in 4dâ€Element Containing Liâ€Ionâ€Battery Cathode Materials: Machine Learning and Density Functional Theory. Advanced Energy Materials, 2022, 12, .	19.5	42
634	Lattice strain blights lithium-ion batteries. Nature, 0, , .	27.8	0

	CITATION R	CITATION REPORT	
# 635	ARTICLE Superior Multielectronâ€Transferring Energy Storage by Ï€â€d Conjugated Frameworks. Small, 0, , 2202861.	IF 10.0	Citations
636	The Influence of Synthesis Method on the Local Structure and Electrochemical Properties of Li-Rich/Mn-Rich NMC Cathode Materials for Li-Ion Batteries. Nanomaterials, 2022, 12, 2269.	4.1	2
637	Anionic redox reaction mechanism in Na-ion batteries. Chinese Physics B, 2022, 31, 098801.	1.4	3
638	Spin-related symmetry breaking induced by half-disordered hybridization in BixEr2-xRu2O7 pyrochlores for acidic oxygen evolution. Nature Communications, 2022, 13, .	12.8	66
639	Ion Substitution Strategy of Manganeseâ€Based Layered Oxide Cathodes for Advanced and Low ost Sodium Ion Batteries. Chemical Record, 2022, 22, .	5.8	18
640	Surface dissolution and amorphization of electrocatalysts during oxygen evolution reaction: Atomistic features and viewpoints. Materials Today, 2022, 58, 221-237.	14.2	11
641	Anionic Redox Chemistry for Sodium-Ion Batteries: Mechanisms, Advances, and Challenges. Energy & Fuels, 2022, 36, 8081-8095.	5.1	13
642	Regulating anionic redox activity of lithium-rich layered oxides via LiNbO3 integrated modification. Nano Energy, 2022, 101, 107555.	16.0	26
643	Understanding of Oxygen Redox in the Oxygen Evolution Reaction. Advanced Materials, 2022, 34, .	21.0	109
644	Identifying Redox Orbitals and Defects in Lithium-Ion Cathodes with Compton Scattering and Positron Annihilation Spectroscopies: A Review. Condensed Matter, 2022, 7, 47.	1.8	3
645	Two-Dimensional Pentagraphyne as a High-Performance Anode Material for Li/Na-Ion Rechargeable Batteries. ACS Applied Nano Materials, 2022, 5, 10572-10582.	5.0	27
646	Retardation of Structure Densification by Increasing Covalency in Li-Rich Layered Oxide Positive Electrodes for Li-Ion Batteries. Chemistry of Materials, 2022, 34, 6779-6791.	6.7	18
647	Molten Salt Synthesis of Carbon Anode for High-Performance Sodium-Ion Batteries. SSRN Electronic Journal, 0, , .	0.4	0
648	Advances in studying interfacial reactions in rechargeable batteries by photoelectron spectroscopy. Journal of Materials Chemistry A, 2022, 10, 19466-19505.	10.3	17
649	Highâ€Voltage Aluminiumâ€Sulfur Batteries with Functional Polymer Membrane. Advanced Functional Materials, 2022, 32, .	14.9	4
650	Facetâ€dependent Thermal and Electrochemical Degradation of Lithiumâ€rich Layered Oxides. Energy and Environmental Materials, 2023, 6, .	12.8	5
651	Triggering Anionic Redox Activity in Li ₃ NbS ₄ Through Cationic Disordering or Substitution. Advanced Energy Materials, 2022, 12, .	19.5	5
652	Surface yttrium-doping induced by element segregation to suppress oxygen release in Li-rich layered oxide cathodes. Tungsten, 2022, 4, 336-345.	4.8	8

#	Article	IF	CITATIONS
653	Formation of Rocksalt Domains by Dual Substitution to Boost Electrochemical Capability of Co-Free Li-Rich Layered Cathodes. ACS Applied Energy Materials, 2022, 5, 9970-9979.	5.1	9
654	Achieving high-energy-density lithium-ion batteries through oxygen redox of cathode: From fundamentals to applications. Applied Physics Letters, 2022, 121, .	3.3	4
655	Mg2+ doping into Li sites to improve anionic redox reversibility and thermal stability of lithium-rich manganese-based oxides cathode. Materials Today Energy, 2022, 29, 101116.	4.7	12
656	Challenges and strategies of lithium-rich layered oxides for Li-ion batteries. Nano Research, 2023, 16, 391-402.	10.4	15
657	Modulation of lattice oxygen boosts the electrochemical activity and stability of Co-free Li-rich cathodes. Journal of Energy Chemistry, 2022, 75, 117-126.	12.9	13
658	Cation configuration in transition-metal layered oxides. Matter, 2022, 5, 3869-3882.	10.0	16
659	Critical overview of polyanionic frameworks as positive electrodes for Na-ion batteries. Journal of Materials Research, 2022, 37, 3169-3196.	2.6	8
660	Material science as a cornerstone driving battery research. Nature Materials, 2022, 21, 979-982.	27.5	16
661	Lifting the redox potential of layered sulfide cathodes for sodium-ion batteries. Matter, 2022, 5, 2500-2501.	10.0	1
662	Tailoring layered transition metal compounds for high-performance aqueous zinc-ion batteries. Energy Storage Materials, 2022, 52, 250-283.	18.0	23
663	Construction of Co/Ni-Free P2-layered metal oxide cathode with high reversible oxygen redox for sodium ion batteries. Chemical Engineering Journal, 2023, 452, 138912.	12.7	13
664	One-Pot K+ and Po43- Co-Doping Enhances Electrochemical Performance of Li-Rich Li1.2ni0.13co0.13mn0.54o2 Cathode for Li-Ion Battery. SSRN Electronic Journal, 0, , .	0.4	Ο
665	An interactive design for sustainable oxygen capacity in alkali-ion batteries. Energy and Environmental Science, 2022, 15, 4554-4560.	30.8	4
666	Surface reduction in lithium- and manganese-rich layered cathodes for lithium ion batteries drives voltage decay. Journal of Materials Chemistry A, O, , .	10.3	3
667	Electrochemical Activity Regulating by Strain Control to Achieve High-Performance Potassium-Ion-Based Dual-Ion Battery. SSRN Electronic Journal, 0, , .	0.4	0
668	Ru-Doping of P2-Na _{<i>x</i>} Mn _{0.75} Ni _{0.25} O ₂ -Layered Oxides for High-Energy Na-Ion Battery Cathodes: First-Principles Insights on Activation and Control of Reversible Oxide Redox Chemistry. ACS Applied Energy Materials, 2022, 5, 10721-10730.	5.1	6
669	Effect of Disorder and Doping on Electronic Structure and Diffusion Properties of Li ₃ V ₂ O ₅ . Journal of Physical Chemistry C, 2022, 126, 15549-15557.	3.1	3
670	Adaptive Cation Pillar Effects Achieving High Capacity in Liâ€Rich Layered Oxide, Li ₂ MnO ₃ â€LiMeO ₂ (Me = Ni, Co, Mn). Small, 2022, 18, .	10.0	3

#	Article	IF	CITATIONS
671	Redox Evolution of Li-Rich Layered Cathode Materials. Batteries, 2022, 8, 132.	4.5	10
672	Quantifying the Anomalous Local and Nanostructure Evolutions Induced by Lattice Oxygen Redox in Lithiumâ€Rich Cathodes. Small Methods, 2022, 6, .	8.6	4
673	Transition metal migration and O2 formation underpin voltage hysteresis in oxygen-redox disordered rocksalt cathodes. Nature Communications, 2022, 13, .	12.8	31
674	Superstructure Variation and Improved Cycling of Anion Redox Active Sodium Manganese Oxides Due to Doping by Iron. Advanced Energy Materials, 2022, 12, .	19.5	13
675	Ionâ€Migration Mechanism: An Overall Understanding of Anionic Redox Activity in Metal Oxide Cathodes of Li/Naâ€Ion Batteries. Advanced Materials, 2022, 34, .	21.0	35
676	Pristine Surface of Ni-Rich Layered Transition Metal Oxides as a Premise of Surface Reactivity. ACS Applied Materials & Interfaces, 2022, 14, 41945-41956.	8.0	5
677	Theoretical insights on alleviating lattice-oxygen evolution by sulfur substitution in Li1.2Ni0.6Mn0.2O2 cathode material. Npj Computational Materials, 2022, 8, .	8.7	5
678	Real-space measurement of orbital electron populations for Li1-xCoO2. Nature Communications, 2022, 13, .	12.8	8
679	Correlating Mg Displacement with Topologically Regulated Lattice Oxygen Redox in Na-Ion Layered Oxide Cathodes. Chemistry of Materials, 2022, 34, 9240-9250.	6.7	9
680	Understanding voltage hysteresis and decay during anionic redox reaction in layered transition metal oxide cathodes: A critical review. Nano Research, 2023, 16, 3766-3780.	10.4	8
681	Boosting anionic redox through lithium doping in P2-layered cathode for high-performance sodium-ion batteries. Applied Surface Science, 2023, 608, 155097.	6.1	6
682	Identifying and Interpreting Geometric Configuration-Dependent Activity of Spinel Catalysts for Water Reduction. Journal of the American Chemical Society, 2022, 144, 19163-19172.	13.7	34
683	Anionic Activity in Fast-Charging Batteries: Recent Advances, Prospects, and Challenges. , 2022, 4, 2195-2209.		8
684	Electrospun Bi-doped TiO2/C nanofibers as active materials for high-capacity and long-life-stability sodium-ion anodes. Journal of Electroanalytical Chemistry, 2022, 924, 116855.	3.8	3
685	Battery materials. , 2023, , 308-363.		0
686	Fluorinated Rocksalt Cathode with Ultraâ€high Active Li Content for Lithiumâ€ion Batteries. Angewandte Chemie - International Edition, 2022, 61, .	13.8	9
687	A medium-entropy transition metal oxide cathode for high-capacity lithium metal batteries. Nature Communications, 2022, 13, .	12.8	15
688	Toward Dendrite-Free Metallic Lithium Anodes: From Structural Design to Optimal Electrochemical Diffusion Kinetics. ACS Nano, 2022, 16, 17729-17760.	14.6	50

#	Article	IF	CITATIONS
689	A Nearly Zero-Strain Li-Rich Rock-Salt Oxide with Multielectron Redox Reactions as a Cathode for Li-Ion Batteries. Chemistry of Materials, 2022, 34, 9711-9721.	6.7	7
690	Reconstruction of Thiospinel to Active Sites and Spin Channels for Water Oxidation. Advanced Materials, 2023, 35, .	21.0	27
691	Accurate Electronic Properties and Intercalation Voltages of Olivine-Type Li-Ion Cathode Materials from Extended Hubbard Functionals. , 2022, 1, .		10
692	Fluorinated Rocksalt Cathode with Ultraâ€high Active Li Content for Lithiumâ€ion Batteries. Angewandte Chemie, 0, , .	2.0	0
693	Oxygen Deficiency and Migration-Mediated Electric Polarization in Magnetic Fe,Co-Substituted SrTiO3â^îſ. Magnetochemistry, 2022, 8, 144.	2.4	1
694	Design picture in enabling reversible oxygen capacity for O-type Na 3d layered oxides. Energy Storage Materials, 2023, 54, 330-338.	18.0	7
695	Predict low energy structures of BSi monolayer as high-performance Li/Na/K ion battery anode. Applied Surface Science, 2023, 609, 155222.	6.1	8
696	Engineering the modulation of the active sites and pores of pristine metal–organic frameworks for high-performance sodium-ion storage. Inorganic Chemistry Frontiers, 2023, 10, 396-405.	6.0	9
697	Single-crystal Li-rich layered cathodes with suppressed voltage decay by double-layer interface engineering. Energy Storage Materials, 2023, 54, 651-660.	18.0	22
698	Enabling robust anionic redox structure via tuning the symmetry of locally ordered lattice in Li-rich Li-Mn-O cathodes. Chemical Engineering Journal, 2023, 454, 140327.	12.7	4
699	Recent Advances on High apacity Sodium Manganeseâ€Based Oxide Cathodes for Sodiumâ€ion Batteries. Chemistry - A European Journal, 2023, 29, .	3.3	3
700	First principles study of S-repaired ultra-thin InSe electrodes for ion storage and transport. Chemical Physics Letters, 2022, , 140196.	2.6	0
701	Stabilizing structure and voltage decay of lithium-rich cathode materials. Ceramics International, 2023, 49, 8936-8944.	4.8	3
702	Interfacial Coupling SnSe ₂ /SnSe Heterostructures as Long Cyclic Anodes of Lithium″on Battery. Advanced Science, 2023, 10, .	11.2	13
703	Influence of the Composition and Testing Modes on the Electrochemical Performance of Li-Rich Cathode Materials. Nanomaterials, 2022, 12, 4054.	4.1	2
704	Oxide Cathodes: Functions, Instabilities, Self Healing, and Degradation Mitigations. Chemical Reviews, 2023, 123, 811-833.	47.7	37
705	Tuning discharge voltage by Schottky electron barrier in P2-Na2/3Mg0.205Ni0.1Fe0.05Mn0.645O2. Energy Storage Materials, 2023, 55, 587-596.	18.0	4
706	Surface Al-doping for compromise between facilitating oxygen redox and enhancing structural stability of Li-rich layered oxide. Energy Storage Materials, 2023, 55, 356-363.	18.0	16

#	Article	IF	CITATIONS
707	Search for stable host materials as low-voltage anodes for lithium-ion batteries: A mini-review. Energy Storage Materials, 2023, 55, 364-387.	18.0	11
708	Fundamentals and advances of ligand field theory in understanding structure-electrochemical property relationship of intercalation-type electrode materials for rechargeable batteries. Progress in Materials Science, 2023, 133, 101055.	32.8	16
709	Bulk Oxygen Stabilization via Electrodeâ€Electrolyte Interphase Tailored Surface Activities of Liâ€Rich Cathodes. Advanced Energy Materials, 2023, 13, .	19.5	14
710	2D Metallic Abnormal Li ₂ Cl Crystals with Unique Electronic Characteristics Applied in Capacitor and Humidity Sensor. Advanced Materials Interfaces, 2023, 10, .	3.7	0
711	Understanding mechanism of voltage decay and temperature sensitivity of Li-rich manganese-based cathode materials. Materials and Design, 2023, 225, 111548.	7.0	6
712	Manipulating Chargeâ€Transfer Kinetics of Lithiumâ€Rich Layered Oxide Cathodes in Halide Allâ€Solidâ€State Batteries. Advanced Materials, 2023, 35, .	21.0	26
713	Interlayer Modulation of Layered Transition Metal Compounds for Energy Storage. ACS Applied Materials & Interfaces, 2022, 14, 54369-54388.	8.0	4
714	Capturing Oxygen-Driven Electrolyte Oxidation during High-Voltage Cycling in Li-Rich Layered Oxide Cathodes. ACS Energy Letters, 2023, 8, 417-419.	17.4	11
715	Exploring Trimethyl-Phosphate-Based Electrolytes without a Carbonyl Group for Li-Rich Layered Oxide Positive Electrodes in Lithium-Ion Batteries. Journal of Physical Chemistry Letters, 2022, 13, 11307-11316.	4.6	2
716	Degradation Pathways of Cobaltâ€Free LiNiO ₂ Cathode in Lithium Batteries. Advanced Functional Materials, 2023, 33, .	14.9	15
717	Recent Advances of Transition Metal Sulfides/Selenides Cathodes for Aqueous Zincâ€lon Batteries. Advanced Energy Materials, 2023, 13, .	19.5	35
718	Identification of the Origin for Reconstructed Active Sites on Oxyhydroxide for Oxygen Evolution Reaction. Advanced Materials, 2023, 35, .	21.0	54
719	Unveiling the Highâ€valence Oxygen Degradation Across the Delithiated Cathode Surface. Angewandte Chemie, 0, , .	2.0	3
720	Unveiling the Highâ€valence Oxygen Degradation Across the Delithiated Cathode Surface. Angewandte Chemie - International Edition, 2023, 62, .	13.8	10
721	Reversible Discharge Products in Li–Air Batteries. Advanced Materials, 2023, 35, .	21.0	9
722	Effects of cation superstructure ordering on oxygen redox stability in O2-type lithium-rich layered oxides. Energy and Environmental Science, 2023, 16, 673-686.	30.8	10
723	Unlocking High Capacity and Fast Na ⁺ Diffusion of H _{<i>x</i>} CrS ₂ by Protonâ€Exchange Pretreatment. Advanced Materials, 2023, 35, .	21.0	4
724	Synthesis, structure and electrochemical properties of a new cation ordered layered Li–Ni–Mg–Mo oxide. Materials Advances, 2023, 4, 1021-1029.	5.4	1

#	Article	IF	CITATIONS
725	Triggering reversible anion redox chemistry in O3-type cathodes by tuning Na/Mn anti-site defects. Energy and Environmental Science, 2023, 16, 584-597.	30.8	6
726	Superwettable High-Voltage LiCoO ₂ for Low-Temperature Lithium Ion Batteries. ACS Energy Letters, 2023, 8, 881-888.	17.4	24
727	Selenium-doped cathode materials with polyaniline skeleton for lithium-organosulfur batteries. Journal of Energy Chemistry, 2023, 79, 148-157.	12.9	4
728	Hybrid Nano-Phase Ion/Electron Dual Pathways of Nickel/Cobalt–Boride Cathodes Boosting Intercalation Kinetics for Alkaline Batteries. ACS Applied Materials & Interfaces, 2023, 15, 2843-2851.	8.0	3
729	Lithium-rich antiperovskite (Li <mml:math)="" 0="" 2023,="" 558,<="" batteries.="" cathode="" etqq0="" for="" high-performance="" journal="" lithium-ion="" material="" of="" power="" rg="" sources,="" td="" tj="" xmlns:mml="http://www.w3.org/1998/Math/MathML"><td>7.8</td><td>4</td></mml:math>	7.8	4
730	232547. Structural evolution of Na-rich spinel oxides involving anionic redox reaction for Na-ion batteries. Electrochimica Acta, 2023, 440, 141746.	5.2	0
731	Boosting the kinetic properties and suppressing the irreversible oxygen redox of lithium-rich manganese-based cathode materials through combined strategies of fast ionic conductor and oxygen vacancy. Journal of Alloys and Compounds, 2023, 939, 168846.	5.5	4
732	Tuning OER Electrocatalysts toward LOM Pathway through the Lens of Multi-Descriptor Feature Selection by Artificial Intelligence-Based Approach. , 2023, 5, 299-320.		10
733	lrreversible Anion Oxidation Leads to Dynamic Charge Compensation in the Ru-Poor, Li-Rich Cathode Li ₂ Ru _{0.3} Mn _{0.7} O ₃ . ACS Energy Letters, 2023, 8, 722-730.	17.4	1
734	Lattice Oxygen Activation for Enhanced Electrochemical Oxygen Evolution. Journal of Physical Chemistry C, 2023, 127, 2147-2159.	3.1	6
735	The role of anionic processes in Li _{1â^'<i>x</i>} Ni _{0.44} Mn _{1.56} O ₄ studied by resonant inelastic X-ray scattering. Energy Advances, 0, , .	3.3	0
736	Recent Advances in Mnâ€Rich Layered Materials for Sodiumâ€Ion Batteries. Advanced Functional Materials, 2023, 33, .	14.9	26
737	Voltage-dependent formation of cathode–electrolyte interphase with independent metallic layer in LiNi0.8Mn0.1Co0.1O2 cathode for high-energy density lithium-ion batteries. Materials Today Sustainability, 2023, 21, 100326.	4.1	2
738	Constructing "Li-rich Ni-rich―oxide cathodes for high-energy-density Li-ion batteries. Energy and Environmental Science, 2023, 16, 1210-1222.	30.8	27
740	Design strategies for coordination polymers as electrodes and electrolytes in rechargeable lithium batteries. Coordination Chemistry Reviews, 2023, 483, 215084.	18.8	8
741	Modulating the local electronic structure via Al substitution to enhance the electrochemical performance of Li-rich Mn-based cathode materials. Journal of Alloys and Compounds, 2023, 947, 169481.	5.5	9
742	Revealing structural degradation in layered structure oxides cathode of lithium ion batteries via in-situ transmission electron microscopy. Journal of Materials Science and Technology, 2023, 154, 189-201.	10.7	5
743	Enhancement of recovered graphite's electrochemical performance during LIB recycling to promote circular sustainable development. Sustainable Materials and Technologies, 2023, 36, e00613.	3.3	Ο

#	Article	IF	CITATIONS
744	Facile fabrication of Li5Cr7Ti6O25@Li0.33La0.56TiO3 composites as promising anode materials for high-performance Li-ion batteries. Sustainable Materials and Technologies, 2023, 36, e00598.	3.3	0
745	A comprehensive review of foreign-ion doping and recent achievements for nickel-rich cathode materials. Energy Storage Materials, 2023, 57, 14-43.	18.0	29
746	A double-layer covered architecture with spinel phase induced by LiPP for Co-free Li-rich cathode with high-rate performance and long lifespan. Nano Research, 2023, 16, 6805-6814.	10.4	2
747	Closing remarks and future directions for batteries and their thermal management. , 2023, , 265-274.		0
748	Covalency modulation enables stable Na-rich layered oxide cathodes for Na-ion batteries. Electronic Structure, 2023, 5, 014004.	2.8	1
749	Regulating the Potential of Anion Redox to Reduce the Voltage Hysteresis of Li-Rich Cathode Materials. Journal of the American Chemical Society, 2023, 145, 5174-5182.	13.7	19
750	An overview of 2D metal sulfides and carbides as Na host materials for Na-ion batteries. Chemical Engineering Journal, 2023, 461, 141924.	12.7	15
751	Delocalized electron holes on oxygen in a battery cathode. Nature Energy, 2023, 8, 351-360.	39.5	25
752	Transition Metal Vacancy in Layered Cathode Materials for Sodiumâ€lon Batteries. Chemistry - A European Journal, 2023, 29, .	3.3	2
753	Facile construction of a multilayered interface for a durable lithiumâ€rich cathode. , 2023, 5, .		3
754	Modulation of Local Charge Distribution Stabilized the Anionic Redox Process in Mn-Based P2-Type Layered Oxides. ACS Applied Materials & Interfaces, 2023, 15, 11691-11702.	8.0	9
755	Review—Earth-Abundant, Mn-Rich Cathodes for Vehicle Applications and Beyond: Overview of Critical Barriers. Journal of the Electrochemical Society, 2023, 170, 030509.	2.9	3
756	Highly Reversible Local Structural Transformation Enabled by Native Vacancies in O2-Type Li-Rich Layered Oxides with Anion Redox Activity. Journal of Physical Chemistry Letters, 2023, 14, 2323-2330.	4.6	7
757	Machine Learning-based Comprehensive Survey on Lithium-rich Cathode Materials. Electrochemistry, 2023, 91, 037007-037007.	1.4	1
758	A <scp>Pyrazineâ€Based 2D</scp> Conductive <scp>Metalâ€Organic</scp> Framework for Efficient Lithium Storage ^{â€} . Chinese Journal of Chemistry, 2023, 41, 1691-1696.	4.9	7
759	Molten salt synthesis of carbon anode for high-performance sodium-ion batteries. Electrochimica Acta, 2023, 447, 142150.	5.2	4
760	Timely or early? Breaking away from cobalt-reliant lithium-ion batteries. , 2023, 1, 100004.		0
761	Atomicâ€Scale Revealing the Structure Distribution between LiMO ₂ and Li ₂ MnO ₃ in Liâ€Rich and Mnâ€Based Oxide Cathode Materials. Advanced Energy Materials, 2023, 13, .	19.5	19

#	Article	IF	CITATIONS
762	The synergy of disâ€∤ordering ensures the superior comprehensive performance of P2â€ŧype Naâ€based layered oxide cathodes. , 2023, 2, 235-244.		9
763	K ₂ Fe(C ₂ O ₄) ₂ : An Oxalate Cathode for Li/Na-Ion Batteries Exhibiting a Combination of Multielectron Cation and Anion Redox. Chemistry of Materials, 2023, 35, 2600-2611.	6.7	1
764	Li3TiCl6 as ionic conductive and compressible positive electrode active material for all-solid-state lithium-based batteries. Nature Communications, 2023, 14, .	12.8	14
765	Review on comprehending and enhancing the initial coulombic efficiency of Li-rich Mn-based cathode materials in lithium-ion batteries. Materials Chemistry Frontiers, 2023, 7, 2570-2594.	5.9	5
766	A Mechanistic Insight into the Oxygen Redox of Liâ€Rich Layered Cathodes and their Related Electronic/Atomic Behaviors Upon Cycling. Advanced Materials, 2023, 35, .	21.0	19
767	Highly stable lithium-ion wide-temperature storage performance achieved via anion-dominated solvation structure and electric double-layer engineering. Journal of Power Sources, 2023, 567, 232975.	7.8	1
768	Activated nanolithia as an effective prelithiation additive for lithium-ion batteries. Journal of Materials Chemistry A, 2023, 11, 8757-8765.	10.3	7
769	The Effect of Key Electronic States on Excess Lithium Intercalation in Li ₂ Ru _{<i>y</i>} Mn _{1–<i>y</i>} O ₃ . Journal of Physical Chemistry Letters, 2023, 14, 3296-3306.	4.6	0
770	Oxygen-Redox Activity in Non-Lithium-Excess Tungsten-Doped <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline" overflow="scroll"><mml:msub><mml:mrow><mml:mi>Li</mml:mi><mml:mi>Ni</mml:mi><mml:mi mathvariant="normal">O</mml:mi </mml:mrow><mml:mn>2</mml:mn></mml:msub></mml:math 		8
771	Cathode. , 2023, 2, . Voltage Hysteresis in Transition Metal Oxide Cathodes for Li/Na″on Batteries. Advanced Functional Materials, 2023, 33, .	14.9	4
772	Highâ€Voltage Spinel and Li ₂ MnO ₃ Composite Structure Construction in LiMn _{0.8} Ni _{0.2} O ₂ for Manganeseâ€Based Lithiumâ€ion Battery Cathode Materials. Advanced Energy Materials, 2023, 13, .	19.5	2
773	Atomically dispersed Ru oxide catalyst with lattice oxygen participation for efficient acidic water oxidation. CheM, 2023, 9, 1882-1896.	11.7	32
774	Measuring <i>T</i> ₁ relaxation in paramagnetic solids with solid-state NMR: A case study on the milling induced phase transition in Li ₆ CoO ₄ . Physical Chemistry Chemical Physics, 0, , .	2.8	0
775	Role of Substitution Elements in Enhancing the Structural Stability of Li-Rich Layered Cathodes. Journal of the American Chemical Society, 0, , .	13.7	7
776	Key concepts for understanding alkaline oxygen evolution reaction at the atomic/molecular scale. Current Opinion in Electrochemistry, 2023, 39, 101298.	4.8	3
777	Realizing High Capacity and Zero Strain in Layered Oxide Cathodes via Lithium Dual-Site Substitution for Sodium-Ion Batteries. Journal of the American Chemical Society, 2023, 145, 9596-9606.	13.7	25
778	Reinforcing CoO Covalency via Ce(4f)─O(2p)─Co(3d) Gradient Orbital Coupling for Highâ€Efficiency Oxygen Evolution. Advanced Materials, 2023, 35, .	21.0	62
779	Heat Generation during the First Activation Cycle of Li-Ion Batteries with Li- and Mn-Rich Layered Oxides Measured by Isothermal Micro-Calorimetry. Journal of the Electrochemical Society, 2023, 170, 050506.	2.9	2

	CITATION R	CITATION REPORT	
#	ARTICLE	IF	CITATIONS
780	Reducing Co/O Band Overlap through Spin State Modulation for Stabilized High Capability of 4.6 V LiCoO ₂ . Journal of the American Chemical Society, 2023, 145, 10208-10219.	13.7	3
781	Magnetic Measurements Applied to Energy Storage. Advanced Energy Materials, 2023, 13, .	19.5	5
782	Direct Probing of Lattice trainâ€Induced Oxygen Release in LiCoO ₂ and Li ₂ MnO ₃ without Electrochemical Cycling. Advanced Materials, 2023, 35, .	21.0	2
783	Highly activated oxygen redox enabling large-capacity Li-rich layered manganese-based oxide cathodes. Physical Chemistry Chemical Physics, 2023, 25, 15271-15278.	2.8	1
784	Non-monotonic first-cycle irreversible capacity governed by delithiation depth in Li-rich layered cathodes. Energy and Environmental Science, 2023, 16, 3053-3062.	30.8	7
785	Durable Manganese-Based Li-Excess Electrode Material without Voltage Decay: Metastable and Nanosized Li ₂ MnO _{1.5} F _{1.5} . ACS Energy Letters, 2023, 8, 2753-2761.	17.4	6
786	LiMgPO ₄ â€Coatingâ€Induced Phosphate Shell and Bulk Mgâ€Doping Enables Stable Ultraâ€Highâ€Voltage Cycling of LiCoO ₂ Cathode. Small, 0, , .	10.0	0
787	Stabilizing Lattice Oxygen in a P2-Na _{0.67} Mn _{0.5} Fe _{0.5} O ₂ Cathode via an Integrated Strategy for High-Performance Na-Ion Batteries. Inorganic Chemistry, 2023, 62, 9314-9323.	4.0	3
788	Optimizing Both Bulk and Surface Structure of Liâ€Rich Layered Cathodes for Longâ€Life and Safe Liâ€lon Batteries. Advanced Functional Materials, 2023, 33, .	14.9	3
789	Boosting the electrochemical performance of Li-rich Mn-based cathode materials via oxygen vacancy and spinel phase integration. Journal of Colloid and Interface Science, 2023, 648, 820-833.	9.4	6
790	Tailoring Electronic Structure to Achieve Maximum Utilization of Transition Metal Redox for High-Entropy Na Layered Oxide Cathodes. Journal of the American Chemical Society, 2023, 145, 13592-13602.	13.7	7
791	Mitigating the Formation of Tetrahedral Zn in Layered Oxides Enables Reversible Lattice Oxygen Redox Triggering by the Na–O–Zn Configuration. ACS Nano, 2023, 17, 11406-11413.	14.6	3
792	High-Capacity Oxide Cathode beyond 300 mAh/g. ACS Energy Letters, 2023, 8, 3025-3037.	17.4	13
793	Anionic Redox in Rechargeable Batteries: Mechanism, Materials, and Characterization. Advanced Functional Materials, 2023, 33, .	14.9	6
794	Recent Progress of Promising Cathode Candidates for Sodiumâ€lon Batteries: Current Issues, Strategy, Challenge, and Prospects. Small Structures, 2023, 4, .	12.0	9
795	Ceâ€Induced Differentiated Regulation of Co Sites via Gradient Orbital Coupling for Bifunctional Waterâ€Splitting Reactions. Advanced Energy Materials, 2023, 13, .	19.5	32
796	Understanding the Activation of Anionic Redox Chemistry in Ti ⁴⁺ -Substituted Li ₂ MnO ₃ as a Cathode Material for Li-Ion Batteries. ACS Applied Energy Materials, 2023, 6, 6956-6971.	5.1	3
797	Efficient O–O Coupling at Catalytic Interface to Assist Kinetics Optimization on Concerted and Sequential Proton–Electron Transfer for Water Oxidation. ACS Nano, 2023, 17, 12278-12289.	14.6	4

#	Article	IF	CITATIONS
798	Recent advances and challenges in the development of advanced positive electrode materials for sustainable Na-ion batteries. Materials Today Energy, 2023, 36, 101360.	4.7	2
799	Accessible Li Percolation and Extended Oxygen Oxidation Boundary in Rocksaltâ€like Cathode Enabled by Initial Liâ€deficient Nanostructure. Advanced Functional Materials, 0, , .	14.9	0
800	Quantifying Effects of Ligand–Metal Bond Covalency on Oxygen-Redox Electrochemistry in Layered Oxide Cathodes. Inorganic Chemistry, 2023, 62, 7045-7052.	4.0	0
801	Effects of ultrasound on synthesis and performance of manganese-based/ graphene oxide oxygen reduction catalysts for aluminum-air batteries. Journal of Power Sources, 2023, 573, 233150.	7.8	1
802	Tuning Local Structural Configurations to Improve Oxygen-Redox Reversibility of Li-Rich Layered Oxides. Journal of Physical Chemistry Letters, 2023, 14, 4575-4582.	4.6	2
803	Heterointerface promoted trifunctional electrocatalysts for all temperature high-performance rechargeable Zn–air batteries. Nanoscale Horizons, 2023, 8, 921-934.	8.0	5
804	Anion redox as a means to derive layered manganese oxychalcogenides with exotic intergrowth structures. Nature Communications, 2023, 14, .	12.8	2
805	Achieving Longâ€Enduring Highâ€Voltage Oxygen Redox in P2â€Structured Layered Oxide Cathodes by Eliminating Nonlattice Oxygen Redox. Small, 0, , .	10.0	1
806	Multielectron Conversion: Peculiar Transition Metal Sulfides with Mixed Vulcanized States toward High apacity Metalâ€lon Storage. Advanced Energy Materials, 2023, 13, .	19.5	4
807	Computational Understandings of Cation Configuration-Dependent Redox Activity and Oxygen Dimerization in Lithium-Rich Manganese-Based Layered Cathodes. ACS Applied Energy Materials, 2023, 6, 6006-6018.	5.1	1
808	Boosting oxygen evolution reaction performance <i>via</i> metal defect-induced lattice oxygen redox reactions on spinel oxides. Journal of Materials Chemistry A, 2023, 11, 15044-15053.	10.3	3
809	Tuning oxygen release of sodium-ion layered oxide cathode through synergistic surface coating and doping. Journal of Colloid and Interface Science, 2023, 650, 742-751.	9.4	4
810	<i>In situ</i> cathode-electrolyte interphase enables high cycling stability of Co-free Li-rich layered cathodes. , 2023, 1, .		0
811	Cation Substitution Induced dâ€Band Center Modulation on Cobaltâ€Based Spinel Oxides for Catalytic Ozonation. Advanced Functional Materials, 2023, 33, .	14.9	13
812	A Li-rich layered oxide cathode with negligible voltage decay. Nature Energy, 2023, 8, 1078-1087.	39.5	23
813	Strategies to improve metal-organic frameworks and their derived oxides as lithium storage anode materials. Energy, 2023, 282, 128378.	8.8	1
814	Boosting reversible anionic redox reaction with Li/Cu dual honeycomb centers. EScience, 2023, 3, 100159.	41.6	7
815	Hollow Multishelled Structural Li-rich Cathode with Al Doping Enabling Capacity and Voltage Stabled Li-ion Batteries. Chemical Research in Chinese Universities, 2023, 39, 630-635.	2.6	6

ARTICLE IF CITATIONS # Reversible Electrochemical Anionic Redox in Rechargeable Multivalent-Ion Batteries. Journal of the 816 13.7 2 American Chemical Society, 2023, 145, 15816-15826. Chip-based <i>in situ</i> TEM investigation of structural thermal instability in aged layered cathode. 4.6 Nanoscale Advances, 0, , . Improving Li percolation and redox reversibility of Li-rich disordered rocksalt cathode with Mn2+/4+ 818 0 6.1 double redox via inactive d0 Nb5+ substitution. Applied Surface Science, 2023, 638, 158049. Highly Conductive Polyoxanorborneneâ€Based Polymer Electrolyte for Lithiumâ€Metal Batteries. 11.2 Advanced Science, 2023, 10, . Oxygen hole formation controls stability in LiNiO2 cathodes. Joule, 2023, 7, 1623-1640. 820 24.0 14 Impact of thermal gas treatment on the surface modification of Li-rich Mn-based cathode materials 5.4for Li-ion batteries. Materials Advances, 2023, 4, 3746-3758. Coupling ferromagnetic ordering electron transfer channels and surface reconstructed active 822 species for spintronic electrocatalysis of water oxidation. Journal of Energy Chemistry, 2023, 85, 12.9 6 570-580. Recognition and Application of Catalysis in Secondary Rechargeable Batteries. ACS Catalysis, 2023, 13, 11.2 10641-10650. 825 Mn-based cathode materials for rechargeable batteries. Science China Chemistry, 2024, 67, 87-105. 8.2 3 Tuning Li₂MnO₃-Like Domain Size and Surface Structure Enables Highly 14.6 Stabilized Li-Rich Layered Oxide Cathodes. ACS Nano, 2023, 17, 16827-16839. Graphene-like AIP3 monolayer: A high-performance anode material for Li/Na/K-ion batteries. Journal of 827 2.9 1 Solid State Chemistry, 2023, 327, 124284. Reaction-rate distribution at large currents in porous electrodes. Journal of Power Sources, 2023, 581, 233495. 4d Lithium-Rich Cathode System Reinvestigated with Electron Paramagnetic Resonance: Correlation between Ionicity, Oxygen Dimers, and Molecular O₂. Journal of Physical Chemistry Letters, 829 4.6 2 2023, 14, 7711-7717. Tailored PVDF Graft Copolymers via ATRP as High-Performance NCM811 Cathode Binders., 0, , 2594-2603. Molten salt-assisted synthesis of bismuth nanosheets with long-term cyclability at high rates for 831 3.6 3 sodium-ion batteries. RSC Advances, 2023, 13, 25552-25560. Cationic–Anionic Redox Chemistry in Multivalent Metalâ€Ion Batteries: Recent Advances, Reaction Mechanism, Advanced Characterization Techniques, and Prospects. Advanced Functional Materials, 14.9 2023, 33, . 833 Cationic ordering transition in oxygenâ \in redox layered oxide cathodes., 2024, 6,. 1 Origin and characterization of the oxygen loss phenomenon in the layered oxide cathodes of Li-ion 834 12.2 batteries. Materials Horizons, 2023, 10, 4686-4709.

#	Article	IF	CITATIONS
835	Doping of group IVB elements for nickel-rich cobalt-free cathodes. Journal of Energy Chemistry, 2023, 86, 559-568.	12.9	1
836	A review of the degradation mechanisms of NCM cathodes and corresponding mitigation strategies. Journal of Energy Storage, 2023, 73, 108875.	8.1	3
837	Challenges and Prospects of Sodiumâ€ion and Potassiumâ€ion Batteries for Mass Production. Advanced Energy Materials, 2023, 13, .	19.5	14
838	Identifying the Role of the Cationic Geometric Configuration in Spinel Catalysts for Polysulfide Conversion in Sodium–Sulfur Batteries. Journal of the American Chemical Society, 2023, 145, 18992-19004.	13.7	6
839	Hexaazatriphenylene Based Polyimide with Dense Dual Redox Sites as a Highâ€Performance Organic Cathode for Lithiumâ€Ion Batteries. Advanced Materials Interfaces, 2023, 10, .	3.7	0
840	Predicting Ionic Conductivity in Thin Films of Garnet Electrolytes Using Machine Learning. Batteries, 2023, 9, 430.	4.5	3
841	Challenges of thermal stability of high-energy layered oxide cathode materials for lithium-ion batteries: A review. Materials Today, 2023, 69, 236-261.	14.2	8
842	Investigation on the Origin of Sluggish Anionic Redox Kinetics in Cation-Disordered Cathode. Energies, 2023, 16, 6740.	3.1	0
843	Stable high-voltage operation of oxygen redox in P2-type Na-layered oxide cathode at fast discharging via enhanced kinetics. Energy Storage Materials, 2023, 62, 102952.	18.0	0
844	Interfacial engineering of the layered oxide cathode materials for sodium-ion battery. Nano Research, 2024, 17, 1441-1464.	10.4	3
845	Critical Review of Emerging Preâ€metallizationÂTechnologies for Rechargeable Metalâ€Ion Batteries. Small, 2024, 20, .	10.0	0
846	Rational Design of Threeâ€Ðimensional Selfâ€&upporting Structure for Advanced Lithium Metal Anode. Batteries and Supercaps, 2023, 6, .	4.7	1
847	Recent progress on advanced high energy electrode materials for sodium ion batteries. , 2023, 1, 100033.		3
848	Electrochemically Finely Regulated NiCo‣DH/NiCoOOH Nanostructured Films for Supercapacitors with Record High Mass Loading, Areal Capacity, and Energy Density. Advanced Functional Materials, 2023, 33, .	14.9	5
849	In situ formed partially disordered phases as earth-abundant Mn-rich cathode materials. Nature Energy, 2024, 9, 27-36.	39.5	3
850	Regulating Lattice Oxygen of Co ₃ O ₄ /CeO ₂ Heterojunction Nanonetworks for Enhanced Oxygen Evolution. Advanced Energy and Sustainability Research, 2023, 4, .	5.8	3
851	Decoupling the roles of Ni and Co in anionic redox activity of Li-rich NMC cathodes. Nature Materials, 2023, 22, 1370-1379.	27.5	8
853	Transition metal compounds: From properties, applications to wettability regulation. Advances in Colloid and Interface Science, 2023, 321, 103027.	14.7	2

		15	C
#	ARTICLE Semiâ€Metallic Superionic Layers Suppressing Voltage Fading of Liâ€Rich Layered Oxide Towards	IF	CITATIONS
854	Superiorâ€6table Liâ€ion Batteries. Angewandte Chemie - International Edition, 2023, 62, .	13.8	11
855	Activation and Stabilization of Mnâ€Based Positive Electrode Materials by Doping Nonmetallic Elements. Advanced Energy Materials, 2023, 13, .	19.5	1
856	Activating lattice oxygen in high-entropy LDH for robust and durable water oxidation. Nature Communications, 2023, 14, .	12.8	14
857	High-capacity high-Ni low-Co Li-rich layered oxides via adjusting Li2MnO3 content and Li/Ni mixing defects. Chemical Engineering Journal, 2023, 474, 145986.	12.7	0
858	Semiâ€Metallic Superionic Layers Suppressing Voltage Fading of Liâ€Rich Layered Oxide Towards Superiorâ€Stable Liâ€Ion Batteries. Angewandte Chemie, 2023, 135, .	2.0	0
859	Next-generation cathode materials for ultrahigh-energy batteries. , 2023, 1, 100034.		0
860	Synthesis of Non-centrosymmetric, Metastable Rare-Earth Oxysulfides by Anionic Redox Topochemistry. Chemistry of Materials, 2023, 35, 7597-7604.	6.7	3
861	Sulfurâ€Assisted Surface Modification of Lithiumâ€Rich Manganeseâ€Based Oxide toward High Anionic Redox Reversibility. Advanced Materials, 2024, 36, .	21.0	4
862	Ultraâ€Highâ€Energy Density in Layered Sodiumâ€Ion Battery Cathodes through Balancing Latticeâ€Oxygen Activity and Reversibility. Advanced Functional Materials, 2024, 34, .	14.9	3
863	Enhanced electrochemical performance of li-ion battery via ultrasonic-assisted inorganic-rich and thin SEI layer. Ultrasonics Sonochemistry, 2023, 100, 106620.	8.2	0
864	Understanding the Origin of Reconstruction in Transition Metal Oxide Oxygen Evolution Reaction Electrocatalysts. ChemSusChem, 2024, 17, .	6.8	0
865	Unlocking Anionic Redox by Breaking Metal–Oxygen Bonds in Aqueous Zinc Batteries. ACS Energy Letters, 0, , 4547-4554.	17.4	0
866	Multifunctional Separator Enabled by a High Phosphorus Content Additive for Ni-Rich Transition Metal Oxide Batteries. ACS Applied Energy Materials, 2023, 6, 10487-10498.	5.1	0
867	Are batteries the right option for a sustainable development?. Comptes Rendus - Geoscience, 0, , .	1.2	0
868	Improving the Electrochemical Performance of Co-Free Li-Rich Layered Oxides via a Dual Modification of Nb ⁵⁺ Doping and Oxygen Vacancy Regulation. ACS Applied Energy Materials, 0, , .	5.1	0
869	Effect of the Nature of Both Cation and Anion Substitution on the Structural Symmetry of Liâ€Rich 3 <i>d</i> â€Metal Chalcogenide Electrodes. Advanced Energy Materials, 2023, 13, .	19.5	0
870	Regulating Oxygen Redox Chemistry through the Synergistic Effect of Transitionâ€Metal Vacancy and Substitution Element for Layered Oxide Cathodes. Small, 2024, 20, .	10.0	0
871	Machine learning-based evaluation of functional characteristics of Li-rich layered oxide cathode materials using the data of XPS and XRD spectra. Computational Materials Science, 2024, 231, 112591.	3.0	1

# 873	Self:Regulated Ligand-Metal Charge Transfer upon Lithium-Ion Deintercalation Process from <mml:math <br="" display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML">overflow="scroll"><mml:mirow><mml:mi>Li</mml:mi><mml:mi>Co</mml:mi><mml:mi><mml:mi mathvariant="normal">O</mml:mi </mml:mi>i>i</mml:mirow></mml:math> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline" overflow="scroll"><mml:msub><mml:mi></mml:mi><mml:mn>2</mml:mn></mml:msub> to</mml:math 	IF	CITATIONS
874	Understanding Lattice Oxygen Redox Behavior in Lithiumâ€Rich Manganeseâ€Based Layered Oxides for Lithiumâ€lon and Lithiumâ€Metal Batteries from Reaction Mechanisms to Regulation Strategies. Advanced Energy Materials, 2023, 13, .	19.5	3
875	Unraveling the Mechanism of Self-Repair of NiFe-Based Electrocatalysts by Dynamic Exchange of Iron during the Oxygen Evolution Reaction. ACS Catalysis, 2023, 13, 14975-14986.	11.2	2
876	Enabling Electrochemical–Mechanical Robustness of Ultraâ€High Ni Cathode via Selfâ€Supported Primaryâ€Grainâ€Alignment Strategy. Advanced Science, 2023, 10, .	11.2	0
877	Dendritic sp Carbon onjugated Benzothiadiazoleâ€Based Polymers with Synergistic Multiâ€Active Groups for Highâ€Performance Lithium Organic Batteries. Angewandte Chemie - International Edition, 0, , .	13.8	2
878	Stabilizing lattice oxygen redox in layered sodium transition metal oxide through spin singlet state. Nature Communications, 2023, 14, .	12.8	0
879	Improving the Cyclic Reversibility of Layered Li-Rich Cathodes by Combining Oxygen Vacancies and Surface Fluorination. ACS Applied Materials & amp; Interfaces, 2023, 15, 54419-54431.	8.0	0
880	The Study Review of High Specific Capacity Lithium-Rich Manganese-Based Lithium Metal Batteries. Journal of Advances in Physical Chemistry, 2023, 12, 425-443.	0.1	0
881	Opportunities and Challenges of Layered Lithium-Rich Manganese-Based Cathode Materials for High Energy Density Lithium-Ion Batteries. Energy & Fuels, 2023, 37, 18243-18265.	5.1	3
882	Research progress on lithium-rich manganese-based lithium-ion batteries cathodes. Ceramics International, 2024, 50, 5877-5892.	4.8	2
883	Anionic Redox Topochemistry for Materials Design: Chalcogenides and Beyond. ACS Organic & Inorganic Au, 2024, 4, 26-40.	4.0	0
884	Unraveling and suppressing the voltage decay of high-capacity cathode materials for sodium-ion batteries. Energy and Environmental Science, 2024, 17, 210-218.	30.8	2
886	Exploration of synthesis and Li reactivity of layered Ag-based oxychalcogenides. Energy Storage Materials, 2023, 63, 103042.	18.0	0
887	Rational design of high reversible capacity in Li-rich disordered rocksalt cathodes. Nano Energy, 2024, 119, 109064.	16.0	1
888	Voltage hysteresis hidden in an asymmetric reaction pathway. Energy Storage Materials, 2023, 63, 103051.	18.0	0
889	Dendritic sp Carbon onjugated Benzothiadiazoleâ€Based Polymers with Synergistic Multiâ€Active Groups for Highâ€Performance Lithium Organic Batteries. Angewandte Chemie, 0, , .	2.0	0
890	Reaction–Diffusion Coupling Facilitates the Sequential Precipitation of Metal lons from Battery Feedstock Solutions. Environmental Science and Technology Letters, 2023, 10, 1188-1194.	8.7	0
891	Regulation of Anion Redox Activity via Solidâ€Acid Modification for Highly Stable Liâ€Rich Mnâ€Based Layered Cathodes. Advanced Functional Materials, 2024, 34, .	14.9	2

#	Article	IF	CITATIONS
892	Highâ€Performance Singleâ€Crystal Lithiumâ€Rich Layered Oxides Cathode Materials via Na ₂ WO ₄ â€Assisted Sintering. Small, 0, , .	10.0	0
893	Exploring the structural stability and electrochemical performance of B doped T-graphene nanotubes from first-principles calculations. Physical Chemistry Chemical Physics, 2023, 26, 455-462.	2.8	1
894	A dual-purpose separator employing phosphine oxide with metal hydroxide incorporation onto polyethylene matrix to improve interfacial stability and safety of high nickel concentration lithium-ion batteries. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2024, 682, 132937.	4.7	0
895	Manipulated Fluoroâ€Ether Derived Nucleophilic Decomposition Products for Mitigating Polarizationâ€Induced Capacity Loss in Liâ€Rich Layered Cathode. Angewandte Chemie, 2024, 136, .	2.0	Ο
896	Oxygen redox chemistry: A new approach to high energy density world. , 2024, 2, 100086.		0
897	Enhancement of performance and kinetics of layered Li2MnO3 by Fe doping. Electrochimica Acta, 2024, 477, 143700.	5.2	0
899	Synergetic anion-cation co-doping in Na0.44MnO2 boosting a high-stability and improved-kinetics cathode for sodium ion battery. Energy Storage Materials, 2024, 65, 103161.	18.0	0
900	Manipulated Fluoroâ€Ether Derived Nucleophilic Decomposition Products for Mitigating Polarizationâ€Induced Capacity Loss in Liâ€Rich Layered Cathode. Angewandte Chemie - International Edition, 2024, 63, .	13.8	0
901	Solid-state sodium batteries with P2-type Mn-based layered oxides by utilizing anionic redox. Journal of Materials Chemistry A, 2024, 12, 3006-3013.	10.3	0
902	Practical Evaluation of Anionic Redox in Liâ€rich Cathode: An Electrochemical Study. Batteries and Supercaps, 2024, 7, .	4.7	0
903	Formulating Local Environment of Oxygen Mitigates Voltage Hysteresis in Liâ€Rich Materials. Advanced Materials, 2024, 36, .	21.0	0
904	An air-stable single-crystal layered oxide cathode based on multifunctional structural modulation for high-energy-density sodium-ion batteries. Science China Chemistry, 0, , .	8.2	1
905	Characteristics, materials, and performance of Ru-containing oxide cathode materials for rechargeable batteries. EScience, 2024, , 100245.	41.6	0
906	Dataâ€Driven Decoupling Structural Feature Correlation for Harnessing Anionic Capacity in Na Layered Oxide. Advanced Energy Materials, 2024, 14, .	19.5	0
907	Voltage-dependent charge compensation mechanism and cathode electrolyte interface stability of the lithium-ion battery cathode materials LiCoO ₂ and LiNi _{1/3} Mn _{1/3} Co _{1/3} O ₂ studied by photoelectron spectroscopy. Journal of Materials Chemistry A, 2024, 12, 3644-3658.	10.3	0
908	Exploring the Potential of Lithium Metal Oxyfluoride, LiMOF, Compounds (M = Mn, Fe, Co, and Ni) for Advanced Li-Ion Battery Applications: A Comprehensive Ab Initio Investigation. Journal of Physical Chemistry C, 2024, 128, 759-767.	3.1	4
909	Stacking Fault Slows Down Ionic Transport Kinetics in Lithium-Rich Layered Oxides. ACS Energy Letters, 2024, 9, 346-354.	17.4	0
910	Prolonging the Cycle Stability of Anion Redox P3-Type Na _{0.6} Li _{0.2} Mn _{0.8} O ₂ through Al ₂ O ₃ Atomic Layer Deposition Surface Modification. ACS Applied Materials &: Interfaces. 2024. 16. 2319-2329.	8.0	0

#	ARTICLE	IF	CITATIONS
911	Lowâ€Electronegativity Cationic Highâ€Entropy Doping to Trigger Stable Anion Redox Activity for Highâ€Ni Coâ€Free Layered Cathodes in Liâ€ion Batteries. Angewandte Chemie - International Edition, 2024, 63, .	13.8	0
912	Lowâ€Electronegativity Cationic Highâ€Entropy Doping to Trigger Stable Anion Redox Activity for Highâ€Ni Coâ€Free Layered Cathodes in Liâ€ion Batteries. Angewandte Chemie, 2024, 136, .	2.0	0
913	Unraveling the Spatial Asynchronous Activation Mechanism of Oxygen Redoxâ€Involved Cathode for Highâ€Voltage Solidâ€State Batteries. Advanced Energy Materials, 2024, 14, .	19.5	2
914	Double self-reinforced coordination modulation constructing stable Ni ⁴⁺ for water oxidation. Energy and Environmental Science, 2024, 17, 1468-1481.	30.8	1
915	Restructuring Electrolyte Solvation by a Versatile Diluent Toward Beyond 99.9% Coulombic Efficiency of Sodium Plating/Stripping at Ultralow Temperatures. Advanced Materials, 2024, 36, .	21.0	0
916	Double-Layered Perovskite Oxyfluoride Cathodes with High Capacity Involving O–O Bond Formation for Fluoride-Ion Batteries. Journal of the American Chemical Society, 2024, 146, 3844-3853.	13.7	2
917	Multi-strategies interface and structure design of Li- and Mn-rich layered oxide for all-solid-state lithium batteries. Nano Energy, 2024, 122, 109281.	16.0	0
918	Structural Design Principle of Rocksalt Oxides for Li-Excess Cathode Materials. ACS Nano, 2024, 18, 2302-2311.	14.6	1
919	A novel asymmetrical multilayered composite electrolyte for high-performance ambient-temperature all-solid-state lithium batteries. Journal of Materials Chemistry A, 2024, 12, 4231-4239.	10.3	0
920	MgO coated P2-Na0.67Mn0.75Ni0.25O2 layered oxide cathode for Na-Ion batteries. Journal of Power Sources Advances, 2024, 25, 100135.	5.1	0
921	Unraveling the Synergistic Effects of Oxygen Vacancy and Amorphous Structure on TiO ₂ for Highâ€Performance Lithium Storage. Small Structures, 2024, 5, .	12.0	0
922	Oxygen Release Suppression and Electronic Conductivity Enhancement for High Performance Li―and Mnâ€Rich Layered Oxides Cathodes by Chalcogenide Redox Couple and Oxygen Vacancy Generations. Advanced Functional Materials, 2024, 34, .	14.9	0
923	Compton scattering study of strong orbital delocalization in a <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi>LiNiO</mml:mi><mml:mn>2cathode. Physical Review B, 2024, 109, .</mml:mn></mml:msub></mml:math 	l :nan₂ <td>ml:msub></td>	ml : msub>
924	Boosting rate performance of layered lithium-rich cathode materials by oxygen vacancy induced surface multicomponent integration. Journal of Energy Chemistry, 2024, 92, 250-262.	12.9	1
925	Advanced ferroferric oxide-based composites for lithium-ion battery: Recent developments and future perspectives. Progress in Natural Science: Materials International, 2023, 33, 743-753.	4.4	2
926	Pâ€Incorporation Induced Enhancement of Lattice Oxygen Participation in Double Perovskite Oxides to Boost Water Oxidation. Small, 0, , .	10.0	0
927	Spin polarized electron dynamics enhance water splitting efficiency by yttrium iron garnet photoanodes: a new platform for spin selective photocatalysis. Chemical Science, 2024, 15, 3300-3310.	7.4	0
928	Research progress of oxygen redox in sodiumâ€layered oxides. , 2024, 3, .		0

ARTICLE IF CITATIONS # Synergetic impact of dual substitution on anionicâ€"Cationic activity of P2-type sodium manganese 930 18.0 0 oxide. Energy Storage Materials, 2024, 66, 103224. Enhancing the power capability of lithium-rich manganese-based layered oxide cathodes by LaF3 5.2 modification. Electrochimica Ácta, 2024, 479, 143882. Stabilization of P2-type cathode at 4.5ÂV by $\hat{a} \in \mathbb{R}$ a pillar $\hat{a} \in \mathbb{N}$ in Na layer with a La $\hat{a} \in \mathbb{C}$ orbital hybridization for 932 0 long-life and high-energy-density Na-ion batteries. , 2024, 2, 100133. Assessing the feasibility of Na6MgCl8 as a material for all-solid-state sodium ion batteries: A theoretical approach. Journal of Physics and Chemistry of Solids, 2024, 188, 111916. Multi-functionalized full-interface integrated engineering towards highly reversible Li-rich Mn-based 934 18.0 1 cathode. Energy Storage Materials, 2024, 66, 103241. Advances and perspectives in understanding the structure-redox relationship of layered Li-Co-Ni-Mn oxide cathode materials. Progress in Materials Science, 2024, 143, 101247. 32.8 Fe doping regulates the surface reconstruction and activates lattice oxygen of NiCr LDH for water 936 12.7 0 oxidation. Chemical Engineering Journal, 2024, 483, 149383. Seâ€p Orbitals Induced "Strong d–d Orbitals Interaction―Enable High Reversibility of Seâ€Rich 10.0 ZnSe¦MnSe@C Electrode as Excellent Host for Sodiumâ€Ion Storage. Small, 0, , . Sustainable Anionic Redox by Inhibiting Li Cross-Layer Migration in Na-Based Layered Oxide Cathodes. 938 14.6 0 ACS Nano, 0, , . Ceria Heterostructure Suppresses Oxygen Release of Na-Ion Battery Cathode Materials. ACS Sustainable Chemistry and Engineering, 2024, 12, 2729-2738. Weak Ïfâ€"Ĩ€â€"Ïf interaction stabilizes oxygen redox towards high-performance Liâ€"rich layered oxide 940 16.00 cathodes. Nano Energy, 2024, 123, 109390. Structurally robust lithium-rich layered oxides for high-energy and long-lasting cathodes. Nature 12.8 Communications, 2024, 15, . Gradient Interphase Engineering Enabled by Anionic Redox for High-Voltage and Long-Life Li-Ion Batteries. Journal of the American Chemical Society, 2024, 146, 4557-4569. 942 13.7 0 Interfacial-engineering-enabled high-performance Li-rich cathodes. Chemical Engineering Journal, 2024, 485, 149546. 943 12.7 Ultrathin dense LiF coverage coupled with a near-surface gradient fluorination lattice enables 944 30.8 0 fast-charging long-life 4.6 V LiCoO₂. Energy and Environmental Science, 2024, 17, 2765-2775. Effects of neutral point defects on the solid-state electrolyte Li₃ScBr₆. 945 Journal of Materials Chemistry C, 2024, 12, 4885-4896. Surface Reconstruction on Metal Nitride during Photoâ€oxidation. Angewandte Chemie - International 946 13.8 0 Edition, 2024, 63, . 947 Surface Reconstruction on Metal Nitride during Photoâ€oxidation. Angewandte Chemie, 2024, 136, .

#	Article	IF	CITATIONS
948	Kirkendall effect-induced uniform stress distribution stabilizes nickel-rich layered oxide cathodes. Nature Communications, 2024, 15, .	12.8	0
949	From Oxygen Redox to Sulfur Redox: A Paradigm for Li-Rich Layered Cathodes. Journal of the American Chemical Society, 2024, 146, 7274-7287.	13.7	0
950	A layered multifunctional framework based on polyacrylonitrile and MOF derivatives for stable lithium metal anode. Journal of Energy Chemistry, 2024, 93, 282-288.	12.9	0
951	Correlating concerted cations with oxygen redox in rechargeable batteries. Chemical Society Reviews, 2024, 53, 3561-3578.	38.1	0
952	Ir Single Atoms Boost Metal–Oxygen Covalency on Selenide-Derived NiOOH for Direct Intramolecular Oxygen Coupling. Journal of the American Chemical Society, 2024, 146, 6846-6855.	13.7	0
953	Li-ion batteries from an electronic structure viewpoint: From anionic redox to structural stability. Journal of Power Sources, 2024, 600, 234240.	7.8	0
954	Correlation between oxygen redox and structure of oxide cathode materials. , 2024, 3, 100165.		0
955	Structure Design for High-Performance Li-Rich Mn-Based Layered Oxides, O2- or O3-Type Cathodes, What's Next?. Accounts of Materials Research, 2024, 5, 307-315.	11.7	0
956	Unveiling charge compensation mechanisms in Na2/3MgxNi1/3-xMn2/3O2 cathode materials: insights into cationic and anionic redox. Materials Today Energy, 2024, 41, 101534.	4.7	0
957	Phase Engineering via Aluminum Doping Enhances the Electrochemical Stability of Lithiumâ€Rich Cobaltâ€Free Layered Oxides for Lithiumâ€Ion Batteries. Small, 0, , .	10.0	0
958	Routes to high-performance layered oxide cathodes for sodium-ion batteries. Chemical Society Reviews, 2024, 53, 4230-4301.	38.1	0
959	Depth-Resolving the Charge Compensation Mechanism from LiNiO ₂ to NiO ₂ . ACS Energy Letters, 2024, 9, 1507-1515.	17.4	0
960	Codecoration of Phosphate and Iron for Improving Oxygen Evolution Reaction of Layered Ni(OH) ₂ /NiOOH. ACS Catalysis, 2024, 14, 4807-4819.	11.2	0
961	Exploit Li2MnO3 activity by two phase coexistence at atomic level towards high performance Mn-based Co-free Li-rich cathodes. Energy Storage Materials, 2024, 67, 103335.	18.0	0
962	Activating Lattice Oxygen in a Nanoporous Crystalline/Amorphous NiFe(II,) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50 with Ampere-Level Activity and Durability. ACS Sustainable Chemistry and Engineering, 2024, 12, 5300-5309.	192 Td (III) 6.7)O _{<i> 0</i>}