Effectiveness of optimized control strategy and different wind farm optimization

Renewable Energy 126, 819-829

DOI: 10.1016/j.renene.2018.04.004

Citation Report

#	Article	IF	CITATIONS
1	Comparative study of discretization method and Monte Carlo method for wind farm layout optimization under Weibull distribution. Journal of Wind Engineering and Industrial Aerodynamics, 2018, 180, 148-155.	1.7	23
2	Optimizing wind farm layout by addressing energy-variance trade-off: A single-objective optimization approach. Energy, 2019, 189, 116149.	4.5	14
3	A novel method for wind farm layout optimization based on wind turbine selection. Energy Conversion and Management, 2019, 193, 106-123.	4.4	37
4	Greedy robust wind farm layout optimization with feasibility guarantee. Engineering Optimization, 2019, 51, 1152-1167.	1.5	8
6	Application of improved genetic algorithm in ultrasonic location of transformer partial discharge. Neural Computing and Applications, 2020, 32, 1755-1764.	3.2	10
7	A comprehensive techno-economic analysis for optimally placed wind farms. Electrical Engineering, 2020, 102, 2161-2179.	1.2	9
8	Wind farm optimization considering non-uniformly distributed turbulence intensity. Sustainable Energy Technologies and Assessments, 2021, 43, 100970.	1.7	5
9	Wind farm control ―Part I: A review on control system concepts and structures. IET Renewable Power Generation, 2021, 15, 2085-2108.	1.7	40
10	Applications in Renewable Energy. Power Systems, 2020, , 43-103.	0.3	0
11	When Evolutionary Computing Meets Astro- and Geoinformatics. , 2020, , 283-306.		5
12	Robust Wind Farm Layout Optimization Under Weibull Distribution by Monte Carlo Simulation. Lecture Notes in Mechanical Engineering, 2020, , 907-914.	0.3	0
13	Decision Support Model for Optimal Design of Wind Technologies Based Techno–Economic Approach. IEEE Access, 2021, 9, 148264-148276.	2.6	6
14	A preference-based multi-objective model for wind farm design layout optimization. International Journal on Interactive Design and Manufacturing, 2022, 16, 323-337.	1.3	4
15	Design of 3D Wind Farm Layout Using an Improved Electric Charge Particles Optimization With Hub-Height Variety. IEEE Access, 2022, 10, 31385-31396.	2.6	7
16	Comparative study of decentralized instantaneous and wind-interval-based controls for in-line two scale wind turbines. Renewable Energy, 2022, 189, 1218-1233.	4.3	4
17	Potential of wind energy and economic assessment in Egypt considering optimal hub height by equilibrium optimizer. Ain Shams Engineering Journal, 2023, 14, 101816.	3.5	10
18	New engineering wake model for wind farm applications. Renewable Energy, 2022, 198, 1354-1363.	4.3	5
19	Numerical Investigation of the Influence of the Wake of Wind Turbines with Different Scales Based on OpenFOAM. Applied Sciences (Switzerland), 2022, 12, 9624.	1.3	1

CITATION REPORT

#	Article	IF	CITATIONS
20	Monte-Carlo simulations based hub height optimization using FLORIS for two interacting onshore wind farms. Journal of Renewable and Sustainable Energy, 2022, 14, .	0.8	3
21	A Case Study: Layout Optimization of Three Gorges Wind Farm Pakistan, Using Genetic Algorithm. Sustainability, 2022, 14, 16960.	1.6	3
22	Wind energy-harvesting technologies and recent research progresses in wind farm control models. Frontiers in Energy Research, 0, 11, .	1.2	3
23	Wake Effects on A Hybrid Semi-Submersible Floating Wind Farm with Multiple Hub Heights. China Ocean Engineering, 2023, 37, 101-114.	0.6	1
24	Research on the Wind Farm Layout Optimization Considering Different Wake Effect Models. Lecture Notes in Electrical Engineering, 2023, , 981-992.	0.3	0