Recent advances in radical-based Câ€"N bond formatio

Chemical Society Reviews 47, 2591-2608

DOI: 10.1039/c7cs00572e

Citation Report

#	Article	IF	Citations
1	A photoredox catalyzed iminyl radical-triggered C–C bond cleavage/addition/Kornblum oxidation cascade of oxime esters and styrenes: synthesis of ketonitriles. Chemical Communications, 2018, 54, 12262-12265.	2.2	79
2	A Visibleâ€Lightâ€Promoted Metalâ€Free Strategy towards Arylphosphonates: Organicâ€Dyeâ€Catalyzed Phosphorylation of Arylhydrazines with Trialkylphosphites. Advanced Synthesis and Catalysis, 2018, 360, 4807-4813.	2.1	82
3	Photocatalytic Hydrogen-Evolving Cross-Coupling of Arenes with Primary Amines. Organic Letters, 2018, 20, 7753-7757.	2.4	27
4	Organic Dye-Catalyzed, Visible-Light Photoredox Bromination of Arenes and Heteroarenes Using <i>N</i> -Bromosuccinimide. ACS Omega, 2018, 3, 12868-12877.	1.6	50
5	RuHCl(CO)(PPh ₃) ₃ -Catalyzed Direct Amidation of Arene C–H Bond with Azides. Journal of Organic Chemistry, 2018, 83, 13811-13820.	1.7	23
6	Metal-Free C(sp ²)–H/N–H Cross-Dehydrogenative Coupling of Quinoxalinones with Aliphatic Amines under Visible-Light Photoredox Catalysis. Organic Letters, 2018, 20, 7125-7130.	2.4	213
7	Metal- and photocatalyst-free visible-light-promoted regioselective selenylation of coumarin derivatives <i>via</i> oxidation-induced C–H functionalization. Organic Chemistry Frontiers, 2018, 5, 2974-2979.	2.3	85
8	Cathode Material Determines Product Selectivity for Electrochemical Câ°'H Functionalization of Biaryl Ketoximes. Angewandte Chemie, 2018, 130, 15373-15376.	1.6	32
9	Cathode Material Determines Product Selectivity for Electrochemical Câ°'H Functionalization of Biaryl Ketoximes. Angewandte Chemie - International Edition, 2018, 57, 15153-15156.	7.2	112
10	Remote Site-Specific Radical Alkynylation of Unactivated C–H Bonds. Organic Letters, 2018, 20, 5817-5820.	2.4	50
11	Catalytic Alkene Difunctionalization via Imidate Radicals. Journal of the American Chemical Society, 2018, 140, 11202-11205.	6.6	101
12	Copper-catalyzed C–N bond formation with imidazo[1,2- <i>a</i>)pyridines. Organic and Biomolecular Chemistry, 2018, 16, 6655-6658.	1.5	28
13	Amidyl Radicals by Oxidation of αâ€Amidoâ€oxy Acids: Transitionâ€Metalâ€Free Amidofluorination of Unactivated Alkenes. Angewandte Chemie - International Edition, 2018, 57, 10707-10711.	7.2	89
14	lodine-catalyzed synthesis of <i>N</i> , <i>N</i> ,a€²-diaryl- <i>o</i> -phenylenediamines from cyclohexanones and anilines using DMSO and O ₂ as oxidants. Chemical Communications, 2018, 54, 9679-9682.	2.2	24
15	Visible-Light-Mediated Remote γ-C(sp ³)â€"H Functionalization of Alkylimidates: Synthesis of 4-lodo-3,4-dihydropyrrole Derivatives. Organic Letters, 2018, 20, 4964-4969.	2.4	33
16	Photocatalytic Neophyl Rearrangement and Reduction of Distal Carbon Radicals by Iminyl Radicalâ€Mediated Câ^'C Bond Cleavage. Advanced Synthesis and Catalysis, 2018, 360, 3601-3606.	2.1	53
17	Metal-Free C(sp ³)–H Azidation in a Radical Strategy for the Synthesis of 3-Azido-2-oxindoles at Room Temperature. Journal of Organic Chemistry, 2018, 83, 11074-11079.	1.7	26
18	Recent Advances in Radicalâ€Enabled Bicyclization and Annulation/1, <i>n</i> â€Bifunctionalization Reactions. Chemistry - an Asian Journal, 2018, 13, 2958-2977.	1.7	131

#	Article	IF	CITATIONS
19	A photocatalytic iminyl radical-mediated C–C bond cleavage/addition/cyclization cascade for the synthesis of 1,2,3,4-tetrahydrophenanthrenes. Chemical Communications, 2018, 54, 9925-9928.	2.2	76
20	Transition Metalâ€Controlled Direct Regioselective Intermolecular Amidation of Câ°'H Bonds with Azodicarboxylates: Scope, Mechanistic Studies, and Applications. Advanced Synthesis and Catalysis, 2018, 360, 4205-4214.	2.1	13
21	Unexpected Decarboxylationâ€Triggered <i>o</i> àâ€Hydroxylâ€Controlled Redox Condensation of Phenylglycines with 2â€Nitrophenols in Aqueous Media. Advanced Synthesis and Catalysis, 2018, 360, 3055-3062.	2.1	15
22	Amidyl Radicals by Oxidation of αâ€Amidoâ€oxy Acids: Transitionâ€Metalâ€Free Amidofluorination of Unactivated Alkenes. Angewandte Chemie, 2018, 130, 10867-10871.	1.6	26
23	Electrochemical oxidative cyclization of activated alkynes with diselenides or disulfides: access to functionalized coumarins or quinolinones. Green Chemistry, 2019, 21, 4706-4711.	4.6	92
24	Lightâ€Driven Intramolecular Câ^'N Crossâ€Coupling via a Longâ€Lived Photoactive Photoisomer Complex. Angewandte Chemie, 2019, 131, 14808-14814.	1.6	9
25	Lightâ€Driven Intramolecular Câ^'N Crossâ€Coupling via a Longâ€Lived Photoactive Photoisomer Complex. Angewandte Chemie - International Edition, 2019, 58, 14666-14672.	7.2	45
26	Electrochemical Arylation of Electronâ€Deficient Arenes through Reductive Activation. Angewandte Chemie - International Edition, 2019, 58, 15747-15751.	7.2	54
27	Tunable Synthesis of 3-Hydroxylisoquinolin-1,4-dione and Isoquinolin-1-one Enabled by Copper-Catalyzed Radical 6- <i>endo</i> Aza-cyclization of 2-Alkynylbenzamide. Journal of Organic Chemistry, 2019, 84, 11763-11773.	1.7	36
28	Asymmetric Induction and Enantiodivergence in Catalytic Radical C–H Amination via Enantiodifferentiative H-Atom Abstraction and Stereoretentive Radical Substitution. Journal of the American Chemical Society, 2019, 141, 12388-12396.	6.6	112
29	Photochemical $\text{C\^{a}}^{2}\text{H}$ Amination of Ethers and Geminal Difunctionalization Reactions in One Pot. Angewandte Chemie, 2019, 131, 12570-12575.	1.6	9
30	Transition-metal- and oxidant-free directed anodic Câ€"H sulfonylation of <i>N</i> , <i>N</i> , <i>N</i> , Square (10,000)	2.2	77
31	Reactivity Tuning for Radical–Radical Cross-Coupling via Selective Photocatalytic Energy Transfer: Access to Amine Building Blocks. ACS Catalysis, 2019, 9, 10454-10463.	5. 5	74
32	Directed Copper-Catalyzed Intermolecular Aminative Difunctionalization of Unactivated Alkenes. Journal of the American Chemical Society, 2019, 141, 18475-18485.	6.6	81
33	Metalâ€Free Oneâ€Pot Threeâ€Component Synthesis of Quinazoline Derivatives via Peroxideâ€Mediated Direct Oxidative Amination of C(sp 3)–H Bonds. ChemistrySelect, 2019, 4, 11808-11814.	0.7	0
34	Decarboxylative C _{sp³} –N Bond Formation by Electrochemical Oxidation of Amino Acids. Organic Letters, 2019, 21, 9262-9267.	2.4	51
35	Electrochemical Arylation of Electronâ€Deficient Arenes through Reductive Activation. Angewandte Chemie, 2019, 131, 15894-15898.	1.6	12
36	Heterocycles via Cross Dehydrogenative Coupling. , 2019, , .		9

#	ARTICLE	IF	Citations
37	Synthesis and identification of heteroaromaticN-benzyl sulfonamides as potential anticancer agents. Organic and Biomolecular Chemistry, 2019, 17, 8391-8402.	1.5	6
38	Synthesis of Isoxazolidines by Intramolecular Hydroamination of <i>N</i> -Alkoxyamides in the Presence of a Visible-Light Photoredox Catalyst. Bulletin of the Chemical Society of Japan, 2019, 92, 1447-1449.	2.0	6
39	Transition-metal-free Intramolecular C–H amination of sulfamate esters and <i>N</i> -alkylsulfamides. Chemical Communications, 2019, 55, 11782-11785.	2.2	19
40	Visible light induced alkene aminopyridylation using N-aminopyridinium salts as bifunctional reagents. Nature Communications, 2019, 10, 4117.	5.8	137
41	Visible-Light-Induced Copper-Catalyzed Intermolecular Markovnikov Hydroamination of Alkenes. Organic Letters, 2019, 21, 7873-7877.	2.4	29
42	Electrochemically Enabled C3-Formylation and -Acylation of Indoles with Aldehydes. Organic Letters, 2019, 21, 7702-7707.	2.4	14
43	Visible-Light-Driven Synthesis of 1,3,4-Trisubstituted Pyrroles from Aryl Azides. Organic Letters, 2019, 21, 7782-7786.	2.4	20
44	Metal- and acid-free, TBN-mediated direct C H nitration of arenes. Journal of Saudi Chemical Society, 2019, 23, 896-902.	2.4	3
45	Visible light driven metal-free intramolecular cyclization: a facile synthesis of 3-position substituted 3,4-dihydroisoquinolin-1(2H)-one. Organic and Biomolecular Chemistry, 2019, 17, 380-387.	1.5	16
46	Electrochemical Radical Selenylation/1,2-Carbon Migration and Dowd–Beckwith-Type Ring-Expansion Sequences of Alkenylcyclobutanols. Organic Letters, 2019, 21, 1021-1025.	2.4	81
47	Electrochemical oxidative selenylation of imidazo $[1,2\hat{a}\in a]$ pyridines with diselenides. Tetrahedron Letters, 2019, 60, 739-742.	0.7	42
48	Catalytic β C–H amination <i>via</i> an imidate radical relay. Chemical Science, 2019, 10, 2693-2699.	3.7	67
49	Copper-Catalyzed Three-Component Carboamination of Arynes: Expeditious Synthesis of <i>>o</i> -Alkynyl Anilines and <i>o</i> -Benzoxazolyl Anilines. Organic Letters, 2019, 21, 4250-4254.	2.4	21
50	Organic Electrosynthesis: Applications in Complex Molecule Synthesis. ChemElectroChem, 2019, 6, 4067-4092.	1.7	143
51	Photochemical Câ^'H Amination of Ethers and Geminal Difunctionalization Reactions in One Pot. Angewandte Chemie - International Edition, 2019, 58, 12440-12445.	7.2	23
52	Visible-light-induced deoxygenative C2-sulfonylation of quinoline $\langle i \rangle N \langle i \rangle$ -oxides with sulfinic acids. Green Chemistry, 2019, 21, 3858-3863.	4.6	175
53	De Novo Synthesis of Highly Functionalized Benzimidazolones and Benzoxazolones through an Electrochemical Dehydrogenative Cyclization Cascade. Angewandte Chemie, 2019, 131, 9115-9119.	1.6	14
54	Merging photoredox catalysis with transition metal catalysis: Direct C4-H amination of 8-hydroxyquinoline derivatives. Tetrahedron, 2019, 75, 3904-3910.	1.0	3

#	ARTICLE	IF	CITATIONS
55	Amplification of Trichloroisocyanuric Acid (TCCA) Reactivity for Chlorination of Arenes and Heteroarenes via Catalytic Organic Dye Activation. Organic Letters, 2019, 21, 4229-4233.	2.4	33
56	C–N Coupling of Azoles or Imides with Carbocations Generated by Electrochemical Oxidation. European Journal of Organic Chemistry, 2019, 2019, 4089-4094.	1.2	22
57	Visible-Light-Driven Neutral Nitrogen Radical Mediated Intermolecular Styrene Difunctionalization. Organic Letters, 2019, 21, 3861-3865.	2.4	18
58	Metal-free cross-dehydrogenative C–N coupling of azoles with xanthenes and related activated arylmethylenes. Synthetic Communications, 2019, 49, 2053-2065.	1.1	6
59	De Novo Synthesis of Highly Functionalized Benzimidazolones and Benzoxazolones through an Electrochemical Dehydrogenative Cyclization Cascade. Angewandte Chemie - International Edition, 2019, 58, 9017-9021.	7.2	65
60	Visible light driven, nickel-catalyzed aryl esterification using a triplet photosensitiser thioxanthen-9-one. Organic Chemistry Frontiers, 2019, 6, 2353-2359.	2.3	45
61	Recent advances of 1,2,3,5-tetrakis(carbazol-9-yl)-4,6-dicyanobenzene (4CzIPN) in photocatalytic transformations. Chemical Communications, 2019, 55, 5408-5419.	2.2	423
62	Electrochemical trifluoromethylation/semipinacol rearrangement sequences of alkenyl alcohols: synthesis of \hat{l}^2 -CF ₃ -substituted ketones. Organic and Biomolecular Chemistry, 2019, 17, 3319-3323.	1.5	42
63	Reaction of Nitrogenâ€Radicals with Organometallics Under Niâ€Catalysis: Nâ€Arylations and Aminoâ€Functionalization Cascades. Angewandte Chemie, 2019, 131, 5057-5061.	1.6	16
64	Recent applications of radical cascade reaction in the synthesis of functionalized 1-indenones. Chinese Chemical Letters, 2019, 30, 1361-1368.	4.8	75
65	A diastereoselective approach to axially chiral biaryls via electrochemically enabled cyclization cascade. Beilstein Journal of Organic Chemistry, 2019, 15, 795-800.	1.3	12
66	Exogenous-oxidant-free electrochemical oxidative C–H phosphonylation with hydrogen evolution. Chemical Communications, 2019, 55, 4230-4233.	2.2	79
67	A metal- and oxidizing-reagent-free anodic <i>para</i> selective amination of anilines with phenothiazines. Chemical Communications, 2019, 55, 4371-4374.	2.2	65
68	Antiâ€Markovnikov Radical Hydro―and Deuteroamidation of Unactivated Alkenes. Chemistry - A European Journal, 2019, 25, 7105-7109.	1.7	30
69	Photogenerated Neutral Nitrogen Radical Catalyzed Bifunctionalization of Alkenes. Chemistry - A European Journal, 2019, 25, 8024-8029.	1.7	20
70	Direct Installation of a Silyl Linker on Ready-Made NHC Ligands: Immobilized NHC-Pd Complex for Buchwald–Hartwig Amination. Organometallics, 2019, 38, 1872-1876.	1.1	14
71	A visible light mediated, metal and oxidant free highly efficient cross dehydrogenative coupling (CDC) reaction between quinoxalin- $2(1 < i > H < / i >)$ -ones and ethers. New Journal of Chemistry, 2019, 43, 7403-7408.	1.4	45
72	Electrochemical radical arylsulfonylation/semipinacol rearrangement sequences of alkenylcyclobutanols: Synthesis of β-sulfonated cyclic ketones. Tetrahedron Letters, 2019, 60, 1287-1290.	0.7	41

#	Article	IF	CITATIONS
73	Reaction of Nitrogenâ€Radicals with Organometallics Under Niâ€Catalysis: Nâ€Arylations and Aminoâ€Functionalization Cascades. Angewandte Chemie - International Edition, 2019, 58, 5003-5007.	7.2	47
74	Triphenylphosphine-assisted dehydroxylative Csp ³ –N bond formation <i>via</i> electrochemical oxidation. Chemical Communications, 2019, 55, 15089-15092.	2.2	28
75	Electrochemical oxidation induced intermolecular aromatic C-H imidation. Nature Communications, 2019, 10, 5467.	5.8	73
76	Electrochemical Oxidative C(sp ³)â^'H/Nâ^'H Crossâ€Coupling for <i>N</i> â€Mannich Bases with Hydrogen Evolution. ChemSusChem, 2019, 12, 3073-3077.	3.6	29
77	Olefin Oxyamination with Unfunctionalized <i>N</i> â€Alkylanilines. Advanced Synthesis and Catalysis, 2019, 361, 1549-1553.	2.1	11
78	Formation of CX Bonds in CO ₂ Chemical Fixation Catalyzed by Metalâ^'Organic Frameworks. Advanced Materials, 2020, 32, e1806163.	11.1	102
79	Minisciâ€Type Câ€"H Cyanoalkylation of Heteroarenes Through Nâ€"O/Câ€"C Bonds Cleavage. European Journal of Organic Chemistry, 2020, 2020, 1439-1442.	1.2	14
80	Visible-light-induced intramolecular radical cascade of $\hat{l}\pm$ -bromo- <i>N</i> -benzyl-alkylamides: a new strategy to synthesize tetracyclic <i>N</i> -fused indolo[2,1- <i>a</i>]isoquinolin-6(5 <i>H</i>)-ones. Organic and Biomolecular Chemistry, 2020, 18, 263-271.	1.5	17
81	Visible Light―and Heatâ€Promoted Câ^'O Coupling Reaction of Phenols and Aryl Halides. Asian Journal of Organic Chemistry, 2020, 9, 116-120.	1.3	24
82	Electrochemically Enabled Intramolecular Aminooxygenation of Alkynes <i>via</i> Amidyl Radical Cyclization. Chinese Journal of Chemistry, 2020, 38, 394-398.	2.6	37
83	A Retrosynthetic Approach for Photocatalysis. European Journal of Organic Chemistry, 2020, 2020, 1193-1244.	1.2	43
84	Organonitrogen Chemicals from Oxygen-Containing Feedstock over Heterogeneous Catalysts. ACS Catalysis, 2020, 10, 311-335.	5.5	96
85	Preparation of 3-hydroxyisoquinoline-1,4-dione and piperidine-2,5-dione under cerium photocatalysis from alkyne-tethered N-alkoxylamide with O2. Molecular Catalysis, 2020, 495, 111163.	1.0	4
86	Recent Methodologies That Exploit Oxidative Addition of C–N Bonds to Transition Metals. ACS Catalysis, 2020, 10, 12738-12759.	5.5	66
87	Visible-light-induced cascade dearomatization cyclization between alkynes and indole-derived bromides: a facile strategy to synthesize spiroindolenines. Chemical Communications, 2020, 56, 14047-14050.	2.2	13
88	Probing the versatility of metallo-electro hybrid catalysis: enabling access towards facile C–N bond formation. Organic and Biomolecular Chemistry, 2020, 18, 8994-9017.	1.5	12
89	Direct C(sp ³)–N Radical Coupling: Photocatalytic C–H Functionalization by Unconventional Intermolecular Hydrogen Atom Transfer to Aryl Radical. Organic Letters, 2020, 22, 6112-6116.	2.4	28
90	Electrochemical Synthesis of O â€Phthalimide Oximes from α â€Azido Styrenes via Radical Sequence: Generation, Addition and Recombination of Imide―N â€Oxyl and Iminyl Radicals with Câ°'O/Nâ°'O Bonds Formation. Advanced Synthesis and Catalysis, 2020, 362, 3864-3871.	2.1	24

#	Article	IF	CITATIONS
91	Electrochemical Iodoamination of Indoles Using Unactivated Amines. Organic Letters, 2020, 22, 9184-9189.	2.4	15
92	Design and Scalable Synthesis of <i>N</i> â€Alkylhydroxylamine Reagents for the Direct Ironâ€Catalyzed Installation of Medicinally Relevant Amines**. Angewandte Chemie - International Edition, 2020, 59, 21064-21071.	7.2	44
93	Design and Scalable Synthesis of N â€Alkylhydroxylamine Reagents for the Direct Iron atalyzed Installation of Medicinally Relevant Amines**. Angewandte Chemie, 2020, 132, 21250-21257.	1.6	8
94	Multifaceted aspects of charge transfer. Physical Chemistry Chemical Physics, 2020, 22, 21583-21629.	1.3	26
95	Electrode Materials in Modern Organic Electrochemistry. Angewandte Chemie, 2020, 132, 19026-19044.	1.6	53
96	Visibleâ€Lightâ€Induced Cysteineâ€Specific Bioconjugation: Biocompatible Thiol–Ene Click Chemistry. Angewandte Chemie, 2020, 132, 22703-22711.	1.6	5
97	Visible light promoted cross-dehydrogenative coupling: a decade update. Green Chemistry, 2020, 22, 6632-6681.	4.6	132
98	Visibleâ€Lightâ€Induced Cysteineâ€Specific Bioconjugation: Biocompatible Thiol–Ene Click Chemistry. Angewandte Chemie - International Edition, 2020, 59, 22514-22522.	7.2	42
99	Copper-Catalyzed Tandem Radical Cyclization of 8-Ethynyl-1-naphthyl-amines for the Synthesis of 2 <i>H</i> -Benzo[<i>e</i>][1,2]thiazine 1,1-Dioxides and its Fluorescence Properties. Journal of Organic Chemistry, 2020, 85, 12526-12534.	1.7	12
100	Electrochemical dehydrogenative cross-coupling of xanthenes with ketones. Chemical Communications, 2020, 56, 7585-7588.	2.2	45
101	Photocatalysis with organic dyes: facile access to reactive intermediates for synthesis. Beilstein Journal of Organic Chemistry, 2020, 16, 1163-1187.	1.3	82
102	One-electron oxidative dehydrogenative annulation and cyclization reactions. Organic Chemistry Frontiers, 2020, 7, 2107-2144.	2.3	32
103	Visibleâ€Light Induced C(<i>sp</i> ³)â^'H Functionalization for the Formation of Câ^'N Bonds under Metal Catalystâ€Free Conditions. Advanced Synthesis and Catalysis, 2020, 362, 2770-2777.	2.1	22
104	Recent advances in cyclization reactions of unsaturated oxime esters (ethers): synthesis of versatile functionalized nitrogen-containing scaffolds. Organic Chemistry Frontiers, 2020, 7, 1948-1969.	2.3	73
105	<scp>Copperâ€Catalyzed</scp> Modular Access to <scp><i>N</i> â€Fused</scp> Polycyclic Indoles and <scp>5â€Aroyl</scp> â€pyrrolâ€2â€ones <i>via</i> Intramolecular N—H/C—H Annulation with Alkynes: Scope and Mechanism Probes. Chinese Journal of Chemistry, 2020, 38, 1545-1552.	2.6	17
106	Recent Progress in the Construction of Câ^'N Bonds <i>via</i> Metalâ€Free Radical C(<i>sp</i> ³)â^'H Functionalization. Advanced Synthesis and Catalysis, 2020, 362, 2120-2134.	2.1	49
107	Electrochemical Synthesis of Carbodiimides via Metal/Oxidant-Free Oxidative Cross-Coupling of Amines and Isocyanides. Organic Letters, 2020, 22, 2323-2327.	2.4	30
108	Visible-Light-Enabled <i>Ortho</i> -Selective Aminopyridylation of Alkenes with <i>N</i> -Aminopyridinium Ylides. Journal of the American Chemical Society, 2020, 142, 12420-12429.	6.6	84

#	Article	IF	CITATIONS
109	Deaminative carbonylative coupling of alkylamines with styrenes under transition-metal-free conditions. Chemical Communications, 2020, 56, 9182-9185.	2.2	21
110	Elemental Sulfur-Promoted Aerobic Dehydrogenative Aromatization of Cyclohexanones with Amines. Journal of Organic Chemistry, 2020, 85, 9415-9423.	1.7	16
111	The literature of heterocyclic chemistry, part XVIII, 2018. Advances in Heterocyclic Chemistry, 2020, 132, 385-468.	0.9	12
112	Electrode Materials in Modern Organic Electrochemistry. Angewandte Chemie - International Edition, 2020, 59, 18866-18884.	7.2	238
113	How to make C–N bonds using boronic acids and their derivatives without transition metals. Chemical Society Reviews, 2020, 49, 5159-5177.	18.7	42
114	Electrooxidation Enables Selective Dehydrogenative [4+2] Annulation between Indole Derivatives. Angewandte Chemie, 2020, 132, 7260-7264.	1.6	10
115	Electrooxidation Enables Selective Dehydrogenative [4+2] Annulation between Indole Derivatives. Angewandte Chemie - International Edition, 2020, 59, 7193-7197.	7.2	61
116	Visible-Light-Driven Nitrogen Radical-Catalyzed [3 + 2] Cyclization of Vinylcyclopropanes and <i>N</i> -Tosyl Vinylaziridines with Alkenes. Organic Letters, 2020, 22, 2470-2475.	2.4	39
117	Regioselective/electro-oxidative intermolecular $[3+2]$ annulation for the preparation of indolines. Chemical Science, 2020, 11 , $2181-2186$.	3.7	33
118	Electrochemical oxidative iodination of imidazo[1,2- <i>a</i>) pyridines using NaI as iodine source. Synthetic Communications, 2020, 50, 710-718.	1.1	28
119	Recent Advances in the Construction of Phosphorusâ€Substituted Heterocycles, 2009–2019. Advanced Synthesis and Catalysis, 2020, 362, 1724-1818.	2.1	105
120	Photoredox Catalysis: The Reaction Mechanism Can Adjust to Electronic Properties of a Catalyst. ACS Catalysis, 2020, 10, 5920-5927.	5.5	18
121	Photochemical strategies for C–N bond formation <i>via</i> metal catalyst-free (hetero) aryl C(sp ²)–H functionalization. Green Chemistry, 2020, 22, 3060-3068.	4.6	46
122	Synthesis of 3-Hydroxyisoindolin-1-ones through 1,4-Dioxane-Mediated Hydroxylhydrative aza-Cyclization of 2-Alkynylbenzamide in Water. Journal of Organic Chemistry, 2020, 85, 5312-5320.	1.7	12
123	Visible Light-Driven Radical-Mediated C–C Bond Cleavage/Functionalization in Organic Synthesis. Chemical Reviews, 2021, 121, 506-561.	23.0	638
124	Radical Reactions of Ynamides. Small Methods, 2021, 5, e2000673.	4.6	42
125	N-Radical enabled cyclization of 1,n-enynes. Chinese Journal of Catalysis, 2021, 42, 731-742.	6.9	33
126	Organic Azides: Versatile Synthons in Transition Metalâ€Catalyzed C(<i>sp</i> ²)â^'H Amination/Annulation for Nâ€Heterocycle Synthesis. Advanced Synthesis and Catalysis, 2021, 363, 411-424.	2.1	37

#	ARTICLE	IF	CITATIONS
127	Recent advances in using 4DPAIPN in photocatalytic transformations. Organic and Biomolecular Chemistry, 2021, 19, 313-321.	1.5	60
128	Photocatalytic intermolecular <i>anti</i> -Markovnikov hydroamination of unactivated alkenes with <i>N</i> -hydroxyphthalimide. Organic Chemistry Frontiers, 2021, 8, 273-277.	2.3	20
129	Photocatalytic Annulationâ€Carbohalogenation of 1,7â€Enynes for Atomâ€Economic Synthesis of Functionalized 3,4â€Dihydronaphthalenâ€1(2 H)â€ones. Advanced Synthesis and Catalysis, 2021, 363, 838-845.	2.1	9
130	Electrochemical access to benzimidazolone and quinazolinone derivatives <i>via in situ</i> generation of isocyanates. Chemical Communications, 2021, 57, 631-634.	2.2	15
131	Deaminative metal-free reaction of alkenylboronic acids, sodium metabisulfite and Katritzky salts. Chemical Communications, 2021, 57, 915-918.	2.2	22
132	Electrochemical rearrangement protocols towards the construction of diverse molecular frameworks. Chemical Communications, 2021, 57, 2464-2478.	2.2	18
133	Iminyl radical initiated sulfonylation of alkenes with rongalite under photoredox conditions. Organic Chemistry Frontiers, 2021, 8, 3746-3751.	2.3	28
134	<i>N</i> -Hydroxyphthalimide imidate esters as amidyl radical precursors in the visible light photocatalyzed Câ€"H amidation of heteroarenes. Organic Chemistry Frontiers, 2021, 8, 1935-1940.	2.3	8
135	Electrifying Sustainability on Transition Metalâ€Free Modes: An Ecoâ€Friendly Approach for the Formation of Câ^3N Bonds. ChemSusChem, 2021, 14, 1229-1257.	3.6	19
136	Solar fuels and feedstocks: the quest for renewable black gold. Energy and Environmental Science, 2021, 14, 1402-1419.	15.6	25
137	Iron-catalyzed cross-dehydrogenative C–H amidation of benzofurans and benzothiophenes with anilines. Organic Chemistry Frontiers, 2021, 8, 1490-1495.	2.3	3
138	Photoinduced EDA Complexes Enabled Radical Tandem Cyclization/Arylation of Unactivated Alkene with 2-Amino-1,4-naphthoquinones. Organic Letters, 2021, 23, 1862-1867.	2.4	41
139	Synthesis and Reactions of C4-Symmetric $1,3,5,7(1,3)$ -Tetrabenzenacyclooctaphane Tetraazide and Tetraamine Derivatives: Toward the Synthesis of Nitrogen-Embedded Zigzag Hydrocarbon Belts. Organic Letters, $2021, 23, 1835-1839$.	2.4	5
140	Singleâ€Atom Catalysts: A Sustainable Pathway for the Advanced Catalytic Applications. Small, 2021, 17, e2006473.	5.2	135
142	Copper-catalyzed regioselective 2-amination of o-haloanilides with aqueous ammonia. Tetrahedron Letters, 2021, 69, 153001.	0.7	1
143	A Metalâ€Free Direct Arene Câ^'H Amination. Advanced Synthesis and Catalysis, 2021, 363, 2783-2795.	2.1	22
144	Site-Selective Palladium-Catalyzed 1,1-Arylamination of Terminal Alkenes. CCS Chemistry, 2022, 4, 616-624.	4.6	5
145	Metal-free visible-light-catalyzed synthesis of 3-methyl-3,4-dihydroisoquinolin-1(2H)-one: mechanism, DFT calculation and optical properties. Chemical Papers, 2021, 75, 4069-4074.	1.0	1

#	Article	IF	CITATIONS
146	Electrochemical Dehydrogenative C(sp ²) \hat{a}^H Amination. Chemistry - A European Journal, 2021, 27, 8008-8012.	1.7	15
147	Electrochemical Tandem Cyclization of Unsaturated Oximes with Diselenides: A General Approach to Seleno Isoxazolines Derivatives with Quaternary Carbon Center. European Journal of Organic Chemistry, 2021, 2021, 2431-2435.	1.2	17
148	Multicomponent Synthesis of \hat{l}_{\pm} -Branched Tertiary and Secondary Amines by Photocatalytic Hydrogen Atom Transfer Strategy. Organic Letters, 2021, 23, 4473-4477.	2.4	23
149	Co(II)â€Catalyzed Oxidation of N,N â€Dimethylaminoethanol: An Efficient Synthesis of Unsymmetrical (2,4â€) and Symmetrical (2,6â€) Diarylpyridines through Annulation of Aromatic Ketones with a Nitrogen Source. Asian Journal of Organic Chemistry, 2021, 10, 2246-2250.	1.3	6
150	Recent advances in organic electrosynthesis employing transition metal complexes as electrocatalysts. Science Bulletin, 2021, 66, 2412-2429.	4.3	183
151	Nitrogenâ€Radicalâ€Triggered Trifunctionalizing <i>ipso</i> à€Spirocyclization of Unactivated Alkenes with Vinyl Azides: A Modular Access to Spiroaminal Frameworks. Advanced Synthesis and Catalysis, 2021, 363, 3762-3768.	2.1	11
152	Use of biochar to reduce mercury accumulation in Oryza sativa L: A trial for sustainable management of historically polluted farmlands. Environment International, 2021, 153, 106527.	4.8	61
153	Visible-Light-Induced Multicomponent Synthesis of \hat{I}^3 -Amino Esters with Diazo Compounds. Organic Letters, 2021, 23, 6278-6282.	2.4	38
154	Visibleâ€Lightâ€Mediated Nitrogenâ€Centered Radical Strategy: Preparation of 3â€Acylated Spiro[4,5]trienones. Advanced Synthesis and Catalysis, 2021, 363, 4440-4446.	2.1	26
155	Electrophilic Aminating Agents in Total Synthesis. Angewandte Chemie - International Edition, 2021, 60, 25640-25666.	7.2	41
156	Electrophilic Aminating Agents in Total Synthesis. Angewandte Chemie, 0, , .	1.6	4
157	Desulfonylation via Radical Process: Recent Developments in Organic Synthesis. Chemical Reviews, 2021, 121, 12548-12680.	23.0	118
158	Thioether-Directed NiH-Catalyzed Remote γ-C(sp ³)â€"H Hydroamidation of Alkenes by 1,4,2-Dioxazol-5-ones. Journal of the American Chemical Society, 2021, 143, 14962-14968.	6.6	57
159	Controllable synthesis of benzoxazinones and 2-hydroxy-3-indolinones by visible-light-promoted 5-endo-dig N-radical cyclization cascade. Cell Reports Physical Science, 2021, 2, 100577.	2.8	9
160	Electrochemical utilization of methanol and methanol-d4 as a C1 source to access (deuterated) 2,3-dihydroquinazolin-4(1H)-one. Chinese Chemical Letters, 2022, 33, 1559-1562.	4.8	18
161	Selective Carbon arbon Bond Amination with Redoxâ€Active Aminating Reagents: A Direct Approach to Anilines â€. Chinese Journal of Chemistry, 2021, 39, 3011.	2.6	8
162	Metalâ€toâ€Ligand Ratioâ€Dependent Chemodivergent Asymmetric Synthesis. Angewandte Chemie, 2021, 133, 23074.	1.6	0
163	Visibleâ€Lightâ€Catalyzed Nâ€Radicalâ€Enabled Cyclization of Alkenes for the Synthesis of Fiveâ€Membered Nâ€Heterocycles. ChemSusChem, 2021, 14, 4658-4670.	3.6	22

#	Article	IF	Citations
164	Photocatalytic Decarboxylative $[3+2]$ and $[4+2]$ Annulation of Enynals and \hat{i}^3 , \hat{i}^3 . Unsaturated \hat{i}^3 N-(Acyloxy)phthalimides by Nal/PPh ₃ Catalysis. Organic Letters, 2021, 23, 7839-7844.	2.4	24
165	Visible-light-promoted radical alkylation/cyclization of allylic amide with N-hydroxyphthalimide ester: Synthesis of oxazolines. Chinese Chemical Letters, 2022, 33, 1997-2000.	4.8	14
166	Radical Cyclization of 1, <i>n</i> â€Enynes and 1, <i>n</i> â€Dienes for the Synthesis of 2â€Pyrrolidone. Chemistry - an Asian Journal, 2021, 16, 3068-3081.	1.7	21
167	Metalâ€toâ€Ligand Ratioâ€Dependent Chemodivergent Asymmetric Synthesis. Angewandte Chemie - International Edition, 2021, 60, 22892-22899.	7.2	16
168	Advances in N-centered intermediates by energy transfer photocatalysis. Trends in Chemistry, 2021, 3, 877-891.	4.4	39
169	Electrochemical Functionalization of Imidazopyridine and Indazole: An Overview. Advanced Synthesis and Catalysis, 2021, 363, 5047-5071.	2.1	49
170	Iron-catalyzed intramolecular acyl nitrene/alkyne metalation for the synthesis of pyrrolo[2,1- <i>a</i>]isoindol-5-ones. Chemical Communications, 2021, 57, 2077-2080.	2.2	14
171	Visible-light-promoted cascade cyclization towards benzo[<i>d</i>) jimidazo[5,1- <i>b</i>) thiazoles under metal- and photocatalyst-free conditions. Green Chemistry, 2021, 23, 1286-1291.	4.6	19
172	Asymmetric copper-catalyzed propargylic amination with amine hydrochloride salts. Chemical Communications, 2021, 57, 4674-4677.	2.2	10
173	PhI(OAc)2 and iodine-mediated synthesis of N-alkyl sulfonamides derived from polycyclic aromatic hydrocarbon scaffolds and determination of their antibacterial and cytotoxic activities. Organic and Biomolecular Chemistry, 2021, 19, 1133-1144.	1.5	6
174	Computational insights into Ir(<scp>iii</scp>)-catalyzed allylic Câ€"H amination of terminal alkenes: mechanism, regioselectivity, and catalytic activity. RSC Advances, 2021, 11, 19113-19120.	1.7	2
175	Electrochemical multicomponent synthesis of 4-selanylpyrazoles under catalyst- and chemical-oxidant-free conditions. Green Chemistry, 2021, 23, 3950-3954.	4.6	140
176	Electrochemical Oxidative Arylsulfonylation and 1, <scp>2â€Alkyl</scp> Shift Sequences of Alkenyl Cyclobutanols for the Synthesis of <scp>βâ€Sulfonated</scp> Cyclopentanones. Bulletin of the Korean Chemical Society, 2021, 42, 510-513.	1.0	16
177	Electrochemical Synthesis of Spiro[4.5]trienones through Radicalâ€Initiated Dearomative Spirocyclization. ChemSusChem, 2020, 13, 2053-2059.	3.6	69
178	Photocatalytic Visible-Light-Induced Nitrogen Insertion via Dual C(sp ³)â€"H and C(sp ²)â€"H Bond Functionalization: Access to Privileged Imidazole-based Scaffolds. Organic Letters, 2021, 23, 257-261.	2.4	17
179	Allylic Amination of Alkenes with Iminothianthrenes to Afford Alkyl Allylamines. Journal of the American Chemical Society, 2020, 142, 17287-17293.	6.6	65
180	Synthesis of Drugs and Biorelevant N-heterocycles Employing Recent Advances in C-N Bond Formation. Current Organic Chemistry, 2020, 24, 2293-2340.	0.9	1
181	Chemistry With N-Centered Radicals Generated by Single-Electron Transfer-Oxidation Using Photoredox Catalysis. CCS Chemistry, 0, , 38-49.	4.6	173

#	Article	IF	CITATIONS
182	Advances of <i>N</i> -Hydroxyphthalimide Esters in Photocatalytic Alkylation Reactions. Chinese Journal of Organic Chemistry, 2021, 41, 4661.	0.6	34
183	Metal-free electrochemical [3 + 2] heteroannulation of anilines with pyridines enabled by dual C–H radical aminations. Green Chemistry, 2021, 23, 9024-9029.	4.6	10
184	Electro-oxidative C–H amination of heteroarenes with aniline derivatives ⟨i⟩via⟨ i⟩ radical–radical cross coupling. Green Chemistry, 2021, 23, 8853-8858.	4.6	21
185	Application of Electrochemical Cross-Dehydrogenative Couplings in the Syntheses of Heterocycles. , 2019, , 445-494.		0
186	Recent Advances in Copperâ€Catalyzed Câ^'N Bond Formation Involving <i>N</i> â€Centered Radicals. ChemSusChem, 2021, 14, 5340-5358.	3.6	23
187	Electrochemical Oxidative Selenolactonization of Alkenoic Acids with Diselenides: Synthesis of Selenated Î³â€Łactones. Asian Journal of Organic Chemistry, 2021, 10, 3271-3274.	1.3	13
188	Metal-Catalyzed Amination: C N Bond Formation. , 2021, , .		0
189	An Expanded SET Model Associated with the Functional Hindrance Dominates the Amide-Directed Distal sp ³ C–H Functionalization. Journal of the American Chemical Society, 2021, 143, 19406-19416.	6.6	11
190	Photochemical and Electrochemical Applications of Proton-Coupled Electron Transfer in Organic Synthesis. Chemical Reviews, 2022, 122, 2017-2291.	23.0	211
191	Hydroxylamine-mediated C–C amination via an aza-hock rearrangement. Nature Communications, 2021, 12, 7029.	5.8	10
192	O-Protected NH-free hydroxylamines: emerging electrophilic aminating reagents for organic synthesis. Chemical Communications, 2021, 57, 13495-13505.	2.2	8
193	Acetonitrile and benzonitrile as versatile amino sources in copper-catalyzed mild electrochemical C–H amidation reactions. RSC Advances, 2021, 11, 37540-37543.	1.7	14
194	A new outlook in oxidative transformations and coupling reactions via in situ generation of organic chloramines. Applied Organometallic Chemistry, 2022, 36, e6518.	1.7	6
195	TBAI-catalyzed C–N bond formation through oxidative coupling of benzyl bromides with amines: a new avenue to the synthesis of amides. Synthetic Communications, 2022, 52, 424-432.	1.1	2
196	Photochemical and electrochemical strategies in C–F bond activation and functionalization. Organic Chemistry Frontiers, 2022, 9, 853-873.	2.3	71
197	Recent Advances in Visible-Light-Mediated Amide Synthesis. Molecules, 2022, 27, 517.	1.7	29
198	Electrochemical Cross-Dehydrogenative Aromatization Protocol for the Synthesis of Aromatic Amines. Organic Letters, 2022, 24, 1011-1016.	2.4	7
199	Electrochemical oxidative bromolactonization of unsaturated carboxylic acids with sodium bromide: Synthesis of bromomethylated \hat{l}^3 -lactones. Tetrahedron Letters, 2022, 88, 153567.	0.7	7

#	Article	IF	CITATIONS
200	A highly efficient metal-free hydrocarbonylation of alkynes with propargylamines and water. Green Chemistry, 2022, 24, 1978-1982.	4.6	11
201	Copper-catalyzed amino radical tandem cyclization toward the synthesis of indolo-[2,1- <i>a</i>]isoquinolines. Organic Chemistry Frontiers, 2022, 9, 2438-2443.	2.3	9
202	Nitrogen-centered radical-mediated \hat{l}_{\pm} -sulfonimidation of ketones. Organic Chemistry Frontiers, 2022, 9, 2680-2684.	2.3	4
203	A bimetallic PdCu–Fe ₃ O ₄ catalyst with an optimal d-band centre for selective <i>N</i> i>nethylation of aromatic amines with methanol. Catalysis Science and Technology, 2022, 12, 3524-3533.	2.1	6
204	Chemical versatility of azide radical: journey from a transient species to synthetic accessibility in organic transformations. Chemical Society Reviews, 2022, 51, 2255-2312.	18.7	27
205	Efficient access to β-amino acid ester/β-amino ketone derivatives <i>via</i> photocatalytic radical alkoxycabonylimidation/carbonylimidation of alkenes. Organic Chemistry Frontiers, 2022, 9, 2522-2528.	2.3	28
206	Visible-light-promoted radical amidoarylation of arylacrylamides towards amidated oxindoles. Organic Chemistry Frontiers, 2022, 9, 2164-2168.	2.3	9
207	Electrochemical bromolactonization of alkenoic acids with carbon tetrabromide: Synthesis of bromomethylated \hat{l}^3 -lactones. Synthetic Communications, 2022, 52, 402-412.	1.1	4
208	Selective Synthesis of Substituted Pyridines and Pyrimidines through Cascade Annulation of Isopropene Derivatives. Organic Letters, 2022, 24, 1620-1625.	2.4	10
209	Metalâ€Enabled Reactions of Nitrenes with Alkynes: Beyond Gold Catalysis. ChemCatChem, 2022, 14, .	1.8	7
210	Metal-Free C–C Cross Coupling: Electrosynthesis of Azaheterocycles through Anodic Oxidation Cyclization of 1,6-Enynes. ACS Sustainable Chemistry and Engineering, 2022, 10, 3288-3294.	3.2	10
211	Visible-Light-Induced Dual Acylation of Alkenes for the Construction of 3-Substituted Chroman-4-ones. Journal of Organic Chemistry, 2022, 87, 4263-4272.	1.7	11
212	Weak-Coordination in C–H Bond Functionalizations Catalyzed by 3d Metals. ACS Catalysis, 2022, 12, 3452-3506.	5.5	72
213	De novo synthesis of polysubstituted \hat{l}^2 -naphthylamines via Tf2O-mediated [4+2] annulation of amides with alkynes. Tetrahedron Letters, 2022, 95, 153731.	0.7	0
214	Chalcogenative spirocyclization of <i>N</i> -aryl propiolamides with diselenides/disulfides promoted by Selectfluor. Zeitschrift Fur Naturforschung - Section B Journal of Chemical Sciences, 2022, 77, 75-85.	0.3	3
215	Organocatalytic Electrosynthesis of Cinnolines through Cascade Radical Cyclization and Migration. ACS Sustainable Chemistry and Engineering, 2021, 9, 16989-16996.	3.2	15
216	Decarboxylative Ritter-Type Amination by Cooperative Iodine (I/III)─Boron Lewis Acid Catalysis. ACS Catalysis, 2022, 12, 809-817.	5.5	28
217	Photocatalytic cross-dehydrogenative coupling reaction toward the synthesis of <i>N</i> , <i>N</i> ,disubstituted hydrazides and their bromides. Organic Chemistry Frontiers, 2022, 9, 3012-3021.	2.3	13

#	Article	IF	CITATIONS
218	C(sp ³)â€"H 1,3-diamination of cumene derivatives catalyzed by a dirhodium(<scp>ii</scp>) catalyst. Organic Chemistry Frontiers, 0, , .	2.3	5
219	Redox-mediated Electrochemical Cyclization Reactions. RSC Green Chemistry, 2022, , 1-28.	0.0	1
220	Enantioselective Synthesis of Axially Chiral Benzimidazoles ÂBearing a C–N axis via Pd-Catalyzed Buchwald–Hartwig ÂAmination. Synlett, 2022, 33, 1589-1595.	1.0	10
221	Dual Photoredox and Cobalt Catalysis Enabled Transformations. European Journal of Organic Chemistry, 2022, 2022, .	1.2	26
222	Transition Metalâ€Free Radical αâ€Oxy Câ^'H Cyclobutylation via Photoinduced Hydrogen Atom Transfer. Advanced Synthesis and Catalysis, 2022, 364, 2140-2145.	2.1	10
223	Electrochemical Deoxygenative Barbier-Type Reaction. Organic Letters, 2022, 24, 3668-3673.	2.4	11
224	Iron-catalyzed ring-opening of cyclic carboxylic acids enabled by photoinduced ligand-to-metal charge transfer. Green Chemistry, 2022, 24, 5553-5558.	4.6	26
225	Photoinduced synthesis of functionalized oxetanes <i>via</i> diradical-mediated ring contraction. Green Chemistry, 2022, 24, 5046-5051.	4.6	11
226	Highly Diastereoselective Synthesis of \hat{I}^3 -Lactams Enabled by Photoinduced Deaminative [3 + 2] Annulation Reaction. Organic Letters, 2022, 24, 4365-4370.	2.4	16
227	Synthesis of \hat{I}^3 -amino acids $\langle i \rangle via \langle j \rangle$ photocatalyzed intermolecular carboimination of alkenes. Organic Chemistry Frontiers, 2022, 9, 4328-4333.	2.3	19
228	Recent advances in visible light-induced C(sp3)â€"N bond formation. Nature Reviews Chemistry, 2022, 6, 544-561.	13.8	27
229	Electrochemical Organoselenium-Catalyzed Intermolecular Hydroazolylation of Alkenes with Low Catalyst Loadings. Organic Letters, 2022, 24, 5345-5350.	2.4	25
230	Bifunctional sulfilimines enable synthesis of multiple N-heterocycles from alkenes. Nature Chemistry, 2022, 14, 898-904.	6.6	27
231	Copper dual-atom catalyst mediated C3–H amination of indoles at room temperature. Catalysis Science and Technology, 2022, 12, 5390-5396.	2.1	7
232	Synthesis and biological evaluation of <i>N</i> -alkyl sulfonamides derived from polycyclic hydrocarbon scaffolds using a nitrogen-centered radical approach. Organic and Biomolecular Chemistry, 2022, 20, 6680-6693.	1.5	2
233	$1,\!2$ -Amino oxygenation of alkenes with hydrogen evolution reaction. Nature Communications, 2022, $13,$	5.8	19
234	High Electric Field on Water Microdroplets Catalyzes Spontaneous and Ultrafast Oxidative C–H/N–H Cross-Coupling. Journal of the American Chemical Society, 2022, 144, 16184-16190.	6.6	54
235	Visible-Light-Driven $[3 + 2]/[4 + 2]$ Annulation Reactions of Alkenes with $\langle i \rangle N \langle i \rangle$ -Aminopyridinium Salts. Organic Letters, 2022, 24, 6037-6042.	2.4	13

#	Article	IF	CITATIONS
236	Sunlight Induced and Recyclable g-C3N4 Catalyzed C-H Sulfenylation of Quinoxalin-2(1H)-Ones. Molecules, 2022, 27, 5044.	1.7	5
237	Electrochemical Oxidative C(sp ²)–H Amination of Aldehyde Hydrazones with Azoles. Organic Letters, 2022, 24, 5874-5878.	2.4	8
238	Photo-induced decarboxylative hydroacylation of α-oxocarboxylic acids with terminal alkynes by radical addition–translocation–cyclization in water. Organic Chemistry Frontiers, 2022, 9, 6513-6519.	2.3	6
239	Iron–iodine co-catalysis towards tandem C–N/C–C bond formation: one-pot regioselective synthesis of 2-amino-3-alkylindoles. Organic Chemistry Frontiers, 2022, 9, 6165-6171.	2.3	8
240	Electrochemical deoxygenative reduction of ketones. Chemical Communications, 2022, 58, 11155-11158.	2.2	9
241	Organic photoredox catalytic radical sulfonamidation/cyclization of unactivated alkenes towards polycyclic quinazolinones. Organic Chemistry Frontiers, 2022, 9, 6290-6294.	2.3	15
242	Photo-Initiated Nickel Catalysis (PiNiC): Unmasking Dimethylnickel with Light. ACS Catalysis, 2022, 12, 12511-12520.	5.5	4
243	Copperâ€catalyzed C(sp ³)â^'H/Nâ^'H Cross Dehydrogenative Coupling Between Toluene Derivatives and Picolinamides. Asian Journal of Organic Chemistry, 0, , .	1.3	1
244	Electrochemical Câ^'H Oxidation/Conjugate Addition/Cyclization Sequences of 2â€Alkyl Phenols: Oneâ€Pot Synthesis of 2â€Aminoâ€4 <i>H</i> à€chromenes. Asian Journal of Organic Chemistry, 2022, 11, .	1.3	6
246	Electrocatalytic Synthesis of Substituted Pyrazoles <i>via</i> Hypervalent Iodine Mediated Intramolecular Câ^N Coupling. Advanced Synthesis and Catalysis, 2022, 364, 3910-3916.	2.1	10
247	Copper-catalyzed benzylic C–H amidation of toluene derivatives with N-(8-quinolyl)amides through C(sp [3])–H/N–H cross dehydrogenative coupling. Tetrahedron, 2022, , 133066.	1.0	0
248	The emerging role of radical chemistry in the amination transformation of highly strained $[1.1.1]$ propellane: Bicyclo $[1.1.1]$ pentylamine as bioisosteres of anilines. Frontiers in Chemistry, 0, 10, .	1.8	1
249	Electrochemical <i>N</i> a€Centered Radical Addition/Semipinacol Rearrangement Sequence of Alkenyl Cyclobutanols: Synthesis of βâ€Amino Cyclic Ketones. Asian Journal of Organic Chemistry, 2022, 11, .	1.3	5
250	Direct intermolecular C(sp)–H amidation with dioxazolones via synergistic decatungstate anion photocatalysis and nickel catalysis: A combined experimental and computational study. Journal of Catalysis, 2022, 415, 142-152.	3.1	4
251	Energy transfer-enabled unsymmetrical diamination using bifunctional nitrogen-radical precursors. Nature Catalysis, 2022, 5, 1120-1130.	16.1	40
252	Recent advances in polyoxometalates acid-catalyzed organic reactions. Chinese Chemical Letters, 2023, 34, 108097.	4.8	20
253	Photoinduced Synthesis of Functionalized Oxacyclic Spirooxindoles Via Ring Expansion. Organic Letters, 2023, 25, 506-511.	2.4	4
254	Substituent-Controlled Regioselective Photoinduced Cyclization of $\langle i \rangle N \langle i \rangle$ -Allylbenzamides with $\langle i \rangle N \langle i \rangle$ -Sulfonylaminopyridinium Salts. Organic Letters, 2023, 25, 494-499.	2.4	11

#	Article	IF	CITATIONS
255	Metal-free visible light mediated direct C–H amination of benzoxazole with secondary amines. Molecular Diversity, 2024, 28, 61-71.	2.1	7
256	Metal-Free Aerobic C–N Bond Formation of Styrene and Arylamines via Photoactivated Electron Donor–Acceptor Complexation. Molecules, 2023, 28, 356.	1.7	0
257	Transition-metal free C–N bond formation from alkyl iodides and diazonium salts via halogen-atom transfer. Nature Communications, 2022, 13, .	5.8	15
258	Transition-metal-free electrochemical-induced active C(sp $<$ sup $>$ 3 $<$ /sup $>$)-H functionalization. Green Chemistry Letters and Reviews, 2023, 16, .	2.1	2
259	Visible-light promoted intramolecular carboamination of alkynes for the synthesis of oxazolidinone-fused isoquinolinones. Chemical Communications, 2023, 59, 1979-1982.	2.2	2
260	Recent Advances in N-O Bond Cleavage of Oximes and Hydroxylamines to Construct N-Heterocycle. Molecules, 2023, 28, 1775.	1.7	5
261	Copper-Catalyzed Intermolecular Cross-dehydrogenative Câ€"N Coupling at Room Temperature via Remote Activating Group Enabled Radical Relay Strategy. Organic Letters, 2023, 25, 2012-2017.	2.4	0
262	Recent Advancements on Metalâ€Free Vicinal Diamination of Alkenes: Synthetic Strategies and Mechanistic Insights. Chemistry - an Asian Journal, 2023, 18, .	1.7	5
263	Synthesis of pyrido $[1,2-\langle i\rangle a\langle i\rangle]$ indol-6($7\langle i\rangle H\langle i\rangle$)-ones $\langle i\rangle via\langle i\rangle$ a visible light-photocatalyzed formal (4 + 2) cycloaddition of indole-derived bromides and alkenes or alkynes. Green Chemistry, 2023, 25, 2453-2457.	4.6	2
264	Visible-light-absorbing C–N cross-coupling for the synthesis of hydrazones involving C(sp ^{)a€"H/C(sp³)–H functionalization. Chemical Communications, 2023, 59, 4075-4078.}	2.2	6
265	How the Conformational Movement of the Substrate Drives the Regioselective C–N Bond Formation in P450 TleB: Insights from Molecular Dynamics Simulations and Quantum Mechanical/Molecular Mechanical Calculations. Journal of the American Chemical Society, 2023, 145, 7252-7267.	6.6	13
266	Iron-Catalyzed C(Sp ³)â€"H Borylation, Thiolation, and Sulfinylation Enabled by Photoinduced Ligand-to-Metal Charge Transfer. Journal of the American Chemical Society, 2023, 145, 7600-7611.	6.6	41
267	Radical Cascade Cyclization of Alkeneâ€Tethered Compounds: Versatile Approach towards Ringâ€Fused Polycyclic Structures. Asian Journal of Organic Chemistry, 2023, 12, .	1.3	6
268	A Palladium-Catalyzed Carbonylative Acetylation of $\langle i \rangle N \langle i \rangle$ -Phenylpyridin-2-amine Using DMF and CO as the Acetyl Source. Journal of Organic Chemistry, 0, , .	1.7	0
277	Photoredox-Catalyzed Multicomponent Synthesis of Functionalized Î ³ -Amino Butyric Acids via Reductive Radical Polar Crossover. Organic Letters, 2023, 25, 3429-3434.	2.4	4
281	<i>N</i> -Chlorosulfonyl carbamate-enabled, photoinduced amidation of quinoxalin-2(1 <i>H</i>)-ones. Chemical Communications, 0, , .	2.2	0
287	Reticular framework materials for photocatalytic organic reactions. Chemical Society Reviews, 2023, 52, 7949-8004.	18.7	8
288	Facile access to C-N bonds via unexpected side reactions of Knoevenagel condensation and their application in high-efficiency organic solar cells. Science China Chemistry, 0, , .	4.2	0

#	Article	IF	CITATIONS
302	Selective electrochemical acceptorless dehydrogenation reactions of tetrahydroisoquinoline derivatives. Organic and Biomolecular Chemistry, $0, \dots$	1.5	0
308	Clay based heterogeneous catalysts for carbon–nitrogen bond formation: a review. RSC Advances, 2024, 14, 4810-4834.	1.7	0