Cooling energy saving associated with exterior greener of Energy (DOE) standard reference buildings

Building Simulation 11, 625-631 DOI: 10.1007/s12273-018-0427-y

Citation Report

#	Article	IF	CITATIONS
1	The impact of greenery systems on building energy: Systematic review. Journal of Building Engineering, 2019, 26, 100887.	3.4	26
2	Thermal performance assessment of extensive green roofs investigating realistic vegetation-substrate configurations. Building Simulation, 2019, 12, 379-393.	5.6	27
3	Ensemble Learning Model-Based Test Workbench for the Optimization of Building Energy Performance and Occupant Comfort. IEEE Access, 2020, 8, 96075-96087.	4.2	11
4	Dealing with Green Gentrification and Vertical Green-Related Urban Well-Being: A Contextual-Based Design Framework. Sustainability, 2020, 12, 10020.	3.2	10
5	Comparison of thermal performance between green roofs and conventional roofs. Case Studies in Thermal Engineering, 2020, 21, 100697.	5.7	24
6	Influence of vertical greenery systems and green roofs on the indoor operative temperature of air-conditioned rooms. Journal of Building Engineering, 2020, 31, 101373.	3.4	22
7	Energy Re-Shift for an Urbanizing World. Energies, 2021, 14, 5516.	3.1	44
8	Investigating the thermal performance of green wall: Experimental analysis, deep learning model, and simulation studies in a humid climate. Building and Environment, 2021, 205, 108201.	6.9	17
9	Passive action strategies in schools: A scientific mapping towards eco-efficiency in educational buildings. Journal of Building Engineering, 2022, 45, 103598.	3.4	7
10	Vegetative and thermal performance of an extensive vegetated roof located in the urban heat island of a semiarid region. Building and Environment, 2022, 212, 108791.	6.9	17
11	Cooling potential of greenery systems for a stand-alone retail building under semiarid and humid subtropical climates. Energy and Buildings, 2022, 259, 111897.	6.7	10
12	Thermal performance and energy consumption analysis of eight types of extensive green roofs in subtropical monsoon climate. Building and Environment, 2022, 216, 108982.	6.9	20
13	Effect of green wall installation on urban heat island and building energy use: A climate-informed systematic literature review. Renewable and Sustainable Energy Reviews, 2022, 159, 112100.	16.4	50
14	The Impacts of Greenery Systems on Indoor Thermal Environments in Transition Seasons: An Experimental Investigation. Buildings, 2022, 12, 506.	3.1	8
15	Review on integrated photovoltaic-green roof solutions on urban and energy-efficient buildings in hot climate. Sustainable Cities and Society, 2022, 82, 103919.	10.4	14
16	A Systematic Review on the Existing Research, Practices, and Prospects Regarding Urban Green Infrastructure for Thermal Comfort in a High-Density Urban Context. Water (Switzerland), 2022, 14, 2496.	2.7	1
17	Dynamic heat transfer model of vertical green façades and its co-simulation with a building energy modelling program in hot-summer/warm-winter zones. Journal of Building Engineering, 2022, 58, 105008.	3.4	2
18	Chinese prototype building models for simulating the energy performance of the nationwide building stock. Building Simulation, 2023, 16, 1559-1582.	5.6	6

#	Article	IF	CITATIONS
19	Systematic review of carbon-neutral building technologies (CNBTs) by climate groups and building types. Journal of Building Engineering, 2023, 78, 107627.	3.4	2
20	A review on the mechanisms behind thermal effect of building vertical greenery systems (VGS): methodology, performance and impact factors. Energy and Buildings, 2024, 303, 113785.	6.7	0