Highly reversible zinc metal anode for aqueous batterie

Nature Materials 17, 543-549 DOI: 10.1038/s41563-018-0063-z

Citation Report

#	Article	IF	CITATIONS
3	A ZnCl ₂ water-in-salt electrolyte for a reversible Zn metal anode. Chemical Communications, 2018, 54, 14097-14099.	2.2	491
4	A deeply rechargeable zinc anode with pomegranate-inspired nanostructure for high-energy aqueous batteries. Journal of Materials Chemistry A, 2018, 6, 21933-21940.	5.2	61
5	A rechargeable aqueous Zn ²⁺ -battery with high power density and a long cycle-life. Energy and Environmental Science, 2018, 11, 3168-3175.	15.6	258
6	Before Li Ion Batteries. Chemical Reviews, 2018, 118, 11433-11456.	23.0	1,492
7	Inhibition of Zinc Dendrite Growth in Zincâ€Based Batteries. ChemSusChem, 2018, 11, 3996-4006.	3.6	291
8	Capacitive Performance of Water-in-Salt Electrolytes in Supercapacitors: A Simulation Study. Journal of Physical Chemistry C, 2018, 122, 23917-23924.	1.5	49
9	Tuning Microstructures of Graphene to Improve Power Capability of Rechargeable Hybrid Aqueous Batteries. ACS Applied Materials & Interfaces, 2018, 10, 37110-37118.	4.0	19
10	Present and Future Perspective on Electrode Materials for Rechargeable Zinc-Ion Batteries. ACS Energy Letters, 2018, 3, 2620-2640.	8.8	676
11	A Lasagna-Inspired Nanoscale ZnO Anode Design for High-Energy Rechargeable Aqueous Batteries. ACS Applied Energy Materials, 2018, 1, 6345-6351.	2.5	46
12	Ion‣ieving Carbon Nanoshells for Deeply Rechargeable Znâ€Based Aqueous Batteries. Advanced Energy Materials, 2018, 8, 1802470.	10.2	139
13	Sealing ZnO nanorods for deeply rechargeable high-energy aqueous battery anodes. Nano Energy, 2018, 53, 666-674.	8.2	112
14	Fluorineâ€Free Waterâ€inâ€Salt Electrolyte for Green and Lowâ€Cost Aqueous Sodiumâ€ion Batteries. ChemSusChem, 2018, 11, 3704-3707.	3.6	90
15	Challenges, mitigation strategies and perspectives in development of zinc-electrode materials and fabrication for rechargeable zinc–air batteries. Energy and Environmental Science, 2018, 11, 3075-3095.	15.6	324
16	Recent Advances in Aqueous Zinc-Ion Batteries. ACS Energy Letters, 2018, 3, 2480-2501.	8.8	1,553
17	Rejuvenating zinc batteries. Nature Materials, 2018, 17, 480-481.	13.3	88
18	An Environmentally Friendly and Flexible Aqueous Zinc Battery Using an Organic Cathode. Angewandte Chemie, 2018, 130, 11911-11915.	1.6	151
19	An Environmentally Friendly and Flexible Aqueous Zinc Battery Using an Organic Cathode. Angewandte Chemie - International Edition, 2018, 57, 11737-11741.	7.2	425
20	Aqueous Intercalation of Graphite at a Near-Neutral pH. ACS Applied Energy Materials, 2018, 1, 5062-5067.	2.5	8

	CITATION R	EPORT	
#	Article	IF	CITATIONS
21	Recent Advances in Znâ€lon Batteries. Advanced Functional Materials, 2018, 28, 1802564.	7.8	1,595
22	Mechanistic Insights of Zn ²⁺ Storage in Sodium Vanadates. Advanced Energy Materials, 2018, 8, 1801819.	10.2	225
23	Insights into the Structure and Transport of the Lithium, Sodium, Magnesium, and Zinc Bis(trifluoromethansulfonyl)imide Salts in Ionic Liquids. Journal of Physical Chemistry C, 2018, 122, 20108-20121.	1.5	64
24	Electrodeposition of rhenium with suppressed hydrogen evolution from water-in-salt electrolyte. Electrochemistry Communications, 2018, 93, 53-56.	2.3	28
25	Quasi-Isolated Au Particles as Heterogeneous Seeds To Guide Uniform Zn Deposition for Aqueous Zinc-Ion Batteries. ACS Applied Energy Materials, 2019, 2, 6490-6496.	2.5	247
26	Optimization of Organic/Water Hybrid Electrolytes for Highâ€Rate Carbonâ€Based Supercapacitor. Advanced Functional Materials, 2019, 29, 1904136.	7.8	102
27	Stability of aqueous electrolytes based on LiFSI and NaFSI. Electrochimica Acta, 2019, 321, 134644.	2.6	46
28	Recent Progress in the Electrolytes of Aqueous Zincâ€lon Batteries. Chemistry - A European Journal, 2019, 25, 14480-14494.	1.7	312
29	Artificial Solid-Electrolyte Interface Facilitating Dendrite-Free Zinc Metal Anodes via Nanowetting Effect. ACS Applied Materials & Interfaces, 2019, 11, 32046-32051.	4.0	223
30	Rechargeable aqueous electrolyte batteries: from univalent to multivalent cation chemistry. Journal of Materials Chemistry A, 2019, 7, 20519-20539.	5.2	155
31	Ultrafast Rechargeable Zinc Battery Based on High-Voltage Graphite Cathode and Stable Nonaqueous Electrolyte. ACS Applied Materials & Interfaces, 2019, 11, 32978-32986.	4.0	75
32	The Threeâ€Dimensional Dendriteâ€Free Zinc Anode on a Copper Mesh with a Zincâ€Oriented Polyacrylamide Electrolyte Additive. Angewandte Chemie - International Edition, 2019, 58, 15841-15847.	7.2	648
33	A moisture absorbing gel electrolyte enables aqueous and flexible supercapacitors operating at high temperatures. Journal of Materials Chemistry A, 2019, 7, 20398-20404.	5.2	57
34	K ⁺ pre-intercalated manganese dioxide with enhanced Zn ²⁺ diffusion for high rate and durable aqueous zinc-ion batteries. Journal of Materials Chemistry A, 2019, 7, 20806-20812.	5.2	145
35	A Universal Principle to Design Reversible Aqueous Batteries Based on Deposition–Dissolution Mechanism. Advanced Energy Materials, 2019, 9, 1901838.	10.2	151
36	Reversible intercalation of methyl viologen as a dicationic charge carrier in aqueous batteries. Nature Communications, 2019, 10, 3227.	5.8	46
37	Rechargeable aqueous hybrid ion batteries: developments and prospects. Journal of Materials Chemistry A, 2019, 7, 18708-18734.	5.2	128
38	A Fourâ€Electron Sulfur Electrode Hosting a Cu ²⁺ /Cu ⁺ Redox Charge Carrier. Angewandte Chemie, 2019, 131, 12770-12775.	1.6	18

.

ARTICLE IF CITATIONS # A Fourâ€Electron Sulfur Electrode Hosting a Cu²⁺/Cu⁺ Redox Charge Carrier. 39 7.2 77 Angewandte Chemie - International Edition, 2019, 58, 12640-12645. An innovation: Dendrite free quinone paired with ZnMn2O4 for zinc ion storage. Materials Today 2.5 Energy, 2019, 13, 323-330. Silicon and Iron as Resource-Efficient Anode Materials for Ambient-Temperature Metal-Air Batteries: A 41 46 1.3 Review. Materials, 2019, 12, 2134. A Highly Reversible Zn Anode with Intrinsically Safe Organic Electrolyte for Longâ€Cycleâ€Life Batteries. 42 11.1 259 Advanced Materials, 2019, 31, e1900668. Dendriteâ€Free Zinc Deposition Induced by Multifunctional CNT Frameworks for Stable Flexible Znâ€Ion 43 11.1 780 Batteries. Advanced Materials, 2019, 31, e1903675. Layered (NH₄)₂V₆O₁₆·1.5H₂O nanobelts as a high-performance cathode for aqueous zinc-ion batteries. Journal of Materials Chemistry A, 2019, 5.2 19130-19139. Switching on palladium catalyst electrochemical removal from a palladium acetate–acetonitrile 45 4.6 9 system via trace water addition. Green Chemistry, 2019, 21, 4662-4672. Communicationâ€"Alkyl-Chain-Length Dependence of Quaternary Ammonium Cation on Zn Deposition Morphology in Alkaline-Based Electrolytes. Journal of the Electrochemical Society, 2019, 166, 1.3 46 A2242-A2244. A high-performance, highly bendable quasi-solid-state zinc–organic battery enabled by intelligent 47 5.2 40 proton-self-buffering copolymer cathodes. Journal of Materials Chemistry A, 2019, 7, 17292-17298. Synthesis and electrochemical performance of NaV₃O₈ nanobelts for 1.7 Li/Na-ion batteries and aqueous zinc-ion batteries. RSC Advances, 2019, 9, 20549-20556. Achieving Both High Voltage and High Capacity in Aqueous Zincâ€Ion Battery for Record High Energy 49 285 7.8 Density. Advanced Functional Materials, 2019, 29, 1906142. Do Zinc Dendrites Exist in Neutral Zinc Batteries: A Developed Electrohealing Strategy to In Situ 11.1 494 Rescue Inâ€Service Batteries. Advanced Materials, 2019, 31, e1903778. Unlocking the Potential of Disordered Rocksalts for Aqueous Zincâ€ion Batteries. Advanced Materials, 51 11.1 171 2019, 31, e1904369. Dendriteâ€Free Flexible Fiberâ€Shaped Zn Battery with Long Cycle Life in Water and Air. Advanced Energy 10.2 Materials, 2019, 9, 1901434. Lignin@Nafion Membranes Forming Zn Solid–Electrolyte Interfaces Enhance the Cycle Life for 53 3.6 120 Rechargeable Zincâ€Ion Batteries. ChemSusChem, 2019, 12, 4889-4900. 3D CNTs Networks Enable MnO₂ Cathodes with High Capacity and Superior Rate Capability 54 99 for Flexible Rechargeable Zn–MnO₂ Batteries. Small Methods, 2019, 3, 1900525. 55 Recent Progress on Zinc-Ion Rechargeable Batteries. Nano-Micro Letters, 2019, 11, 90. 14.4 191 Enhanced reaction kinetics of an aqueous Znâ€"Fe hybrid flow battery by optimizing the supporting electrolytes. Journal of Energy Storage, 2019, 25, 100883.

#	Article	IF	CITATIONS
57	Electrolyte engineering for a highly stable, rechargeable hybrid aqueous battery. Journal of Energy Storage, 2019, 26, 100920.	3.9	19
58	Achieving Highâ€Voltage and Highâ€Capacity Aqueous Rechargeable Zinc Ion Battery by Incorporating Twoâ€6pecies Redox Reaction. Advanced Energy Materials, 2019, 9, 1902446.	10.2	341
59	Reversible epitaxial electrodeposition of metals in battery anodes. Science, 2019, 366, 645-648.	6.0	1,097
60	Building better zinc-ion batteries: A materials perspective. EnergyChem, 2019, 1, 100022.	10.1	153
61	An Aqueous Znâ€ion Hybrid Supercapacitor with High Energy Density and Ultrastability up to 80 000 Cycles. Advanced Energy Materials, 2019, 9, 1902915.	10.2	244
62	Realizing a Rechargeable Highâ€Performance Cu–Zn Battery by Adjusting the Solubility of Cu ²⁺ . Advanced Functional Materials, 2019, 29, 1905979.	7.8	54
63	NaCa _{0.6} V ₆ O ₁₆ ·3H ₂ O as an Ultraâ€Stable Cathode for Znâ€Ion Batteries: The Roles of Preâ€Inserted Dualâ€Cations and Structural Water in V ₃ O ₈ Layer. Advanced Energy Materials, 2019, 9, 1901968.	10.2	196
64	Delaminating Vanadium Carbides for Zincâ€lon Storage: Hydrate Precipitation and H ⁺ /Zn ²⁺ Coâ€Action Mechanism. Small Methods, 2019, 3, 1900495.	4.6	97
65	Conductive 2D metal-organic framework for high-performance cathodes in aqueous rechargeable zinc batteries. Nature Communications, 2019, 10, 4948.	5.8	398
66	The Threeâ€Dimensional Dendriteâ€Free Zinc Anode on a Copper Mesh with a Zincâ€Oriented Polyacrylamide Electrolyte Additive. Angewandte Chemie, 2019, 131, 15988-15994.	1.6	116
67	Design Strategies for Vanadiumâ€based Aqueous Zincâ€lon Batteries. Angewandte Chemie, 2019, 131, 16508-16517.	1.6	103
68	Ultra-High Mass-Loading Cathode for Aqueous Zinc-Ion Battery Based on Graphene-Wrapped Aluminum Vanadate Nanobelts. Nano-Micro Letters, 2019, 11, 69.	14.4	122
69	Toward dendrite-free alkaline zinc-based rechargeable batteries: A minireview. Functional Materials Letters, 2019, 12, 1930004.	0.7	15
70	Materials Design for Rechargeable Metal-Air Batteries. Matter, 2019, 1, 565-595.	5.0	383
71	Embedded 3D Li ⁺ channels in a water-in-salt electrolyte to develop flexible supercapacitors and lithium-ion batteries. Journal of Materials Chemistry A, 2019, 7, 24800-24806.	5.2	51
72	A paradigm of storage batteries. Energy and Environmental Science, 2019, 12, 3203-3224.	15.6	154
73	Fabrication of an Inexpensive Hydrophilic Bridge on a Carbon Substrate and Loading Vanadium Sulfides for Flexible Aqueous Zinc-Ion Batteries. ACS Applied Materials & Interfaces, 2019, 11, 36676-36684.	4.0	49
74	Electrolyte Effect on the Electrochemical Performance of Mild Aqueous Zinc-Electrolytic Manganese Dioxide Batteries. ACS Applied Materials & Interfaces, 2019, 11, 37524-37530.	4.0	47

#	Article	IF	Citations
75	An advanced high energy-efficiency rechargeable aluminum-selenium battery. Nano Energy, 2019, 66, 104159.	8.2	39
76	Homogeneous Deposition of Zinc on Three-Dimensional Porous Copper Foam as a Superior Zinc Metal Anode. ACS Sustainable Chemistry and Engineering, 2019, 7, 17737-17746.	3.2	151
77	Self-Healable Hydrogel Electrolyte toward High-Performance and Reliable Quasi-Solid-State Zn–MnO ₂ Batteries. ACS Applied Materials & Interfaces, 2019, 11, 38762-38770.	4.0	62
78	Low-cost and high safe manganese-based aqueous battery for grid energy storage and conversion. Science Bulletin, 2019, 64, 1780-1787.	4.3	56
79	Hydrated Layered Vanadium Oxide as a Highly Reversible Cathode for Rechargeable Aqueous Zinc Batteries. Advanced Functional Materials, 2019, 29, 1807331.	7.8	359
80	Thixotropic gel electrolyte containing poly(ethylene glycol) with high zinc ion concentration for the secondary aqueous Zn/LiMn2O4 battery. Journal of Electroanalytical Chemistry, 2019, 836, 1-6.	1.9	57
81	An Organic Cathode Based Dual-Ion Aqueous Zinc Battery Enabled by a Cellulose Membrane. ACS Applied Energy Materials, 2019, 2, 1288-1294.	2.5	118
82	Flexible Zn″on Batteries: Recent Progresses and Challenges. Small, 2019, 15, e1804760.	5.2	412
83	Polymer grafted on carbon nanotubes as a flexible cathode for aqueous zinc ion batteries. Chemical Communications, 2019, 55, 1647-1650.	2.2	117
84	Highly Reversible Phase Transition Endows V ₆ O ₁₃ with Enhanced Performance as Aqueous Zincâ€lon Battery Cathode. Energy Technology, 2019, 7, 1900022.	1.8	108
85	Prototype System of Rocking-Chair Zn-Ion Battery Adopting Zinc Chevrel Phase Anode and Rhombohedral Zinc Hexacyanoferrate Cathode. Batteries, 2019, 5, 3.	2.1	56
86	ZnCl ₂ "Waterâ€inâ€Saltâ€Electrolyte Transforms the Performance of Vanadium Oxide as a Zn Battery Cathode. Advanced Functional Materials, 2019, 29, 1902653.	7.8	213
87	Advanced rechargeable zinc-based batteries: Recent progress and future perspectives. Nano Energy, 2019, 62, 550-587.	8.2	817
88	Dendrite Growth Suppression by Zn ²⁺ â€Integrated Nafion Ionomer Membranes: Beyond Porous Separators toward Aqueous Zn/V ₂ O ₅ Batteries with Extended Cycle Life. Energy Technology, 2019, 7, 1900442.	1.8	76
89	Zinc electrode shape-change in secondary air batteries: A 2D modeling approach. Journal of Power Sources, 2019, 432, 119-132.	4.0	34
90	An Ultrastable Presodiated Titanium Disulfide Anode for Aqueous "Rockingâ€Chair―Zinc Ion Battery. Advanced Energy Materials, 2019, 9, 1900993.	10.2	178
91	Inhibiting Grain Pulverization and Sulfur Dissolution of Bismuth Sulfide by Ionic Liquid Enhanced Poly(3,4-ethylenedioxythiophene):Poly(styrenesulfonate) for High-Performance Zinc-Ion Batteries. ACS Nano, 2019, 13, 7270-7280.	7.3	81
92	Activating C oordinated Iron of Iron Hexacyanoferrate for Zn Hybridâ€Ion Batteries with 10 000 ycle Lifespan and Superior Rate Capability. Advanced Materials, 2019, 31, e1901521.	11.1	363

#	Article	IF	CITATIONS
93	Binder-free hierarchical VS ₂ electrodes for high-performance aqueous Zn ion batteries towards commercial level mass loading. Journal of Materials Chemistry A, 2019, 7, 16330-16338.	5.2	152
94	Electrode Materials for Rechargeable Zinc-Ion and Zinc-Air Batteries: Current Status and Future Perspectives. Electrochemical Energy Reviews, 2019, 2, 395-427.	13.1	122
95	Tailoring Three-Dimensional Composite Architecture for Advanced Zinc-Ion Batteries. ACS Applied Materials & Interfaces, 2019, 11, 19191-19199.	4.0	83
96	Polyaniline nanopillars on surface cracked carbon fibers as an ultrahigh-performance cathode for a flexible rechargeable aqueous Zn-ion battery. Composites Science and Technology, 2019, 180, 71-77.	3.8	32
97	Design strategies for developing non-precious metal based bi-functional catalysts for alkaline electrolyte based zinc–air batteries. Materials Horizons, 2019, 6, 1812-1827.	6.4	79
98	Stabilized Molybdenum Trioxide Nanowires as Novel Ultrahighâ€Capacity Cathode for Rechargeable Zinc Ion Battery. Advanced Science, 2019, 6, 1900151.	5.6	165
99	Original growth mechanism for ultra-stable dendrite-free potassium metal electrode. Nano Energy, 2019, 62, 367-375.	8.2	93
100	Flexible and High-Voltage Coaxial-Fiber Aqueous Rechargeable Zinc-Ion Battery. Nano Letters, 2019, 19, 4035-4042.	4.5	202
101	A High Voltage Aqueous Zinc–Organic Hybrid Flow Battery. Advanced Energy Materials, 2019, 9, 1900694.	10.2	97
102	Engineering a High-Energy-Density and Long Lifespan Aqueous Zinc Battery via Ammonium Vanadium Bronze. ACS Applied Materials & Interfaces, 2019, 11, 20796-20803.	4.0	75
103	Densely Populated Isolated Single CoN Site for Efficient Oxygen Electrocatalysis. Advanced Energy Materials, 2019, 9, 1900149.	10.2	262
104	Recent progress and perspectives on aqueous Zn-based rechargeable batteries with mild aqueous electrolytes. Energy Storage Materials, 2019, 20, 410-437.	9.5	525
105	Long-life and deeply rechargeable aqueous Zn anodes enabled by a multifunctional brightener-inspired interphase. Energy and Environmental Science, 2019, 12, 1938-1949.	15.6	1,309
106	Design Strategies for Vanadiumâ€based Aqueous Zincâ€lon Batteries. Angewandte Chemie - International Edition, 2019, 58, 16358-16367.	7.2	538
107	Transition metal ion-preintercalated V2O5 as high-performance aqueous zinc-ion battery cathode with broad temperature adaptability. Nano Energy, 2019, 61, 617-625.	8.2	340
108	Crystal water for high performance layered manganese oxide cathodes in aqueous rechargeable zinc batteries. Energy and Environmental Science, 2019, 12, 1999-2009.	15.6	269
109	A Costâ€Effective Mixed Matrix Polyethylene Porous Membrane for Longâ€Cycle High Power Density Alkaline Zincâ€Based Flow Batteries. Advanced Functional Materials, 2019, 29, 1901674.	7.8	20
110	A Roomâ€Temperature Molten Hydrate Electrolyte for Rechargeable Zinc–Air Batteries. Advanced Energy Materials, 2019, 9, 1900196.	10.2	128

#	Article	IF	CITATIONS
111	Suppressing Crystallization of Water-in-Salt Electrolytes by Asymmetric Anions Enables Low-Temperature Operation of High-Voltage Aqueous Batteries. , 2019, 1, 44-51.		99
112	Flexible Hydrogel Electrolyte with Superior Mechanical Properties Based on Poly(vinyl alcohol) and Bacterial Cellulose for the Solid-State Zinc–Air Batteries. ACS Applied Materials & Interfaces, 2019, 11, 15537-15542.	4.0	113
113	V2O5 Nanospheres with Mixed Vanadium Valences as High Electrochemically Active Aqueous Zinc-Ion Battery Cathode. Nano-Micro Letters, 2019, 11, 25.	14.4	274
114	Graphene oxide spontaneous reduction and self-assembly on the zinc metal surface enabling a dendrite-free anode for long-life zinc rechargeable aqueous batteries. Applied Surface Science, 2019, 481, 852-859.	3.1	206
115	Reversible Oxygen Redox Chemistry in Aqueous Zincâ€lon Batteries. Angewandte Chemie - International Edition, 2019, 58, 7062-7067.	7.2	321
116	Morphology control of zinc electrodeposition by surfactant addition for alkaline-based rechargeable batteries. Physical Chemistry Chemical Physics, 2019, 21, 7045-7052.	1.3	59
117	Reversible Zn-driven reduction displacement reaction in aqueous zinc-ion battery. Journal of Materials Chemistry A, 2019, 7, 7355-7359.	5.2	84
118	Toward a low-cost high-voltage sodium aqueous rechargeable battery. Materials Today, 2019, 29, 26-36.	8.3	156
119	A Usage Scenario Independent "Air Chargeable―Flexible Zinc Ion Energy Storage Device. Advanced Energy Materials, 2019, 9, 1900509.	10.2	80
120	A Rechargeable Battery with an Iron Metal Anode. Advanced Functional Materials, 2019, 29, 1900911.	7.8	80
121	Reversible Oxygen Redox Chemistry in Aqueous Zincâ€lon Batteries. Angewandte Chemie, 2019, 131, 7136-7141.	1.6	33
122	A sodium perchlorate-based hybrid electrolyte with high salt-to-water molar ratio for safe 2.5â€V carbon-based supercapacitor. Energy Storage Materials, 2019, 23, 603-609.	9.5	102
123	Advances and issues in developing salt-concentrated battery electrolytes. Nature Energy, 2019, 4, 269-280.	19.8	1,026
124	Boosting Rechargeable Batteries R&D by Multiscale Modeling: Myth or Reality?. Chemical Reviews, 2019, 119, 4569-4627.	23.0	204
125	Rare earth incorporated electrode materials for advanced energy storage. Coordination Chemistry Reviews, 2019, 390, 32-49.	9.5	126
126	An Electrolytic Zn–MnO ₂ Battery for Highâ€Voltage and Scalable Energy Storage. Angewandte Chemie, 2019, 131, 7905-7910.	1.6	114
127	β-MnO2 nanolayer coated on carbon cloth as a high-activity aqueous zinc-ion battery cathode with high-capacity and long-cycle-life. Materials Letters, 2019, 248, 207-210.	1.3	48
128	Thickening and Homogenizing Aqueous Electrolyte towards Highly Efficient and Stable Zn Metal Batteries. Journal of the Electrochemical Society, 2019, 166, A1211-A1216.	1.3	58

ARTICLE IF CITATIONS Bimetallic NiCo/CNF encapsulated in a N-doped carbon shell as an electrocatalyst for Zn–air batteries 129 2.1 58 and water splitting. Catalysis Science and Technology, 2019, 9, 2532-2542. An Electrolytic Zn–MnO₂ Battery for Highâ€Voltage and Scalable Energy Storage. 7.2 Angewandte Chemie - International Edition, 2019, 58, 7823-7828. Nanoscale design of zinc anodes for high-energy aqueous rechargeable batteries. Materials Today 131 2.3 125 Nano, 2019, 6, 100032. A Metal-Organic Framework Host for Highly Reversible Dendrite-free Zinc Metal Anodes. Joule, 2019, 3, 1289-1300. Na2V6O16·2.14H2O nanobelts as a stable cathode for aqueous zinc-ion batteries with long-term cycling 133 7.1 66 performance. Journal of Energy Chemistry, 2019, 38, 185-191. Multi-ion strategies towards emerging rechargeable batteries with high performance. Energy Storage Materials, 2019, 23, 566-586. 119 V2O5 nanopaper as a cathode material with high capacity and long cycle life for rechargeable aqueous 135 8.2 272 zinc-ion battery. Nano Energy, 2019, 60, 752-759. Suppressing Manganese Dissolution in Potassium Manganate with Rich Oxygen Defects Engaged Highâ€Energyâ€Density and Durable Aqueous Zincâ€lon Battery. Advanced Functional Materials, 2019, 29, 7.8 568 1808375. Aqueous alkaline–acid hybrid electrolyte for zinc-bromine battery with 3V voltage window. Energy 137 9.5 93 Storage Materials, 2019, 19, 56-61. Self-supported ultrathin bismuth nanosheets acquired by <i>in situ</i> topotactic transformation of BiOCl as a high performance aqueous anode material. Journal of Materials Chemistry A, 2019, 7, 5.2 29 6784-6792. Engineering high reversibility and fast kinetics of Bi nanoflakes by surface modulation for ultrastable 139 49 3.7 nickel–bismuth batteries. Chemical Science, 2019, 10, 3602-3607. Hydrated Intercalation for Highâ€Performance Aqueous Zinc Ion Batteries. Advanced Energy Materials, 243 2019, 9, 1900083. Defect Engineering of Oxygenâ€Deficient Manganese Oxide to Achieve Highâ€Performing Aqueous Zinc Ion 141 10.2 504 Battery. Advanced Energy Materials, 2019, 9, 1803815. Hydrated hybrid vanadium oxide nanowires as the superior cathode for aqueous Zn battery. Materials 142 2.5 67 Today Energy, 2019, 14, 100361. Issues and opportunities facing aqueous zinc-ion batteries. Energy and Environmental Science, 2019, 12, 143 15.6 1,313 3288-3304. Long-battery-life flexible zinc–air battery with near-neutral polymer electrolyte and nanoporous 144 integrated air electrode. Journal of Materials Chemistry A, 2019, 7, 25449-25457. High-performance flexible and self-healable quasi-solid-state zinc-ion hybrid supercapacitor based on 145 borax-crosslinked polyvinyl alcohol/nanocellulose hydrogel electrolyte. Journal of Materials 5.2183 Chemistry A, 2019, 7, 26524-26532. 146 A High Capacity Bilayer Cathode for Aqueous Zn-Ion Batteries. ACS Nano, 2019, 13, 14447-14458. 148

#	Article	IF	CITATIONS
147	Zinc anode-compatible in-situ solid electrolyte interphase via cation solvation modulation. Nature Communications, 2019, 10, 5374.	5.8	573
148	Advances in sodium secondary batteries utilizing ionic liquid electrolytes. Energy and Environmental Science, 2019, 12, 3247-3287.	15.6	129
149	A long-lifespan, flexible zinc-ion secondary battery using a paper-like cathode from single-atomic layer MnO ₂ nanosheets. Nanoscale Advances, 2019, 1, 4365-4372.	2.2	33
150	Co ₃ O ₄ nanoparticles supported on N-doped electrospinning carbon nanofibers as an efficient and bifunctional oxygen electrocatalyst for rechargeable Zn–air batteries. Inorganic Chemistry Frontiers, 2019, 6, 3554-3561.	3.0	29
151	Preparation and electrochemical performance of VO2(A) hollow spheres as a cathode for aqueous zinc ion batteries. RSC Advances, 2019, 9, 35117-35123.	1.7	20
152	A hydrated NH ₄ V ₃ O ₈ nanobelt electrode for superior aqueous and quasi-solid-state zinc ion batteries. Journal of Materials Chemistry A, 2019, 7, 23140-23148.	5.2	70
153	In-situ growth of Co3O4 nanowire-assembled clusters on nickel foam for aqueous rechargeable Zn-Co3O4 and Zn-air batteries. Applied Catalysis B: Environmental, 2019, 241, 104-112.	10.8	167
154	Highly Reversible and Rechargeable Safe Zn Batteries Based on a Triethyl Phosphate Electrolyte. Angewandte Chemie - International Edition, 2019, 58, 2760-2764.	7.2	369
155	Concentrated Hydrogel Electrolyte-Enabled Aqueous Rechargeable NiCo//Zn Battery Working from â^'20 to 50 °C. ACS Applied Materials & Interfaces, 2019, 11, 49-55.	4.0	93
156	Directing Mg-Storage Chemistry in Organic Polymers toward High-Energy Mg Batteries. Joule, 2019, 3, 782-793.	11.7	124
157	"Water-in-deep eutectic solvent―electrolytes enable zinc metal anodes for rechargeable aqueous batteries. Nano Energy, 2019, 57, 625-634.	8.2	467
158	Resist-Dyed Textile Alkaline Zn Microbatteries with Significantly Suppressed Zn Dendrite Growth. ACS Applied Materials & Interfaces, 2019, 11, 5095-5106.	4.0	43
159	Water in Rechargeable Multivalentâ€lon Batteries: An Electrochemical Pandora's Box. ChemSusChem, 2019, 12, 379-396.	3.6	62
160	A MOF-based single-ion Zn2+ solid electrolyte leading to dendrite-free rechargeable Zn batteries. Nano Energy, 2019, 56, 92-99.	8.2	227
161	A low-cost SPEEK-K type membrane for neutral aqueous zinc-iron redox flow battery. Surface and Coatings Technology, 2019, 358, 190-194.	2.2	50
162	Highly Reversible and Rechargeable Safe Zn Batteries Based on a Triethyl Phosphate Electrolyte. Angewandte Chemie, 2019, 131, 2786-2790.	1.6	54
163	Fully Solarâ€Powered Uninterrupted Overall Waterâ€Splitting Systems. Advanced Functional Materials, 2019, 29, 1808889.	7.8	24
164	Progress in Rechargeable Aqueous Zinc―and Aluminumâ€Ion Battery Electrodes: Challenges and Outlook. Advanced Sustainable Systems, 2019, 3, 1800111.	2.7	147

#	Article	IF	CITATIONS
165	Zinc-ion batteries: Materials, mechanisms, and applications. Materials Science and Engineering Reports, 2019, 135, 58-84.	14.8	604
166	Stretchable Aqueous Batteries: Progress and Prospects. ACS Energy Letters, 2019, 4, 177-186.	8.8	96
167	Twoâ€Step Activated Carbon Cloth with Oxygenâ€Rich Functional Groups as a Highâ€Performance Additiveâ€Free Air Electrode for Flexible Zinc–Air Batteries. Advanced Energy Materials, 2019, 9, 1802936.	10.2	170
168	Recent Progress of Rechargeable Batteries Using Mild Aqueous Electrolytes. Small Methods, 2019, 3, 1800272.	4.6	387
169	Mesoporous hollow carbon spheres boosted, integrated high performance aqueous Zn-Ion energy storage. Energy Storage Materials, 2020, 25, 858-865.	9.5	289
170	Decoupling the mechanical strength and ionic conductivity of an ionogel polymer electrolyte for realizing thermally stable lithium-ion batteries. Journal of Membrane Science, 2020, 595, 117549.	4.1	32
171	3D Oxygenâ€Defective Potassium Vanadate/Carbon Nanoribbon Networks as Highâ€Performance Cathodes for Aqueous Zincâ€Ion Batteries. Small Methods, 2020, 4, 1900670.	4.6	124
172	Spatially homogeneous copper foam as surface dendrite-free host for zinc metal anode. Chemical Engineering Journal, 2020, 379, 122248.	6.6	308
173	Engineering the multiscale structure of bifunctional oxygen electrocatalyst for highly efficient and ultrastable zinc-air battery. Energy Storage Materials, 2020, 24, 402-411.	9.5	48
174	Anodic behavior of zinc in aqueous borate electrolytes. Materials Chemistry and Physics, 2020, 239, 122081.	2.0	3
175	Preparation of Polyaniline-coated Composite Aerogel of MnO2 and Reduced Graphene Oxide for High-performance Zinc-ion Battery. Chinese Journal of Polymer Science (English Edition), 2020, 38, 514-521.	2.0	39
176	CoAl-layered double hydroxide nanosheets-coated spherical nickel hydroxide cathode materials with enhanced high-rate and cycling performance for alkaline nickel-based secondary batteries. Electrochimica Acta, 2020, 330, 135198.	2.6	19
177	Antifreezing Hydrogel with High Zinc Reversibility for Flexible and Durable Aqueous Batteries by Cooperative Hydrated Cations. Advanced Functional Materials, 2020, 30, 1907218.	7.8	209
178	LncRNA SNHG3 is activated by E2F1 and promotes proliferation and migration of nonâ€smallâ€cell lung cancer cells through activating TGFâ€i² pathway and ILâ€6/JAK2/STAT3 pathway. Journal of Cellular Physiology, 2020, 235, 2891-2900.	2.0	69
179	Vanadium pentoxide nanosheets as cathodes for aqueous zinc-ion batteries with high rate capability and long durability. Applied Surface Science, 2020, 502, 144207.	3.1	66
180	Progress in electrolytes for beyond-lithium-ion batteries. Journal of Materials Science and Technology, 2020, 44, 237-257.	5.6	74
181	A high voltage aqueous zinc–manganese battery using a hybrid alkaline-mild electrolyte. Chemical Communications, 2020, 56, 2039-2042.	2.2	48
182	Manipulating the ion-transfer kinetics and interface stability for high-performance zinc metal anodes. Energy and Environmental Science, 2020, 13, 503-510.	15.6	828

#	Article	IF	CITATIONS
183	Flexible and high-energy-density Zn/MnO ₂ batteries enabled by electrochemically exfoliated graphene nanosheets. New Journal of Chemistry, 2020, 44, 653-657.	1.4	20
184	Self-templated nitrogen-doped mesoporous carbon decorated with double transition-metal active sites for enhanced oxygen electrode catalysis. Rare Metals, 2020, 39, 824-833.	3.6	45
185	Integration of Cu extraction and Zn electrowinning processes for energy storage. Journal of Cleaner Production, 2020, 253, 119779.	4.6	4
186	Unveiling Critical Insight into the Zn Metal Anode Cyclability in Mildly Acidic Aqueous Electrolytes: Implications for Aqueous Zinc Batteries. ACS Applied Materials & Interfaces, 2020, 12, 3522-3530.	4.0	123
187	A Deep ycle Aqueous Zincâ€lon Battery Containing an Oxygenâ€Deficient Vanadium Oxide Cathode. Angewandte Chemie - International Edition, 2020, 59, 2273-2278.	7.2	257
188	Do zinc dendrites exist in neutral zinc batteries?. Green Energy and Environment, 2020, 5, 6-7.	4.7	6
189	Emerging rechargeable aqueous aluminum ion battery: Status, challenges, and outlooks. Nano Materials Science, 2020, 2, 248-263.	3.9	110
190	New insights into the electrochemical conversion of CO2 to oxalate at stainless steel 304L cathode. Journal of CO2 Utilization, 2020, 36, 105-115.	3.3	23
191	Production of a NiO/Al primary battery employing powderâ€based electrodes. Electrophoresis, 2020, 41, 131-136.	1.3	7
192	Two-Dimensional Hierarchical Fe–N–C Electrocatalyst for Zn-Air Batteries with Ultrahigh Specific Capacity. , 2020, 2, 35-41.		34
193	Redox-Active Phenanthrenequinone Triangles in Aqueous Rechargeable Zinc Batteries. Journal of the American Chemical Society, 2020, 142, 2541-2548.	6.6	245
194	The displacement reaction mechanism of the CuV ₂ O ₆ nanowire cathode for rechargeable aqueous zinc ion batteries. Dalton Transactions, 2020, 49, 1048-1055.	1.6	35
195	Scalable Production of the Cobaltous Hydroxide Nanosheet Electrode for Ultrahigh-Energy and Stable Aqueous Cobalt–Zinc Batteries. ACS Sustainable Chemistry and Engineering, 2020, 8, 1464-1470.	3.2	12
196	Quasi-solid single Zn-ion conductor with high conductivity enabling dendrite-free Zn metal anode. Energy Storage Materials, 2020, 27, 1-8.	9.5	91
197	Nanomaterials for implantable batteries to power cardiac devices. Materials Today Nano, 2020, 9, 100070.	2.3	9
198	Dendriteâ€Free Zinc Deposition Induced by Tinâ€Modified Multifunctional 3D Host for Stable Zincâ€Based Flow Battery. Advanced Materials, 2020, 32, e1906803.	11.1	263
199	Challenges and perspectives for manganeseâ€based oxides for advanced aqueous zincâ€ion batteries. InformaÄnÃ-Materiály, 2020, 2, 237-260.	8.5	264
200	The composite electrode of Bi@carbon-texture derived from metal-organic frameworks for aqueous chloride ion battery. Ionics, 2020, 26, 2395-2403.	1.2	23

# 201	ARTICLE Aqueous metal-air batteries: Fundamentals and applications. Energy Storage Materials, 2020, 27, 478-505.	IF 9.5	Citations 221
202	Exploits, advances and challenges benefiting beyond Li-ion battery technologies. Journal of Alloys and Compounds, 2020, 817, 153261.	2.8	144
203	A Deep ycle Aqueous Zincâ€lon Battery Containing an Oxygenâ€Deficient Vanadium Oxide Cathode. Angewandte Chemie, 2020, 132, 2293-2298.	1.6	71
204	A Highâ€Voltage, Dendriteâ€Free, and Durable Zn–Graphite Battery. Advanced Materials, 2020, 32, e1905681.	11.1	96
205	Highâ€Voltage Aqueous Naâ€Ion Battery Enabled by Inertâ€Cationâ€Assisted Waterâ€inâ€Salt Electrolyte. Advar Materials, 2020, 32, e1904427.	nced 11.1	221
206	Contribution of Cation Addition to MnO2 Nanosheets on Stable Co3O4 Nanowires for Aqueous Zinc-Ion Battery. Frontiers in Chemistry, 2020, 8, 793.	1.8	18
207	MnO Stabilized in Carbonâ€Veiled Multivariate Manganese Oxides as Highâ€Performance Cathode Material for Aqueous Znâ€Ion Batteries. Energy and Environmental Materials, 2021, 4, 603-610.	7.3	36
208	Improved electrochemical reversibility of Zn plating/stripping: a promising approach to suppress water-induced issues through the formation of H-bonding. Materials Today Energy, 2020, 18, 100563.	2.5	82
209	A Fully Aqueous Hybrid Electrolyte Rechargeable Battery with High Voltage and High Energy Density. Advanced Energy Materials, 2020, 10, 2001583.	10.2	40
210	Enabling Natural Graphite in Highâ€Voltage Aqueous Graphite Zn Metal Dualâ€Ion Batteries. Advanced Energy Materials, 2020, 10, 2001256.	10.2	43
211	Mn ²⁺ Ions Confined by Electrode Microskin for Aqueous Battery beyond Intercalation Capacity. Advanced Energy Materials, 2020, 10, 2002578.	10.2	35
212	Hydrated Mg <i>_x</i> V ₅ O ₁₂ Cathode with Improved Mg ²⁺ Storage Performance. Advanced Energy Materials, 2020, 10, 2002128.	10.2	31
213	Energy Storage Chemistry in Aqueous Zinc Metal Batteries. ACS Energy Letters, 2020, 5, 3569-3590.	8.8	163
214	Massâ€Producible, Quasiâ€Zeroâ€Strain, Latticeâ€Waterâ€Rich Inorganic Openâ€Frameworks for Ultrafastâ€Charging and Longâ€Cycling Zincâ€Ion Batteries. Advanced Materials, 2020, 32, e2003592.	11.1	66
215	Rechargeable Mild Aqueous Zinc Batteries for Grid Storage. Advanced Energy and Sustainability Research, 2020, 1, 2000026.	2.8	10
216	Liquidâ€Free Allâ€Solidâ€State Zinc Batteries and Encapsulationâ€Free Flexible Batteries Enabled by Inâ€Situ Constructed Polymer Electrolyte. Angewandte Chemie, 2020, 132, 24044-24052.	1.6	45
217	The injectable battery. A conceptually new strategy in pursue of a sustainable and circular battery model. Journal of Power Sources, 2020, 480, 228839.	4.0	7
218	Fundamentals and perspectives in developing zinc-ion battery electrolytes: a comprehensive review. Energy and Environmental Science, 2020, 13, 4625-4665.	15.6	497

#	Article	IF	CITATIONS
219	A single-ion conducting covalent organic framework for aqueous rechargeable Zn-ion batteries. Chemical Science, 2020, 11, 11692-11698.	3.7	51
220	Real-time visualization of Zn metal plating/stripping in aqueous batteries with high areal capacities. Journal of Power Sources, 2020, 472, 228334.	4.0	27
221	Advances in Zn-ion batteries via regulating liquid electrolyte. Energy Storage Materials, 2020, 32, 290-305.	9.5	117
222	A High-Performance Aqueous Zinc-Bromine Static Battery. IScience, 2020, 23, 101348.	1.9	71
223	Current status and future directions of multivalent metal-ion batteries. Nature Energy, 2020, 5, 646-656.	19.8	798
224	High-Performance Aqueous Zinc-Ion Batteries Realized by MOF Materials. Nano-Micro Letters, 2020, 12, 152.	14.4	141
225	A laser etched zinc ion microbattery with excellent flexibility and self-healability. Sustainable Energy and Fuels, 2020, 4, 4713-4721.	2.5	16
226	Functionalized Zn@ZnO Hexagonal Pyramid Array for Dendriteâ€Free and Ultrastable Zinc Metal Anodes. Advanced Functional Materials, 2020, 30, 2004210.	7.8	148
227	Tetrapropylammonium Hydroxide as a Zinc Dendrite Growth Suppressor for Rechargeable Aqueous Battery. Frontiers in Energy Research, 2020, 8, .	1.2	10
228	Exploring the Interfacial Chemistry between Zinc Anodes and Aqueous Electrolytes via an In Situ Visualized Characterization System. ACS Applied Materials & Interfaces, 2020, 12, 55476-55482.	4.0	58
229	Towards High Performance Chemical Vapour Deposition V2O5 Cathodes for Batteries Employing Aqueous Media. Molecules, 2020, 25, 5558.	1.7	9
230	Phase Diagram and Conductivity of Zn(TFSI) ₂ –H ₂ O Electrolytes. Journal of Physical Chemistry C, 2020, 124, 25249-25253.	1.5	9
231	In Situ Twoâ€Step Activation Strategy Boosting Hierarchical Porous Carbon Cathode for an Aqueous Znâ€Based Hybrid Energy Storage Device with High Capacity and Ultraâ€Long Cycling Life. Small, 2020, 16, e2003174.	5.2	105
232	Recent Progress in "Water-in-Salt―Electrolytes Toward Non-lithium Based Rechargeable Batteries. Frontiers in Chemistry, 2020, 8, 595.	1.8	47
233	Zeolitic Imidazolate Frameworks as Zn ²⁺ Modulation Layers to Enable Dendriteâ€Free Zn Anodes. Advanced Science, 2020, 7, 2002173.	5.6	199
234	Stabilized Rechargeable Aqueous Zinc Batteries Using Ethylene Glycol as Water Blocker. ChemSusChem, 2020, 13, 5556-5564.	3.6	78
235	Pathways towards high energy aqueous rechargeable batteries. Coordination Chemistry Reviews, 2020, 424, 213521.	9.5	50
236	Issues and solutions toward zinc anode in aqueous zincâ€ion batteries: A mini review. , 2020, 2, 540-560.		225

#	Article	IF	CITATIONS
237	Recent progress and challenges of carbon materials for Znâ€ion hybrid supercapacitors. , 2020, 2, 521-539.		144
238	Metal organic framework derived trifunctional NiCoP electrode for continuous solar-driven energy-saving hydrogen generation. International Journal of Hydrogen Energy, 2020, 45, 27000-27011.	3.8	5
239	Zinc based microâ€electrochemical energy storage devices: Present status and future perspective. EcoMat, 2020, 2, e12042.	6.8	34
240	Towards the understanding of acetonitrile suppressing salt precipitation mechanism in a water-in-salt electrolyte for low-temperature supercapacitors. Journal of Materials Chemistry A, 2020, 8, 17998-18006.	5.2	69
241	Defect Engineering in Manganeseâ€Based Oxides for Aqueous Rechargeable Zincâ€Ion Batteries: A Review. Advanced Energy Materials, 2020, 10, 2001769.	10.2	249
242	Potential-Dependent Layering in the Electrochemical Double Layer of Water-in-Salt Electrolytes. ACS Applied Energy Materials, 2020, 3, 8086-8094.	2.5	28
243	Uniformizing the electric field distribution and ion migration during zinc plating/stripping <i>via</i> a binary polymer blend artificial interphase. Journal of Materials Chemistry A, 2020, 8, 17725-17731.	5.2	71
244	High-value utilization of biomass waste: from garbage floating on the ocean to high-performance rechargeable Zn–MnO ₂ batteries with superior safety. Journal of Materials Chemistry A, 2020, 8, 18198-18206.	5.2	22
245	Active Materials for Aqueous Zinc Ion Batteries: Synthesis, Crystal Structure, Morphology, and Electrochemistry. Chemical Reviews, 2020, 120, 7795-7866.	23.0	950
246	A Metal–Organic Framework as a Multifunctional Ionic Sieve Membrane for Longâ€Life Aqueous Zinc–Iodide Batteries. Advanced Materials, 2020, 32, e2004240.	11.1	222
247	Ultrahigh coulombic efficiency and long-life aqueous Zn anodes enabled by electrolyte additive of acetonitrile. Electrochimica Acta, 2020, 358, 136937.	2.6	78
248	Realizing high zinc reversibility in rechargeable batteries. Nature Energy, 2020, 5, 743-749.	19.8	658
249	A Highâ€Energy Aqueous Manganese–Metal Hydride Hybrid Battery. Advanced Materials, 2020, 32, e2001106.	11.1	22
250	A Novel Aqueous Zincâ€lon Hybrid Supercapacitor Based on TiS ₂ (De)Intercalation Batteryâ€Type Anode. Advanced Electronic Materials, 2020, 6, 2000388.	2.6	46
251	Investigation on the Effect of Different Mild Acidic Electrolyte on ZIBs Electrode/Electrolyte Interface and the Performance Improvements With the Optimized Cathode. Frontiers in Chemistry, 2020, 8, 827.	1.8	7
252	Dendrites in Znâ€Based Batteries. Advanced Materials, 2020, 32, e2001854.	11.1	601
253	Conductivity Study of Cassava Starch Coated Anode for Zinc-Air Fuel Cell System. Materials Science Forum, 0, 1010, 301-307.	0.3	9
254	Recent Advances in Highâ€Performance Microbatteries: Construction, Application, and Perspective. Small, 2020, 16, e2003251.	5.2	48

#	Article	IF	CITATIONS
255	Layered TiS ₂ as a Promising Host Material for Aqueous Rechargeable Zn Ion Battery. Energy & Fuels, 2020, 34, 11590-11596.	2.5	26
256	Interfacial Speciation Determines Interfacial Chemistry: Xâ€rayâ€Induced Lithium Fluoride Formation from Waterâ€inâ€salt Electrolytes on Solid Surfaces. Angewandte Chemie - International Edition, 2020, 59, 23180-23187.	7.2	28
257	<i>In Operando</i> Synchrotron Studies of NH ₄ ⁺ Preintercalated V ₂ O ₅ Â <i>n</i> H ₂ O Nanobelts as the Cathode Material for Aqueous Rechargeable Zinc Batteries. ACS Nano, 2020, 14, 11809-11820.	7.3	87
258	Deeply understanding the Zn anode behaviour and corresponding improvement strategies in different aqueous Zn-based batteries. Energy and Environmental Science, 2020, 13, 3917-3949.	15.6	480
259	Interfacial Speciation Determines Interfacial Chemistry: Xâ€rayâ€Induced Lithium Fluoride Formation from Waterâ€inâ€salt Electrolytes on Solid Surfaces. Angewandte Chemie, 2020, 132, 23380-23387.	1.6	9
260	Synergistic Interfaceâ€Assisted Electrode–Electrolyte Coupling Toward Advanced Charge Storage. Advanced Materials, 2020, 32, e2005344.	11.1	64
261	Vanadiumâ€Based Materials as Positive Electrode for Aqueous Zincâ€Ion Batteries. Advanced Sustainable Systems, 2020, 4, 2000178.	2.7	36
262	Ammonium ion intercalated hydrated vanadium pentoxide for advanced aqueous rechargeable Zn-ion batteries. Materials Today Energy, 2020, 18, 100509.	2.5	77
263	A dendrite-free zinc anode for rechargeable aqueous batteries. Journal of Materials Chemistry A, 2020, 8, 20175-20184.	5.2	79
264	Challenges and Opportunities for Multivalent Metal Anodes in Rechargeable Batteries. Advanced Functional Materials, 2020, 30, 2004187.	7.8	80
265	NaTi ₂ (PO ₄) ₃ Solidâ€State Electrolyte Protection Layer on Zn Metal Anode for Superior Longâ€Life Aqueous Zincâ€Ion Batteries. Advanced Functional Materials, 2020, 30, 2004885.	7.8	115
266	Polypyrrole Wrapped V2O5 Nanowires Composite for Advanced Aqueous Zinc-Ion Batteries. Frontiers in Energy Research, 2020, 8, .	1.2	30
267	Liquidâ€Free Allâ€Solidâ€State Zinc Batteries and Encapsulationâ€Free Flexible Batteries Enabled by Inâ€Situ Constructed Polymer Electrolyte. Angewandte Chemie - International Edition, 2020, 59, 23836-23844.	7.2	102
268	Regulation of Lamellar Structure of Vanadium Oxide via Polyaniline Intercalation for Highâ€Performance Aqueous Zincâ€Ion Battery. Advanced Functional Materials, 2020, 30, 2003890.	7.8	190
269	Stabilizing Zinc Anode Reactions by Polyethylene Oxide Polymer in Mild Aqueous Electrolytes. Advanced Functional Materials, 2020, 30, 2003932.	7.8	210
270	Challenges in the material and structural design of zinc anode towards high-performance aqueous zinc-ion batteries. Energy and Environmental Science, 2020, 13, 3330-3360.	15.6	576
271	A Chronocoulometric Method to Measure the Corrosion Rate on Zinc Metal Electrodes. ACS Applied Materials & Interfaces, 2020, 12, 42612-42621.	4.0	22
272	Modulating electrolyte structure for ultralow temperature aqueous zinc batteries. Nature Communications, 2020, 11, 4463.	5.8	431

#	Article	IF	CITATIONS
273	Recent Advances of Emerging 2D MXene for Stable and Dendriteâ€Free Metal Anodes. Advanced Functional Materials, 2020, 30, 2004613.	7.8	140
274	Hybridizing δ-Type MnO2 With Lignin-Derived Porous Carbon as a Stable Cathode Material for Aqueous Zn–MnO2 Batteries. Frontiers in Energy Research, 2020, 8, .	1.2	13
275	Engineering Solvation Complex–Membrane Interaction to Suppress Cation Crossover in 3 V Cuâ€Al Battery. Small, 2020, 16, 2003438.	5.2	11
276	Tailoring desolvation kinetics enables stable zinc metal anodes. Journal of Materials Chemistry A, 2020, 8, 19367-19374.	5.2	136
277	Multiplex measurement of diffusion in zinc battery electrolytes from microfluidics using Raman microspectroscopy. Applied Energy, 2020, 279, 115687.	5.1	3
278	Nano energy for miniaturized systems. Nano Materials Science, 2020, , .	3.9	15
279	Fiber Electronics. , 2020, , .		4
280	Solvation Structure Design for Aqueous Zn Metal Batteries. Journal of the American Chemical Society, 2020, 142, 21404-21409.	6.6	680
281	Anode Materials for Aqueous Zinc Ion Batteries: Mechanisms, Properties, and Perspectives. ACS Nano, 2020, 14, 16321-16347.	7.3	340
282	Hierarchical 3D Oxygenated Cobalt Vanadium Selenide Nanosheets as Advanced Electrode for Flexible Zinc–Cobalt and Zinc–Air Batteries. Small, 2020, 16, e2004661.	5.2	54
283	Potentiodynamics of the Zinc and Proton Storage in Disordered Sodium Vanadate for Aqueous Zn-Ion Batteries. ACS Applied Materials & Interfaces, 2020, 12, 54627-54636.	4.0	46
284	Recent Advances in the Development of Singleâ€Atom Catalysts for Oxygen Electrocatalysis and Zinc–Air Batteries. Advanced Energy Materials, 2020, 10, 2003018.	10.2	181
285	High-Capacity Layered Magnesium Vanadate with Concentrated Gel Electrolyte toward High-Performance and Wide-Temperature Zinc-Ion Battery. ACS Nano, 2020, 14, 15776-15785.	7.3	131
286	Side by Side Battery Technologies with Lithiumâ€lon Based Batteries. Advanced Energy Materials, 2020, 10, 2000089.	10.2	127
287	A chemically self-charging aqueous zinc-ion battery. Nature Communications, 2020, 11, 2199.	5.8	221
288	A three-dimensional interconnected V ₆ O ₁₃ nest with a V ⁵⁺ -rich state for ultrahigh Zn ion storage. Journal of Materials Chemistry A, 2020, 8, 10370-10376.	5.2	77
289	Stabilizing zinc metal anodes by artificial solid electrolyte interphase through a surface ion-exchanging strategy. Chemical Engineering Journal, 2020, 396, 125363.	6.6	81
290	Highly Reversible Zinc Anode Enhanced by Ultrathin MnO 2 Cathode Material Film for Highâ€Performance Zincâ€ion Batteries. Advanced Materials Interfaces, 2020, 7, 2000510.	1.9	22

#	Article	IF	CITATIONS
291	Anode Corrosion of Zn-Air Fuel Cell: Mechanism and Protection. Journal of the Electrochemical Society, 2020, 167, 090538.	1.3	7
292	3D confined zinc plating/stripping with high discharge depth and excellent high-rate reversibility. Journal of Materials Chemistry A, 2020, 8, 11719-11727.	5.2	111
293	Stabilized Co ³⁺ /Co ⁴⁺ Redox Pair in In Situ Produced CoSe _{2â^'} <i>_x</i> â€Derived Cobalt Oxides for Alkaline Zn Batteries with 10 000 ycle Lifespan and 1.9â€V Voltage Plateau. Advanced Energy Materials, 2020, 10, 2000892.	10.2	114
294	Freestanding Potassium Vanadate/Carbon Nanotube Films for Ultralong-Life Aqueous Zinc-Ion Batteries. ACS Nano, 2020, 14, 6752-6760.	7.3	145
295	A N, O co-doped hierarchical carbon cathode for high-performance Zn-ion hybrid supercapacitors with enhanced pseudocapacitance. Journal of Materials Chemistry A, 2020, 8, 11617-11625.	5.2	130
296	Electrochemically mediated carbon dioxide separation with quinone chemistry in salt-concentrated aqueous media. Nature Communications, 2020, 11, 2278.	5.8	71
297	VS ₄ with a chain crystal structure used as an intercalation cathode for aqueous Zn-ion batteries. Journal of Materials Chemistry A, 2020, 8, 10761-10766.	5.2	77
298	Ultrathin δ-MnO ₂ nanoflakes with Na ⁺ intercalation as a high-capacity cathode for aqueous zinc-ion batteries. RSC Advances, 2020, 10, 17702-17712.	1.7	43
299	Dealloyed Nanoporous Materials for Rechargeable Post‣ithium Batteries. ChemSusChem, 2020, 13, 3376-3390.	3.6	20
300	Rechargeable Aqueous Zincâ€Ion Batteries with Mild Electrolytes: A Comprehensive Review. Batteries and Supercaps, 2020, 3, 966-1005.	2.4	68
301	Materials chemistry for rechargeable zinc-ion batteries. Chemical Society Reviews, 2020, 49, 4203-4219.	18.7	787
302	Zinc ion trapping in a cellulose hydrogel as a solid electrolyte for a safe and flexible supercapacitor. Journal of Materials Chemistry A, 2020, 8, 12314-12318.	5.2	87
303	Electrochemical Activation of Manganeseâ€Based Cathode in Aqueous Zincâ€Ion Electrolyte. Advanced Functional Materials, 2020, 30, 2002711.	7.8	120
304	A rational designed high-rate CuxTi2(PO4)3@Cu/C core-composite-shell structure for aqueous lithium ion batteries. Journal of Power Sources, 2020, 468, 228248.	4.0	4
305	3D assembly of MXene-stabilized spinel ZnMn2O4 for highly durable aqueous zinc-ion batteries. Chemical Engineering Journal, 2020, 399, 125627.	6.6	140
306	Hydrogen‧ubstituted Graphdiyne Ion Tunnels Directing Concentration Redistribution for Commercialâ€Grade Dendriteâ€Free Zinc Anodes. Advanced Materials, 2020, 32, e2001755.	11.1	261
307	Recent Advances in Vanadiumâ€Based Aqueous Rechargeable Zincâ€Ion Batteries. Advanced Energy Materials, 2020, 10, 2000477.	10.2	265
308	An integrated configuration with robust interfacial contact for durable and flexible zinc ion batteries. Nano Energy, 2020, 74, 104905.	8.2	54

#	Article	IF	CITATIONS
309	Dendrite-free Zn anode with dual channel 3D porous frameworks for rechargeable Zn batteries. Energy Storage Materials, 2020, 30, 104-112.	9.5	235
310	Principals and strategies for constructing a highly reversible zinc metal anode in aqueous batteries. Nano Energy, 2020, 74, 104880.	8.2	225
311	Nanostructure Design Strategies for Aqueous Zincâ€ion Batteries. ChemElectroChem, 2020, 7, 2957-2978.	1.7	44
312	Deeply Rechargeable and Hydrogen-Evolution-Suppressing Zinc Anode in Alkaline Aqueous Electrolyte. Nano Letters, 2020, 20, 4700-4707.	4.5	89
313	Enabling safe aqueous lithium ion open batteries by suppressing oxygen reduction reaction. Nature Communications, 2020, 11, 2638.	5.8	71
314	Dendrite-free Zn electrodeposition triggered by interatomic orbital hybridization of Zn and single vacancy carbon defects for aqueous Zn-based flow batteries. Energy and Environmental Science, 2020, 13, 2839-2848.	15.6	108
315	A Dendrite-Resistant Zinc-Air Battery. IScience, 2020, 23, 101169.	1.9	17
316	Tunable Layered (Na,Mn)V ₈ O ₂₀ · <i>n</i> H ₂ O Cathode Material for Highâ€Performance Aqueous Zinc Ion Batteries. Advanced Science, 2020, 7, 2000083.	5.6	113
317	Modifying the Zn anode with carbon black coating and nanofibrillated cellulose binder: A strategy to realize dendrite-free Zn-MnO2 batteries. Journal of Colloid and Interface Science, 2020, 577, 256-264.	5.0	103
318	Anodic Oxidation Strategy toward Structure-Optimized V ₂ O ₃ Cathode <i>via</i> Electrolyte Regulation for Zn-Ion Storage. ACS Nano, 2020, 14, 7328-7337.	7.3	229
320	Zinc–Organic Battery with a Wide Operationâ€īemperature Window from â^'70 to 150 °C. Angewandte Chemie - International Edition, 2020, 59, 14577-14583.	7.2	158
321	Impact of Anion Asymmetry on Local Structure and Supercooling Behavior of Water-in-Salt Electrolytes. Journal of Physical Chemistry Letters, 2020, 11, 4720-4725.	2.1	20
322	Designing Dendriteâ€Free Zinc Anodes for Advanced Aqueous Zinc Batteries. Advanced Functional Materials, 2020, 30, 2001263.	7.8	598
323	Opportunities and Reality of Aqueous Rechargeable Batteries. Advanced Energy Materials, 2020, 10, 2001386.	10.2	92
324	Rechargeable alkaline zinc batteries: Progress and challenges. Energy Storage Materials, 2020, 31, 44-57.	9.5	139
325	Zinc–Organic Battery with a Wide Operationâ€Temperature Window from â^70 to 150 °C. Angewandte Chemie, 2020, 132, 14685-14691.	1.6	49
326	Maximization of Spatial Charge Density: An Approach to Ultrahigh Energy Density of Capacitive Charge Storage. Angewandte Chemie, 2020, 132, 14649-14657.	1.6	17
327	Maximization of Spatial Charge Density: An Approach to Ultrahigh Energy Density of Capacitive Charge Storage. Angewandte Chemie - International Edition, 2020, 59, 14541-14549.	7.2	83

#	Article	IF	Citations
328	An Interfaceâ€Bridged Organic–Inorganic Layer that Suppresses Dendrite Formation and Side Reactions for Ultraâ€Longâ€Life Aqueous Zinc Metal Anodes. Angewandte Chemie, 2020, 132, 16737-16744.	1.6	52
329	Spontaneous and field-induced crystallographic reorientation of metal electrodeposits at battery anodes. Science Advances, 2020, 6, eabb1122.	4.7	143
330	Effect of cation size on alkali acetate-based â€~water-in-bisalt' electrolyte and its application in aqueous rechargeable lithium battery. Applied Materials Today, 2020, 20, 100728.	2.3	10
331	TCNQ Confined in Porous Organic Structure as Cathode for Aqueous Zinc Battery. Journal of the Electrochemical Society, 2020, 167, 100552.	1.3	26
332	A Highâ€Energy and Long‣ife Aqueous Zn/Birnessite Battery via Reversible Water and Zn ²⁺ Coinsertion. Small, 2020, 16, e2001228.	5.2	75
333	Characterization of a new rechargeable Zn/PVA-KOH/Bi ₂ O ₃ battery: structural changes of the Bi ₂ O ₃ electrode. Sustainable Energy and Fuels, 2020, 4, 4497-4505.	2.5	6
334	Manganese and Vanadium Oxide Cathodes for Aqueous Rechargeable Zinc-Ion Batteries: A Focused View on Performance, Mechanism, and Developments. ACS Energy Letters, 2020, 5, 2376-2400.	8.8	303
335	An Interfaceâ€Bridged Organic–Inorganic Layer that Suppresses Dendrite Formation and Side Reactions for Ultraâ€Longâ€Life Aqueous Zinc Metal Anodes. Angewandte Chemie - International Edition, 2020, 59, 16594-16601.	7.2	270
336	Design of Highly Reversible Zinc Anodes for Aqueous Batteries Using Preferentially Oriented Electrolytic Zinc. Batteries and Supercaps, 2020, 3, 1220-1232.	2.4	7
337	Graphene-Wrapped MnO/C Composites by MOFs-Derived as Cathode Material for Aqueous Zinc ion Batteries. Electrochimica Acta, 2020, 353, 136570.	2.6	168
338	Challenges and Strategies for Constructing Highly Reversible Zinc Anodes in Aqueous Zincâ€lon Batteries: Recent Progress and Future Perspectives. Advanced Sustainable Systems, 2020, 4, 2000082.	2.7	81
339	A Corrosionâ€Resistant and Dendriteâ€Free Zinc Metal Anode in Aqueous Systems. Small, 2020, 16, e2001736.	5.2	354
340	Salt-concentrated acetate electrolytes for a high voltage aqueous Zn/MnO2 battery. Energy Storage Materials, 2020, 28, 205-215.	9.5	136
341	Boosting Zinc-Ion Storage Capability by Effectively Suppressing Vanadium Dissolution Based on Robust Layered Barium Vanadate. Nano Letters, 2020, 20, 2899-2906.	4.5	208
342	A Sieveâ€Functional and Uniformâ€Porous Kaolin Layer toward Stable Zinc Metal Anode. Advanced Functional Materials, 2020, 30, 2000599.	7.8	449
343	Decoupling electrolytes towards stable and high-energy rechargeable aqueous zinc–manganese dioxide batteries. Nature Energy, 2020, 5, 440-449.	19.8	430
344	Metalâ€Organic Framework Integrated Anodes for Aqueous Zincâ€Ion Batteries. Advanced Energy Materials, 2020, 10, 1904215.	10.2	348
345	High-Voltage Operation of a V ₂ O ₅ Cathode in a Concentrated Gel Polymer Electrolyte for High-Energy Aqueous Zinc Batteries. ACS Applied Materials & Interfaces, 2020, 12, 15305-15312.	4.0	45

#	Article	IF	CITATIONS
346	Flexible Electrochromic Zn Mirrors Based on Zn/Viologen Hybrid Batteries. ACS Sustainable Chemistry and Engineering, 2020, 8, 5050-5055.	3.2	35
347	Fe-based species anchored on N-doped carbon nanotubes as a bifunctional electrocatalyst for acidic/neutral/alkaline Zn–air batteries. Nanotechnology, 2020, 31, 265402.	1.3	4
348	Metastable Rock Salt Oxide-Mediated Synthesis of High-Density Dual-Protected M@NC for Long-Life Rechargeable Zinc–Air Batteries with Record Power Density. Journal of the American Chemical Society, 2020, 142, 7116-7127.	6.6	147
349	Constructing a Superâ€6aturated Electrolyte Front Surface for Stable Rechargeable Aqueous Zinc Batteries. Angewandte Chemie - International Edition, 2020, 59, 9377-9381.	7.2	551
350	Critical Factors Dictating Reversibility of the Zinc Metal Anode. Energy and Environmental Materials, 2020, 3, 516-521.	7.3	110
351	Highly stable Zn metal anodes enabled by atomic layer deposited Al ₂ O ₃ coating for aqueous zinc-ion batteries. Journal of Materials Chemistry A, 2020, 8, 7836-7846.	5.2	323
352	Constructing a Super‣aturated Electrolyte Front Surface for Stable Rechargeable Aqueous Zinc Batteries. Angewandte Chemie, 2020, 132, 9463-9467.	1.6	327
353	Covalent–Organic Frameworks: Advanced Organic Electrode Materials for Rechargeable Batteries. Advanced Energy Materials, 2020, 10, 1904199.	10.2	425
354	Lamella-nanostructured eutectic zinc–aluminum alloys as reversible and dendrite-free anodes for aqueous rechargeable batteries. Nature Communications, 2020, 11, 1634.	5.8	426
355	Binding Zinc Ions by Carboxyl Groups from Adjacent Molecules toward Longâ€Life Aqueous Zinc–Organic Batteries. Advanced Materials, 2020, 32, e2000338.	11.1	215
356	Strategies for Dendriteâ€Free Anode in Aqueous Rechargeable Zinc Ion Batteries. Advanced Energy Materials, 2020, 10, 2001599.	10.2	376
357	Dendrites issues and advances in Zn anode for aqueous rechargeable Znâ€based batteries. EcoMat, 2020, 2, e12035.	6.8	135
358	Heterojunction induced activation of iron oxide anode for high-power aqueous batteries. Chemical Engineering Journal, 2020, 400, 125874.	6.6	21
359	Aromatic organic molecular crystal with enhanced π–π stacking interaction for ultrafast Zn-ion storage. Energy and Environmental Science, 2020, 13, 2515-2523.	15.6	166
360	An Inâ€Depth Study of Zn Metal Surface Chemistry for Advanced Aqueous Znâ€lon Batteries. Advanced Materials, 2020, 32, e2003021.	11.1	707
361	Flexible Znâ€ion batteries based on manganese oxides: Progress and prospect. , 2020, 2, 387-407.		55
362	Progress on zinc ion hybrid supercapacitors: Insights and challenges. Energy Storage Materials, 2020, 31, 252-266.	9.5	141
363	Greener, Safer, and Sustainable Batteries: An Insight into Aqueous Electrolytes for Sodium-Ion Batteries. ACS Sustainable Chemistry and Engineering, 0, , .	3.2	6

#	Article	IF	CITATIONS
364	Defected vanadium bronzes as superb cathodes in aqueous zinc-ion batteries. Nanoscale, 2020, 12, 20638-20648.	2.8	61
365	Printable Ink Design towards Customizable Miniaturized Energy Storage Devices. , 2020, 2, 1041-1056.		45
366	Suppression of hydrogen evolution at catalytic surfaces in aqueous lithium ion batteries. Journal of Materials Chemistry A, 2020, 8, 14921-14926.	5.2	15
367	A Na ₃ V ₂ (PO ₄) ₂ O _{1.6} F _{1.4} Cathode of Znâ€ion Battery Enabled by a Waterâ€inâ€Bisalt Electrolyte. Advanced Functional Materials, 2020, 30, 2003511.	7.8	103
368	Directly Grown Vertical Graphene Carpets as Janus Separators toward Stabilized Zn Metal Anodes. Advanced Materials, 2020, 32, e2003425.	11.1	278
369	Hydrophobic Organicâ€Electrolyteâ€Protected Zinc Anodes for Aqueous Zinc Batteries. Angewandte Chemie, 2020, 132, 19454-19458.	1.6	30
370	Hydrated Eutectic Electrolytes with Ligand-Oriented Solvation Shells for Long-Cycling Zinc-Organic Batteries. Joule, 2020, 4, 1557-1574.	11.7	429
371	Binder-free coaxially grown V6O13 nanobelts on carbon cloth as cathodes for highly reversible aqueous zinc ion batteries. Applied Surface Science, 2020, 529, 147077.	3.1	51
372	Toward a Reversible Mn ⁴⁺ /Mn ²⁺ Redox Reaction and Dendriteâ€Free Zn Anode in Nearâ€Neutral Aqueous Zn/MnO ₂ Batteries via Salt Anion Chemistry. Advanced Energy Materials, 2020, 10, 1904163.	10.2	221
373	Polypyrrole-controlled plating/stripping for advanced zinc metal anodes. Materials Today Energy, 2020, 17, 100443.	2.5	40
374	Hydrophobic Organicâ€Electrolyteâ€Protected Zinc Anodes for Aqueous Zinc Batteries. Angewandte Chemie - International Edition, 2020, 59, 19292-19296.	7.2	287
375	Stable cycling of a Prussian blue-based Na/Zn hybrid battery in aqueous electrolyte with a wide electrochemical window. New Journal of Chemistry, 2020, 44, 4639-4646.	1.4	24
376	Porous hydrated ammonium vanadate as a novel cathode for aqueous rechargeable Zn-ion batteries. Chemical Communications, 2020, 56, 3785-3788.	2.2	27
377	Multi‧cale Investigations of δâ€Ni _{0.25} V ₂ O ₅ ·nH ₂ O Cathode Materials in Aqueous Zinc″on Batteries. Advanced Energy Materials, 2020, 10, 2000058.	10.2	173
378	A 63 <i>m</i> Superconcentrated Aqueous Electrolyte for High-Energy Li-Ion Batteries. ACS Energy Letters, 2020, 5, 968-974.	8.8	197
379	Perchlorate Based "Oversaturated Gel Electrolyte―for an Aqueous Rechargeable Hybrid Zn–Li Battery. ACS Applied Energy Materials, 2020, 3, 2526-2536.	2.5	31
380	Uncovering the Potential of M1â€Siteâ€Activated NASICON Cathodes for Znâ€Ion Batteries. Advanced Materials, 2020, 32, e1907526.	11.1	103
381	Hydrogenâ€Free and Dendriteâ€Free Allâ€Solidâ€State Znâ€Ion Batteries. Advanced Materials, 2020, 32, e19081	211.1	381

#	Article	IF	CITATIONS
382	Quasi-solid-state fiber-shaped aqueous energy storage devices: recent advances and prospects. Journal of Materials Chemistry A, 2020, 8, 6406-6433.	5.2	47
383	Interfacial Design of Dendriteâ€Free Zinc Anodes for Aqueous Zincâ€Ion Batteries. Angewandte Chemie, 2020, 132, 13280-13291.	1.6	40
384	Interfacial Design of Dendriteâ€Free Zinc Anodes for Aqueous Zincâ€Ion Batteries. Angewandte Chemie - International Edition, 2020, 59, 13180-13191.	7.2	727
385	Organic-Inorganic-Induced Polymer Intercalation into Layered Composites for Aqueous Zinc-Ion Battery. CheM, 2020, 6, 968-984.	5.8	274
386	Electrodeposition of superconducting rhenium-cobalt alloys from water-in-salt electrolytes. Journal of Electroanalytical Chemistry, 2020, 860, 113889.	1.9	4
387	A zinc battery with ultra-flat discharge plateau through phase transition mechanism. Nano Energy, 2020, 71, 104583.	8.2	75
388	Boosting aqueous zinc-ion storage in MoS2 via controllable phase. Chemical Engineering Journal, 2020, 389, 124405.	6.6	122
389	Lifetime simulation of rechargeable zinc-air battery based on electrode aging. Journal of Energy Storage, 2020, 28, 101191.	3.9	13
390	Uncharted Waters: Super-Concentrated Electrolytes. Joule, 2020, 4, 69-100.	11.7	305
391	MnO2 particles grown on the surface of N-doped hollow porous carbon nanospheres for aqueous rechargeable zinc ion batteries. Applied Surface Science, 2020, 510, 145458.	3.1	31
392	Ion-confinement effect enabled by gel electrolyte for highly reversible dendrite-free zinc metal anode. Energy Storage Materials, 2020, 27, 109-116.	9.5	262
393	Recent advances in zinc anodes for high-performance aqueous Zn-ion batteries. Nano Energy, 2020, 70, 104523.	8.2	466
394	Issues and Future Perspective on Zinc Metal Anode for Rechargeable Aqueous Zincâ€ion Batteries. Energy and Environmental Materials, 2020, 3, 146-159.	7.3	475
395	On battery materials and methods. Materials Today Advances, 2020, 6, 100046.	2.5	81
396	Signatures of Ion Pairing and Aggregation in the Vibrational Spectroscopy of Super-Concentrated Aqueous Lithium Bistriflimide Solutions. Journal of Physical Chemistry C, 2020, 124, 3470-3481.	1.5	44
397	Electrochemical intercalation of anions in graphite for high-voltage aqueous zinc battery. Journal of Power Sources, 2020, 449, 227594.	4.0	52
398	Designing Aqueous Organic Electrolytes for Zinc–Air Batteries: Method, Simulation, and Validation. Advanced Energy Materials, 2020, 10, 1903470.	10.2	45
399	Water-in-salt electrolytes for high voltage aqueous electrochemical energy storage devices. Current Opinion in Electrochemistry, 2020, 21, 62-68.	2.5	36

#	Article	IF	CITATIONS
400	Nonaqueous electrolyte with dual-cations for high-voltage and long-life zinc batteries. Journal of Materials Chemistry A, 2020, 8, 3252-3261.	5.2	89
401	A Perspective: the Technical Barriers of Zn Metal Batteries. Chemical Research in Chinese Universities, 2020, 36, 55-60.	1.3	16
402	Flexible and anti-freezing quasi-solid-state zinc ion hybrid supercapacitors based on pencil shavings derived porous carbon. Energy Storage Materials, 2020, 28, 307-314.	9.5	279
403	Applications of metal–organic framework-derived materials in fuel cells and metal-air batteries. Coordination Chemistry Reviews, 2020, 409, 213214.	9.5	182
404	Aqueous zinc ion batteries: focus on zinc metal anodes. Chemical Science, 2020, 11, 2028-2044.	3.7	440
405	Chemically resistant Cu–Zn/Zn composite anode for long cycling aqueous batteries. Energy Storage Materials, 2020, 27, 205-211.	9.5	307
406	Highly stable magnesium-ion-based dual-ion batteries based on insoluble small-molecule organic anode material. Energy Storage Materials, 2020, 30, 34-41.	9.5	113
407	Dendrite-Free Sn Anode with High Reversibility for Aqueous Batteries Enabled by "Water-in-Salt― Electrolyte. ACS Applied Energy Materials, 2020, 3, 5031-5038.	2.5	4
408	High-voltage non-aqueous Zn/K1.6Mn1.2Fe(CN)6 batteries with zero capacity loss in extremely long working duration. Energy Storage Materials, 2020, 29, 246-253.	9.5	51
409	Water-in-salt electrolyte Zn/LiFePO4 batteries. Journal of Electroanalytical Chemistry, 2020, 867, 114193.	1.9	38
410	Solutions for Dendrite Growth of Electrodeposited Zinc. ACS Omega, 2020, 5, 10225-10227.	1.6	25
411	A Safe Polyzwitterionic Hydrogel Electrolyte for Longâ€Life Quasiâ€Solid State Zinc Metal Batteries. Advanced Functional Materials, 2020, 30, 2001317.	7.8	188
412	Scientific Challenges for the Implementation of Zn-Ion Batteries. Joule, 2020, 4, 771-799.	11.7	1,164
413	High-Rate and Long-Cycle Stability with a Dendrite-Free Zinc Anode in an Aqueous Zn-Ion Battery Using Concentrated Electrolytes. ACS Applied Energy Materials, 2020, 3, 4499-4508.	2.5	95
414	Electrode Materials for Practical Rechargeable Aqueous Znâ€ion Batteries: Challenges and Opportunities. ChemElectroChem, 2020, 7, 2714-2734.	1.7	54
415	Progress of Organic Electrodes in Aqueous Electrolyte for Energy Storage and Conversion. Angewandte Chemie - International Edition, 2020, 59, 18322-18333.	7.2	86
416	A Chemically Polished Zinc Metal Electrode with a Ridge-like Structure for Cycle-Stable Aqueous Batteries. ACS Applied Materials & Interfaces, 2020, 12, 23028-23034.	4.0	65
417	Progress of Organic Electrodes in Aqueous Electrolyte for Energy Storage and Conversion. Angewandte Chemie, 2020, 132, 18478-18489.	1.6	36

ARTICLE IF CITATIONS # Engineering Sulfur Vacancies of Ni₃S₂ Nanosheets as a Binder-Free Cathode 418 2.5 57 for an Aqueous Rechargeable Ni-Zn Battery. ACS Applied Energy Materials, 2020, 3, 3863-3875. The Current State of Aqueous Zn-Based Rechargeable Batteries. ACS Energy Letters, 2020, 5, 1665-1675. 8.8 271 Layered VSe₂: a promising host for fast zinc storage and its working mechanism. Journal 420 5.272 of Materials Chemistry A, 2020, 8, 9313-9321. Hexagonal MoO₃ as a zinc intercalation anode towards zinc metal-free zinc-ion batteries. 421 Journal of Materials Chemistry A, 2020, 8, 9006-9012. A Layered Zn_{0.4}VOPO₄·0.8H₂O Cathode for Robust and Stable Zn 422 2.5 60 Ion Storage. ACS Applied Energy Materials, 2020, 3, 3919-3927. A universal and facile approach to suppress dendrite formation for a Zn and Li metal anode. Journal of Materials Chemistry A, 2020, 8, 9331-9344. 5.2 Challenges and Strategies for Highâ€Energy Aqueous Electrolyte Rechargeable Batteries. Angewandte 424 7.2 272 Chemie - International Edition, 2021, 60, 598-616. WAssrige Hochleistungsbatterien: Herausforderungen und Strategien. Angewandte Chemie, 2021, 133, 425 1.6 14 608-626. Stabilization Perspective on Metal Anodes for Aqueous Batteries. Advanced Energy Materials, 2021, 11, 426 10.2 106 2000962. Redirected Zn Electrodeposition by an Antiâ€Corrosion Elastic Constraint for Highly Reversible Zn 216 Anodes. Advanced Functional Materials, 2021, 31, 2001867 Optimizing the electrolyte salt of aqueous zinc-ion batteries based on a high-performance calcium 428 7.1 53 vanadate hydrate cathode material. Journal of Energy Chemistry, 2021, 52, 377-384. Regulating Oxygen Substituents with Optimized Redox Activity in Chemically Reduced Graphene Oxide 127 for Aqueous Znã€lon Hybrid Capacitor. Advanced Functional Materials, 2021, 31, 2007843. Binder-free Cu-supported Ag nanowires for aqueous rechargeable silver-zinc batteries with ultrahigh 430 5.0 10 areal capacity. Journal of Colloid and Interface Science, 2021, 586, 47-55. Developing improved electrolytes for aqueous zinc-ion batteries to achieve excellent cyclability and 5.0 antifreezing ability. Journal of Colloid and Interface Science, 2021, 586, 362-370. $\hat{a} \in \infty$ Double guarantee mechanism $\hat{a} \in \mathbf{o}$ f Ca²⁺-intercalation and rGO-integration ensures 432 hydrated vanadium oxide with high performance for aqueous zinc-ion batteries. Inorganic Chemistry 3.0 59 Frontiers, 2021, 8, 79-89. Hyper oxidized V6O13+·nH2O layered cathode for aqueous rechargeable Zn battery: Effect on dual 38 carriers transportation and parasitic reactions. Energy Storage Materials, 2021, 35, 47-61. Understanding the Gap between Academic Research and Industrial Requirements in Rechargeable 434 2.4 32 Zincâ€Ion Batteries. Batteries and Supercaps, 2021, 4, 60-71. Insights into the Structure Stability of Prussian Blue for Aqueous Zinc Ion Batteries. Energy and 94 Environmental Materials, 2021, 4, 111-116.

#	Article	IF	CITATIONS
436	Ultra-highly stable zinc metal anode via 3D-printed g-C3N4 modulating interface for long life energy storage systems. Chemical Engineering Journal, 2021, 403, 126425.	6.6	123
437	Suppressing by-product via stratified adsorption effect to assist highly reversible zinc anode in aqueous electrolyte. Journal of Energy Chemistry, 2021, 55, 549-556.	7.1	132
438	Highly efficient dendrite suppressor and corrosion inhibitor based on gelatin/Mn2+ Co-additives for aqueous rechargeable zinc-manganese dioxide battery. Chemical Engineering Journal, 2021, 407, 127189.	6.6	32
439	Oxide-based cathode materials for rechargeable zinc ion batteries: Progresses and challenges. Journal of Energy Chemistry, 2021, 57, 516-542.	7.1	48
440	Electrolyte formulation to enable ultra-stable aqueous Zn-organic batteries. Journal of Power Sources, 2021, 482, 228904.	4.0	24
441	Current status and technical challenges of electrolytes in zinc–air batteries: An in-depth review. Chemical Engineering Journal, 2021, 408, 127241.	6.6	81
442	Toward Flexible Zincâ€lon Hybrid Capacitors with Superhigh Energy Density and Ultralong Cycling Life: The Pivotal Role of ZnCl ₂ Saltâ€Based Electrolytes. Angewandte Chemie, 2021, 133, 1003-1010.	1.6	130
443	Interlayer Engineering of αâ€MoO ₃ Modulates Selective Hydronium Intercalation in Neutral Aqueous Electrolyte. Angewandte Chemie - International Edition, 2021, 60, 896-903.	7.2	108
444	Polyarylimide and porphyrin based polymer microspheres for zinc ion hybrid capacitors. Chemical Engineering Journal, 2021, 405, 127038.	6.6	76
445	Mixedâ€Valence Copper Selenide as an Anode for Ultralong Lifespan Rockingâ€Chair Znâ€Ion Batteries: An Insight into its Intercalation/Extraction Kinetics and Charge Storage Mechanism. Advanced Functional Materials, 2021, 31, 2005092.	7.8	76
446	Direct Selfâ€Assembly of MXene on Zn Anodes for Dendriteâ€Free Aqueous Zincâ€Ion Batteries. Angewandte Chemie - International Edition, 2021, 60, 2861-2865.	7.2	511
447	Effects of waterâ€based binders on electrochemical performance of manganese dioxide cathode in mild aqueous zinc batteries. , 2021, 3, 473-481.		44
448	Non-metallic charge carriers for aqueous batteries. Nature Reviews Materials, 2021, 6, 109-123.	23.3	250
449	Pencil Drawing Stable Interface for Reversible and Durable Aqueous Zincâ€lon Batteries. Advanced Functional Materials, 2021, 31, 2006495.	7.8	153
450	Tuning Zn2+ coordination environment to suppress dendrite formation for high-performance Zn-ion batteries. Nano Energy, 2021, 80, 105478.	8.2	318
451	Selective nitrogen doping on carbon cloth to enhance the performance of zinc anode. Chinese Chemical Letters, 2021, 32, 1095-1100.	4.8	22
452	Water-in-salt electrolyte for safe and high-energy aqueous battery. Energy Storage Materials, 2021, 34, 461-474.	9.5	158
453	Structural engineering of cathodes for improved Zn-ion batteries. Journal of Energy Chemistry, 2021, 58, 147-155.	7.1	52

#	Article	IF	CITATIONS
454	Strategies for the Stabilization of Zn Metal Anodes for Znâ€lon Batteries. Advanced Energy Materials, 2021, 11, .	10.2	431
455	High-performance Zn-graphite battery based on LiPF6 single-salt electrolyte with high working voltage and long cycling life. Journal of Energy Chemistry, 2021, 58, 602-609.	7.1	44
456	The strategies to improve the layered-structure cathodes for aqueous multivalent metal-ionÂbatteries. Materials Today Energy, 2021, 19, 100595.	2.5	16
457	Ultra-stable and highly reversible aqueous zinc metal anodes with high preferred orientation deposition achieved by a polyanionic hydrogel electrolyte. Energy Storage Materials, 2021, 35, 586-594.	9.5	127
458	Design principles of MOF-related materials for highly stable metal anodes in secondary metal-based batteries. Materials Today Energy, 2021, 19, 100608.	2.5	30
459	Emergence of nonaqueous electrolytes for rechargeable zinc batteries. Current Opinion in Green and Sustainable Chemistry, 2021, 28, 100426.	3.2	8
460	The strategies of boosting the performance of highly reversible zinc anodes in zinc-ion batteries: recent progress and future perspectives. Sustainable Energy and Fuels, 2021, 5, 332-350.	2.5	29
461	The Current Developments and Perspectives of V ₂ O ₅ as Cathode for Rechargeable Aqueous Zincâ€lon Batteries. Energy Technology, 2021, 9, 2000789.	1.8	55
462	Components. , 2021, , 11-21.		0
463	Interfacial polarization triggered by glutamate accelerates dehydration of hydrated zinc ions for zinc-ion batteries. Chemical Engineering Journal, 2021, 416, 127704.	6.6	29
464	Tuning electronic structure endows 1,4-naphthoquinones with significantly boosted Zn-ion storage capability and output voltage. Journal of Power Sources, 2021, 483, 229114.	4.0	16
465	Mn-doped ZnO microspheres as cathode materials for aqueous zinc ion batteries with ultrastability up to 10 000 cycles at a large current density. Chemical Engineering Journal, 2021, 421, 127770.	6.6	23
466	Microstructural Engineering of Cathode Materials for Advanced Zinc″on Aqueous Batteries. Advanced Science, 2021, 8, 2002722.	5.6	58
467	Copper hexacyanoferrate as ultra-high rate host for aqueous ammonium ion storage. Chemical Engineering Journal, 2021, 421, 127767.	6.6	64
468	Zinc Metal Energy Storage Devices under Extreme Conditions of Low Temperatures. Batteries and Supercaps, 2021, 4, 389-406.	2.4	23
469	Temperature adaptability issue of aqueous rechargeable batteries. Materials Today Energy, 2021, 19, 100577.	2.5	18
470	Recent Advances in Aqueous Zincâ€ion Hybrid Capacitors: A Minireview. ChemElectroChem, 2021, 8, 484-491.	1.7	21
471	Highly reversible and dendrite-free Zn electrodeposition enabled by a thin metallic interfacial layer in aqueous batteries. Chemical Engineering Journal, 2021, 416, 128062.	6.6	75

#	Article	IF	CITATIONS
472	Boosting zinc-ion intercalation in hydrated MoS2 nanosheets toward substantially improved performance. Energy Storage Materials, 2021, 35, 731-738.	9.5	106
473	Green and low-cost acetate-based electrolytes for the highly reversible zinc anode. Journal of Power Sources, 2021, 485, 229329.	4.0	37
474	Tailoring the linking patterns of polypyrene cathodes for high-performance aqueous Zn dual-ion batteries. Energy and Environmental Science, 2021, 14, 462-472.	15.6	88
475	Innovative zinc-based batteries. Journal of Power Sources, 2021, 484, 229309.	4.0	70
476	Highly stable zinc metal anode enabled by oxygen functional groups for advanced Zn-ion supercapacitors. Chemical Communications, 2021, 57, 528-531.	2.2	29
477	Recent Advances and Perspectives of Znâ€Metal Free "Rockingâ€Chairâ€â€Type Znâ€Ion Batteries. Advanced Energy Materials, 2021, 11, 2002529.	10.2	111
478	Zn electrode/electrolyte interfaces of Zn batteries: A mini review. Electrochemistry Communications, 2021, 122, 106898.	2.3	57
479	Carbon materials for ion-intercalation involved rechargeable battery technologies. Chemical Society Reviews, 2021, 50, 2388-2443.	18.7	255
480	Poly(dithieno[3,2-b:2',3'-d]pyrrole) twisting redox pendants enabling high current durability in all-organic proton battery. Energy Storage Materials, 2021, 36, 1-9.	9.5	54
481	A vertical graphene enhanced Zn–MnO ₂ flexible battery towards wearable electronic devices. Journal of Materials Chemistry A, 2021, 9, 575-584.	5.2	43
482	Direct Selfâ€Assembly of MXene on Zn Anodes for Dendriteâ€Free Aqueous Zincâ€Ion Batteries. Angewandte Chemie, 2021, 133, 2897-2901.	1.6	72
483	Fundamentals and perspectives of electrolyte additives for aqueous zinc-ion batteries. Energy Storage Materials, 2021, 34, 545-562.	9.5	330
484	Rechargeable aqueous zinc-ion batteries: Mechanism, design strategies and future perspectives. Materials Today, 2021, 42, 73-98.	8.3	159
485	Boosting the Zn2+-based electrochromic properties of tungsten oxide through morphology control. Solar Energy Materials and Solar Cells, 2021, 220, 110853.	3.0	38
486	The Applications of Waterâ€inâ€Salt Electrolytes in Electrochemical Energy Storage Devices. Advanced Functional Materials, 2021, 31, 2006749.	7.8	111
487	Interlayer Engineering of αâ€MoO ₃ Modulates Selective Hydronium Intercalation in Neutral Aqueous Electrolyte. Angewandte Chemie, 2021, 133, 909-916.	1.6	9
488	Strategies towards the challenges of zinc metal anode in rechargeable aqueous zinc ion batteries. Energy Storage Materials, 2021, 35, 19-46.	9.5	212
489	An unconventional full dual-cation battery. Nano Energy, 2021, 81, 105539.	8.2	13

#	Article	IF	CITATIONS
490	On-site building of a Zn2+-conductive interfacial layer via short-circuit energization for stable Zn anode. Science Bulletin, 2021, 66, 545-552.	4.3	39
491	The electrolyte comprising more robust water and superhalides transforms Znâ€metal anode reversiblyÂand dendriteâ€free. , 2021, 3, 339-348.		100
492	Latest Advances in High-Voltage and High-Energy-Density Aqueous Rechargeable Batteries. Electrochemical Energy Reviews, 2021, 4, 1-34.	13.1	120
493	Electrolyte Engineering Toward Highâ€Voltage Aqueous Energy Storage Devices. Energy and Environmental Materials, 2021, 4, 302-306.	7.3	48
494	Toward Flexible Zincâ€Ion Hybrid Capacitors with Superhigh Energy Density and Ultralong Cycling Life: The Pivotal Role of ZnCl ₂ Saltâ€Based Electrolytes. Angewandte Chemie - International Edition, 2021, 60, 990-997.	7.2	215
495	Challenges and strategies of zinc anode for aqueous zinc-ion batteries. Materials Chemistry Frontiers, 2021, 5, 2201-2217.	3.2	50
496	Ultrastable Zinc Anodes Enabled by Anti-Dehydration Ionic Liquid Polymer Electrolyte for Aqueous Zn Batteries. ACS Applied Materials & Interfaces, 2021, 13, 4008-4016.	4.0	58
497	An in-depth insight of a highly reversible and dendrite-free Zn metal anode in an hybrid electrolyte. Journal of Materials Chemistry A, 2021, 9, 4253-4261.	5.2	67
498	Comprehensive understanding of the roles of water molecules in aqueous Zn-ion batteries: from electrolytes to electrode materials. Energy and Environmental Science, 2021, 14, 3796-3839.	15.6	257
499	High-voltage liquid electrolytes for Li batteries: progress and perspectives. Chemical Society Reviews, 2021, 50, 10486-10566.	18.7	391
500	Developing high voltage Zn(TFSI) ₂ /Pyr ₁₄ TFSI/AN hybrid electrolyte for a carbon-based Zn-ion hybrid capacitor. Nanoscale, 2021, 13, 17068-17076.	2.8	19
501	Suppressing cathode dissolution <i>via</i> guest engineering for durable aqueous zinc-ion batteries. Journal of Materials Chemistry A, 2021, 9, 7631-7639.	5.2	47
502	Structure Design of Longâ€Life Spinelâ€Oxide Cathode Materials for Magnesium Rechargeable Batteries. Advanced Materials, 2021, 33, e2007539.	11.1	52
503	The rise of flexible zinc-ion hybrid capacitors: advances, challenges, and outlooks. Journal of Materials Chemistry A, 2021, 9, 19054-19082.	5.2	60
504	An Anode-Free Zn–MnO ₂ Battery. Nano Letters, 2021, 21, 1446-1453.	4.5	131
505	Unveiling the Origin of Alloy-Seeded and Nondendritic Growth of Zn for Rechargeable Aqueous Zn Batteries. ACS Energy Letters, 2021, 6, 404-412.	8.8	148
506	Alleviation of Dendrite Formation on Zinc Anodes via Electrolyte Additives. ACS Energy Letters, 2021, 6, 395-403.	8.8	340
507	Highly reversible aqueous zinc metal batteries enabled by fluorinated interphases in localized high concentration electrolytes. Journal of Materials Chemistry A, 2021, 9, 22347-22352.	5.2	32

#	Article	IF	CITATIONS
508	Fabricating low-temperature-tolerant and durable Zn-ion capacitors via modulation of co-solvent molecular interaction and cation solvation. Science China Materials, 2021, 64, 1609-1620.	3.5	37
509	Regulation methods for the Zn/electrolyte interphase and the effectiveness evaluation in aqueous Zn-ion batteries. Energy and Environmental Science, 2021, 14, 5669-5689.	15.6	314
510	Identifying Heteroatomic and Defective Sites in Carbon with Dual-Ion Adsorption Capability for High Energy and Power Zinc Ion Capacitor. Nano-Micro Letters, 2021, 13, 59.		78
511	Concentrated dual-cation electrolyte strategy for aqueous zinc-ion batteries. Energy and Environmental Science, 2021, 14, 4463-4473.	15.6	203
512	Smart fibers for energy conversion and storage. Chemical Society Reviews, 2021, 50, 7009-7061.	18.7	108
513	Modeling and simulation of metal-air batteries. , 2021, , 179-215.		0
514	An aqueous rechargeable lithium ion battery with long cycle life and overcharge self-protection. Materials Chemistry Frontiers, 2021, 5, 2749-2757.	3.2	9
515	Vanadium oxide bronzes as cathode active materials for non-lithium-based batteries. CrystEngComm, 2021, 23, 5267-5283.	1.3	6
516	A new type of zinc ion hybrid supercapacitor based on 2D materials. Nanoscale, 2021, 13, 11004-11016.		33
517	Generating H ⁺ in Catholyte and OH [–] in Anolyte: An Approach to Improve the Stability of Aqueous Zinc-Ion Batteries. ACS Energy Letters, 2021, 6, 684-686.		49
518	A rechargeable zinc-air battery based on zinc peroxide chemistry. Science, 2021, 371, 46-51.	6.0	551
519	Liquid Alloy Interlayer for Aqueous Zinc-Ion Battery. ACS Energy Letters, 2021, 6, 675-683.	8.8	135
520	<i>In situ</i> built interphase with high interface energy and fast kinetics for high performance Zn metal anodes. Energy and Environmental Science, 2021, 14, 3609-3620.	15.6	300
521	Mechanism for Zincophilic Sites on Zincâ€Metal Anode Hosts in Aqueous Batteries. Advanced Energy Materials, 2021, 11, 2003419.	10.2	233
522	Anion Texturing Towards Dendriteâ€Free Zn Anode for Aqueous Rechargeable Batteries. Angewandte Chemie, 2021, 133, 7289-7295.	1.6	59
523	Poly(2,5â€Dihydroxyâ€1,4â€Benzoquinonyl Sulfide) As an Efficient Cathode for Highâ€Performance Aqueous Zinc–Organic Batteries. Advanced Functional Materials, 2021, 31, 2010049.	7.8	143
524	Toward Practical Highâ€Arealâ€Capacity Aqueous Zincâ€Metal Batteries: Quantifying Hydrogen Evolution and a Solidâ€Ion Conductor for Stable Zinc Anodes. Advanced Materials, 2021, 33, e2007406.	11.1	382
525	Electrolyte Strategies toward Better Zinc-Ion Batteries. ACS Energy Letters, 2021, 6, 1015-1033.	8.8	376

#	Article		CITATIONS
526	Boosting Zinc Electrode Reversibility in Aqueous Electrolytes by Using Low ost Antisolvents. Angewandte Chemie, 2021, 133, 7442-7451.	1.6	87
527	A stable zinc-based secondary battery realized by anion-exchange membrane as the separator. Journal of Power Sources, 2021, 486, 229376.	4.0	20
528	Synthesis of Manganese Oxide Coated Graphite Sheet for Zinc-Ion Batteries with Improved Energy Storage Performance. Korean Journal of Materials Research, 2021, 31, 68-74.	0.1	2
529	Simultaneously Regulating Uniform Zn2+ Flux and Electron Conduction by MOF/rGO Interlayers for High-Performance Zn Anodes. Nano-Micro Letters, 2021, 13, 73.	14.4	106
530	Powering Implantable and Ingestible Electronics. Advanced Functional Materials, 2021, 31, 2009289.	7.8	57
531	Boosting Zinc Electrode Reversibility in Aqueous Electrolytes by Using Low ost Antisolvents. Angewandte Chemie - International Edition, 2021, 60, 7366-7375.	7.2	516
532	Highly Stable Plating/Stripping Behavior of Zinc Metal Anodes in Aqueous Zinc Batteries Regulated by Quaternary Ammonium Cationic Salts. ChemElectroChem, 2021, 8, 858-865.	1.7	13
533	Stable High-Voltage Aqueous Zinc Battery Based on Carbon-Coated NaVPO ₄ F Cathode. ACS Sustainable Chemistry and Engineering, 2021, 9, 3223-3231.	3.2	26
534	Inorganic Colloidal Electrolyte for Highly Robust Zinc-Ion Batteries. Nano-Micro Letters, 2021, 13, 69.	14.4	152
535	Highâ€Voltage Rechargeable Aqueous Zincâ€Based Batteries: Latest Progress and Future Perspectives. Small Science, 2021, 1, 2000066.	5.8	56
536	Electrolyte Design for In Situ Construction of Highly Zn ²⁺ â€Conductive Solid Electrolyte Interphase to Enable Highâ€Performance Aqueous Znâ€Ion Batteries under Practical Conditions. Advanced Materials, 2021, 33, e2007416.	11.1	484
537	Comprehensive Analyses of Aqueous Zn Metal Batteries: Characterization Methods, Simulations, and Theoretical Calculations. Advanced Energy Materials, 2021, 11, 2003823.	10.2	66
538	Enabling Stable Zn Anode via a Facile Alloying Strategy and 3D Foam Structure. Advanced Materials Interfaces, 2021, 8, 2002184.	1.9	59
539	Recent Developments and Future Prospects for Zincâ€ion Hybrid Capacitors: a Review. Advanced Energy Materials, 2021, 11, 2003994.	10.2	219
540	Synergistic Manipulation of Zn ²⁺ Ion Flux and Desolvation Effect Enabled by Anodic Growth of a 3D ZnF ₂ Matrix for Long‣ifespan and Dendriteâ€Free Zn Metal Anodes. Advanced Materials, 2021, 33, e2007388.	11.1	359
541	Anion Texturing Towards Dendriteâ€Free Zn Anode for Aqueous Rechargeable Batteries. Angewandte Chemie - International Edition, 2021, 60, 7213-7219.	7.2	209
542	A Replacement Reaction Enabled Interdigitated Metal/Solid Electrolyte Architecture for Battery Cycling at 20 mA cm ^{–2} and 20 mAh cm ^{–2} . Journal of the American Chemical Society, 2021, 143, 3143-3152.	6.6	132
543	Water–Salt Oligomers Enable Supersoluble Electrolytes for Highâ€Performance Aqueous Batteries. Advanced Materials, 2021, 33, e2007470.	11.1	102

#	Article	IF	CITATIONS
544	Achieving Stable Molybdenum Oxide Cathodes for Aqueous Zincâ€Ion Batteries in Waterâ€in‧alt Electrolyte. Advanced Materials Interfaces, 2021, 8, 2002080.	1.9	33
545	Sandwichâ€Like Heterostructures of MoS ₂ /Graphene with Enlarged Interlayer Spacing and Enhanced Hydrophilicity as Highâ€Performance Cathodes for Aqueous Zincâ€Ion Batteries. Advanced Materials, 2021, 33, e2007480.	11.1	241
546	Recent Progress and Challenges in Multivalent Metalâ€ion Hybrid Capacitors. Batteries and Supercaps, 2021, 4, 1201-1220.	2.4	14
547	A Facile Chemical Method Enabling Uniform Zn Deposition for Improved Aqueous Zn-Ion Batteries. Nanomaterials, 2021, 11, 764.	1.9	25
548	Towards Highâ€Performance Zincâ€Based Hybrid Supercapacitors via Macroporesâ€Based Charge Storage in Organic Electrolytes. Angewandte Chemie - International Edition, 2021, 60, 9610-9617.	7.2	90
549	An Artificial Polyacrylonitrile Coating Layer Confining Zinc Dendrite Growth for Highly Reversible Aqueous Zincâ€Based Batteries. Advanced Science, 2021, 8, e2100309.	5.6	232
550	Towards Highâ€Performance Zincâ€Based Hybrid Supercapacitors via Macroporesâ€Based Charge Storage in Organic Electrolytes. Angewandte Chemie, 2021, 133, 9696-9703.	1.6	5
551	Reversible Electrochemical Energy Storage Based on Zinc-Halide Chemistry. ACS Applied Materials & Interfaces, 2021, 13, 14112-14121.	4.0	18
552	The new X-ray absorption fine-structure beamline with sub-second time resolution at the Taiwan Photon Source. Journal of Synchrotron Radiation, 2021, 28, 930-938.	1.0	21
553	Fastâ€Charging and Ultrahighâ€Capacity Zinc Metal Anode for Highâ€Performance Aqueous Zincâ€Ion Batteries. Advanced Functional Materials, 2021, 31, 2100398.	7.8	203
554	The rising zinc anodes for high-energy aqueous batteries. EnergyChem, 2021, 3, 100052.	10.1	74
555	Ni (II) Coordination Supramolecular Grids for Aqueous Nickelâ€Zinc Battery Cathodes. Advanced Functional Materials, 2021, 31, 2100443.	7.8	30
556	A 3D hierarchically porous nanoscale ZnO anode for high-energy rechargeable zinc-air batteries. Journal of Power Sources, 2021, 488, 229393.	4.0	13
557	Anti-corrosive Hybrid Electrolytes for Rechargeable Aqueous Zinc Batteries. Chemical Research in Chinese Universities, 2021, 37, 328-334.	1.3	5
558	Factors Influencing Preferential Anion Interactions during Solvation of Multivalent Cations in Ethereal Solvents. Journal of Physical Chemistry C, 2021, 125, 6005-6012.	1.5	17
559	Recent progress and challenges of coâ€based compound for aqueous Zn battery. Nano Select, 2021, 2, 1642-1660.	1.9	9
560	Carbonâ€Based Materials for a New Type of Zincâ€ion Capacitor. ChemElectroChem, 2021, 8, 1541-1557.	1.7	35
561	3Dâ€Printed Multiâ€Channel Metal Lattices Enabling Localized Electricâ€Field Redistribution for Dendriteâ€Free Aqueous Zn Ion Batteries, Advanced Energy Materials, 2021, 11, 2003927.	10.2	179

#	Article	IF	CITATIONS
562	Mechanistic Understanding of Oxygen Electrodes in Rechargeable Multivalent Metalâ€Oxygen Batteries. Batteries and Supercaps, 2021, 4, 1588-1598.	2.4	6
563	Spontaneous Growth of Alkali Metal Ion-Preintercalated Vanadium Pentoxide for High-Performance Aqueous Zinc-Ion Batteries. ACS Sustainable Chemistry and Engineering, 2021, 9, 5095-5104.	3.2	19
564	A Review on Electrolytes for Aqueous Zinc-Ion Batteries. Ceramist, 2021, 24, 35-53.	0.0	1
565	Frontiers in Hybrid Ion Capacitors: A Review on Advanced Materials and Emerging Devices. ChemElectroChem, 2021, 8, 1393-1429.	1.7	43
566	Highâ€Voltage Zincâ€Ion Batteries: Design Strategies and Challenges. Advanced Functional Materials, 2021, 31, 2010213.	7.8	123
567	Interface Engineering via Ti3C2Tx MXene Electrolyte Additive toward Dendrite-Free Zinc Deposition. Nano-Micro Letters, 2021, 13, 89.	14.4	130
568	Reaction kinetics in rechargeable zinc-ion batteries. Journal of Power Sources, 2021, 492, 229655.	4.0	48
569	All-in-One ENERGISER design: Smart liquid metal-air battery. Chemical Engineering Journal, 2021, 409, 128160.	6.6	12
570	Functionalized Phosphonium Cations Enable Zinc Metal Reversibility in Aqueous Electrolytes. Angewandte Chemie - International Edition, 2021, 60, 12438-12445.	7.2	69
571	Eliminating Zn dendrites by commercial cyanoacrylate adhesive for zinc ion battery. Energy Storage Materials, 2021, 36, 132-138.	9.5	202
572	Flexible Nanocomposite Polymer Electrolyte Based on UV-Cured Polyurethane Acrylate for Lithium Metal Batteries. ACS Sustainable Chemistry and Engineering, 2021, 9, 5631-5641.	3.2	17
573	Manipulating Zn anode reactions through salt anion involving hydrogen bonding network in aqueous electrolytes with PEO additive. Nano Energy, 2021, 82, 105739.	8.2	115
574	Highâ€Energy Aqueous Sodiumâ€ion Batteries. Angewandte Chemie - International Edition, 2021, 60, 11943-11948.	7.2	100
575	Highâ€Energy Aqueous Sodiumâ€ion Batteries. Angewandte Chemie, 2021, 133, 12050-12055.	1.6	13
576	Solid Electrolyte Interphase Engineering for Aqueous Aluminum Metal Batteries: A Critical Evaluation. Advanced Energy Materials, 2021, 11, 2100077.	10.2	49
577	Elimination of Zinc Dendrites by Graphene Oxide Electrolyte Additive for Zinc-Ion Batteries. ACS Applied Energy Materials, 2021, 4, 4602-4609.	2.5	91
578	Ultrafast Zinc–Ion–Conductor Interface toward Highâ€Rate and Stable Zinc Metal Batteries. Advanced Energy Materials, 2021, 11, 2100186.	10.2	223
579	Functionalized Phosphonium Cations Enable Zinc Metal Reversibility in Aqueous Electrolytes. Angewandte Chemie, 2021, 133, 12546-12553.	1.6	11

#	Article	IF	Citations
580	Dynamic Windows Using Reversible Zinc Electrodeposition in Neutral Electrolytes with High Opacity and Excellent Resting Stability. Advanced Energy Materials, 2021, 11, 2100417.	10.2	23
581	Sodium Alginate Binders for Bivalency Aqueous Batteries. ACS Applied Materials & Interfaces, 2021, 13, 20681-20688.	4.0	41
582	"Waterâ€inâ€Deep Eutectic Solvent―Electrolytes for Highâ€Performance Aqueous Znâ€ion Batteries. Advanced Functional Materials, 2021, 31, 2102035.	7.8	126
583	Sulfonic-Group-Grafted Ti ₃ C ₂ T _{<i>x</i>} MXene: A Silver Bullet to Settle the Instability of Polyaniline toward High-Performance Zn-Ion Batteries. ACS Nano, 2021, 15, 9065-9075.	7.3	78
584	An In Situ Artificial Cathode Electrolyte Interphase Strategy for Suppressing Cathode Dissolution in Aqueous Zinc Ion Batteries. Small Methods, 2021, 5, e2100094.	4.6	43
585	An effective and accessible cell configuration for testing rechargeable zinc-based alkaline batteries. Journal of Power Sources, 2021, 491, 229547.	4.0	18
586	Insights on Flexible Zinc″on Batteries from Lab Research to Commercialization. Advanced Materials, 2021, 33, e2007548.	11.1	191
587	Heterometallic Seedâ€Mediated Zinc Deposition on Inkjet Printed Silver Nanoparticles Toward Foldable and Heatâ€Resistant Zinc Batteries. Advanced Functional Materials, 2021, 31, 2101607.	7.8	109
588	Surfaceâ€Preferred Crystal Plane for a Stable and Reversible Zinc Anode. Advanced Materials, 2021, 33, e2100187.	11.1	432
589	Undesired Reactions in Aqueous Rechargeable Zinc Ion Batteries. ACS Energy Letters, 2021, 6, 1773-1785.	8.8	173
590	Kinetics of galvanostatic anodic polarization of Zn in NaOH solutions and characterization of the resulting layers. Materials Chemistry and Physics, 2021, 263, 124298.	2.0	1
591	Photoâ€assisted Rechargeable Metal Batteries for Energy Conversion and Storage. Energy and Environmental Materials, 2022, 5, 439-451.	7.3	55
592	Electrokineticâ€Driven Fast Ion Delivery for Reversible Aqueous Zinc Metal Batteries with High Capacity. Small, 2021, 17, e2008059.	5.2	11
593	Electrochemical Zinc Ion Capacitors: Fundamentals, Materials, and Systems. Advanced Energy Materials, 2021, 11, 2100201.	10.2	156
594	Bifunctional Covalent Organic Frameworkâ€Derived Electrocatalysts with Modulated <i>p</i> â€Band Centers for Rechargeable Zn–Air Batteries. Advanced Functional Materials, 2021, 31, 2101727.	7.8	76
595	Aqueous Rechargeable Znâ€ion Batteries: Strategies for Improving the Energy Storage Performance. ChemSusChem, 2021, 14, 1987-2022.	3.6	59
596	Ampere-hour-scale zinc–air pouch cells. Nature Energy, 2021, 6, 592-604.	19.8	149
597	Detrimental Effects of Surface Imperfections and Unpolished Edges on the Cycling Stability of a Zinc Foil Anode. ACS Energy Letters, 2021, 6, 1990-1995.	8.8	89

		CITATION REPORT		
#	ARTICLE Manipulating the ion-transference and deposition kinetics by regulating the surface che	mistry of zinc	IF	CITATIONS
	metal anodes for rechargeable zinc-air batteries. Green Energy and Environment, 2023, Zn anode with flexible ^î ² -PVDF coating for aqueous Zn-ion batteries with long cycle life.		4.7	
599	Engineering Journal, 2021, 411, 128584.		6.6	157
600	Stable Aqueous Anodeâ€Free Zinc Batteries Enabled by Interfacial Engineering. Advance Materials, 2021, 31, 2101886.	d Functional	7.8	162
601	Highâ€Voltage and Superâ€Stable Aqueous Sodium–Zinc Hybrid Ion Batteries Enable Structures in Concentrated Electrolyte. Small Methods, 2021, 5, e2100418.	d by Double Solvation	4.6	22
602	An Ultrahigh Performance Zincâ€Organic Battery using Poly(catechol) Cathode in Zn(TFSI) ₂ â€Based Concentrated Aqueous Electrolytes. Advanced Energy N 2100939.	Naterials, 2021, 11,	10.2	93
603	Application of Ionic Liquids for Batteries and Supercapacitors. Materials, 2021, 14, 2942	2.	1.3	66
604	Crossroads in the renaissance of rechargeable aqueous zinc batteries. Materials Today, 191-212.	2021, 45,	8.3	171
605	Recent Advance in Ionic‣iquidâ€Based Electrolytes for Rechargeable Metalâ€ion Batt Science, 2021, 8, 2004490.	eries. Advanced	5.6	128
606	Aqueous Rechargeable Multivalent Metalâ€Ion Batteries: Advances and Challenges. Adv Materials, 2021, 11, 2100608.	anced Energy	10.2	122
607	Metallopolymer as a Solid Electrolyte for Rechargeable Zn-Metal Alkaline Batteries. , 202	21, 3, 799-806.		9
608	Crystal water enlarging the interlayer spacing of ultrathin V2O5·4VO2·2.72H2O nandhigh-performance aqueous zinc-ion battery. Chemical Engineering Journal, 2021, 411, 1	obelts for 28533.	6.6	63
609	Act in contravention: a non-planar coupled electrode design utilizing "tip effect―fc capacity, long cycle life zinc-based batteries. Science Bulletin, 2021, 66, 889-896.	r ultra-high areal	4.3	37
610	Jahn–Teller Distortion Induced Mn ²⁺ â€Rich Cathode Enables Optimal Fl Highâ€Voltage Znâ€Mn Batteries. Advanced Science, 2021, 8, 2004995.	exible Aqueous	5.6	49
611	In Situ Defectâ€Free Vertically Aligned Layered Double Hydroxide Composite Membrane Capacity and Long ycle Zincâ€Based Flow Battery. Advanced Functional Materials, 2	2 for High Areal 021, 31, 2102167.	7.8	36
612	Recent advances in rechargeable Zn-based batteries. Journal of Power Sources, 2021, 49	93, 229677.	4.0	41
613	Rich Alkali Ions Preintercalated Vanadium Oxides for Durable and Fast Zinc-Ion Storage. Letters, 2021, 6, 2111-2120.	ACS Energy	8.8	94
614	Nitrate-based â€~oversaturated gel electrolyte' for high-voltage and high-stability ac batteries. Energy Storage Materials, 2021, 37, 598-608.	Jueous lithium	9.5	19
615	Realizing high-power and high-capacity zinc/sodium metal anodes through interfacial ch regulation. Nature Communications, 2021, 12, 3083.	emistry	5.8	167

#	Article		CITATIONS
616	Manipulating anion intercalation enables a high-voltage aqueous dual ion battery. Nature Communications, 2021, 12, 3106.	5.8	104
617	Salting-out effect promoting highly efficient ambient ammonia synthesis. Nature Communications, 2021, 12, 3198.	5.8	105
618	Fluorinated interphase enables reversible aqueous zinc battery chemistries. Nature Nanotechnology, 2021, 16, 902-910.	15.6	560
619	Porous structure ZnV2O4/C-N composite activating vanadium-based cathode in aqueous zinc-ion batteries. Materials Today Communications, 2021, 27, 102271.	0.9	8
620	Free-standing manganese oxide on flexible graphene films as advanced electrodes for stable, high energy-density solidâ€state zinc-ion batteries. Chemical Engineering Journal, 2021, 414, 128916.	6.6	48
621	Zinc dendrite growth and inhibition strategies. Materials Today Energy, 2021, 20, 100692.	2.5	131
622	Carbon nanotubes-based electrode for Zn ion batteries. Materials Research Bulletin, 2021, 138, 111246.	2.7	18
623	A rechargeable aqueous zinc/sodium manganese oxides battery with robust performance enabled by Na2SO4 electrolyte additive. Energy Storage Materials, 2021, 38, 299-308.	9.5	79
624	Advances and Perspectives of Cathode Storage Chemistry in Aqueous Zinc-Ion Batteries. ACS Nano, 2021, 15, 9244-9272.	7.3	272
625	Tuning Surface Energy of Zn Anodes via Sn Heteroatom Doping Enabled by a Codeposition for Ultralong Life Span Dendrite-Free Aqueous Zn-Ion Batteries. ACS Applied Materials & Interfaces, 2021, 13, 27085-27095.	4.0	41
626	Phosphate Polyanion Materials as High-Voltage Lithium-Ion Battery Cathode: A Review. Energy & Fuels, 2021, 35, 10428-10450.	2.5	80
627	Zn ²⁺ Induced Phase Transformation of K ₂ MnFe(CN) ₆ Boosts Highly Stable Zincâ€ion Storage. Advanced Energy Materials, 2021, 11, 2003639.		127
628	High electrochemical and mechanical performance of zinc conducting-based gel polymer electrolytes. Scientific Reports, 2021, 11, 13268.	1.6	28
629	Multifunctional tin layer enabled long-life and stable anode for aqueous zinc-ion batteries. Materials Today Energy, 2021, 20, 100675.	2.5	68
630	Waterâ€Repellent Ionic Liquid Skinny Gels Customized for Aqueous Znâ€Ion Battery Anodes. Advanced Functional Materials, 2021, 31, 2103850.	7.8	63
631	Saccharin Anion Acts as a "Traffic Assistant―of Zn ²⁺ to Achieve a Long-Life and Dendritic-Free Zinc Plate Anode. ACS Applied Materials & Interfaces, 2021, 13, 29631-29640.	4.0	26
632	The Emerging of Aqueous Zincâ€Based Dual Electrolytic Batteries. Small, 2021, 17, e2008043.	5.2	23
633	Single-Ion Conducting Double-Network Hydrogel Electrolytes for Long Cycling Zinc-Ion Batteries. ACS Applied Materials & Interfaces, 2021, 13, 30594-30602.	4.0	61

#	Article	IF	CITATIONS
634	Dendrite-Free Anodes Enabled by a Composite of a ZnAl Alloy with a Copper Mesh for High-Performing Aqueous Zinc-Ion Batteries. ACS Applied Materials & Interfaces, 2021, 13, 28129-28139.	4.0	47
635	Cubic Manganese Potassium Hexacyanoferrate Regulated by Controlling of the Water and Defects as a High-Capacity and Stable Cathode Material for Rechargeable Aqueous Zinc-Ion Batteries. ACS Applied Materials & Interfaces, 2021, 13, 26924-26935.	4.0	53
636	<i>In Situ</i> Construction of a Multifunctional Quasi-Gel Layer for Long-Life Aqueous Zinc Metal Anodes. ACS Applied Materials & amp; Interfaces, 2021, 13, 29746-29754.	4.0	31
637	Scalable and Controllable Synthesis of Interface-Engineered Nanoporous Host for Dendrite-Free and High Rate Zinc Metal Batteries. ACS Nano, 2021, 15, 11828-11842.	7.3	140
638	Stabilizing Zinc Electrodeposition in a Battery Anode by Controlling Crystal Growth. Small, 2021, 17, e2101798.	5.2	58
639	Highly Reversible Aqueous Zinc Batteries enabled by Zincophilic–Zincophobic Interfacial Layers and Interrupted Hydrogenâ€Bond Electrolytes. Angewandte Chemie - International Edition, 2021, 60, 18845-18851.	7.2	150
640	Hygroscopic Double‣ayer Gel Polymer Electrolyte toward Highâ€Performance Lowâ€Temperature Zinc Hybrid Batteries. Batteries and Supercaps, 2021, 4, 1627-1635.	2.4	13
641	Ionometallurgical Stepâ€Electrodeposition of Zinc and Lead and its Application in a Cyclingâ€Stable Highâ€Voltage Zincâ€Graphite Battery. Small, 2021, 17, e2102058.	5.2	10
642	Design Principle, Optimization Strategies, and Future Perspectives of Anode-Free Configurations for High-Energy Rechargeable Metal Batteries. Electrochemical Energy Reviews, 2021, 4, 601-631.	13.1	69
643	Ultrathin Surface Coating of Nitrogenâ€Doped Graphene Enables Stable Zinc Anodes for Aqueous Zincâ€ion Batteries. Advanced Materials, 2021, 33, e2101649.	11.1	302
644	Ultrafast charge in Zn-based batteries through high-potential deposition. Materials Today Physics, 2021, 19, 100425.	2.9	9
645	Bifunctional carbon-based cathode catalysts for zinc-air battery: A review. Chinese Chemical Letters, 2022, 33, 683-692.	4.8	45
646	Cations Coordinationâ€Regulated Reversibility Enhancement for Aqueous Znâ€Ion Battery. Advanced Functional Materials, 2021, 31, 2105736.	7.8	59
647	Promoting operating voltage to 2.3 V by a superconcentrated aqueous electrolyte in carbon-based supercapacitor. Chinese Chemical Letters, 2021, 32, 2217-2221.	4.8	6
648	Uniform Zn Deposition Achieved by Conductive Carbon Additive for Zn Anode in Zincâ€ l on Hybrid Supercapacitors. Energy Technology, 2021, 9, 2100297.	1.8	13
649	Highly Reversible Aqueous Zinc Batteries enabled by Zincophilic–Zincophobic Interfacial Layers and Interrupted Hydrogenâ€Bond Electrolytes. Angewandte Chemie, 2021, 133, 18993-18999.	1.6	11
650	Ultraâ€Fast and Scalable Saline Immersion Strategy Enabling Uniform Zn Nucleation and Deposition for Highâ€Performance Znâ€Ion Batteries. Small, 2021, 17, e2101901.	5.2	65
651	Rechargeable zinc-air batteries with neutral electrolytes: Recent advances, challenges, and prospects. EnergyChem, 2021, 3, 100055.	10.1	59

#	Article	IF	CITATIONS
652	Comparative structural and electrochemical study of spherical ZnO with different tap density and morphology as anode materials for Ni/Zn secondary batteries. Journal of Alloys and Compounds, 2021, 868, 159141.	2.8	7
653	Selfâ€Assembling Films of Covalent Organic Frameworks Enable Longâ€Term, Efficient Cycling of Zincâ€Ion Batteries. Advanced Materials, 2021, 33, e2101726.	11.1	114
654	Simultaneous Regulation on Solvation Shell and Electrode Interface for Dendriteâ€Free Zn Ion Batteries Achieved by a Lowâ€Cost Glucose Additive. Angewandte Chemie - International Edition, 2021, 60, 18247-18255.	7.2	529
655	Understanding and Controlling the Nucleation and Growth of Zn Electrodeposits for Aqueous Zinc-Ion Batteries. ACS Applied Materials & Interfaces, 2021, 13, 32930-32936.	4.0	71
656	Anode for Zinc-Based Batteries: Challenges, Strategies, and Prospects. ACS Energy Letters, 2021, 6, 2765-2785.	8.8	159
657	A COFâ€Like Nâ€Rich Conjugated Microporous Polytriphenylamine Cathode with Pseudocapacitive Anion Storage Behavior for Highâ€Energy Aqueous Zinc Dualâ€Ion Batteries. Advanced Materials, 2021, 33, e2101857.	11.1	90
658	Tuning the Electrolyte Solvation Structure to Suppress Cathode Dissolution, Water Reactivity, and Zn Dendrite Growth in Zincâ€lon Batteries. Advanced Functional Materials, 2021, 31, 2104281.	7.8	225
659	Integrated design of aqueous zinc-ion batteries based on dendrite-free zinc microspheres/carbon nanotubes/nanocellulose composite film anode. Journal of Colloid and Interface Science, 2021, 594, 389-397.	5.0	34
660	Simultaneous Regulation on Solvation Shell and Electrode Interface for Dendriteâ€Free Zn Ion Batteries Achieved by a Lowâ€Cost Glucose Additive. Angewandte Chemie, 2021, 133, 18395-18403.	1.6	97
661	Tuning parallel manganese dioxide to hollow parallel hydroxyl oxidize iron replicas for high-performance asymmetric supercapacitors. Journal of Colloid and Interface Science, 2021, 594, 812-823.	5.0	123
662	Nanodots Derived from Layered Materials: Synthesis and Applications. Advanced Materials, 2021, 33, e2006661.	11.1	29
663	Current Advances on Zn Anodes for Aqueous Zincâ€ion Batteries. ChemNanoMat, 2021, 7, 1162-1176.	1.5	14
664	Recent Advances in Electrode Design for Rechargeable Zinc–Air Batteries. Small Science, 2021, 1, 2100044.	5.8	47
665	A Highâ€Voltage Zn–Organic Battery Using a Nonflammable Organic Electrolyte. Angewandte Chemie, 2021, 133, 21193-21200.	1.6	5
666	Rational Design of Sulfur-Doped Three-Dimensional Ti ₃ C ₂ T <i>_{<i>x</i>}</i> MXene/ZnS Heterostructure as Multifunctional Protective Layer for Dendrite-Free Zinc-Ion Batteries. ACS Nano, 2021, 15, 15259-15273.	7.3	167
667	Bifunctional Hydrated Gel Electrolyte for Longâ€Cycling Znâ€lon Battery with NASICONâ€Type Cathode. Advanced Functional Materials, 2021, 31, 2105717.	7.8	34
668	A flexible, heat-resistant and self-healable "rocking-chair―zinc ion microbattery based on MXene-TiS2 (de)intercalation anode. Journal of Power Sources, 2021, 504, 230076.	4.0	33
669	A Highâ€Voltage Zn–Organic Battery Using a Nonflammable Organic Electrolyte. Angewandte Chemie - International Edition, 2021, 60, 21025-21032.	7.2	67

#	Article	IF	CITATIONS
670	Amino Acidâ€Induced Interface Charge Engineering Enables Highly Reversible Zn Anode. Advanced Functional Materials, 2021, 31, 2103514.	7.8	156
671	Tailoring the Stability and Kinetics of Zn Anodes through Trace Organic Polymer Additives in Dilute Aqueous Electrolyte. ACS Energy Letters, 2021, 6, 3236-3243.	8.8	124
672	Molecular Engineering on MoS ₂ Enables Large Interlayers and Unlocked Basal Planes for Highâ€Performance Aqueous Znâ€lon Storage. Angewandte Chemie - International Edition, 2021, 60, 20286-20293.	7.2	141
673	Designing Advanced Aqueous Zincâ€lon Batteries: Principles, Strategies, and Perspectives. Energy and Environmental Materials, 2022, 5, 823-851.	7.3	69
674	Construction of Co–Mn Prussian Blue Analog Hollow Spheres for Efficient Aqueous Znâ€ion Batteries. Angewandte Chemie, 2021, 133, 22363-22368.	1.6	12
675	A Thin and Uniform Fluoride-Based Artificial Interphase for the Zinc Metal Anode Enabling Reversible Zn/MnO ₂ Batteries. ACS Energy Letters, 2021, 6, 3063-3071.	8.8	134
676	Construction of Co–Mn Prussian Blue Analog Hollow Spheres for Efficient Aqueous Znâ€ion Batteries. Angewandte Chemie - International Edition, 2021, 60, 22189-22194.	7.2	265
677	Toward the understanding of water-in-salt electrolytes: Individual ion activities and liquid junction potentials in highly concentrated aqueous solutions. Journal of Chemical Physics, 2021, 155, 064701.	1.2	15
678	Molecular Engineering on MoS ₂ Enables Large Interlayers and Unlocked Basal Planes for Highâ€Performance Aqueous Znâ€lon Storage. Angewandte Chemie, 2021, 133, 20448-20455.	1.6	52
679	Challenges and strategies on Zn electrodeposition for stable Zn-ion batteries. Energy Storage Materials, 2021, 39, 365-394.	9.5	139
680	Molecular Tailoring of an n/pâ€ŧype Phenothiazine Organic Scaffold for Zinc Batteries. Angewandte Chemie - International Edition, 2021, 60, 20826-20832.	7.2	77
681	Dualâ€Function Electrolyte Additive for Highly Reversible Zn Anode. Advanced Energy Materials, 2021, 11, 2102010.	10.2	246
682	Molecular Tailoring of an n/pâ€ŧype Phenothiazine Organic Scaffold for Zinc Batteries. Angewandte Chemie, 2021, 133, 20994-21000.	1.6	21
683	Reducing Water Activity by Zeolite Molecular Sieve Membrane for Longâ€Life Rechargeable Zinc Battery. Advanced Materials, 2021, 33, e2102415.	11.1	164
684	Heuristic Iron–Cobalt-Mediated Robust pH-Universal Oxygen Bifunctional Lusters for Reversible Aqueous and Flexible Solid-State Zn–Air Cells. ACS Nano, 2021, 15, 14683-14696.	7.3	51
685	Stable Zinc Metal Anodes with Textured Crystal Faces and Functional Zinc Compound Coatings. Advanced Functional Materials, 2021, 31, 2106114.	7.8	109
686	Studying the Conversion Mechanism to Broaden Cathode Options in Aqueous Zincâ€ i on Batteries. Angewandte Chemie, 2021, 133, 25318-25325.	1.6	34
687	In situ visualization of zinc plating in gel polymer electrolyte. Electrochimica Acta, 2021, 391, 138877.	2.6	6

ARTICLE IF CITATIONS Regulating Intercalation of Layered Compounds for Electrochemical Energy Storage and 688 7.8 29 Electrocatalysis. Advanced Functional Materials, 2021, 31, 2104543. Electrochemical Stability of Prospective Current Collectors in the Sulfate Electrolyte for Aqueous 1.3 Zn-Ion Battery Application. Journal of the Electrochemical Society, 2021, 168, 090560. Stabilization of Zn Metal Anode through Surface Reconstruction of a Ceriumâ€Based Conversion Film. 690 7.8 97 Advanced Functional Materials, 2021, 31, 2103227. Designing Anionâ€Type Waterâ€Free Zn²⁺ Solvation Structure for Robust Zn Metal Anode. 691 179 Angewandte Chemie - International Edition, 2021, 60, 23357-23364. Studying the Conversion Mechanism to Broaden Cathode Options in Aqueous Zincâ€Ion Batteries. 692 7.2 84 Angewandte Chemie - International Edition, 2021, 60, 25114-25121. A review of zinc-based battery from alkaline to acid. Materials Today Advances, 2021, 11, 100149. 2.5 64 Sodium vanadate/PEDOT nanocables rich with oxygen vacancies for high energy conversion efficiency 694 9.5 86 zinc ion batteries. Energy Storage Materials, 2021, 40, 209-218. Water or Anion? Uncovering the Zn²⁺ Solvation Environment in Mixed 8.8 Zn(TFSI)₂ and LiTFSI Water-in-Salt Electrolytes. ACS Energy Letters, 2021, 6, 3458-3463. Zn–Ni reaction in the alkaline zinc-air battery using a nickel-supported air electrode. Materials Today 696 2.5 4 Energy, 2021, 21, 100823. Advances in Atomic Force Microscopy: Imaging of Two- and Three-Dimensional Interfacial Water. 1.8 Frontiers in Chemistry, 2021, 9, 745446. Immunizing Aqueous Zn Batteries against Dendrite Formation and Side Reactions at Various 698 172 5.2 Temperatures via Electrolyte Additives. Small, 2021, 17, e2103195. Highly Reversible, Grainâ€Directed Zinc Deposition in Aqueous Zinc Ion Batteries. Advanced Energy 699 Materials, 2021, 11, 2100676. <i>N</i>,<i>N</i>-Dimethylacetamide-Diluted Nitrate Electrolyte for Aqueous Zn//LiMn₂O₄ Hybrid Ion Batteries. ACS Applied Materials & amp; Interfaces, 2021, 700 4.0 14 13, 46634-46643. Designing Anionâ€Type Waterâ€Free Zn²⁺ Solvation Structure for Robust Zn Metal Anode. Angewandte Chemie, 2021, 133, 23545-23552. 1.6 Recent advances in electrochemically-efficient materials for zinc-ion hybrid supercapacitors. 702 8.2 31 Renewable and Sustainable Energy Reviews, 2021, 148, 111288. pHâ€Buffer Contained Electrolyte for Selfâ€Adjusted Cathodeâ€Free Zn–MnO₂ Batteries with 196 Coexistence of Dual Mechanisms. Small Structures, 2021, 2, 2100119. Toward a Practical Zn Powder Anode: Ti₃C₂T<i>x</i> MXene as a Lattice-Match 704 7.3 137 Electrons/Ions Redistributor. ACS Nano, 2021, 15, 14631-14642. Electrodeâ€Less MnO₂â€Metal Batteries with Deposition and Stripping Chemistry. Small, 2021, 17, e2103921.

#	Article	IF	CITATIONS
706	Liquid Alloying Na–K for Sodium Metal Anodes. Journal of Physical Chemistry Letters, 2021, 12, 9321-9327.	2.1	9
707	A dendrite-free Zn@CuxZny composite anode for rechargeable aqueous batteries. Electrochimica Acta, 2021, 399, 139334.	2.6	22
708	CO ₂ Ionized Poly(vinyl alcohol) Electrolyte for CO ₂ â€Tolerant Znâ€Air Batteries. Advanced Energy Materials, 2021, 11, 2102047.	10.2	32
709	Modulated Zn Deposition by Glass Fiber Interlayers for Enhanced Cycling Stability of Zn–Br Redox Flow Batteries. ACS Sustainable Chemistry and Engineering, 2021, 9, 12242-12251.	3.2	9
710	Understanding of the electrochemical behaviors of aqueous zinc–manganese batteries: Reaction processes and failure mechanisms. Green Energy and Environment, 2022, 7, 858-899.	4.7	20
711	Effects of I ₃ ^{â^`} Electrolyte Additive on the Electrochemical Performance of Zn Anodes and Zn/MnO ₂ Batteries. Batteries and Supercaps, 2022, 5, .	2.4	20
712	Localizing concentrated electrolyte in pore geometry for highly reversible aqueous Zn metal batteries. Chemical Engineering Journal, 2021, 420, 129642.	6.6	56
713	Stabilizing Zinc Electrodes with a Vanillin Additive in Mild Aqueous Electrolytes. ACS Applied Materials & Interfaces, 2021, 13, 47650-47658.	4.0	70
714	Pre-potassiated hydrated vanadium oxide as cathode for quasi-solid-state zinc-ion battery. Chinese Chemical Letters, 2022, 33, 2663-2668.	4.8	15
715	Amorphous hydrated vanadium oxide with enlarged interlayer spacing for aqueous zinc-ion batteries. Chemical Engineering Journal, 2021, 420, 130528.	6.6	42
716	Synergistic Manipulation of Zn ²⁺ Ion Flux and Nucleation Induction Effect Enabled by 3D Hollow SiO ₂ /TiO ₂ /Carbon Fiber for Longâ€Lifespan and Dendriteâ€Free Zn–Metal Composite Anodes. Advanced Functional Materials, 2021, 31, 2106417.	7.8	74
717	Issues and rational design of aqueous electrolyte for Znâ€ion batteries. SusMat, 2021, 1, 432-447.	7.8	62
718	Al-Intercalated MnO2 cathode with reversible phase transition for aqueous Zn-Ion batteries. Chemical Engineering Journal, 2021, 422, 130375.	6.6	105
719	Recent progress of carbon nanomaterials for high-performance cathodes and anodes in aqueous zinc ion batteries. Energy Storage Materials, 2021, 41, 715-737.	9.5	93
720	Reversible zinc-based anodes enabled by zincophilic antimony engineered MXene for stable and dendrite-free aqueous zinc batteries. Energy Storage Materials, 2021, 41, 343-353.	9.5	145
721	Graphene as regulating zinc deposition layer for long-life zinc ion hybrid supercapacitors. Journal of Energy Storage, 2021, 42, 103037.	3.9	25
722	Defect modulation of ZnMn2O4 nanotube arrays as high-rate and durable cathode for flexible quasi-solid-state zinc ion battery. Chemical Engineering Journal, 2021, 422, 129890.	6.6	33
723	Modifying hydrogel electrolyte to induce zinc deposition for dendrite-free zinc metal anode. Electrochimica Acta, 2021, 393, 139094.	2.6	30

ARTICLE IF CITATIONS # A Novel Raw of Alkaline Stripped Pentavalent Vanadium Solution for High-Capacity Sodium Vanadate Aqueous Zinc Ion Battery Cathode. Journal of the Taiwan Institute of Chemical Engineers, 2021, 127, 724 2.7 8 276-282. Dendrite-free zinc anode enabled by zinc-chelating chemistry. Energy Storage Materials, 2021, 41, 515-521. Realizing wide-temperature Zn metal anodes through concurrent interface stability regulation and 726 9.5 47 solvation structure modulation. Energy Storage Materials, 2021, 42, 517-525. Modulating Zn deposition via ceramic-cellulose separator with interfacial polarization effect for 727 durable zinc anode. Nano Energy, 2021, 89, 106322. Stabilizing zinc deposition with sodium lignosulfonate as an electrolyte additive to improve the life 728 5.0 38 span of aqueous zinc-ion batteries. Journal of Colloid and Interface Science, 2021, 601, 486-494. Acetate-based †oversaturated gel electrolyte' enabling highly stable aqueous Zn-MnO2 battery. Energy 729 Storage Materials, 2021, 42, 240-251. Challenges and design strategies for high performance aqueous zinc ion batteries. Energy Storage 730 9.5 74 Materials, 2021, 42, 533-569. Structural design and interfacial characteristics endow NaTi2(PO4)3 coated zinc anode with high capacity and better cycling stability. Surface and Coatings Technology, 2021, 425, 127699. Strongly coupled tungsten oxide/carbide heterogeneous hybrid for ultrastable aqueous rockingâ€chair 732 6.6 38 zinc-ion batteries. Chemical Engineering Journal, 2021, 426, 131893. High voltage aqueous Zn/LiCoO2 hybrid battery under mildly alkaline conditions. Energy Storage 14 Materials, 2021, 43, 158-164. Cost-effective, long-term aqueous rechargeable hybrid sodium/zinc batteries based on Zn anode and 734 6.6 40 Na3MnTi(PO4)3 cathode. Chemical Engineering Journal, 2021, 425, 130459. Aqueous rechargeable zinc batteries: Challenges and opportunities. Current Opinion in 2.5 Electrochemistry, 2021, 30, 100801. Recent trends in the benign-by-design electrolytes for zinc batteries. Journal of Molecular Liquids, 736 2.3 24 2021, 343, 117606. The ultrathin prenucleation interface–stabilized metal Zn anode towardÂhigh-performance flexible Zn-batteries. Materials Today Energy, 2021, 22, 100849. 2.5 Suppressing Cu-based cathode dissolution in rechargeable aqueous zinc batteries with equilibrium 738 3.13 principles. Applied Surface Science, 2021, 568, 150948. Zinc anode stabilized by an organic-inorganic hybrid solid electrolyte interphase. Energy Storage 149 Materials, 2021, 43, 375-382. Highly efficient phthalocyanine based aqueous Zn-ion flexible-batteries. Materials Letters, 2022, 306, 740 1.35 130954. Interfacial parasitic reactions of zinc anodes in zinc ion batteries: Underestimated corrosion and 741 hydrogen evolution reactions and their suppression strategies. Journal of Energy Chemistry, 2022, 64, 7.1 128 246-262.

ARTICLE IF CITATIONS # Improving zinc anode reversibility by hydrogen bond in hybrid aqueous electrolyte. Chemical 742 6.6 61 Engineering Journal, 2022, 427, 131705. Enabling a stable and dendrite-suppressed Zn anode via facile surface roughness engineering. Journal 743 5.6 of Materials Science and Technology, 2022, 102, 272-277. 744 Secondary aqueous zinc-air batteryâ€"Electrically rechargeable., 2021, , 81-97. 3 Zn Electrodeposition by an <i>In Situ</i> Electrochemical Liquid Phase Transmission Electron 745 24 Microscope. Journal of Physical Chemistry Letters, 2021, 12, 913-918. Strategies of structural and defect engineering for high-performance rechargeable aqueous zinc-ion 746 5.2 41 batteries. Journal of Materials Chemistry A, 2021, 9, 19245-19281. Dendrite suppression by anode polishing in zinc-ion batteries. Journal of Materials Chemistry A, 2021, 9, 15355-15362. 5.2 Minimization of ion transport resistance: diblock copolymer micelle derived nitrogen-doped hierarchically porous carbon spheres for superior rate and power Zn-ion capacitors. Journal of Materials Chemistry A, 2021, 9, 8435-8443. 748 5.2 45 Research Progress and Challenge of Aqueous Zinc Ion Battery. Acta Chimica Sinica, 2021, 79, 158. 749 9 Controlling electrochemical growth of metallic zinc electrodes: Toward affordable rechargeable 750 209 4.7 energy storage systems. Science Advances, 2021, 7, . Non-concentrated aqueous electrolytes with organic solvent additives for stable zinc batteries. 273 Chemical Science, 2021, 12, 5843-5852. A high-performance free-standing Zn anode for flexible zinc-ion batteries. Nanoscale, 2021, 13, 752 2.8 30 10100-10107. Guiding uniform Zn deposition by cocoons for long-life Zn metal batteries. New Journal of Chemistry, 1.4 2021, 45, 9747-9750. A liquid metal assisted dendrite-free anode for high-performance Zn-ion batteries. Journal of 754 5.2 78 Materials Chemistry A, 2021, 9, 5597-5605. Flower-like W/WO₃as a novel cathode for aqueous zinc-ion batteries. Chemical Communications, 2021, 57, 7549-7552. 2.2 Recent progress in â€[~]water-in-saltâ€[™] and â€[~]water-in-saltâ€[™]-hybrid-electrolyte-based high voltage 756 2.527 rechargeable batteries. Sustainable Energy and Fuels, 2021, 5, 1619-1654. A cation selective separator induced cathode protective layer and regulated zinc deposition for zinc ion batteries. Journal of Materials Chemistry A, 2021, 9, 4734-4743. Recent progress in aqueous zinc-ion batteries: a deep insight into zinc metal anodes. Journal of 758 5.2105 Materials Chemistry A, 2021, 9, 6013-6028. AVS₂@N-doped carbon hybrid with strong interfacial interaction for high-performance 54 rechargeable aqueous Zn-ion batteries. Journal of Materials Chemistry C, O, , .

# 760	ARTICLE Ultra-long-life and highly reversible Zn metal anodes enabled by a desolvation and deanionization interface layer. Energy and Environmental Science, 2021, 14, 3120-3129.	IF 15.6	CITATIONS 250
761	Recent progress on pristine metal/covalent-organic frameworks and their composites for lithium–sulfur batteries. Energy and Environmental Science, 2021, 14, 1835-1853.	15.6	150
762	Bio-inspired design of an <i>in situ</i> multifunctional polymeric solid–electrolyte interphase for Zn metal anode cycling at 30 mA cm ^{â^2} and 30 mA h cm ^{â^2} . Energy and Environmental Science, 2021, 14, 5947-5957.	15.6	289
763	Stable, high-performance, dendrite-free, seawater-based aqueous batteries. Nature Communications, 2021, 12, 237.	5.8	174
765	Nano Polymorphismâ€Enabled Redox Electrodes for Rechargeable Batteries. Advanced Materials, 2021, 33, e2004920.	11.1	23
766	Recent Advances in Polymer Electrolytes for Zinc Ion Batteries: Mechanisms, Properties, and Perspectives. Advanced Energy Materials, 2020, 10, 1903977.	10.2	309
767	VO ₂ Nanostructures for Batteries and Supercapacitors: A Review. Small, 2021, 17, e2006651.	5.2	82
768	A large format aqueous rechargeable LiMn2O4/Zn battery with high energy density and long cycle life. Science China Materials, 2021, 64, 783-788.	3.5	12
769	Appropriately hydrophilic/hydrophobic cathode enables high-performance aqueous zinc-ion batteries. Energy Storage Materials, 2020, 30, 337-345.	9.5	92
770	New Concepts in Electrolytes. Chemical Reviews, 2020, 120, 6783-6819.	23.0	554
771	Investigation of a Biomass Hydrogel Electrolyte Naturally Stabilizing Cathodes for Zinc-Ion Batteries. ACS Applied Materials & Interfaces, 2021, 13, 745-754.	4.0	64
772	Pursuit of reversible Zn electrochemistry: a time-honored challenge towards low-cost and green energy storage. NPG Asia Materials, 2020, 12, .	3.8	129
773	Roadmap for advanced aqueous batteries: From design of materials to applications. Science Advances, 2020, 6, eaba4098.	4.7	1,069
774	Highly Reversible Plating/Stripping of Porous Zinc Anodes for Multivalent Zinc Batteries. Journal of the Electrochemical Society, 2020, 167, 140520.	1.3	14
775	Basal-Plane Orientation of Zn Electrodeposits Induced by Loss of Free Water in Concentrated Aqueous Solutions. Journal of the Electrochemical Society, 2020, 167, 162511.	1.3	3
776	A Quasi-gel SiO ₂ /Sodium Alginate (SA) Composite Electrolyte for Long-life Zinc-manganese Aqueous Batteries. Wuji Cailiao Xuebao/Journal of Inorganic Materials, 2020, 35, 909.	0.6	4
777	A durable MXene-based zinc ion hybrid supercapacitor with sulfated polysaccharide reinforced hydrogel/electrolyte. Journal of Materials Chemistry A, 2021, 9, 23941-23954.	5.2	49
778	Recent progress in tackling Zn anode challenges for Zn ion batteries. Journal of Materials Chemistry A, 2021, 9, 25750-25772.	5.2	29

ARTICLE IF CITATIONS Interfacial Manipulation via In Situ Grown ZnSe Cultivator toward Highly Reversible Zn Metal Anodes. 779 11.1 212 Advanced Materials, 2021, 33, e2105951. Categorizing wearable batteries: Unidirectional and omnidirectional deformable batteries. Matter, 5.0 44 2021, 4, 3146-3160. 781 MXene for aqueous zinc-based energy storage devices. Functional Materials Letters, 2021, 14, . 0.7 15 Hierarchical Kâ€Birnessiteâ€MnO₂ Carbon Framework for Highâ€Energyâ€Density and Durable 5.2 Aqueous Zincâ€lon Battery. Small, 2021, 17, e2104557. Recently advances in flexible zinc ion batteries. Journal of Semiconductors, 2021, 42, 101603. 783 2.0 20 Highly reversible zinc-ion battery enabled by suppressing vanadium dissolution through inorganic Zn2+ conductor electrolyte. Nano Energy, 2021, 90, 106621. 784 8.2 Ceria-Spiderweb Nanosheets Unlock the Energy-Storage Properties in the "Sleeping―Triplite 785 2.5 2 (Mn2(PO4)F). ACS Applied Energy Materials, 0, , . High performance Zn-I2 battery with acetonitrile electrolyte working at low temperature. Nano 5.8 Research, 2022, 15, 3170-3177. Interfacial thermodynamics-inspired electrolyte strategy to regulate output voltage and energy 787 4.3 16 density of battery chemistry. Science Bulletin, 2022, 67, 626-635. Interfacial Engineering Regulates Deposition Kinetics of Zinc Metal Anodes. ACS Applied Energy 788 2.5 Materials, 2021, 4, 11743-11751. \hat{I}^3 -Al2O3 coating layer confining zinc dendrite growth for high stability aqueous rechargeable zinc-ion 789 2.2 21 batteries. Surface and Coatings Technology, 2021, 427, 127813. Flexible Quasiâ€Solidâ€State Highâ€Performance Aqueous Zinc Ion Hybrid Supercapacitor with Waterâ€inâ€Salt Hydrogel Electrolyte and N/Pâ€Dual Doped Graphene Hydrogel Electrodes. Advanced Sustainable 790 2.7 26 Systems, 2022, 6, 2100191. Intrinsic voltage plateau of a Nb2CTx MXene cathode in an aqueous electrolyte induced by 791 11.7 74 high-voltage scanning. Joule, 2021, 5, 2993-3005. Electrochemically Activated Cu_{2–}<i>_x</i>Te as an Ultraflat Discharge Plateau, Low Reaction Potential, and Stable Anode Material for Aqueous Znâ€Ion Half and Full Batteries. 792 10.2 Advanced Energy Materials, 2021, 11, 2102607. Smallâ€Dipoleâ€Moleculeâ€Containing Electrolytes for Highâ€Voltage Aqueous Rechargeable Batteries. 793 11.1 58 Advanced Materials, 2022, 34, e2106180. 2D Silicene Nanosheets for High-Performance Zinc-Ion Hybrid Capacitor Application. ACS Nano, 2021, 15, 794 16533-16541. Unlocking the Allometric Growth and Dissolution of Zn Anodes at Initial Nucleation and an Early 795 4.0 16 Stage with Atomic Force Microscopy. ACS Applied Materials & amp; Interfaces, 2021, 13, 53227-53234. Encapsulation of Metallic Zn in a Hybrid MXene/Graphene Aerogel as a Stable Zn Anode for Foldable 11.1 Znâ€lon Batteries. Advanced Materials, 2022, 34, e2106897.

#	Article	IF	CITATIONS
797	A Dynamic and Selfâ€Adapting Interface Coating for Stable Znâ€Metal Anodes. Advanced Materials, 2022, 34, e2105133.	11.1	167
798	Supramolecular-induced 2.40ÂV 130°C working-temperature-range supercapacitor aqueous electrolyte of lithium bis(trifluoromethanesulfonyl) imide in dimethyl sulfoxide-water. Journal of Colloid and Interface Science, 2022, 608, 1162-1172.	5.0	12
799	Addressing thermodynamic Instability of Zn anode: classical and recent advancements. Energy Storage Materials, 2022, 44, 206-230.	9.5	88
800	Unveiling the Reversibility and Stability Origin of the Aqueous V ₂ O ₅ –Zn Batteries with a ZnCl ₂ "Waterâ€inâ€Salt―Electrolyte. Advanced Science, 2021, 8, e2102053.	5.6	60
801	High-concentration dual-complex electrolyte enabled a neutral aqueous zinc-manganese electrolytic battery with superior stability. Chemical Engineering Journal, 2022, 430, 133058.	6.6	17
802	Quantifying and Suppressing Proton Intercalation to Enable Highâ€Voltage Znâ€Ion Batteries. Advanced Energy Materials, 2021, 11, 2102016.	10.2	48
803	Polysulfone grafted with anthraquinone-hydroanthraquinone redox as a flexible membrane electrode for aqueous batteries. Polymer, 2021, 234, 124245.	1.8	8
804	Tridentate citrate chelation towards stable fiber zinc-polypyrrole battery with hybrid mechanism. Energy Storage Materials, 2021, 43, 585-594.	9.5	39
805	Flexible Wide-Temperature Zinc-Ion Battery Enabled by an Ethylene Glycol-Based Organohydrogel Electrolyte. ACS Applied Energy Materials, 2021, 4, 12718-12727.	2.5	45
806	Engineering zincophilic sites on Zn surface via plant extract additives for dendrite-free Zn anode. Energy Storage Materials, 2022, 44, 408-415.	9.5	95
807	A Highly Reversible Zinc Anode for Rechargeable Aqueous Batteries. ACS Applied Materials & Interfaces, 2021, 13, 52659-52669.	4.0	31
808	Cotton-derived cellulose film as a dendrite-inhibiting separator to stabilize the zinc metal anode of aqueous zinc ion batteries. Energy Storage Materials, 2022, 44, 57-65.	9.5	211
809	Roadmap on the protective strategies of zinc anodes in aqueous electrolyte. Energy Storage Materials, 2022, 44, 104-135.	9.5	94
810	Zinc oxide anode modified with zeolite imidazole structure achieve stable circulation for zinc–nickel secondary battery. Journal of Power Sources, 2022, 517, 230696.	4.0	13
811	Transition metal atoms M (M = Mn, Fe, Cu, Zn) doped nickel-cobalt sulfides on the Ni foam for efficient oxygen evolution reaction and urea oxidation reaction. Journal of Alloys and Compounds, 2022, 893, 162269.	2.8	36
812	Long cycle life aqueous rechargeable battery Zn/Vanadium hexacyanoferrate with H+/Zn2+ coinsertion for high capacity. Chemical Engineering Journal, 2022, 430, 132864.	6.6	37
813	Rechargeable Zn-air batteries: Recent trends and future perspectives. Renewable and Sustainable Energy Reviews, 2022, 154, 111771.	8.2	126
814	Insight into the electrolyte strategies for aqueous zinc ion batteries. Coordination Chemistry Reviews, 2022, 452, 214297.	9.5	92

#	Article	IF	CITATIONS
815	Robust and flexible polymer/MXene-derived two dimensional TiO2 hybrid gel electrolyte for dendrite-free solid-state zinc-ion batteries. Chemical Engineering Journal, 2022, 430, 132748.	6.6	31
816	Application of expanded graphite-based materials for rechargeable batteries beyond lithium-ions. Nanoscale, 2021, 13, 19291-19305.	2.8	29
818	Rechargeable aqueous Zn-based energy storage devices. Joule, 2021, 5, 2845-2903.	11.7	201
819	Suppressing dendrite growth and side reactions on Zn metal anode via guiding interfacial anion/cation/H2O distribution by artificial multi-functional interface layer. Energy Storage Materials, 2022, 44, 452-460.	9.5	60
820	A perspective of ZnCl2 electrolytes: The physical and electrochemical properties. EScience, 2021, 1, 99-107.	25.0	100
821	Reconstructing Vanadium Oxide with Anisotropic Pathways for a Durable and Fast Aqueous K-Ion Battery. ACS Nano, 2021, 15, 17717-17728.	7.3	30
822	Electrolyte engineering enables stable Zn-Ion deposition for long-cycling life aqueous Zn-ion batteries. Energy Storage Materials, 2022, 45, 1084-1091.	9.5	61
823	Ultra-stable flexible Zn-ion capacitor with pseudocapacitive 2D layered niobium oxyphosphides. Energy Storage Materials, 2022, 45, 1040-1051.	9.5	30
824	Achieving both high reversible and stable Zn anode by a practical glucose electrolyte additive toward high-performance Zn-ion batteries. Rare Metals, 2022, 41, 356-360.	3.6	67
825	Potential-Dependent Passivation of Zinc Metal in a Sulfate-Based Aqueous Electrolyte. Langmuir, 2021, 37, 13218-13224.	1.6	5
826	Exploration of hydrated lithium manganese oxide with a nanoribbon structure as cathodes in aqueous lithium ion and magnesium ion batteries. Inorganic Chemistry Frontiers, 2022, 9, 485-493.	3.0	11
827	Flexible one-dimensional Zn-based electrochemical energy storage devices: recent progress and future perspectives. Journal of Materials Chemistry A, 2021, 9, 26573-26602.	5.2	7
828	A Zn ion hybrid capacitor with enhanced energy density for anode-free. Journal of Power Sources, 2022, 518, 230740.	4.0	6
829	Graphene quantum dots enable dendrite-free zinc ion battery. Nano Energy, 2022, 92, 106752.	8.2	98
830	Advances and strategies in electrolyte regulation for aqueous zinc-based batteries. Coordination Chemistry Reviews, 2022, 452, 214299.	9.5	46
831	Flexible Zinc–Air Battery with High Energy Efficiency and Freezing Tolerance Enabled by DMSOâ€Based Organohydrogel Electrolyte. Small Methods, 2022, 6, e2101043.	4.6	49
832	In situ separator modification via CVD-derived N-doped carbon for highly reversible Zn metal anodes. Nano Research, 2022, 15, 9785-9791.	5.8	36
833	Dual redox groups enable organic cathode material with a high capacity for aqueous zinc-organic batteries. Electrochimica Acta, 2022, 404, 139620.	2.6	21

ARTICLE IF CITATIONS # High-Efficiency Zinc-Metal Anode Enabled by Liquefied Gas Electrolytes. ACS Energy Letters, 2021, 6, 834 8.8 21 4426-4430. Stabilizing zinc anode via a chelation and desolvation electrolyte additive., 2022, 1, 100007. 83 Hierarchical Atomic Layer Deposited V₂O₅ on 3D Printed Nanocarbon 836 5.229 Electrodes for Highâ€Performance Aqueous Zincâ€Ion Batteries. Small, 2022, 18, e2105572. Electrolyte Dynamics Engineering for Flexible Fiber-Shaped Aqueous Zinc-Ion Battery with Ultralong Stabilitý. Nano Letters, 2021, 21, 9651-9660. Revealing the Twoâ€Dimensional Surface Diffusion Mechanism for Zinc Dendrite Formation on Zinc 838 5.2 66 Anode. Small, 2022, 18, e2104148. Stabilizing Interface pH by Nâ€Modified Graphdiyne for Dendriteâ€Free and Highâ€Rate Aqueous Znâ€Ion 1.6 24 Batteries. Angewandte Chemie, 2022, 134, . Horizontally arranged zinc platelet electrodeposits modulated by fluorinated covalent organic 840 framework film for high-rate and durable aqueous zinc ion batteries. Nature Communications, 2021, 5.8 369 12,6606. Directing the Preferred Crystal Orientation by a Cellulose Acetate/Graphene Oxide Composite 841 2.5 Separator for Dendrite-Frée Zn-Metal Anodes. ACS Applied Energy Materials, 2021, 4, 14599-14607. Dendrite-free and anti-corrosion Zn metal anode enabled by an artificial layer for high-performance 842 4.8 27 Zn ion capacitor. Chinese Chemical Letters, 2022, 33, 3936-3940. Cyclodextrin polymers as effective water-soluble binder with enhanced cycling performance for 843 1.2 Li2ZnTi3O8 anode in lithium-ion batteries. Ionics, 2022, 28, 669-682. Energy storage mechanism and electrochemical performance of Cu2O/rGO as advanced cathode for 844 2.8 15 aqueous zinc ion batteries. Journal of Alloys and Compounds, 2022, 895, 162653. Stabilizing Interface pH by Nâ€Modified Graphdiyne for Dendriteâ€Free and Highâ€Rate Aqueous Znâ€Ion 845 124 Batteries. Angewandte Chemie - International Edition, 2022, 61, . Enabling high-energy-density aqueous batteries with hydrogen bond-anchored electrolytes. Matter, 846 5.0 98 2022, 5, 162-179. Controlled Deposition of Zincâ€Metal Anodes via Selectively Polarized Ferroelectric Polymers. 847 11.1 Advanced Materials, 2022, 34, e2106937. Recent Advances in Electrolytes for "Beyond Aqueous―Zincâ€Ion Batteries. Advanced Materials, 2022, 34, 848 11.1 167 e2106409. Electrochemistry of Zinc Electrodes in Acetoneâ \in Zinc Halide Electrolytes. ChemistrySelect, 2021, 6, 849 12663-12665. A non-flammable hydrous organic electrolyte for sustainable zinc batteries. Nature Sustainability, 850 11.5 277 2022, 5, 205-213. Interfacial Engineering Strategy for High-Performance Zn Metal Anodes. Nano-Micro Letters, 2022, 14, 14.4 177

#	Article	IF	CITATIONS
852	The application of transition metal sulfide Ni ₃ S ₄ /CNFs in rechargeable Ni–Zn batteries. New Journal of Chemistry, 2021, 45, 22491-22496.	1.4	6
853	Stable static zinc-iodine redox battery constructed with graphene quantum dots coated graphite felt. Journal of Power Sources, 2022, 520, 230861.	4.0	6
854	In-situ construction of a hydroxide-based solid electrolyte interphase for robust zinc anodes. Chemical Engineering Journal, 2022, 431, 134076.	6.6	55
855	Electrolyte/electrode interfacial electrochemical behaviors and optimization strategies in aqueous zinc-ion batteries. Energy Storage Materials, 2022, 45, 618-646.	9.5	125
856	Regulating solvation structure to stabilize zinc anode by fastening the free water molecules with an inorganic colloidal electrolyte. Nano Energy, 2022, 93, 106839.	8.2	88
857	Layered zirconium phosphate-based artificial solid electrolyte interface with zinc ion channels towards dendrite-free Zn metal anodes. Chemical Engineering Journal, 2022, 432, 134227.	6.6	42
858	Aqueous zinc batteries using N-containing organic cathodes with Zn2+ and H+ Co-uptake. Chemical Engineering Journal, 2022, 431, 134253.	6.6	37
859	A new Li2Mn3O7 cathode for aqueous Zn-Ion battery with high specific capacity and long cycle life based on the realization of the reversible Li+ and H+ co-extraction/insertion. Chemical Engineering Journal, 2022, 433, 134507.	6.6	13
860	Current status and challenges for practical flowless Zn–Br batteries. Current Opinion in Electrochemistry, 2022, 32, 100898.	2.5	12
861	Reversible K _{0.54} V ₂ O ₅ Nanorods for High-Performance Aqueous Zinc-Ion Batteries. ACS Applied Energy Materials, 2022, 5, 1656-1661.	2.5	14
862	Real-Time Reconstructed Interphase Enables Reversible Aqueous Zinc Battery Chemistries. SSRN Electronic Journal, 0, , .	0.4	0
863	A Selfâ€Regulated Interface toward Highly Reversible Aqueous Zinc Batteries. Advanced Energy Materials, 2022, 12, .	10.2	164
864	Antiâ€Corrosion for Reversible Zinc Anode via a Hydrophobic Interface in Aqueous Zinc Batteries. Advanced Energy Materials, 2022, 12, .	10.2	92
865	Aluminum-ion intercalation and reduced graphene oxide wrapping enable the electrochemical properties of hydrated V2O5 for Zn-ion storage. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 641, 128473.	2.3	13
866	A dendrite-free anode for stable aqueous rechargeable zinc-ion batteries. Journal of Industrial and Engineering Chemistry, 2022, 108, 321-327.	2.9	12
867	A renewable biomass-based lignin film as an effective protective layer to stabilize zinc metal anodes for high-performance zinc–iodine batteries. Journal of Materials Chemistry A, 2022, 10, 4845-4857.	5.2	47
868	Preparation and Electrochemical Performance of Three-Dimensional Vertically Aligned Graphene by Unidirectional Freezing Method. Molecules, 2022, 27, 376.	1.7	7
869	Reversible aqueous Zn battery anode enabled by a stable complexation adsorbent interface. EcoMat, 2022, 4, .	6.8	23

#	Article	IF	CITATIONS
870	Highly stable Co-doped MnO2 nanoarrays as enhanced cathode materials for aqueous zinc-ion batteries. , 2022, 1, .		1
871	Stable Zn Metal Anodes with Limited Zn-Doping in MgF2 Interphase for Fast and Uniformly Ionic Flux. Nano-Micro Letters, 2022, 14, 46.	14.4	23
873	Stabilizing Layered Structure in Aqueous Electrolyte via Dynamic Water Intercalation/Deintercalation. Advanced Materials, 2022, 34, e2108541.	11.1	22
874	Zinc Anode for Mild Aqueous Zinc-Ion Batteries: Challenges, Strategies, and Perspectives. Nano-Micro Letters, 2022, 14, 42.	14.4	207
875	Rechargeable aqueous Zn-LiMn2O4 hybrid batteries with high performance and safety for energy storage, 2022, 45, 103744.	3.9	11
876	Rocking-chair proton battery based on a low-cost "water in salt―electrolyte. Chemical Communications, 2022, 58, 1550-1553.	2.2	16
877	A dual conducting network corbelled hydrated vanadium pentoxide cathode for high-rate aqueous zinc-ion batteries. Nanoscale, 2022, 14, 1008-1013.	2.8	10
878	A MOFâ€Derivative Decorated Hierarchical Porous Host Enabling Ultrahigh Rates and Superior Longâ€Term Cycling of Dendriteâ€Free Zn Metal Anodes. Advanced Materials, 2022, 34, e2110047.	11.1	114
879	Strategies of regulating Zn ²⁺ solvation structures for dendrite-free and side reaction-suppressed zinc-ion batteries. Energy and Environmental Science, 2022, 15, 499-528.	15.6	313
880	Electrochemically induced phase transition in a nanoflower vanadium tetrasulfide cathode for high-performance zinc-ion batteries. Journal of Energy Chemistry, 2022, 69, 356-362.	7.1	56
881	Efficient Zn Metal Anode Enabled by O,N-Codoped Carbon Microflowers. Nano Letters, 2022, 22, 1350-1357.	4.5	63
882	Aluminum-copper alloy anode materials for high-energy aqueous aluminum batteries. Nature Communications, 2022, 13, 576.	5.8	61
883	Highâ€Capacity and Longâ€Life Zinc Electrodeposition Enabled by a Selfâ€Healable and Desolvation Shield for Aqueous Zincâ€ion Batteries. Angewandte Chemie - International Edition, 2022, 61, .	7.2	80
884	Toward Hydrogenâ€Free and Dendriteâ€Free Aqueous Zinc Batteries: Formation of Zincophilic Protective Layer on Zn Anodes. Advanced Science, 2022, 9, e2104866.	5.6	118
885	Insight on Organic Molecules in Aqueous Znâ€lon Batteries with an Emphasis on the Zn Anode Regulation. Advanced Energy Materials, 2022, 12, .	10.2	208
886	Highâ€Capacity and Longâ€Life Zinc Electrodeposition Enabled by a Selfâ€Healable and Desolvation Shield for Aqueous Zincâ€Ion Batteries. Angewandte Chemie, 2022, 134, e202114789.	1.6	8
887	Ultrafast Metal Electrodeposition Revealed by In Situ Optical Imaging and Theoretical Modeling towards Fast harging Zn Battery Chemistry. Angewandte Chemie, 2022, 134, .	1.6	13
888	Understanding and Performance of the Zinc Anode Cycling in Aqueous Zincâ€lon Batteries and a Roadmap for the Future. Batteries and Supercaps, 2022, 5, .	2.4	27

#	Article	IF	CITATIONS
889	Modulating residual ammonium in MnO ₂ for high-rate aqueous zinc-ion batteries. Nanoscale, 2022, 14, 3242-3249.	2.8	11
890	Ultrafast Metal Electrodeposition Revealed by In Situ Optical Imaging and Theoretical Modeling towards Fastâ€Charging Zn Battery Chemistry. Angewandte Chemie - International Edition, 2022, 61, .	7.2	82
891	Host-guest supramolecular interaction behavior at the interface between anode and electrolyte for long life Zn anode. Journal of Energy Chemistry, 2022, 69, 237-243.	7.1	34
892	Highly enhanced reversibility of a Zn anode by in-situ texturing. Energy Storage Materials, 2022, 47, 98-104.	9.5	56
893	Tuning electrolyte solvation structures to enable stable aqueous Al/MnO2 battery. Energy Storage Materials, 2022, 47, 113-121.	9.5	16
894	Highly Efficient, Dendriteâ€Free Zinc Electrodeposition in Mild Aqueous Zincâ€Ion Batteries through Indiumâ€Based Substrates. Batteries and Supercaps, 2022, 5, .	2.4	13
895	Regulating Interfacial Ion Migration via Wool Keratin Mediated Biogel Electrolyte toward Robust Flexible Znâ€lon Batteries. Small, 2022, 18, e2107163.	5.2	30
896	A highly stable 1.3ÂV organic cathode for aqueous zinc batteries designed in-situ by solid-state electrooxidation. Energy Storage Materials, 2022, 46, 129-137.	9.5	11
897	Bonding interaction regulation in hydrogel electrolyte enable dendrite-free aqueous zinc-ion batteries from â^'20 to 60°C. Chemical Engineering Journal, 2022, 434, 134646.	6.6	75
898	Unraveling dynamical behaviors of zinc metal electrodes in aqueous electrolytes through an operando study. Energy Storage Materials, 2022, 46, 243-251.	9.5	31
899	Thiophene functionalized porphyrin complexes as novel bipolar organic cathodes with high energy density and long cycle life. Energy Storage Materials, 2022, 46, 252-258.	9.5	36
900	In-situ regulation of zinc metal surface for Dendrite-Free Zinc-ion hybrid supercapacitors. Journal of Colloid and Interface Science, 2022, 614, 205-213.	5.0	16
901	Towards Understanding the Corrosion Behavior of Zincâ€Metal Anode in Aqueous Systems: From Fundamentals to Strategies. Batteries and Supercaps, 2022, 5, .	2.4	44
902	Reshaping the electrolyte structure and interface chemistry for stable aqueous zinc batteries. Energy Storage Materials, 2022, 47, 203-210.	9.5	166
903	Dendriteâ€Free Zinc Deposition Induced by Zincâ€Phytate Coating for Longâ€Life Aqueous Zinc Batteries. Batteries and Supercaps, 2022, 5, .	2.4	7
904	Tailoring Local Electrolyte Solvation Structure via a Mesoporous Molecular Sieve for Dendriteâ€Free Zinc Batteries. Advanced Functional Materials, 2022, 32, .	7.8	56
905	Site-Selective Adsorption on ZnF ₂ /Ag Coated Zn for Advanced Aqueous Zinc–Metal Batteries at Low Temperature. Nano Letters, 2022, 22, 1750-1758.	4.5	95
906	Highly Reversible and Anticorrosive Zn Anode Enabled by a Ag Nanowires Layer. ACS Applied Materials & Interfaces, 2022, 14, 9097-9105.	4.0	19

ARTICLE IF CITATIONS Engineering the Proton-Substituted HNaV₆O₁₆·4H₂O Cathode for 907 3.2 11 the Ultrafast-Charging Zinc Storage. ACS Sustainable Chemistry and Engineering, 2022, 10, 2441-2449. A highly reversible, dendrite-free zinc metal anodes enabled by a dual-layered interface. Energy 908 Storage Materials, 2022, 47, 491-499. Hydrogen Bondâ€Functionalized Massive Solvation Modules Stabilizing Bilateral Interfaces. Advanced 909 7.8 82 Functional Materials, 2022, 32, . Electrochemical interface reconstruction to eliminate surface heterogeneity for dendrite-free zinc 39 anodes. Energy Storage Materials, 2022, 47, 319-326. Revisiting recent and traditional strategies for surface protection of Zn metal anode. Journal of 911 4.0 41 Power Sources, 2022, 525, 231122. Reconstructed nanoclay-based membranes with nanofluidic channels for ultra-stable rechargeable Zn/MnO2 batteries. Journal of Power Sources, 2022, 526, 231128. 4.0 A Versatile Cation Additive Enabled Highly Reversible Zinc Metal Anode. Advanced Energy Materials, 913 10.2 95 2022, 12, . <scp>Improvedâ€quality</scp> graphene film decorated with ultrafine <scp> MnO ₂ </scp> nanoparticles as a multifunctional current collector for <scp>highâ€reversibility</scp> zincâ€ion 914 batteries. International Journal of Energy Research, 2022, 46, 6817-6832. Electrolyte Salts and Additives Regulation Enables High Performance Aqueous Zinc Ion Batteries: A 915 5.2 69 Mini Review. Small, 2022, 18, e2104640. Modulated bonding interaction in propanediol electrolytes toward stable aqueous zinc-ion batteries. 3.5 Science China Materials, 2022, 65, 1156-1164. MXenes and their derivatives for advanced aqueous rechargeable batteries. Materials Today, 2022, 52, 917 8.3 39 225-249. Engineering Interlayer Space of Vanadium Oxide by Pyridinesulfonic Acid-Assisted Intercalation of Polypyrrole Enables Enhanced Aqueous Zinc-Ion Storage. ACS Applied Materials & amp; Interfaces, 2021, 4.0 13, 61154-61165. Novel electrolyte additive of graphene oxide for prolonging the lifespan of zinc-ion batteries. 919 1.3 10 Nanotechnology, 2022, 33, 125401. The Stable 3D Zn Electrode for High-Power Density Zn Metal Batteries. Journal of the Electrochemical 1.3 Society, 2021, 168, 120529. Electrochemical Interface Reconstruction to Eliminate Surface Heterogeneity for Dendrite-Free Zinc 921 0.4 0 Anodes. SSRN Electronic Journal, 0, , . Reconstructed Nanoclay-Based Membranes with Nanofluidic Channels for Ultra-Stable Zinc-Ion Batteries. SSRN Electronic Journal, 0, , . Hierarchical-Porous Separator with Excellent Isotropic Modulus Enabling Homogeneous Zn2+ Flux 923 0.4 0 for Stable Aqueous Zinc Battery. SSRN Electronic Journal, 0, , . A Static Three-Chamber Zinc-Polyiodide Redox Battery for Decoupling of Active Anions and Cations. 924 0.4 SSRN Electronic Journal, 0, , .

#	Article	IF	CITATIONS
925	An anticorrosive zinc metal anode with ultra-long cycle life over one year. Energy and Environmental Science, 2022, 15, 1638-1646.	15.6	107
926	A Novel Mn2+-Additive Free Zn/Mno2 Battery with 2.4 V Voltage Window and Enhanced Stability. SSRN Electronic Journal, 0, , .	0.4	Ο
927	Historical development and novel concepts on electrolytes for aqueous rechargeable batteries. Energy and Environmental Science, 2022, 15, 1805-1839.	15.6	71
928	Highly reversible zinc metal anodes enabled by a three-dimensional silver host for aqueous batteries. Journal of Materials Chemistry A, 2022, 10, 10043-10050.	5.2	25
929	Navigating fast and uniform zinc deposition <i>via</i> a versatile metal–organic complex interphase. Energy and Environmental Science, 2022, 15, 1872-1881.	15.6	145
930	Intercalation of organics into layered structures enables superior interface compatibility and fast charge diffusion for dendrite-free Zn anodes. Energy and Environmental Science, 2022, 15, 1682-1693.	15.6	105
931	Boosting the Cycling Stability of Aqueous Zinc-Ion Batteries Through Nanofibrous Coating of Bead-Like Mnox Cathode. SSRN Electronic Journal, 0, , .	0.4	0
932	Metal organic framework-based nanostructure materials: applications for non-lithium ion battery electrodes. CrystEngComm, 2022, 24, 2925-2947.	1.3	18
933	EQCM Study on Electrochemical Zinc Deposition-Dissolution in Water-In-Salt Electrolyte. Electrochemistry, 2022, , .	0.6	1
934	Initiating a high-temperature zinc ion battery through a triazolium-based ionic liquid. RSC Advances, 2022, 12, 8394-8403.	1.7	10
935	Flame Normalizing-Induced Robust and Oriented Metallic Layer for Stable Zn Anode. SSRN Electronic Journal, 0, , .	0.4	0
936	A Lewis acidity adjustable organic ammonium cation derived robust protecting shield for stable aqueous zinc-ion batteries by inhibiting the tip effect. Materials Chemistry Frontiers, 2022, 6, 901-907.	3.2	13
937	A Universal Additive Strategy to Reshape Electrolyte Solvation Structure toward Reversible Zn Storage. Advanced Energy Materials, 2022, 12, .	10.2	155
938	An automated framework for high-throughput predictions of NMR chemical shifts within liquid solutions. Nature Computational Science, 2022, 2, 112-122.	3.8	4
939	Electrolyte Engineering Enables High Performance Zincâ€ion Batteries. Small, 2022, 18, e2107033.	5.2	118
940	A perspective on highâ€entropy twoâ€dimensional materials. SusMat, 2022, 2, 65-75.	7.8	19
941	Nanoâ€scale <scp>BN</scp> interface for ultraâ€stable and wide temperature range tolerable Zn anode. EcoMat, 2022, 4, .	6.8	27
942	Recent advances and future perspectives for aqueous zinc-ion capacitors. Materials Futures, 2022, 1, 022101.	3.1	34

#	Article	IF	CITATIONS
943	In Situ Self-Anchored Growth of MnO ₂ Nanosheet Arrays in Polyaniline-Derived Carbon Nanotubes with Enhanced Stability for Zn–MnO ₂ Batteries. ACS Applied Energy Materials, 2022, 5, 3854-3862.	2.5	15
944	Electroactive ZnO: Mechanisms, Conductivity, and Advances in Zn Alkaline Battery Cycling. Advanced Energy Materials, 2022, 12, .	10.2	20
945	Low Currentâ€Density Stable Zincâ€Metal Batteries Via Aqueous/Organic Hybrid Electrolyte. Batteries and Supercaps, 2022, 5, .	2.4	42
946	Sustainable Phytic Acid–Zinc Anticorrosion Interface for Highly Reversible Zinc Metal Anodes. ACS Applied Materials & Interfaces, 2022, 14, 10419-10427.	4.0	27
947	Water Dynamics and Structure of Highly Concentrated LiCl Solutions Investigated Using Ultrafast Infrared Spectroscopy. Journal of the American Chemical Society, 2022, 144, 4233-4243.	6.6	23
948	Unraveling the Role of Nitrogenâ€Doped Carbon Nanowires Incorporated with <scp>MnO₂</scp> Nanosheets as High Performance Cathode for Zincâ€lon Batteries. Energy and Environmental Materials, 2023, 6, .	7.3	27
949	An efficient and versatile biopolishing strategy to construct high performance zinc anode. Nano Research, 2022, 15, 5081-5088.	5.8	5
950	Robust nitrogen/selenium engineered MXene/ZnSe hierarchical multifunctional interfaces for dendrite-free zinc-metal batteries. Energy Storage Materials, 2022, 49, 122-134.	9.5	57
951	Diminishing Interfacial Turbulence by Colloidâ€Polymer Electrolyte to Stabilize Zinc Ion Flux for Deep ycling Zn Metal Batteries. Advanced Materials, 2022, 34, e2200131.	11.1	54
952	Solid Electrolyte Interface Regulated by Solventâ€inâ€Water Electrolyte Enables Highâ€Voltage and Stable Aqueous Mgâ€MnO ₂ Batteries. Advanced Energy Materials, 2022, 12, .	10.2	14
953	A superiorâ€kinetics rechargeable zincâ€air battery derived from efficient electroseparation of zinc, lead and copper in concentrated solutions. ChemSusChem, 2022, , .	3.6	5
954	A Comprehensive Understanding of Interlayer Engineering in Layered Manganese and Vanadium Cathodes for Aqueous Znâ€lon Batteries. Chemistry - an Asian Journal, 2022, 17, .	1.7	8
955	Suppressing vanadium dissolution by modulating aqueous electrolyte structure for ultralong lifespan zinc ion batteries at low current density. Energy Storage Materials, 2022, 49, 93-101.	9.5	51
956	Confining Sn nanoparticles in interconnected N-doped hollow carbon spheres as hierarchical zincophilic fibers for dendrite-free Zn metal anodes. Science Advances, 2022, 8, eabm5766.	4.7	150
957	Surface and Interface Engineering of Zn Anodes in Aqueous Rechargeable Znâ€Ion Batteries. Small, 2022, 18, e2200006.	5.2	105
958	Artificial solid electrolyte interface layer based on sodium titanate hollow microspheres assembled by nanotubes to stabilize zinc metal electrodes. Journal of Energy Chemistry, 2022, 71, 539-546.	7.1	15
959	Ultrathin and super-tough membrane for anti-dendrite separator in aqueous zinc-ion batteries. Cell Reports Physical Science, 2022, 3, 100824.	2.8	59
960	From room temperature to harsh temperature applications: Fundamentals and perspectives on electrolytes in zinc metal batteries. Science Advances, 2022, 8, eabn5097.	4.7	164

#	Article	IF	CITATIONS
961	Nonâ€Electrode Components for Rechargeable Aqueous Zinc Batteries: Electrolytes, Solidâ€Electrolyteâ€Interphase, Current Collectors, Binders, and Separators. Advanced Materials, 2022, 34, e2108206.	11.1	58
962	Eutectic Electrolytes Chemistry for Rechargeable Zn Batteries. Small, 2022, 18, e2200550.	5.2	40
963	Multiscale Simulation of Irregular Shape Evolution during the Initial Stage of Zn Electrodeposition on a Negative Electrode Surface. Journal of Physical Chemistry C, 2022, 126, 5224-5232.	1.5	2
964	Regulating the Electrolyte Solvation Structure Enables Ultralong Lifespan Vanadiumâ€Based Cathodes with Excellent Lowâ€Temperature Performance. Advanced Functional Materials, 2022, 32, .	7.8	56
965	Longâ€Life Zn Anode Enabled by Low Volume Concentration of a Benign Electrolyte Additive. Advanced Functional Materials, 2022, 32, .	7.8	60
966	High-surface-area titanium nitride nanosheets as zinc anode coating for dendrite-free rechargeable aqueous batteries. Science China Materials, 2022, 65, 1771-1778.	3.5	21
967	Nitrogenâ€Doped Carbon Fibers Embedded with Zincophilic Cu Nanoboxes for Stable Znâ€Metal Anodes. Advanced Materials, 2022, 34, e2200342.	11.1	149
968	Rapid Electrochemical Activation of V ₂ O ₃ @C Cathode for Highâ€Performance Zincâ€Ion Batteries in Waterâ€inâ€Salt Electrolyte. ChemSusChem, 2022, 15, .	3.6	16
969	Comprehensive review on <scp>zincâ€ion</scp> battery anode: Challenges and strategies. InformaÄnÃ- Materiály, 2022, 4, .	8.5	121
970	Synergistic Solvation and Interface Regulations of Ecoâ€Friendly Silk Peptide Additive Enabling Stable Aqueous Zinc″on Batteries. Advanced Functional Materials, 2022, 32, .	7.8	91
971	lssues and Opportunities Facing Aqueous Mn ²⁺ /MnO ₂ â€based Batteries. ChemSusChem, 2022, 15, .	3.6	129
972	<i>N</i> , <i>N</i> -dimethylformamide tailors solvent effect to boost Zn anode reversibility in aqueous electrolyte. National Science Review, 2022, 9, .	4.6	53
973	Toward Stable Zinc-Ion Batteries: Use of a Chelate Electrolyte Additive for Uniform Zinc Deposition. ACS Applied Energy Materials, 2022, 5, 4170-4178.	2.5	20
974	Establishing Thermal Infusion Method for Stable Zinc Metal Anodes in Aqueous Zinc″on Batteries. Advanced Materials, 2022, 34, e2200782.	11.1	85
975	Roadmap for flexible solid-state aqueous batteries: From materials engineering and architectures design to mechanical characterizations. Materials Science and Engineering Reports, 2022, 148, 100671.	14.8	30
976	Recent progress, mechanisms, and perspectives for crystal and interface chemistry applying to the Zn metal anodes in aqueous zincâ€ion batteries. SusMat, 2022, 2, 114-141.	7.8	60
977	Unveiling the Synergistic Effect of Ferroelectric Polarization and Domain Configuration for Reversible Zinc Metal Anodes. Advanced Science, 2022, 9, e2105980.	5.6	25
978	Highâ€Efficiency and Stable Znâ^'Na3V2(PO4)3 Aqueous Battery Enabled by Electrolyteâ€Induced Interphasial Engineering. ChemSusChem, 2022, , .	3.6	11

	Сітат	CITATION REPORT	
#	ARTICLE Additiveâ€Free Ultrastable Hydrated Vanadium Oxide Sol/Carbon Nanotube Ink for Durable and	IF	CITATIONS
979 980	Highâ€Power Aqueous Zincâ€Ion Battery. Advanced Materials Interfaces, 2022, 9, . Challenges and Perspectives of Organic Multivalent Metalâ€Ion Batteries. Advanced Materials, 2022, 34, e2200662.	1.9	3
981	Chemical Passivation Stabilizes Zn Anode. Advanced Materials, 2022, 34, e2109872.	11.1	81
982	Construction of Novel Hierarchical Honeycomb-Like Mn ₃ O ₄ MnO ₂ Core-Shell Architecture with High Voltage for Advanced Aqueous Zinc-Ion Batteries. Journal of the Electrochemical Society, 2022, 169, 040519.	1.3	11
983	A Binary Hydrateâ€Melt Electrolyte with Acetateâ€Oriented Cross‣inking Solvation Shells for Stable Zir Anodes. Advanced Materials, 2022, 34, e2201744.	nc 11.1	90
984	Zn–Sn alloy anode with repressible dendrite grown and meliorative corrosion resistance for Zn-air battery. Journal of Power Sources, 2022, 526, 231173.	4.0	28
985	Nucleophilic Interfacial Layer Enables Stable Zn Anodes for Aqueous Zn Batteries. Nano Letters, 2022, 22, 3298-3306.	4.5	43
986	Vanadium-based cathodes for aqueous zinc ion batteries: Structure, mechanism and prospects. Chinese Chemical Letters, 2023, 34, 107399.	4.8	9
987	Building Ultra-Stable and Low-Polarization Composite Zn Anode Interface via Hydrated Polyzwitterionic Electrolyte Construction. Nano-Micro Letters, 2022, 14, 93.	14.4	46
988	Achieving high-rate and durable aqueous rechargeable Zn-Ion batteries by enhancing the successive electrochemical conversion reactions. Journal of Colloid and Interface Science, 2022, 620, 127-134.	5.0	9
989	Recent Advances in Printed Thin-Film Batteries. Engineering, 2022, 13, 238-261.	3.2	14
990	Boosting the Cycling Stability of Aqueous Zinc-Ion Batteries through Nanofibrous Coating of a Bead-like MnO _x Cathode. ACS Applied Materials & Interfaces, 2022, 14, 17570-17577.	4.0	12
991	Zincophilic 3D ZnOHF nanowire arrays with ordered and continuous Zn2+ Ion modulation layer enable long-term stable Zn metal anodes. Energy Storage Materials, 2022, 50, 435-443.	9.5	28
992	Unexpected Role of the Interlayer "Dead Zn ²⁺ ―in Strengthening the Nanostructures of VS ₂ Cathodes for Highâ€Performance Aqueous Znâ€Ion Storage. Advanced Energy Materials 2022, 12, .	f s, 10.2	74
993	Float-charging protocol in rechargeable Zn–MnO2 batteries: Unraveling the key role of Mn2+ additives in preventing spontaneous pH changes. Electrochemistry Communications, 2022, 138, 107271.	. 2.3	11
994	Aqueous zinc batteries: Design principles toward organic cathodes for grid applications. IScience, 2022, 25, 104204.	1.9	20
995	Redox-active Hexaazatriphenylene@MXene composite for high-performance flexible proton batteries. Composites Part B: Engineering, 2022, 235, 109750.	5.9	21
996	Unveiling unique steric effect of threonine additive for highly reversible Zn anode. Nano Energy, 2022, 97, 107145.	8.2	69

#	Article	IF	CITATIONS
997	Graphdiyne oxide for aqueous zinc ion full battery with ultra-long cycling stability. Nano Today, 2022, 44, 101463.	6.2	17
998	Controllable C-N site assisting observable potential difference for homogeneous copper deposition in aqueous Cu-S batteries. Energy Storage Materials, 2022, 48, 74-81.	9.5	28
999	A high strength, anti-corrosion and sustainable separator for aqueous zinc-based battery by natural bamboo cellulose. Energy Storage Materials, 2022, 48, 191-191.f6.	9.5	43
1000	Austen Angell's legacy in electrolyte research. Journal of Non-Crystalline Solids: X, 2022, 14, 100088.	0.5	4
1001	Biopolymer-based hydrogel electrolytes for advanced energy storage/conversion devices: Properties, applications, and perspectives. Energy Storage Materials, 2022, 48, 244-262.	9.5	166
1002	Flame normalizing-induced robust and oriented metallic layer for stable Zn anode. Chemical Engineering Journal, 2022, 437, 135246.	6.6	18
1003	A novel Mn2+-additive free Zn/MnO2 battery with 2.4ÂV voltage window and enhanced stability. Journal of Alloys and Compounds, 2022, 909, 164835.	2.8	0
1004	In-situ formation of ultrafine ZnMn2O4-MnOOH composite nanoparticles embedded into porous carbon nanospheres for stable aqueous zinc-ion batteries. Applied Surface Science, 2022, 592, 153279.	3.1	8
1005	Adjusting zinc ion de-solvation kinetics via rich electron-donating artificial SEI towards high columbic efficiency and stable Zn metal anode. Chemical Engineering Journal, 2022, 442, 136081.	6.6	29
1006	Robust Zn anode enabled by a hydrophilic adhesive coating for long-life zinc-ion hybrid supercapacitors. Chemical Engineering Journal, 2022, 442, 136217.	6.6	13
1007	Sodium vanadium oxides: From nanostructured design to high-performance energy storage materials. Journal of Materials Science and Technology, 2022, 121, 80-92.	5.6	7
1008	Stable anode enabled by an embossed and punched structure for a highâ€rate performance Znâ€ion hybrid capacitor. International Journal of Energy Research, 2022, 46, 7175-7185.	2.2	8
1009	Hydrated Deep Eutectic Electrolytes for Highâ€Performance Znâ€ion Batteries Capable of Lowâ€Temperature Operation. Advanced Functional Materials, 2022, 32, .	7.8	95
1010	Manipulating the Zinc Deposition Behavior in Hexagonal Patterns at the Preferential Zn (100) Crystal Plane to Construct Surficial Dendriteâ€Free Zinc Metal Anode. Small, 2022, 18, e2105978.	5.2	61
1011	Separator Effect on Zinc Electrodeposition Behavior and Its Implication for Zinc Battery Lifetime. Nano Letters, 2021, 21, 10446-10452.	4.5	94
1012	In Situ Electrochemical Transformation toward Structure Optimized VEG@MXene Cathode for Enhanced Zincâ€lon Storage. Small, 2022, 18, e2105325.	5.2	17
1013	Stable Zinc Anodes Enabled by Zincophilic Cu Nanowire Networks. Nano-Micro Letters, 2022, 14, 39.	14.4	91
1014	Chemical Buffer Layer Enabled Highly Reversible Zn Anode for Deeply Discharging and Longâ€Life Zn–Air Battery. Small, 2022, 18, e2106604.	5.2	16

		CITATION REPORT	
#	Article	IF	CITATIONS
1015	A Symmetric Allâ€Organic Proton Battery in Mild Electrolyte. Angewandte Chemie, 2022, 134, .	1.6	29
1016	Cathode Materials Challenge Varied with Different Electrolytes in Zinc Batteries. , 2022, 4, 190-204.		24
1017	A Symmetric Allâ€Organic Proton Battery in Mild Electrolyte. Angewandte Chemie - International Edition, 2022, 61, e202115180.	7.2	76
1018	Ion Sieve: Tailoring Zn ²⁺ Desolvation Kinetics and Flux toward Dendrite-Free Metallic Zinc Anodes. ACS Nano, 2022, 16, 1013-1024.	7.3	125
1019	Manipulating Interfacial Stability Via Absorption-Competition Mechanism for Long-Lifespan Zn Anode. Nano-Micro Letters, 2022, 14, 31.	14.4	30
1020	Reversible aqueous zinc-ion battery based on ferric vanadate cathode. Chinese Chemical Letters, 2022, 33, 4628-4634.	4.8	25
1021	Ammonium-ion batteries with a wide operating temperature window from â^'40 to 80Â °C. EScience, 2021, 1, 212-218.	25.0	49
1022	Tuning Intermolecular Interactions of Molecular Crowding Electrolyte for High-Performance Aqueous Batteries. ACS Energy Letters, 2022, 7, 123-130.	8.8	57
1023	Aqueous Znâ€based rechargeable batteries: Recent progress and future perspectives. InformaÄnÃ- Materiály, 2022, 4, .	8.5	77
1024	Nanocomposite Polymer Electrolytes for Zinc and Magnesium Batteries: From Synthetic to Biopolymers. Polymers, 2021, 13, 4284.	2.0	7
1025	Polypyrrole-Coated K ₂ Mn[Fe(CN) ₆] Stabilizing Its Interfaces and Inhibiting Irreversible Phase Transition during the Zinc Storage Process in Aqueous Batteries. ACS Applied Materials & Interfaces, 2022, 14, 1092-1101.	4.0	13
1026	Activating the Stepwise Intercalation–Conversion Reaction of Layered Copper Sulfide toward Extremely High Capacity Zinc-Metal-Free Anodes for Rocking-Chair Zinc-Ion Batteries. ACS Applied Materials & Interfaces, 2022, 14, 1126-1137.	4.0	26
1027	Rational Design of an Interfacial Bilayer for Aqueous Dendrite-Free Zinc Anodes. ACS Applied Materials & Interfaces, 2022, 14, 954-960.	4.0	14
1028	Manipulating Ion Concentration to Boost Twoâ€Electron Mn ⁴⁺ /Mn ²⁺ Redox Kinetics through a Colloid Electrolyte for High apacity Zinc Batteries. Advanced Energy Materials, 2022, 12, .	10.2	65
1029	Characterization of Acetonitrile Isotopologues as Vibrational Probes of Electrolytes. Journal of Physical Chemistry B, 2022, 126, 278-291.	1.2	15
1030	Regulating Interfacial Desolvation and Deposition Kinetics Enables Durable Zn Anodes with Ultrahigh Utilization of 80%. Small, 2022, 18, e2106441.	5.2	51
1031	Ultrastable Zinc Anode by Simultaneously Manipulating Solvation Sheath and Inducing Oriented Deposition with PEG Stability Promoter. Small, 2022, 18, e2103345.	5.2	39
1032	Realizing high-rate aqueous zinc-ion batteries using organic cathode materials containing electron-withdrawing groups. Sustainable Energy and Fuels, 2022, 6, 2523-2531.	2.5	21

ш.	Apticip	IF	CITATIONS
# 1033	ARTICLE Water-in-salt electrolytes achieve high energy densities at an ultralow-temperature for aqueous symmetrical supercapacitors. Chemical Communications, 2022, 58, 5861-5864.	1F 2.2	CITATIONS
1034	Tailoring interfacial Zn2+ coordination via a robust cation conductive film enables high performance zinc metal battery. Energy Storage Materials, 2022, 49, 380-389.	9.5	31
1035	Metal-coordination chemistry guiding preferred crystallographic orientation for reversible zinc anode. Energy Storage Materials, 2022, 49, 463-470.	9.5	81
1036	Polyiodide Confinement by Starch Enables Shuttleâ€Free Zn–Iodine Batteries. Advanced Materials, 2022, 34, e2201716.	11.1	98
1037	Co-Solvent Electrolyte Engineering for Stable Anode-Free Zinc Metal Batteries. Journal of the American Chemical Society, 2022, 144, 7160-7170.	6.6	252
1038	Ammonium enables reversible aqueous Zn battery chemistries by tailoring the interphase. One Earth, 2022, 5, 413-421.	3.6	10
1039	Toward dendrite-free and anti-corrosion Zn anodes by regulating a bismuth-based energizer. EScience, 2022, 2, 509-517.	25.0	124
1040	Electrochemical Performance of LiMn2O4 Cathodes in Zn-Containing Aqueous Electrolytes. Journal of Electrochemical Science and Technology, 2022, 13, 177-185.	0.9	1
1041	Tailoring the Solvation Sheath of Cations by Constructing Electrode Frontâ€Faces for Rechargeable Batteries. Advanced Materials, 2022, 34, e2201339.	11.1	66
1042	MXene chemistry, electrochemistry and energy storage applications. Nature Reviews Chemistry, 2022, 6, 389-404.	13.8	429
1043	Recent Progress and Prospects on Dendriteâ€free Engineerings for Aqueous Zinc Metal Anodes. Energy and Environmental Materials, 2023, 6, .	7.3	15
1044	Elastomer–Alginate Interface for Highâ€₽ower and Highâ€Energy Zn Metal Anodes. Advanced Energy Materials, 2022, 12, .	10.2	51
1045	Zwitterionic Bifunctional Layer for Reversible Zn Anode. ACS Energy Letters, 2022, 7, 1719-1727.	8.8	81
1046	Cyclohexanedodecol-Assisted Interfacial Engineering for Robust and High-Performance Zinc Metal Anode. Nano-Micro Letters, 2022, 14, 110.	14.4	42
1047	An analysis of the electrochemical mechanism of manganese oxides in aqueous zinc batteries. CheM, 2022, 8, 924-946.	5.8	92
1048	Towards high-performance aqueous zinc-ion battery via cesium ion intercalated vanadium oxide nanorods. Chemical Engineering Journal, 2022, 442, 136349.	6.6	49
1052	Advanced Buffering Acidic Aqueous Electrolytes for Ultra‣ong Life Aqueous Zinc″on Batteries. Small, 2022, 18, e2200742.	5.2	49
1053	Zinc Anodes Modified by Oneâ€Molecularâ€Thick Selfâ€Assembled Monolayers for Simultaneous Suppression of Sideâ€Reactions and Dendriteâ€Formation in Aqueous Zincâ€Ion Batteries. Small, 2022, 18, e2201284.	5.2	14

#	Article	IF	CITATIONS
1054	Exchange-Mediated Transport in Battery Electrolytes: Ultrafast or Ultraslow?. Journal of the American Chemical Society, 2022, 144, 8591-8604.	6.6	18
1055	A sobering examination of the feasibility of aqueous aluminum batteries. Energy and Environmental Science, 2022, 15, 2460-2469.	15.6	27
1056	Two-Dimensional Conductive Polymer/V2o5 Composite with Rapid Zinc-Ion Storage Kinetics for High-Power Aqueous Zinc-Ion Battery. SSRN Electronic Journal, 0, , .	0.4	0
1057	A universal strategy for high-voltage aqueous batteries <i>via</i> lone pair electrons as the hydrogen bond-breaker. Energy and Environmental Science, 2022, 15, 2653-2663.	15.6	33
1058	Dual-Engineering of Ammonium Vanadate for Enhanced Aqueous and Quasi-Solid-State Zinc Ion Batteries. SSRN Electronic Journal, 0, , .	0.4	0
1059	Insights into Zn anode surface chemistry for dendrite-free Zn ion batteries. Journal of Materials Chemistry A, 2022, 10, 11288-11297.	5.2	13
1060	Two for one: propylene carbonate co-solvent for high performance aqueous zinc-ion batteries – remedies for persistent issues at both electrodes. Journal of Materials Chemistry A, 2022, 10, 12597-12607.	5.2	11
1061	The magnetohydrodynamic effect enables a dendrite-free Zn anode in alkaline electrolytes. Journal of Materials Chemistry A, 2022, 10, 11971-11979.	5.2	24
1062	Stimulating Cu–Zn alloying for compact Zn metal growth towards high energy aqueous batteries and hybrid supercapacitors. Energy and Environmental Science, 2022, 15, 2889-2899.	15.6	63
1063	Battery energy storage systems and SWOT (strengths, weakness, opportunities, and threats) analysis of batteries in power transmission. Energy, 2022, 254, 123987.	4.5	74
1064	A hydrophobic and fluorophilic coating layer for stable and reversible aqueous zinc metal anodes. Chemical Engineering Journal, 2022, 446, 136607.	6.6	38
1065	Structural, Dynamic, and Chemical Complexities in Zinc Anode of an Operating Aqueous Zn″on Battery. Advanced Energy Materials, 2022, 12, .	10.2	32
1066	Stabilizing zinc anode for high-performance aqueous zinc ion batteries via employing a novel inositol additive. Journal of Alloys and Compounds, 2022, 914, 165231.	2.8	15
1067	Largeâ€Scale Integration of a Zinc Metasilicate Interface Layer Guiding Wellâ€Regulated Zn Deposition. Advanced Materials, 2022, 34, e2202188.	11.1	86
1068	Quasiâ€Solid Electrolyte Design and In Situ Construction of Dual Electrolyte/Electrode Interphases for Highâ€Stability Zinc Metal Battery. Advanced Energy Materials, 2022, 12, .	10.2	42
1069	Nitrateâ€ŧoâ€Ammonia Conversion on Ru/Ni Hydroxide Hybrid through Zincâ€Nitrate Fuel Cell. Small, 2022, 18, e2200436.	5.2	15
1070	Crystal Plane Reconstruction and Thin Protective Coatings Formation for Superior Stable Zn Anodes Cycling 1300 h. Small, 2022, 18, e2201443.	5.2	8
1071	Soluble Electrolyte-Coordinated Sulfide Species Revealed in Al–S Batteries by Nuclear Magnetic Resonance Spectroscopy. Chemistry of Materials, 2022, 34, 4486-4495.	3.2	10

#	Article	IF	CITATIONS
1072	Regulating the redox reversibility of zinc anode toward stable aqueous zinc batteries. Nano Energy, 2022, 99, 107331.	8.2	50
1073	Mechanistic Study of Controlled Zinc Electrodeposition Behaviors Facilitated by Nanoscale Electrolyte Additives at the Electrode Interface. ACS Applied Materials & Interfaces, 2022, 14, 22016-22029.	4.0	5
1074	Improving the Performance of Aqueous Zincâ€ion Batteries by Inhibiting Zinc Dendrite Growth: Recent Progress. Chemistry - an Asian Journal, 2022, 17, .	1.7	9
1075	Corrosion as the origin of limited lifetime of vanadium oxide-based aqueous zinc ion batteries. Nature Communications, 2022, 13, 2371.	5.8	126
1076	Constructing Hydrophobic Interface with Closeâ€Packed Coordination Supramolecular Network for Long ycling and Dendriteâ€Free Znâ€Metal Batteries. Small, 2022, 18, e2107971.	5.2	21
1077	Ethylene carbonate as an organic electrolyte additive for high-performance aqueous rechargeable zinc-ion batteries. Journal of Industrial and Engineering Chemistry, 2022, 112, 96-105.	2.9	9
1078	A self-healing nanocomposite hydrogel electrolyte for rechargeable aqueous Zn-MnO2 battery. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 647, 129195.	2.3	7
1079	One-step preparation of MnO2 electrode for secondary aqueous zinc ion batteries by electrodeposition. Materials Today Communications, 2022, 31, 103578.	0.9	4
1080	Polypyrrole-intercalation tuning lamellar structure of V2O5·nH2O boosts fast zinc-ion kinetics for aqueous zinc-ion battery. Journal of Power Sources, 2022, 536, 231489.	4.0	40
1081	Semi-flowable Zn semi-solid electrodes as renewable energy carrier for refillable Zn–Air batteries. Journal of Power Sources, 2022, 536, 231480.	4.0	8
1082	Three-functional ether-based co-solvents for suppressing water-induced parasitic reactions in aqueous Zn-ion batteries. Energy Storage Materials, 2022, 49, 445-453.	9.5	49
1083	Borax-crosslinked hydrogel electrolyte membranes for quasi-solid state aqueous energy storage devices. Journal of Membrane Science, 2022, 655, 120606.	4.1	7
1084	Applying Classical, <i>Ab Initio</i> , and Machine-Learning Molecular Dynamics Simulations to the Liquid Electrolyte for Rechargeable Batteries. Chemical Reviews, 2022, 122, 10970-11021.	23.0	138
1085	Silk Fibroin Coating Enables Dendriteâ€free Zinc Anode for Longâ€Life Aqueous Zincâ€lon Batteries. ChemSusChem, 2022, 15, .	3.6	15
1086	Structural and Electronic Modulations of Imidazolium Covalent Organic Framework-Derived Electrocatalysts for Oxygen Redox Reactions in Rechargeable Zn–Air Batteries. ACS Applied Materials & Interfaces, 2022, 14, 24404-24414.	4.0	12
1087	Electrocatalytic Selenium Redox Reaction for Highâ€Mass‣oading Zincâ€Selenium Batteries with Improved Kinetics and Selenium Utilization. Advanced Energy Materials, 2022, 12, .	10.2	29
1088	Highly reversible Zn anode with a practical areal capacity enabled by a sustainable electrolyte and superacid interfacial chemistry. Joule, 2022, 6, 1103-1120.	11.7	131
1089	Polypyrrole/reduced graphene oxide composites coated zinc anode with dendrite suppression feature for boosting performances of zinc ion battery. Scientific Reports, 2022, 12, .	1.6	15

#	Article	IF	CITATIONS
1090	VPO ₄ F Fluorophosphates Polyanion Cathodes for Highâ€Voltage Proton Storage. Angewandte Chemie - International Edition, 2022, 61, .	7.2	11
1091	Eutectic Electrolyte with Unique Solvation Structure for Highâ€Performance Zincâ€Ion Batteries. Angewandte Chemie - International Edition, 2022, 61, .	7.2	108
1092	Eutectic Electrolyte with Unique Solvation Structure for Highâ€Performance Zincâ€Ion Batteries. Angewandte Chemie, 2022, 134, .	1.6	16
1093	Highâ€Rate, Large Capacity, and Long Life Dendriteâ€Free Zn Metal Anode Enabled by Trifunctional Electrolyte Additive with a Wide Temperature Range. Advanced Science, 2022, 9, .	5.6	91
1094	Realizing highly reversible and deeply rechargeable Zn anode by porous zeolite layer. Journal of Power Sources, 2022, 540, 231659.	4.0	5
1095	Cobalt-doped molybdenum disulfide with rich defects and extended layered structure for rechargeable zinc-ion batteries. Journal of Alloys and Compounds, 2022, 916, 165487.	2.8	7
1096	Interface engineering with zincophilic MXene for regulated deposition of dendrite-free Zn metal anode. Energy Storage Materials, 2022, 50, 243-251.	9.5	60
1097	Multifunctional Water-Organic Hybrid Electrolyte for Rechargeable Zinc Ions Batteries. SSRN Electronic Journal, 0, , .	0.4	0
1098	Cellulose Nanocrystals (Cncs) as Binding and Exfoliating Agents for Developing Flexible Composite Films as an Electrode with Mos2 Nanosheets. SSRN Electronic Journal, 0, , .	0.4	0
1099	Modulating Solvation Structure by Tetrahydrofuran Additive for Aqueous Zinc Metal Batteries. SSRN Electronic Journal, 0, , .	0.4	0
1100	Organic Additives in Alkaline Electrolyte to Improve Cycling Life of Aqueous Zn–Ni Batteries. SSRN Electronic Journal, 0, , .	0.4	0
1101	Dual intercalation of inorganics–organics for synergistically tuning the layer spacing of V ₂ O ₅ · <i>n</i> H ₂ O to boost Zn ²⁺ storage for aqueous zinc-ion batteries. Nanoscale, 2022, 14, 8776-8788.	2.8	22
1102	Design Concepts of Transition Metal Dichalcogenides for Highâ€Performance Aqueous Znâ€ion Storage. Chemistry - A European Journal, 2022, 28, .	1.7	4
1103	Synergistic Optimization Strategy Involving Sandwich-like MnO ₂ @rGO and Laponite-Modified PAM for High-Performance Zinc-Ion Batteries and Zinc Dendrite Suppression. ACS Applied Materials & Interfaces, 2022, 14, 25962-25971.	4.0	15
1104	The Emergence of 2D MXenes Based Znâ€Ion Batteries: Recent Development and Prospects. Small, 2022, 18,	5.2	76
1105	Photo-enhanced rechargeable high-energy-density metal batteries for solar energy conversion and storage. , 2022, 1, e9120007.		89
1106	Phytic acid conversion film interfacial engineering for stabilizing zinc metal anode. Chemical Engineering Journal, 2022, 446, 137295.	6.6	23
1107	VPO4F Fluorophosphates Polyanion Cathodes forÂHighâ€Voltage Proton Storage. Angewandte Chemie, 0, , .	1.6	0

#	Article	IF	CITATIONS
1108	Optimization of Electrolytes for High-Performance Aqueous Aluminum-Ion Batteries. ACS Applied Materials & Interfaces, 2022, 14, 25232-25245.	4.0	22
1109	Cholinium Cations Enable Highly Compact and Dendriteâ€Free Zn Metal Anodes in Aqueous Electrolytes. Advanced Functional Materials, 2022, 32, .	7.8	91
1110	Aqueous Electrolytes with Hydrophobic Organic Cosolvents for Stabilizing Zinc Metal Anodes. ACS Nano, 2022, 16, 9667-9678.	7.3	126
1111	Water-in-salt electrolytes towards sustainable and cost-effective alternatives: Example for zinc-ion batteries. Current Opinion in Electrochemistry, 2022, 35, 101070.	2.5	11
1112	Energetic Aqueous Batteries. Advanced Energy Materials, 2022, 12, .	10.2	48
1113	Fabrication of a Flexible Aqueous Textile Zinc-Ion Battery in a Single Fabric Layer. Frontiers in Electronics, 0, 3, .	2.0	3
1114	PPy-Modified Prussian Blue Cathode Materials for Low-Cost and Cycling-Stable Aqueous Zinc-Based Hybrid Battery. Coatings, 2022, 12, 779.	1.2	13
1115	Toward Longâ€Life Aqueous Zinc Ion Batteries by Constructing Stable Zinc Anodes. Chemical Record, 2022, 22, .	2.9	17
1116	3D Binder-free conjugated microporous polymer carbon Aerogels@MnO2 cathode for High-Performance aqueous zinc ion batteries. Applied Surface Science, 2022, 599, 153881.	3.1	18
1117	Unraveling a cathode/anode compatible electrolyte for high-performance aqueous rechargeable zinc batteries. Energy Storage Materials, 2022, 50, 464-472.	9.5	23
1118	A stable fluoride-based interphase for a long cycle Zn metal anode in an aqueous zinc ion battery. Journal of Materials Chemistry A, 2022, 10, 14399-14410.	5.2	79
1119	A piece of common cellulose paper but with outstanding functions for advanced aqueous zinc-ion batteries. Materials Today Energy, 2022, 28, 101076.	2.5	27
1120	Biomimetic Lipidâ€Bilayer Anode Protection for Long Lifetime Aqueous Zincâ€Metal Batteries. Advanced Functional Materials, 2022, 32, .	7.8	16
1121	Surface-Preferred Crystal Plane Growth Enabled by Underpotential Deposited Monolayer toward Dendrite-Free Zinc Anode. ACS Nano, 2022, 16, 9150-9162.	7.3	68
1122	Regulation of Zinc Interface by Maltitol for Long-Life Dendrite-free Aqueous Zinc Ion Batteries. Journal of Electronic Materials, 2022, 51, 4763-4771.	1.0	5
1123	A high-voltage and stable zinc-air battery enabled by dual-hydrophobic-induced proton shuttle shielding. Joule, 2022, 6, 1617-1631.	11.7	28
1124	Hydrophilic crosslinked TEMPOâ€methacrylate copolymers – a straight forward approach towards aqueous semiâ€organic batteries. ChemSusChem, 0, , .	3.6	4
1125	Anion Concentration Gradient-Assisted Construction of a Solid–Electrolyte Interphase for a Stable Zinc Metal Anode at High Rates. Journal of the American Chemical Society, 2022, 144, 11168-11177.	6.6	94

#	Article	IF	CITATIONS
1126	Biomolecular Regulation of Zinc Deposition to Achieve Ultra‣ong Life and Highâ€Rate Zn Metal Anodes. Small, 2022, 18, .	5.2	26
1127	Antifreezing Zwitterionic-Based Hydrogel Electrolyte for Aqueous Zn Ion Batteries. ACS Applied Energy Materials, 2022, 5, 7530-7537.	2.5	24
1128	Modulation of hydrogel electrolyte enabling stable zinc metal anode. Energy Storage Materials, 2022, 51, 588-598.	9.5	58
1129	Achieving Highly Reversible Zinc Anodes via N, Nâ€Dimethylacetamide Enabled Zn″on Solvation Regulation. Small, 2022, 18, .	5.2	52
1130	Surface-Alloyed Nanoporous Zinc as Reversible and Stable Anodes for High-Performance Aqueous Zinc-Ion Battery. Nano-Micro Letters, 2022, 14, .	14.4	65
1131	An integrated dendrite-free zinc metal electrode for corrosion inhibition in aqueous system. Korean Journal of Chemical Engineering, 2022, 39, 2353-2360.	1.2	5
1132	Recent progress of artificial interfacial layers in aqueous Zn metal batteries. EnergyChem, 2022, 4, 100076.	10.1	59
1133	Recent advances in MOFs/MOF derived nanomaterials toward high-efficiency aqueous zinc ion batteries. Coordination Chemistry Reviews, 2022, 468, 214642.	9.5	55
1134	Regulating zinc metal anodes <i>via</i> novel electrolytes in rechargeable zinc-based batteries. Journal of Materials Chemistry A, 2022, 10, 14692-14708.	5.2	12
1135	Advances in the structure and composition design of zinc anodes for high performance zinc ion batteries. Sustainable Energy and Fuels, 0, , .	2.5	5
1136	In-Situ Regulated Competitive Proton Intercalation and Deposition/Dissolution Reaction of Mno2 for High-Performance Flexible Zinc-Manganese Battery. SSRN Electronic Journal, 0, , .	0.4	0
1137	Corrosion engineering towards a high-energy Mn doped Co ₃ O ₄ nanoflake cathode for rechargeable Zn-based batteries. Materials Advances, 2022, 3, 6441-6445.	2.6	1
1138	Designing a Nickel (II) Thiourea-formaldehyde Polymer/Nanocarbon Bifunctional Molecular Catalyst with Superior ORR, OER Activities and its Application to Zn-air Battery. Materials Advances, 0, , .	2.6	2
1139	Fabrication of Flexible, Binder-Free, and Self-Standing Nickel Cobalt Double Hydroxide/Graphene Films for Advanced Alkaline Batteries. SSRN Electronic Journal, 0, , .	0.4	0
1140	An amphoteric betaine electrolyte additive enabling a stable Zn metal anode for aqueous batteries. Chemical Communications, 2022, 58, 8504-8507.	2.2	15
1141	The key role of concentrated Zn(OTF) ₂ electrolyte in the performance of aqueous Zn–S batteries. Chemical Communications, 2022, 58, 8145-8148.	2.2	23
1142	Ammonium ion pre-intercalation stabilized tunnel <i>h</i> -WO ₃ for fast NH ₄ ⁺ storage. Journal of Materials Chemistry A, 2022, 10, 15614-15622.	5.2	25
1143	Quasi-solid-state Zn-air batteries with an atomically dispersed cobalt electrocatalyst and organohydrogel electrolyte. Nature Communications, 2022, 13, .	5.8	127

#	Article	IF	CITATIONS
1144	Vanadium Oxide with Elevated Interlayers for Durable Aqueous Hybrid Li ⁺ /Zn ²⁺ Batteries. ACS Applied Energy Materials, 2022, 5, 9070-9078.	2.5	10
1145	Highly reversible Zn metal anode enabled by sustainable hydroxyl chemistry. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	41
1146	A Selfâ€Regulated Electrostatic Shielding Layer toward Dendriteâ€Free Zn Batteries. Advanced Materials, 2022, 34, .	11.1	119
1147	Tailoring the metal electrode morphology via electrochemical protocol optimization for long-lasting aqueous zinc batteries. Nature Communications, 2022, 13, .	5.8	101
1148	Polymer Hydrogel Electrolytes for Flexible and Multifunctional Zincâ€lon Batteries and Capacitors. Energy and Environmental Materials, 2023, 6, .	7.3	34
1149	Atomically Dispersed Cu in Zeolitic Imidazolate Framework Nanoflake Array for Dendriteâ€Free Zn Metal Anode. Small, 2022, 18, .	5.2	31
1150	Realizing high-voltage aqueous zinc-ion batteries with expanded electrolyte electrochemical stability window. Chinese Chemical Letters, 2023, 34, 107629.	4.8	16
1151	Decoupled aqueous batteries using pH-decoupling electrolytes. Nature Reviews Chemistry, 2022, 6, 505-517.	13.8	44
1152	Rechargeable Manganese Dioxideâ^'Zinc Batteries: A Review Focusing on Challenges and Optimization Strategies under Alkaline and Mild Acidic Electrolyte Media. ChemNanoMat, 2022, 8, .	1.5	4
1153	Advanced aqueous batteries: Status and challenges. MRS Energy & Sustainability, 2022, 9, 106-128.	1.3	5
1154	Regulating Water Activity for Rechargeable Zinc-Ion Batteries: Progress and Perspective. ACS Energy Letters, 2022, 7, 2515-2530.	8.8	94
1155	Electrolyte design strategies towards long-term Zn metal anode for rechargeable batteries. Journal of Energy Chemistry, 2022, 73, 575-587.	7.1	24
1156	Integrated Photovoltaic Charging and Energy Storage Systems: Mechanism, Optimization, and Future. Small, 2022, 18, .	5.2	16
1157	Triggering Zn ²⁺ Unsaturated Hydration Structure via Hydrated Salt Electrolyte for High Voltage and Cycling Stable Rechargeable Aqueous Zn Battery. Advanced Energy Materials, 2022, 12, .	10.2	28
1158	Pathways towards Highâ€Performance Aqueous Zincâ€Organic Batteries. Batteries and Supercaps, 2022, 5, .	2.4	6
1159	Scientific Challenges and Improvement Strategies of Znâ€Based Anodes for Aqueous Znâ€Ion Batteries. Chemical Record, 2022, 22, .	2.9	9
1160	Surface Transformation Enables a Dendriteâ€Free Zincâ€Metal Anode in Nonaqueous Electrolyte. Advanced Materials, 2022, 34, .	11.1	34
1161	Metal-organic framework (MOF) composites as promising materials for energy storage applications. Advances in Colloid and Interface Science, 2022, 307, 102732.	7.0	126

#	Article	IF	CITATIONS
1162	A freestanding hydroxylated carbon nanotube film boosting the stability of Zn metal anodes. Materials Today Communications, 2022, 32, 103939.	0.9	4
1163	Synergic Effect of Dendriteâ€Free and Zinc Gating in Ligninâ€Containing Cellulose Nanofibersâ€MXene Layer Enabling Longâ€Cycleâ€Life Zinc Metal Batteries. Advanced Science, 2022, 9, .	5.6	38
1164	Cu ₇ Te ₄ as an Anode Material and Zn Dendrite Inhibitor for Aqueous Znâ€lon Battery. Advanced Functional Materials, 2022, 32, .	7.8	30
1165	A Nonâ€Alkaline Electrolyte for Electrically Rechargeable Zincâ€Air Batteries with Longâ€Term Operation Stability in Ambient Air. Angewandte Chemie, 2022, 134, .	1.6	4
1166	A Novel High-Performance Cathode for Rechargeable Aqueous Zinc-ion Battery: Transformed ZnMnO ₃ Nanosheets from Rhodochrosite MnCO ₃ Cubes. Functional Materials Letters, 0, , .	0.7	4
1167	Facile and Rapid Synthesis of Porous Hydrated V2O5 Nanoflakes for High-Performance Zinc Ion Battery Applications. Nanomaterials, 2022, 12, 2400.	1.9	4
1168	Zincâ€lon Hybrid Supercapacitors Employing Acetateâ€Based Waterâ€inâ€Salt Electrolytes. Small, 2022, 18, .	5.2	22
1169	A Nonâ€Alkaline Electrolyte for Electrically Rechargeable Zincâ€Air Batteries with Longâ€Term Operation Stability in Ambient Air. Angewandte Chemie - International Edition, 2022, 61, .	7.2	29
1170	Organic additives in alkaline electrolyte to improve cycling life of aqueous Zn–Ni batteries. Journal of Power Sources, 2022, 542, 231815.	4.0	11
1171	Universal multifunctional hydrogen bond network construction strategy for enhanced aqueous Zn2+/proton hybrid batteries. Nano Energy, 2022, 100, 107539.	8.2	33
1172	Demonstrating U-shaped zinc deposition with 2D metal-organic framework nanoarrays for dendrite-free zinc batteries. Energy Storage Materials, 2022, 50, 641-647.	9.5	47
1173	An ultrahigh rate dendrite-free Zn metal deposition/striping enabled by silver nanowire aerogel with optimal atomic affinity with Zn. Energy Storage Materials, 2022, 51, 453-464.	9.5	22
1174	Synergistic effects of an artificial carbon coating layer and Cu2+-electrolyte additive for high-performance zinc-based hybrid supercapacitors. Carbon, 2022, 198, 34-45.	5.4	17
1175	Electrolyte additive engineering for aqueous Zn ion batteries. Energy Storage Materials, 2022, 51, 733-755.	9.5	179
1176	A static three-chamber zinc-polyiodide redox battery for decoupling of active anions and cations. Journal of Energy Storage, 2022, 54, 105258.	3.9	1
1177	Scalable fabrication of NiCoMnO4 yolk-shell microspheres with gradient oxygen vacancies for high-performance aqueous zinc ion batteries. Journal of Colloid and Interface Science, 2022, 626, 314-323.	5.0	12
1178	Construction of V1.11S2 flower spheres for efficient aqueous Zn-ion batteries. Journal of Colloid and Interface Science, 2022, 625, 1002-1011.	5.0	6
1179	Long-life and low-polarization Zn metal anodes enabled by a covalent triazine framework coating. Chemical Engineering Journal, 2022, 450, 138116.	6.6	16

#	Article	IF	CITATIONS
1180	Synthesis and Electrochemical Performance of the Orthorhombic V2O5•nH2O Nanorods as Cathodes for Aqueous Zinc Batteries. Nanomaterials, 2022, 12, 2530.	1.9	4
1181	Symmetric is nonidentical: Operation history matters for Zn metal anode. , 2022, 1, e9120023.		58
1182	High energy superstable hybrid capacitor with a <scp>selfâ€regulated</scp> Zn/electrolyte interface and <scp>3D</scp> grapheneâ€like carbon cathode. InformaÄnÃ-Materiály, 2022, 4, .	8.5	14
1183	Biodegradable Gel Electrolyte Suppressing Water-Induced Issues for Long-Life Zinc Metal Anodes. ACS Applied Materials & Interfaces, 2022, 14, 34612-34619.	4.0	58
1184	Critical factors to inhibit waterâ€splitting side reaction in carbonâ€based electrode materials for zinc metal anodes. , 2022, 4, 1080-1092.		7
1185	Realizing Highly Reversible Zinc Anode via Controlledâ€current Preâ€deposition. Energy and Environmental Materials, 2023, 6, .	7.3	5
1186	A Review on 3D Zinc Anodes for Zinc Ion Batteries. Small Methods, 2022, 6, .	4.6	124
1187	In Situ Induced Coordination between a "Desiccant―Interphase and Oxygenâ€Deficient Navajoite towards Highly Efficient Zinc Ion Storage. Advanced Energy Materials, 2022, 12, .	10.2	41
1188	Rigorous assessment of electrochemical rechargeability of alkaline Zn-air batteries. Journal of Power Sources, 2022, 543, 231844.	4.0	21
1189	A system for recharging Zn-air battery with high reversibility using a water-in-salt electrolyte. Journal of Energy Storage, 2022, 54, 105265.	3.9	1
1190	Multifunctional water-organic hybrid electrolyte for rechargeable zinc ions batteries. Chemical Engineering Journal, 2022, 450, 138265.	6.6	34
1191	Releasing Plating Induced Stress for Highly Reversible Aqueous Zn Metal Anodes. SSRN Electronic Journal, 0, , .	0.4	0
1192	A 3d Interconnected and Trilayered Mos2/Mwcnts/Mos2 Cathode with Enlarged Interlayer Spacing for Aqueous Zinc-Ion Storage. SSRN Electronic Journal, 0, , .	0.4	0
1193	A hydrophobic layer of amino acid enabling dendrite-free Zn anodes for aqueous zinc-ion batteries. Journal of Materials Chemistry A, 2022, 10, 17501-17510.	5.2	40
1194	Bidirectional Interface Protection of a Concentrated Electrolyte, Enabling High-Voltage and Long-Life Aqueous Zn Hybrid-Ion Batteries. ACS Applied Materials & Interfaces, 2022, 14, 35864-35872.	4.0	12
1195	A highly reversible dendrite-free Zn anode via spontaneous galvanic replacement reaction for advanced zinc-iodine batteries. , 2022, 1, e9120025.		73
1196	Boosting Zn metal anode stability: from fundamental science to design principles. EcoMat, 2022, 4, .	6.8	20
1197	Artificial Interphase Layer for Stabilized Zn Anodes: Progress and Prospects. Small, 2022, 18, .	5.2	49

#	Article	IF	CITATIONS
1198	Synergistic Manipulation of Hydrogen Evolution and Zinc Ion Flux in Metalâ€Covalent Organic Frameworks for Dendriteâ€free Znâ€based Aqueous Batteries. Angewandte Chemie - International Edition, 2022, 61, .	7.2	74
1199	Unshared Pair Electrons of Zincophilic Lewis Base Enable Longâ€life Zn Anodes under "Three High― Conditions. Angewandte Chemie, 2022, 134, .	1.6	14
1200	Crystal Water Boosted Zn ²⁺ Transfer Kinetics in Artificial Solid Electrolyte Interphase for High-Rate and Durable Zn Anodes. ACS Applied Energy Materials, 2022, 5, 10581-10590.	2.5	3
1201	A Multifunctional Artificial Interphase with Fluorineâ€Doped Amorphous Carbon layer for Ultraâ€Stable Zn Anode. Advanced Functional Materials, 2022, 32, .	7.8	85
1202	Synergistic Manipulation of Hydrogen Evolution and Zinc Ion Flux in Metalâ€Covalent Organic Frameworks for Dendriteâ€free Znâ€based Aqueous Batteries. Angewandte Chemie, 2022, 134, .	1.6	10
1203	Vat Orange 7 as an organic electrode with ultrafast hydronium-ion storage and super-long life for rechargeable aqueous zinc batteries. Chemical Engineering Journal, 2023, 451, 138776.	6.6	10
1204	Solvation Structures in Aqueous Metalâ€ion Batteries. Advanced Energy Materials, 2022, 12, .	10.2	50
1205	Concentrated Aqueous Solution of Chromium Dichloride for Chromium Metal Electrodeposition. Journal of Physical Chemistry C, 2022, 126, 14346-14352.	1.5	1
1206	Synergetic Modulation of Ion Flux and Water Activity in a Single Zn ²⁺ Conductor Hydrogel Electrolyte for Ultrastable Aqueous Zinc-Ion Batteries. ACS Applied Energy Materials, 2022, 5, 10872-10882.	2.5	8
1207	Copper Hexacyanoferrate Solidâ€State Electrolyte Protection Layer on Zn Metal Anode for Highâ€Performance Aqueous Zincâ€Ion Batteries. Small, 2022, 18, .	5.2	34
1208	Boosting Reversibility and Stability of Zn Anodes via Manipulation of Electrolyte Structure and Interface with Addition of Trace Organic Molecules. Advanced Energy Materials, 2022, 12, .	10.2	33
1209	Unshared Pair Electrons of Zincophilic Lewis Base Enable Longâ€life Zn Anodes under "Three High― Conditions. Angewandte Chemie - International Edition, 2022, 61, .	7.2	40
1210	Advances in Zinc and Magnesium Battery Polymer Cathode Materials. ACS Applied Energy Materials, 2022, 5, 10331-10358.	2.5	3
1211	Advances on Defect Engineering of Vanadiumâ€Based Compounds for Highâ€Energy Aqueous Zinc–Ion Batteries. Advanced Energy Materials, 2022, 12, .	10.2	70
1212	Designing Zinc Deposition Substrate with Fully Preferred Orientation to Elude the Interfacial Inhomogeneous Dendrite Growth. Research, 2022, 2022, .	2.8	5
1213	Novel Organic Cathode with Conjugated N-Heteroaromatic Structures for High-Performance Aqueous Zinc-Ion Batteries. ACS Applied Materials & Interfaces, 2022, 14, 38844-38853.	4.0	21
1214	In-situ construction of fluorinated solid-electrolyte interphase for highly reversible zinc anodes. Energy Storage Materials, 2022, 53, 559-568.	9.5	24
1215	Highly Concentrated Salt Electrolyte for a Highly Stable Aqueous Dual-Ion Zinc Battery. ACS Applied Materials & Interfaces, 2022, 14, 36644-36655.	4.0	26

#	Article	IF	Citations
1216	Stable Imprinted Zincophilic Zn Anodes with High Capacity. Advanced Functional Materials, 2022, 32, .	7.8	35
1217	Tuning Znâ€lon Solvation Chemistry with Chelating Ligands toward Stable Aqueous Zn Anodes. Advanced Materials, 2022, 34, .	11.1	70
1218	Strategies to inhibition the dendrites of the anode in zinc ion batteries. International Journal of Electrochemical Science, 0, , ArticleID:220954.	0.5	0
1219	Interfacial engineering on metal anodes in rechargeable batteries. EnergyChem, 2022, 4, 100089.	10.1	12
1220	Fabrication of flexible, binder-free, and self-standing nickel cobalt double hydroxide/graphene films for advanced alkaline batteries. Electrochimica Acta, 2022, 428, 140943.	2.6	0
1221	Prussian blue analogs cathodes for aqueous zinc ion batteries. Materials Today Energy, 2022, 29, 101095.	2.5	45
1222	Tannin acid induced anticorrosive film toward stable Zn-ion batteries. Nano Energy, 2022, 102, 107721.	8.2	39
1223	Uniform and oriented zinc deposition induced by artificial Nb2O5 Layer for highly reversible Zn anode in aqueous zinc ion batteries. Energy Storage Materials, 2022, 52, 40-51.	9.5	56
1224	Electrocrystallization orientation regulation of zinc metal anodes: strategies and challenges. Energy Storage Materials, 2022, 52, 329-354.	9.5	64
1225	The secondary aqueous zinc-manganese battery. Journal of Energy Storage, 2022, 55, 105397.	3.9	13
1226	Recent progress of electrolytes and electrocatalysts in neutral aqueous zinc-air batteries. Chemical Engineering Journal, 2023, 451, 138608.	6.6	34
1227	A colloidal aqueous electrolyte modulated by oleic acid for durable zinc metal anode. Chemical Engineering Journal, 2023, 451, 138589.	6.6	25
1228	Dual-engineering of ammonium vanadate for enhanced aqueous and quasi-solid-state zinc ion batteries. Energy Storage Materials, 2022, 52, 664-674.	9.5	40
1229	Planar and dendrite-free zinc deposition enabled by exposed crystal plane optimization of zinc anode. Energy Storage Materials, 2022, 53, 273-304.	9.5	63
1230	Releasing plating-induced stress for highly reversible aqueous Zn metal anodes. Nano Energy, 2022, 103, 107814.	8.2	16
1231	In-situ regulated competitive proton intercalation and deposition/dissolution reaction of MnO2 for high-performance flexible zinc-manganese batteries. Energy Storage Materials, 2022, 53, 72-78.	9.5	16
1232	Highly reversible Zn metal anodes enabled by multifunctional poly zinc acrylate protective coating. Chemical Engineering Journal, 2023, 451, 139058.	6.6	9
1233	Self-healing of surface defects on Zn electrode for stable aqueous zinc-ion batteries via manipulating the electrode/electrolyte interphases. Journal of Colloid and Interface Science, 2023, 629, 916-925.	5.0	18

#	Article	IF	CITATIONS
1234	Optimization of acetamide based deep eutectic solvents with dual cations for high performance and low temperature-tolerant aqueous zinc ion batteries via tuning the ratio of co-solvents. Journal of Colloid and Interface Science, 2023, 629, 166-178.	5.0	12
1235	A bifunctional nitrogen doped carbon network as the interlayer for dendrite-free Zn anode. Chemical Engineering Journal, 2023, 452, 139264.	6.6	9
1236	Choline chloride enhances the electrochemical stability of zinc plating/stripping. Chemical Communications, 2022, 58, 10088-10090.	2.2	3
1237	Two-dimensional metallic VTe ₂ demonstrating fast ion diffusion for aqueous zinc-ion batteries. Sustainable Energy and Fuels, 2022, 6, 4626-4635.	2.5	6
1238	Building a Seamless Water-Sieving Mof-Based Interphase for Highly Reversible Zn Metal Anodes. SSRN Electronic Journal, 0, , .	0.4	0
1239	Non-flammable, dilute, and hydrous organic electrolytes for reversible Zn batteries. Chemical Science, 2022, 13, 11320-11329.	3.7	43
1240	A strategy for anode modification for future zinc-based battery application. Materials Horizons, 2022, 9, 2722-2751.	6.4	38
1241	A polyamino acid with zincophilic chains enabling high-performance Zn anodes. Journal of Materials Chemistry A, 2022, 10, 20779-20786.	5.2	19
1242	Reduced water activity in co-solvent electrolyte enables 2 V zinc-ion hybrid capacitors with prolonged stability and high energy density. Journal of Materials Chemistry A, 2022, 10, 20431-20445.	5.2	3
1243	<i>In situ</i> polymerized synthesis of MnO nanoparticles anchored on N,S co-doped carbon as efficient cathodes for quasi-solid-state zinc ion batteries. Materials Chemistry Frontiers, 2022, 6, 3193-3204.	3.2	3
1244	Subtly manipulating Zn ²⁺ -coordinated configurations with a complexing agent to boost the reversibility of the zinc anode. Chemical Communications, 2022, 58, 9104-9107.	2.2	3
1245	A two-dimensional conductive polymer/V ₂ O ₅ composite with rapid zinc-ion storage kinetics for high-power aqueous zinc-ion batteries. Nanoscale, 2022, 14, 12013-12021.	2.8	7
1246	Practical conversion-type titanium telluride anodes for high-capacity long-lifespan rechargeable aqueous zinc batteries. Journal of Materials Chemistry A, 2022, 10, 16976-16985.	5.2	9
1247	A Li ⁺ and PANI co-intercalation strategy for hydrated V ₂ O ₅ to enhance zinc ion storage performance. Journal of Materials Chemistry A, 2022, 10, 18962-18971.	5.2	10
1248	Recent Advancement in Zn-Ion Batteries. , 2022, , 1-27.		0
1249	Suppression of H2 bubble formation on an electrified Pt electrode interface in an acidic "water-in-salt―electrolyte solution. Journal of Materials Chemistry A, O, , .	5.2	0
1250	A brief history of zinc–air batteries: 140 years of epic adventures. Energy and Environmental Science, 2022, 15, 4542-4553.	15.6	65
1251	Zinc dendrite suppression by a novel additive combination for rechargeable aqueous zinc batteries. RSC Advances, 2022, 12, 25054-25059.	1.7	5

#	Article	IF	CITATIONS
1252	Zincophilic Polymer Semiconductor as Multifunctional Protective Layer Enables Dendrite-Free Zinc Metal Anodes. SSRN Electronic Journal, 0, , .	0.4	0
1253	Zincophilic polymer semiconductor as multifunctional protective layer enables Dendrite-Free zinc metal anodes. Chemical Engineering Journal, 2023, 452, 139335.	6.6	20
1254	Chaotropic Polymer Additive with Ion Transport Tunnel Enable Dendrite-Free Zinc Battery. ACS Applied Materials & Interfaces, 2022, 14, 40951-40958.	4.0	19
1255	å•å电锌-空溔电æ±çš"电æžę"究介绕 Scientia Sinica Chimica, 2022, , .	0.2	0
1256	Stabilizing Zn Anode Interface by Simultaneously Manipulating the Thermodynamics of Zn Nucleation and Overpotential of Hydrogen Evolution. Advanced Functional Materials, 2022, 32, .	7.8	43
1257	Recent advances in zinc-ion hybrid energy storage: Coloring high-power capacitors with battery-level energy. Chinese Chemical Letters, 2023, 34, 107784.	4.8	14
1258	One‣tep Construction of a Polyporous and Zincophilic Interface for Stable Zinc Metal Anodes. Advanced Energy Materials, 2022, 12, .	10.2	29
1259	Bulk-phase and interface stability strategies of manganese oxide cathodes for aqueous Zn-MnOx batteries. Frontiers in Chemistry, 0, 10, .	1.8	1
1260	Regulation of Outer Solvation Shell Toward Superior Lowâ€Temperature Aqueous Zincâ€Ion Batteries. Advanced Materials, 2022, 34, .	11.1	65
1261	Regulating Surface Reaction Kinetics through Ligand Field Effects for Fast and Reversible Aqueous Zinc Batteries. Angewandte Chemie, 2022, 134, .	1.6	10
1262	Surface Characterization and Optimization of Porous Zinc Anodes to Improve Cycle Stability by Mitigating Dendritic Growth. Journal of the Electrochemical Society, 2022, 169, 100511.	1.3	3
1263	Toward Dendrite-Free Deposition in Zinc-Based Flow Batteries: Status and Prospects. Batteries, 2022, 8, 117.	2.1	9
1264	Self-repairing interphase reconstructed in each cycle for highly reversible aqueous zinc batteries. Nature Communications, 2022, 13, .	5.8	71
1265	Advanced polymer-based electrolytes in zinc–air batteries. EScience, 2022, 2, 453-466.	25.0	117
1267	Synergistic Chaotropic Effect and Cathode Interface Thermal Release Effect Enabling Ultralow Temperature Aqueous Zinc Battery. Small, 2022, 18, .	5.2	4
1268	Texture Control of Commercial Zn Foils Prolongs Their Reversibility as Aqueous Battery Anodes. ACS Energy Letters, 2022, 7, 3564-3571.	8.8	54
1269	Ultrastable Zinc Anode Enabled by CO ₂ -Induced Interface Layer. ACS Nano, 2022, 16, 14600-14610.	7.3	19
1270	Review—Revisiting the Electroplating Process for Znâ€Metal Anodes: New Application of Traditional Electroplating Additive in ZIBs. Journal of the Electrochemical Society, 2022, 169, 120508.	1.3	4

#	Article	IF	CITATIONS
1271	Formation of CuMn Prussian Blue Analog Doubleâ€Shelled Nanoboxes Toward Longâ€Life Znâ€ion Batteries. Angewandte Chemie - International Edition, 2022, 61, .	7.2	64
1272	Localized Hydrophobicity in Aqueous Zinc Electrolytes Improves Zinc Metal Reversibility. Nano Letters, 2022, 22, 7535-7544.	4.5	51
1273	Insight on the Doubleâ€Edged Sword Role of Water Molecules in the Anode of Aqueous Zincâ€ion Batteries. Small Structures, 2022, 3, .	6.9	33
1274	Tripleâ€Functional Polyoxovanadate Cluster in Regulating Cathode, Anode, and Electrolyte for Tough Aqueous Zincâ€Ion Battery. Advanced Energy Materials, 2022, 12, .	10.2	59
1275	Rechargeable Batteries for Grid Scale Energy Storage. Chemical Reviews, 2022, 122, 16610-16751.	23.0	340
1276	Surface coatings of two-dimensional metal-organic framework nanosheets enable stable zinc anodes. Science China Chemistry, 2022, 65, 2205-2213.	4.2	20
1277	High-Energy and Long-Lasting Organic Electrode for a Rechargeable Aqueous Battery. ACS Energy Letters, 2022, 7, 3637-3645.	8.8	10
1278	Copper Nanoparticle-Modified Carbon Nanofiber for Seeded Zinc Deposition Enables Stable Zn Metal Anode. ACS Sustainable Chemistry and Engineering, 2022, 10, 12630-12641.	3.2	29
1279	Cationic Additive with a Rigid Solvation Shell for Highâ€Performance Zinc Ion Batteries. Angewandte Chemie, 2022, 134, .	1.6	3
1280	Regulating Surface Reaction Kinetics through Ligand Field Effects for Fast and Reversible Aqueous Zinc Batteries. Angewandte Chemie - International Edition, 2022, 61, .	7.2	31
1281	Halogenated Zn ²⁺ Solvation Structure for Reversible Zn Metal Batteries. Journal of the American Chemical Society, 2022, 144, 18435-18443.	6.6	95
1282	Engineering techniques to dendrite free Zinc-based rechargeable batteries. Frontiers in Chemistry, 0, 10, .	1.8	10
1283	Constructing fast-ion-conductive disordered interphase for high-performance zinc-ion and zinc-iodine batteries. Matter, 2022, 5, 4363-4378.	5.0	48
1284	Suppressing the Exacerbated Hydrogen Evolution of Porous Zn Anode with an Artificial Solid-Electrolyte Interphase Layer. ACS Applied Materials & Interfaces, 2022, 14, 41988-41996.	4.0	13
1285	Superâ€Fast and Super‣ong‣ife Rechargeable Zinc Battery. Advanced Energy Materials, 2022, 12, .	10.2	13
1286	Advances in the structure design of substrate materials for zinc anode of aqueous zinc ion batteries. Green Energy and Environment, 2023, 8, 1531-1552.	4.7	27
1287	Cationic Additive with a Rigid Solvation Shell for Highâ€Performance Zinc Ion Batteries. Angewandte Chemie - International Edition, 2022, 61, .	7.2	35
1288	Formation of CuMn Prussian Blue Analog Doubleâ€6helled Nanoboxes Toward Long‣ife Znâ€ion Batteries. Angewandte Chemie, 2022, 134, .	1.6	8

#	Article	IF	CITATIONS
1289	Trace amounts of fluorinated surfactant additives enable high performance zinc-ion batteries. Energy Storage Materials, 2022, 53, 638-645.	9.5	41
1290	A sustainable chitosan-zinc electrolyte for high-rate zinc-metal batteries. Matter, 2022, 5, 3402-3416.	5.0	97
1291	Impedance response of electrochemical interfaces. III. Fingerprints of couplings between interfacial electron transfer reaction and electrolyte-phase ion transport. Journal of Chemical Physics, 2022, 157, .	1.2	3
1292	Ligand‣ubstitution Chemistry Enabling Wideâ€Voltage Aqueous Hybrid Electrolyte for Ultrafast harging Batteries. Advanced Energy Materials, 2022, 12, .	10.2	19
1293	An electrolyte additive for interface regulations of both anode and cathode for aqueous zinc-vanadium oxide batteries. Chemical Engineering Journal, 2023, 452, 139577.	6.6	22
1294	Additive engineering for a hydrophilic/zincophilic polymeric layer towards dendrite-free zinc anode. Materials Today Energy, 2022, 29, 101130.	2.5	15
1295	Construction of zinc metal-Tin sulfide polarized interface for stable Zn metal batteries. , 2023, 2, 100093.		17
1296	lonic liquid additive enabling anti-freezing aqueous electrolyte and dendrite-free Zn metal electrode with organic/inorganic hybrid solid electrolyte interphase layer. Energy Storage Materials, 2022, 53, 629-637.	9.5	52
1297	Bilayer separator enabling dendrite-free zinc anode with ultralong lifespan >5000Âh. Green Energy and Environment, 2024, 9, 771-776.	4.7	2
1298	Molecular crowding bi-salt electrolyte for aqueous zinc hybrid batteries. Energy Storage Materials, 2022, 53, 532-543.	9.5	24
1299	Supermolecule-mediated defect engineering of porous carbons for zinc-ion hybrid capacitors. Nano Energy, 2022, 103, 107827.	8.2	37
1300	Highly reversible aqueous zinc-ion battery using the chelating agent triethanolamine as an electrolyte additive. CrystEngComm, 2022, 24, 7950-7961.	1.3	3
1301	Anode optimization strategies for aqueous zinc-ion batteries. Chemical Science, 2022, 13, 14246-14263.	3.7	36
1302	Super-resolved dynamics of isolated zinc formation during extremely fast electrochemical deposition/dissolution processes. Chemical Science, 2022, 13, 12782-12790.	3.7	8
1303	Emerging strategies for steering orientational deposition toward high-performance Zn metal anodes. Energy and Environmental Science, 2022, 15, 5017-5038.	15.6	93
1304	Ultraconformal Horizontal Zinc Deposition toward Dendriteâ€Free Anode. Small Structures, 2023, 4, .	6.9	14
1305	Unlocking the Potential of Vanadium Oxide for Ultrafast and Stable Zn ²⁺ Storage Through Optimized Stress Distribution: From Engineering Simulation to Elaborate Structure Design. Small Methods, 2022, 6, .	4.6	9
1306	Intrinsic Hydrogenâ€Bond Donorsâ€Lined Organophosphate Superionic Nanochannels Levering Highâ€Rateâ€Endurable Aqueous Zn Batteries. Advanced Energy Materials, 2022, 12, .	10.2	30

#	Article	IF	CITATIONS
1307	Solvent-free protic liquid enabling batteries operation at an ultra-wide temperature range. Nature Communications, 2022, 13, .	5.8	20
1309	Design of a permselective interface for highly stable Zn electrodeposition. Energy Storage Materials, 2023, 54, 461-468.	9.5	2
1310	Uniformly MXeneâ€Grafted Eutectic Aluminumâ€Cerium Alloys as Flexible and Reversible Anode Materials for Rechargeable Aluminumâ€Ion Battery. Advanced Functional Materials, 2023, 33, .	7.8	28
1311	Opportunities of Flexible and Portable Electrochemical Devices for Energy Storage: Expanding the Spotlight onto Semi-solid/Solid Electrolytes. Chemical Reviews, 2022, 122, 17155-17239.	23.0	67
1312	Eutectic Electrolytes with Doublyâ€Bound Water for Highâ€Stability Zinc Anodes. Advanced Functional Materials, 2022, 32, .	7.8	42
1313	Inhibiting dendrites on Zn anode by ZIF-8 as solid electrolyte additive for aqueous zinc ion battery. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2023, 656, 130255.	2.3	9
1314	Nonâ€fluorinated Zinc Anions: A Lowâ€Cost Environmental Approach for Reversible Zinc Electrochemistry. Batteries and Supercaps, 0, , .	2.4	0
1315	Alkaline Tolerant Antifreezing Additive Enabling Aqueous Zn Ni Battery Operating at â^60 °C. Angewandte Chemie - International Edition, 2022, 61, .	7.2	26
1316	Three Birds with One Stone: Tetramethylurea as Electrolyte Additive for Highly Reversible Znâ€Metal Anode. Advanced Functional Materials, 2022, 32, .	7.8	62
1317	Unveiling the "Proton Lubricant―Chemistry in Aqueous Zincâ€MoS ₂ Batteries. Angewandte Chemie - International Edition, 2022, 61, .	7.2	44
1319	Organic interlayer engineering of TiS2 for enhanced aqueous Zn ions storage. Journal of Materials Science and Technology, 2023, 140, 135-141.	5.6	25
1320	Molecular‣evel Zn″on Transfer Pump Specifically Functioning on (002) Facets Enables Durable Zn Anodes. Small, 2022, 18, .	5.2	19
1321	Synergistic Design of Multifunctional Interfacial Zn Host toward Practical Zn Metal Batteries. Advanced Energy Materials, 2022, 12, .	10.2	37
1322	Molecularâ€Crowding Effect Mimicking Coldâ€Resistant Plants to Stabilize the Zinc Anode with Wider Service Temperature Range. Advanced Materials, 2023, 35, .	11.1	68
1323	Unveiling the "Proton Lubricant―Chemistry in Aqueous Zincâ€MoS ₂ Batteries. Angewandte Chemie, 2022, 134, .	1.6	2
1324	H ₂ O Activity Adjustment by Hydrogen Bonding Enables Highâ€Performance Znâ€Organic Battery. ChemSusChem, 2022, 15, .	3.6	2
1325	Solid Electrolyte Interface in Zn-Based Battery Systems. Nano-Micro Letters, 2022, 14, .	14.4	64
1326	Rational Screening of Artificial Solid Electrolyte Interphases on Zn for Ultrahighâ€Rate and Long‣ife Aqueous Batteries. Advanced Materials, 2023, 35, .	11.1	64

#	Article	IF	Citations
1328	Highly stable and low-temperature-tolerant zinc ion storage enabled by carbitol electrolyte additive engineering. Journal of Colloid and Interface Science, 2023, 631, 17-24.	5.0	5
1329	Twoâ€dimensional V ₂ CT _x Inâ€situ Derived Porous V ₂ O ₃ @C Flakes Towards Zincâ€ion Capacitors as a Competitive Cathode Material. ChemNanoMat, 2023, 9, .	1.5	2
1330	Electrolyte for Highâ€Energy―and Powerâ€Density Zinc Batteries and Ion Capacitors. Advanced Materials, 2023, 35, .	11.1	10
1331	Alkaline Tolerant Antifreezing Additive Enabling Aqueous Zn Ni Battery Operating at â^60 °C. Angewandte Chemie, 2022, 134, .	1.6	5
1332	A solid-to-solid metallic conversion electrochemistry toward 91% zinc utilization for sustainable aqueous batteries. Science Advances, 2022, 8, .	4.7	80
1333	Rational Design of Sulfonamideâ€Based Additive Enables Stable Solid Electrolyte Interphase for Reversible Zn Metal Anode. Advanced Functional Materials, 2023, 33, .	7.8	28
1334	In Situ Formation of Nitrogenâ€Rich Solid Electrolyte Interphase and Simultaneous Regulating Solvation Structures for Advanced Zn Metal Batteries. Angewandte Chemie - International Edition, 2022, 61, .	7.2	63
1335	Simultaneously Stabilizing Both Electrodes and Electrolytes by a Selfâ€Separating Organometallics Interface for Highâ€Performance Zincâ€Ion Batteries at Wide Temperatures. Advanced Materials, 2022, 34, .	11.1	53
1336	Inâ€situ Formation of Nitrogenâ€Rich Solid Electrolyte Interphase and Simultaneous Regulating Solvation Structures for Advanced Zn Metal Batteries. Angewandte Chemie, 0, , .	1.6	6
1337	Binder-Free Sodium Zinc Phosphate Protection Layer Enabled Dendrite-Free Zn Metal Anode. ACS Applied Materials & Interfaces, 2022, 14, 50827-50835.	4.0	13
1338	A low fraction electrolyte additive as interface stabilizer for Zn electrode in aqueous batteries. Energy Storage Materials, 2023, 54, 366-373.	9.5	47
1339	Zn metal anodes stabilized by an intrinsically safe, dilute, and hydrous organic electrolyte. Energy Storage Materials, 2023, 54, 276-283.	9.5	47
1340	lodine conversion chemistry in aqueous batteries: Challenges, strategies, and perspectives. Energy Storage Materials, 2023, 54, 339-365.	9.5	41
1341	Recent progress of aqueous and organic/aqueous hybrid electrolytes for low-temperature rechargeable metal-ion batteries and supercapacitors. Energy Storage Materials, 2023, 54, 382-402.	9.5	19
1342	In-depth study on the regulation of electrode interface and solvation structure by hydroxyl chemistry. Energy Storage Materials, 2023, 54, 374-381.	9.5	33
1343	Regulating desolvation and homogenized ion flux towards highly reversible dendrite-free zinc anode. Chemical Engineering Journal, 2023, 453, 139963.	6.6	11
1344	Design principles for heterointerfacial alloying kinetics at metallic anodes in rechargeable batteries. Science Advances, 2022, 8, .	4.7	30
1345	Homogenization of electric field distribution facilitating the Zn anode reversibility. Chemical Communications, 2022, 58, 13648-13651.	2.2	5

#	Article	IF	CITATIONS
1346	Interlayer Engineering of V2O5 Anode toward High Rate and Durable Dual Ion Batteries. Inorganic Chemistry Frontiers, 0, , .	3.0	0
1347	A glutamate anion boosted zinc anode for deep cycling aqueous zinc ion batteries. Journal of Materials Chemistry A, 2022, 10, 25029-25038.	5.2	19
1348	From anode to cell: synergistic protection strategies and perspectives for stabilized Zn metal in mild aqueous electrolytes. Energy Storage Materials, 2023, 54, 623-640.	9.5	41
1349	Electrochemical one-step synthesis of Mn3O4 with tunable oxygen defects for high-performance aqueous zinc-ion batteries. Journal of Alloys and Compounds, 2023, 934, 167933.	2.8	4
1350	Highly Reversible Zinc Metal Anode in a Dilute Aqueous Electrolyte Enabled by a pH Buffer Additive. Angewandte Chemie, 2023, 135, .	1.6	11
1351	A novel bifunctional zinc gluconate electrolyte for a stable Zn anode. Chemical Engineering Journal, 2023, 454, 140364.	6.6	21
1352	Constructing Three-Dimensional Topological Zn Deposition for Long-Life Aqueous Zn-Ion Batteries. ACS Applied Materials & Interfaces, 2022, 14, 51010-51017.	4.0	5
1353	Interface Reversible Electric Field Regulated by Amphoteric Charged Protein-Based Coating Toward High-Rate and Robust Zn Anode. Nano-Micro Letters, 2022, 14, .	14.4	25
1354	Recent advances and perspectives for Zn-based batteries: Zn anode and electrolyte. , 2023, 2, e9120039.		61
1355	Inhibiting corrosion and side reactions of zinc metal anode by nano-CaSiO ₃ coating towards high-performance aqueous zinc-ion batteries. Nanotechnology, 2023, 34, 085402.	1.3	7
1356	Recent progress in flexible Znâ€ion hybrid supercapacitors: Fundamentals, fabrication designs, and applications. , 2023, 5, .		26
1357	Molecular deciphering of hydrophobic, Zinc-philic and robust Amino-functionalized Polysilane for Dendrite-free Zn Anode. Energy Storage Materials, 2023, 54, 875-884.	9.5	38
1358	Isotropic Amorphous Protective Layer with Uniform Interfacial Zincophobicity for Stable Zinc Anode. Small, 2022, 18, .	5.2	26
1359	Designing modern aqueous batteries. Nature Reviews Materials, 2023, 8, 109-122.	23.3	153
1360	Alkali Adatom-amplified Schottky contact and built-in voltage for stable Zn-metal anodes. Energy Storage Materials, 2023, 54, 863-874.	9.5	7
1361	Steel Antiâ€Corrosion Strategy Enables Longâ€Cycle Zn Anode. Advanced Energy Materials, 2023, 13, .	10.2	37
1362	Empowering Zn Electrode Current Capability Along Interfacial Stability by Optimizing Intrinsic Safe Organic Electrolytes. Angewandte Chemie - International Edition, 2023, 62, .	7.2	13
1363	Understanding and Improving Mechanical Stability in Electrodeposited Cu and Bi for Dynamic Windows Based on Reversible Metal Electrodeposition. Advanced Energy Materials, 2023, 13, .	10.2	4

#	Article	IF	CITATIONS
1364	Highly Reversible Zinc Metal Anode in a Dilute Aqueous Electrolyte Enabled by a pH Buffer Additive. Angewandte Chemie - International Edition, 2023, 62, .	7.2	127
1365	Highâ€Capacity Zinc Anode with 96 % Utilization Rate Enabled by Solvation Structure Design. Angewandte Chemie, 2023, 135, .	1.6	2
1366	"Empowering Zn Electrode Current Capability Along Interfacial Stability by Optimizing Intrinsic Safe Organic Electrolytes― Angewandte Chemie, 0, , .	1.6	0
1367	High apacity Zinc Anode with 96 % Utilization Rate Enabled by Solvation Structure Design. Angewandte Chemie - International Edition, 2023, 62, .	7.2	70
1368	Inducing the Preferential Growth of Zn (002) Plane for Long Cycle Aqueous Znâ€lon Batteries. Advanced Energy Materials, 2023, 13, .	10.2	67
1369	Secondary Zinc–Air Batteries: A View on Rechargeability Aspects. Batteries, 2022, 8, 244.	2.1	12
1370	The protective effect and its mechanism for electrolyte additives on the anode interface in aqueous zinc-based energy storage devices. Nano Materials Science, 2022, , .	3.9	9
1371	Aqueous rechargeable zinc air batteries operated at â^'110°C. CheM, 2023, 9, 497-510.	5.8	31
1372	Boosting zinc storage in potassium-birnessite via organic-inorganic electrolyte strategy with slight N-methyl-2-pyrrolidone additive. Energy Storage Materials, 2023, 54, 784-793.	9.5	2
1373	A flexible zinc ion hybrid capacitor integrated system with layers-dependent V2CTx MXene. Chemical Engineering Journal, 2023, 454, 140360.	6.6	33
1374	Fluorine ontaining Covalent Organic Frameworks: Synthesis and Application. Macromolecular Rapid Communications, 2023, 44, .	2.0	5
1375	A highly conductive gel electrolyte with favorable ion transfer channels for long-lived zinc–iodine batteries. Chemical Science, 2023, 14, 331-337.	3.7	26
1376	Simultaneous manipulation of electron/Zn2+ ion flux and desolvation effect enabled by in-situ built ultra-thin oxide-based artificial interphase for controlled deposition of zinc metal anodes. Chemical Engineering Journal, 2023, 456, 141015.	6.6	19
1377	An "immobilizing and relocating―strategy for a highly reversible metallic zinc anode. Journal of Materials Chemistry A, 2023, 11, 1361-1368.	5.2	3
1378	Uniform Zn2+ distribution and deposition regulated by ultrathin hydroxyl-rich silica ion sieve in zinc metal anodes. Energy Storage Materials, 2023, 55, 264-271.	9.5	17
1379	An in-depth study of heterometallic interface chemistry: Bi-component layer enables highly reversible and stable Zn metal anodes. Energy Storage Materials, 2023, 55, 575-586.	9.5	7
1380	Reversible metal ionic catalysts for high-voltage aqueous hybrid zinc-manganese redox flow batteries. Energy Storage Materials, 2023, 55, 698-707.	9.5	9
1381	lon transport in semi-solid in-salt electrolytes: LiTFSI–H ₂ O as a model system. Journal of Materials Chemistry A, 2023, 11, 3427-3436.	5.2	5

#	Article	IF	CITATIONS
1382	A novel hydrophobic-zincophilic bifunctional layer for stable Zn metal anodes. Energy Storage Materials, 2023, 55, 538-545.	9.5	35
1383	End-capping of hydrogen bonds: A strategy for blocking the proton conduction pathway in aqueous electrolytes. Energy Storage Materials, 2023, 55, 479-489.	9.5	11
1384	Modulation of poly (acrylic acid) hydrogels with κ-carrageenan for high-performance quasi-solid Al-air batteries. International Journal of Biological Macromolecules, 2023, 226, 554-561.	3.6	4
1385	Intrinsically safe electrolyte boosting high reversibleZn anode for rechargeable batteries. Energy Storage Materials, 2023, 55, 566-574.	9.5	5
1386	Aqueous Zn-ion batteries using amorphous Zn-buserite with high activity and stability. Journal of Materials Chemistry A, 2023, 11, 1380-1393.	5.2	5
1387	Discharge intermittency considerably changes ZnO spatial distribution in porous Zn anodes. Journal of Power Sources, 2023, 556, 232460.	4.0	1
1388	Interface engineering enables stable and reversible zinc anode for high-performance Zn–12 battery. Journal of Power Sources, 2023, 556, 232529.	4.0	4
1389	Long-term stable Zn metal anodes by electrodeposited manganese dioxide for aqueous rechargeable zinc ion batteries. Journal of Alloys and Compounds, 2023, 936, 168378.	2.8	4
1390	Carbon nanotubes intertwined porous vanadium oxide heterostructured microfibers as high-performance cathodes for aqueous zinc-ion batteries. Applied Surface Science, 2023, 612, 155791.	3.1	4
1391	Zinc Batteries: Basics, Materials Functions, and Applications. , 2022, , 1-37.		Ο
1392	Building a seamless water-sieving MOF-based interphase for highly reversible Zn metal anodes. Chemical Engineering Journal, 2023, 455, 140510.	6.6	9
1393	Ultraâ€Stable Zn Anode Enabled by Fiberâ€Directed Ion Migration Using Massâ€Producible Separator. Advanced Functional Materials, 2023, 33, .	7.8	30
1394	A review on system and materials for aqueous flexible metalâ \in "air batteries. , 2023, 5, .		8
1395	Vanadium Hexacyanoferrate as a High-Capacity and High-Voltage Cathode for Aqueous Rechargeable Zinc Ion Batteries. Nanomaterials, 2022, 12, 4268.	1.9	5
1396	Chitosan-Carboxymethylcellulose Hydrogels as Electrolytes for Zinc–Air Batteries: An Approach to the Transition towards Renewable Energy Storage Devices. Batteries, 2022, 8, 265.	2.1	6
1397	In Situ Reconstruction of Dendrite-Free Zinc Anode with Cu from Reactive Copper Phthalocyanine Interlayer. ACS Sustainable Chemistry and Engineering, 2022, 10, 15838-15845.	3.2	5
1398	Interface challenges and optimization strategies for aqueous zinc-ion batteries. Journal of Energy Chemistry, 2023, 77, 642-659.	7.1	38
1399	A Polyurethane Organic Framework for Flexible Al–Air Batteries. ACS Applied Energy Materials, 2022, 5,		

#	ARTICLE	IF	Citations
1400	Hierarchical porous separator with excellent isotropic modulus enabling homogeneous Zn2+ flux for stable aqueous Zn battery. Science China Materials, 2023, 66, 982-991.	3.5	3
1401	Self-Supported Graphene Nanosheet-Based Composites as Binder-Free Electrodes for Advanced Electrochemical Energy Conversion and Storage. Electrochemical Energy Reviews, 2022, 5, .	13.1	27
1402	Synergistically coupling of graphene quantum dots with Zn-intercalated MnO2 cathode for high-performance aqueous Zn-ion batteries. International Journal of Minerals, Metallurgy and Materials, 2023, 30, 25-32.	2.4	45
1403	Two-Dimensional Materials for Dendrite-Free Zinc Metal Anodes in Aqueous Zinc Batteries. Batteries, 2022, 8, 293.	2.1	4
1404	Biocompatible zinc battery with programmable electro-cross-linked electrolyte. National Science Review, 2023, 10, .	4.6	97
1405	Alloying Strategy for High-Performance Zinc Metal Anodes. ACS Energy Letters, 2023, 8, 457-476.	8.8	63
1406	Facile Construction of the Graphene-Supported Porous V ₂ O ₃ Nanocomposite Derived from the V-MOF@Graphene Precursor with Enhanced Performance for Aqueous Zinc-Ion Batteries. ACS Applied Energy Materials, 2022, 5, 14990-14999.	2.5	9
1407	Hybrid Anionic Electrolytes for the High Performance of Aqueous Zinc-Ion Hybrid Supercapacitors. Energies, 2023, 16, 248.	1.6	3
1408	Progress of Phosphateâ€based Polyanion Cathodes for Aqueous Rechargeable Zinc Batteries. Advanced Functional Materials, 2023, 33, .	7.8	22
1409	A Semiâ€solid Zinc Powderâ€based Slurry Anode for Advanced Aqueous Zincâ€ion Batteries. Angewandte Chemie, 2023, 135, .	1.6	8
1410	Metal Anodes with Ultrahigh Reversibility Enabled by the Closest Packing Crystallography for Sustainable Batteries. Advanced Materials, 2023, 35, .	11.1	22
1411	Biodegradable flexible proton conducting solid biopolymer membranes based on pectin and ammonium salt for electrochemical applications. International Journal of Hydrogen Energy, 2023, 48, 5387-5401.	3.8	10
1412	A Semiâ€solid Zinc Powderâ€based Slurry Anode for Advanced Aqueous Zincâ€ion Batteries. Angewandte Chemie - International Edition, 2023, 62, .	7.2	34
1413	Mosaic Nanocrystalline Graphene Skin Empowers Highly Reversible Zn Metal Anodes. Advanced Science, 2023, 10, .	5.6	19
1414	Metal-air batteries: progress and perspective. Science Bulletin, 2022, 67, 2449-2486.	4.3	61
1415	ZnF2â€Riched Inorganic/Organic Hybrid SEI: inâ€situâ€Chemical Construction and Performanceâ€Improving Mechanism for Aqueous Zincâ€ion Batteries. Angewandte Chemie, 0, , .	1.6	0
1416	Recent Advances of Transition Metal Sulfides/Selenides Cathodes for Aqueous Zincâ€lon Batteries. Advanced Energy Materials, 2023, 13, .	10.2	35
1417	A long-life aqueous Zn battery enabled by simultaneous suppressing cathode dissolution and Zn dendrites via a novel water-in-deep eutectic solvent electrolyte. Chemical Engineering Journal, 2023, 456, 141019.	6.6	10

#	Article	IF	CITATIONS
1418	Direct Ink Writing of 3D Zn Structures as High apacity Anodes for Rechargeable Alkaline Batteries. Small Structures, 2023, 4, .	6.9	6
1419	Aminosilane Molecular Layer Enables Successive Capture-Diffusion-Deposition of Ions toward Reversible Zinc Electrochemistry. ACS Nano, 2023, 17, 668-677.	7.3	30
1420	Zinc salt in "Waterâ€inâ€Polymer Salt Electrolyte―for Zincâ€Lignin Batteries: Electroactivity of the Lignin Cathode. Advanced Sustainable Systems, 2023, 7, .	2.7	4
1421	A strategic way of high-performance energy storage device development with environmentally viable "Water-in-salt―electrolytes. Journal of Energy Chemistry, 2023, 78, 350-373.	7.1	9
1422	Manipulating OH ^{â^'} â€Mediated Anodeâ€Cathode Crossâ€Communication Toward Longâ€Life Aqueous Zincâ€Vanadium Batteries. Angewandte Chemie, 2023, 135, .	1.6	2
1423	Manipulating OH ^{â^'} â€Mediated Anodeâ€Cathode Crossâ€Communication Toward Longâ€Life Aqueous Zincâ€Vanadium Batteries. Angewandte Chemie - International Edition, 2023, 62, .	7.2	19
1424	ZnF ₂ â€Riched Inorganic/Organic Hybrid SEI: in situâ€Chemical Construction and Performanceâ€Improving Mechanism for Aqueous Zincâ€ion Batteries. Angewandte Chemie - International Edition, 2023, 62, .	7.2	63
1425	Comprehensive H ₂ O Molecules Regulation via Deep Eutectic Solvents for Ultra table Zinc Metal Anode. Angewandte Chemie, 2023, 135, .	1.6	1
1426	Guiding Principles for the Design of Artificial Interface Layer for Zinc Metal Anode. Batteries and Supercaps, 2023, 6, .	2.4	4
1427	Comprehensive H ₂ O Molecules Regulation via Deep Eutectic Solvents for Ultraâ€Stable Zinc Metal Anode. Angewandte Chemie - International Edition, 2023, 62, .	7.2	63
1428	Rational design of ZnO-based aqueous batteries for safe, fast, and reliable energy storage: Accomplishment of stable K+ storage/release. Chemical Engineering Journal, 2023, 456, 141098.	6.6	2
1429	Controlled Construction and Properties Study of PDMS Coatings for Stabilizing Zinc Metal Anode. , 0, 21, 286-297.		0
1430	Metallic Zinc Anode Working at 50 and 50ÂmAhÂcm ^{â^'2} with High Depth of Discharge via Electrical Double Layer Reconstruction. Advanced Functional Materials, 2023, 33, .	7.8	46
1431	Bifunctional sulfonated covalent polymers as the modulator for oriented and highly reversible zinc plating. Science China Chemistry, 2023, 66, 289-296.	4.2	6
1432	Intrinsic Interfacial Dynamic Engineering of Zincophilic Microbrushes via Regulating Zn Deposition for Highly Reversible Aqueous Zinc Ion Battery. Advanced Materials, 2023, 35, .	11.1	24
1433	Three-dimensional Zn-based alloys for dendrite-free aqueous Zn battery in dual-cation electrolytes. Nature Communications, 2022, 13, .	5.8	47
1434	Anode/Cathode Dualâ€Purpose Aluminum Current Collectors for Aqueous Zincâ€Ion Batteries. Advanced Functional Materials, 2023, 33, .	7.8	4
1435	Stabling Zinc Metal Anode with Polydopamine Regulation through Dual Effects of Fast Desolvation and Ion Confinement. Advanced Energy Materials, 2023, 13, .	10.2	67

#	Article	IF	CITATIONS
1436	Recent Progress on the Performance of Zn-Ion Battery Using Various Electrolyte Salt and Solvent Concentrations. ACS Applied Electronic Materials, 2023, 5, 100-116.	2.0	6
1437	Recent Advances on Challenges and Strategies of Manganese Dioxide Cathodes for Aqueous Zincâ€lon Batteries. Energy and Environmental Materials, 2023, 6, .	7.3	28
1438	Aqueous Zinc–Chalcogen Batteries: Emerging Conversion-Type Energy Storage Systems. Batteries, 2023, 9, 62.	2.1	5
1439	A Liquid Crystal Ionomerâ€Type Electrolyte toward Orderingâ€Induced Regulation for Highly Reversible Zinc Ion Battery. Advanced Science, 2023, 10, .	5.6	11
1440	An Overview of Challenges and Strategies for Stabilizing Zinc Anodes in Aqueous Rechargeable Zn-Ion Batteries. Batteries, 2023, 9, 41.	2.1	11
1441	A two-salt solution for batteries. Nature Sustainability, 0, , .	11.5	Ο
1442	Step by Step Induced Growth of Zincâ€Metal Interface on Graphdiyne for Aqueous Zincâ€ion Batteries. Angewandte Chemie, 2023, 135, .	1.6	3
1443	Realizing Textured Zinc Metal Anodes through Regulating Electrodeposition Current for Aqueous Zinc Batteries. Angewandte Chemie, 2023, 135, .	1.6	7
1444	Use of Water-In-Salt Concentrated Liquid Electrolytes in Electrochemical Energy Storage: State of the Art and Perspectives. Batteries, 2023, 9, 47.	2.1	8
1445	Towards high-performance zinc anode for zinc ion hybrid capacitor: Concurrently tailoring hydrodynamic stability, zinc deposition and solvation structure via electrolyte additive. Energy Storage Materials, 2023, 55, 857-866.	9.5	17
1446	Constructing robust heterostructured interface for anode-free zinc batteries with ultrahigh capacities. Nature Communications, 2023, 14, .	5.8	77
1447	Effective Solution toward the Issues of Zn-Based Anodes for Advanced Alkaline Ni–Zn Batteries. ACS Applied Materials & Interfaces, 2023, 15, 3953-3960.	4.0	9
1448	All-temperature zinc batteries with high-entropy aqueous electrolyte. Nature Sustainability, 2023, 6, 325-335.	11.5	74
1449	Dendriteâ€Free Engineering toward Efficient Zinc Storage: Recent Progress and Future Perspectives. Chemistry - A European Journal, 2023, 29, .	1.7	18
1450	Electrolyte ofÂZn-Air Battery. , 2023, , 175-189.		0
1451	In situ construction of a stable composite solid electrolyte interphase for dendrite-free Zn batteries. Journal of Energy Chemistry, 2023, 79, 450-458.	7.1	14
1452	Interface Engineering of Zinc Electrode for Rechargeable Alkaline Zincâ€Based Batteries. Small Methods, 2023, 7, .	4.6	13
1453	Synchronous Dual Electrolyte Additive Sustains Zn Metal Anode with 5600â€h Lifespan. Angewandte Chemie - International Edition, 2023, 62, .	7.2	26

#	Article	IF	CITATIONS
1454	Influence of Water on Gel Electrolytes for Zincâ€lon Batteries. Chemistry - an Asian Journal, 2023, 18, .	1.7	10
1455	A New Insight of Antiâ€Solvent Electrolytes for Aqueous Zincâ€Ion Batteries by Molecular Modeling. Small Structures, 2023, 4, .	6.9	9
1456	Tailored ZnF2/ZnS-rich interphase for reversible aqueous Zn batteries. Nano Research, 2023, 16, 4996-5005.	5.8	15
1457	"Duetâ€Insurance―Eutectic Electrolytes for Zincâ€Ion Capacitor Pouch Cells. Advanced Functional Materials, 2023, 33, .	7.8	8
1458	Step by Step Induced Growth of Zincâ€Metal Interface on Graphdiyne for Aqueous Zincâ€Ion Batteries. Angewandte Chemie - International Edition, 2023, 62, .	7.2	67
1459	A Double-Functional Additive Containing Nucleophilic Groups for High-Performance Zn-Ion Batteries. ACS Nano, 2023, 17, 1610-1621.	7.3	107
1460	Three-dimensional Porous Alloy Host for Highly Stable and Dendrite-Free Zinc Metal Anode. Journal of the Electrochemical Society, 2023, 170, 010516.	1.3	2
1461	Dendrite-free Zn anode enabled by anionic surfactant-induced horizontal growth for highly-stable aqueous Zn-ion pouch cells. Energy and Environmental Science, 2023, 16, 687-697.	15.6	66
1462	Recent advances in manipulating strategy of aqueous electrolytes for Zn anode stabilization. Energy Storage Materials, 2023, 56, 227-257.	9.5	35
1463	Nanoscale Ultrafine Zinc Metal Anodes for High Stability Aqueous Zinc Ion Batteries. Nano Letters, 2023, 23, 541-549.	4.5	30
1464	Anode corrosion in aqueous Zn metal batteries. EScience, 2023, 3, 100093.	25.0	68
1465	Coâ€insertion of Water with Protons into Organic Electrodes Enables Highâ€Rate and Highâ€Capacity Proton Batteries. Small Structures, 2023, 4, .	6.9	16
1466	Aqueous transition-metal ion batteries: Materials and electrochemistry. EnergyChem, 2023, 5, 100097.	10.1	6
1467	Unraveling the Interphasial Chemistry for Highly Reversible Aqueous Zn Ion Batteries. ACS Applied Materials & Interfaces, 2023, 15, 4053-4060.	4.0	10
1468	Tailoring the Electrochemical Deposition of Zn by Tuning the Viscosity of the Liquid Electrolyte. ACS Applied Materials & Interfaces, 2023, 15, 3028-3036.	4.0	6
1469	Activating zinc-ion storage in MXene through Mn ⁴⁺ loading on surface terminations. New Journal of Chemistry, 0, , .	1.4	0
1470	Long-Life Aqueous Zinc–Organic Batteries with a Trimethyl Phosphate Electrolyte and Organic Cathode. ACS Sustainable Chemistry and Engineering, 2023, 11, 957-964.	3.2	5
1471	Synchronous Dual Electrolyte Additive Sustains Zn Metal Anode with 5600 h Lifespan. Angewandte Chemie, 2023, 135, .	1.6	2

#	Article	IF	CITATIONS
1472	Realizing Textured Zinc Metal Anodes through Regulating Electrodeposition Current for Aqueous Zinc Batteries. Angewandte Chemie - International Edition, 2023, 62, .	7.2	61
1473	Electrolyte additive of sorbitol rendering aqueous zinc-ion batteries with dendrite-free behavior and good anti-freezing ability. Chemical Engineering Journal, 2023, 458, 141392.	6.6	23
1474	A cationic polymeric interface enabling dendrite-free and highly stable aqueous Zn-metal batteries. Journal of Power Sources, 2023, 558, 232356.	4.0	7
1475	Versatile 1, 3-dimethyl-2-imidazolidinone electrolyte additive: Enables extremely long life zinc metal batteries with different substrates. Chemical Engineering Journal, 2023, 457, 141287.	6.6	13
1476	A co-solvent in aqueous electrolyte towards ultralong-life rechargeable zinc-ion batteries. Energy Storage Materials, 2023, 56, 174-182.	9.5	28
1477	Realizing high reversibility and safety of Zn anode via binary mixture of organic solvents. Nano Energy, 2023, 107, 108175.	8.2	20
1478	Stabilizing zinc deposition through solvation sheath regulation and preferential adsorption by electrolyte additive of lithium difluoro(oxalato)borate. Chemical Engineering Journal, 2023, 457, 141328.	6.6	7
1479	Integration of three functional layers constructed simultaneously in combustion process for reversible zinc anode. Applied Surface Science, 2023, 615, 156384.	3.1	5
1480	Electrolyte engineering strategies for regulation of the Zn metal anode in aqueous Znâ€ion batteries. , 2023, 2, .		28
1481	Low-Cost Zinc–Alginate-Based Hydrogel–Polymer Electrolytes for Dendrite-Free Zinc-Ion Batteries with High Performances and Prolonged Lifetimes. Polymers, 2023, 15, 212.	2.0	7
1482	Constructing Acrylic-Bonded Stationary Phase as an Artificial SEI for Highly Stable Zn Metal Anodes. ACS Applied Materials & Interfaces, 2023, 15, 2341-2350.	4.0	8
1483	Stabilizing a Zn Anode by an Ionic Amphiphilic Copolymer Electrolyte Additive for Long-Life Aqueous Zn-Ion Batteries. Batteries, 2023, 9, 25.	2.1	5
1484	Reconstruction of Electric Double Layer for Longâ€Life Aqueous Zinc Metal Batteries. Advanced Functional Materials, 2023, 33, .	7.8	31
1485	Supramolecule-Based Excluded-Volume Electrolytes and Conjugated Sulfonamide Cathodes for High-Voltage and Long-Cycling Aqueous Zinc-Ion Batteries. ACS Energy Letters, 2023, 8, 762-771.	8.8	17
1486	A Lowâ€Concentration and High Ionic Conductivity Aqueous Electrolyte toward Ultralowâ€Temperature Zincâ€Ion Hybrid Capacitors. Small Structures, 2023, 4, .	6.9	1
1487	Urea-Based Deep Eutectic Solvent with Magnesium/Lithium Dual Ions as an Aqueous Electrolyte for High-Performance Battery-Supercapacitor Hybrid Devices. Batteries, 2023, 9, 69.	2.1	3
1488	Valid design and evaluation of cathode and anode materials of aqueous zinc ion batteries with high-rate capability and cycle stability. Nanoscale, 2023, 15, 3737-3748.	2.8	5
1489	A high-energy aqueous Zn‖NO ₂ electrochemical cell: a new strategy for NO ₂ fixation and electric power generation. Energy and Environmental Science, 2023, 16, 1125-1134.	15.6	15

# 1490	ARTICLE Decreasing Water Activity Using the Tetrahydrofuran Electrolyte Additive for Highly Reversible Aqueous Zinc Metal Batteries. ACS Applied Materials & Interfaces, 2023, 15, 6647-6656.	IF 4.0	Citations 8
1492	Ethanol Solvent Used in Constructing Ultra-Low-Temperature Zinc-Ion Capacitors with a Long Cycling Life. ACS Applied Materials & Interfaces, 2023, 15, 5180-5190.	4.0	7
1493	Mini-Review on the Regulation of Electrolyte Solvation Structure for Aqueous Zinc Ion Batteries. Batteries, 2023, 9, 73.	2.1	3
1494	Structural and conformable designs for aqueous multifunctional batteries. Materials Today Energy, 2023, 33, 101255.	2.5	3
1495	All-round supramolecular zwitterionic hydrogel electrolytes enabling environmentally adaptive dendrite-free aqueous zinc ion capacitors. Energy and Environmental Science, 2023, 16, 1291-1311.	15.6	39
1496	Towards storable and durable Zn-MnO2 batteries with hydrous tetraglyme electrolyte. Journal of Energy Chemistry, 2023, 80, 432-441.	7.1	2
1497	Quantitative Chemistry in Electrolyte Solvation Design for Aqueous Batteries. ACS Energy Letters, 2023, 8, 1076-1095.	8.8	19
1498	Enabling Highly Reversible Zn Anode by Multifunctional Synergistic Effects of Hybrid Solute Additives. ACS Energy Letters, 2023, 8, 1192-1200.	8.8	45
1499	Redox flow batteries: Pushing the cell voltage limits for sustainable energy storage. Journal of Energy Storage, 2023, 61, 106622.	3.9	4
1500	Zn and N co-doped three-dimensional honeycomb-like carbon featured with interconnected nano-pools for dendrite-free zinc anode. Journal of Colloid and Interface Science, 2023, 638, 629-639.	5.0	5
1501	Creating water-in-salt-like environment using coordinating anions in non-concentrated aqueous electrolytes for efficient Zn batteries. Energy and Environmental Science, 2023, 16, 1982-1991.	15.6	15
1502	Advances and strategies of electrolyte regulation in Zn-ion batteries. Materials Chemistry Frontiers, 2023, 7, 3232-3258.	3.2	11
1503	Melamine Foam-Derived Carbon Scaffold for Dendrite-Free and Stable Zinc Metal Anode. Molecules, 2023, 28, 1742.	1.7	4
1504	Manipulating Coulombic Efficiency of Cathodes in Aqueous Zinc Batteries by Anion Chemistry. Angewandte Chemie, 2023, 135, .	1.6	2
1505	Interfacial chemistry regulation via dibenzenesulfonamide-functionalized additives enables high-performance Zn metal anodes. Energy Storage Materials, 2023, 58, 85-93.	9.5	14
1506	Utilizing Cationic Vacancies and Spontaneous Polarization on Cathode to Enhance Zincâ€ion Storage and Inhibit Dendrite Growth in Zincâ€ion Batteries. Angewandte Chemie - International Edition, 2023, 62, .	7.2	8
1507	Reconstructing the solvation structure and solid-liquid interface enables dendrite-free zinc-ion batteries. Materials Today Energy, 2023, 33, 101279.	2.5	7
1508	Microstructural Evolution of Zincâ€Ion Species from Aqueous to Hydrated Eutectic Electrolyte for Znâ€Ion Batteries. ChemSusChem, 2023, 16, .	3.6	2

#	Article	IF	CITATIONS
1509	Nature-inspired interfacial engineering for highly stable Zn metal anodes. Energy Storage Materials, 2023, 58, 279-286.	9.5	6
1510	Sulfolane-containing aqueous electrolyte solutions for producing efficient ampere-hour-level zinc metal battery pouch cells. Nature Communications, 2023, 14, .	5.8	53
1511	Green Environmentally Friendly "Zn(CH ₃ SO ₃) ₂ ―Electrolyte for Aqueous Zinc-Ion Batteries. ACS Applied Materials & Interfaces, 2023, 15, 20089-20099.	4.0	6
1512	Construction of an Artificial Interfacial Layer with Porous Structure toward Stable Zincâ€Metal Anodes. Small Science, 2023, 3, .	5.8	28
1513	Challenges and perspectives of hydrogen evolution-free aqueous Zn-Ion batteries. Energy Storage Materials, 2023, 59, 102767.	9.5	22
1514	Hydrogen bond acceptor lined hydrogel electrolyte toward Dendrite-Free aqueous Zn ion batteries with low temperature adaptability. Chemical Engineering Journal, 2023, 464, 142607.	6.6	31
1515	Byproduct reverse engineering to construct unusually enhanced protection layers for dendrite-free Zn anode. Chemical Engineering Journal, 2023, 464, 142580.	6.6	7
1516	Upcycling of phosphogypsum waste for efficient zinc-ion batteries. Journal of Energy Chemistry, 2023, 81, 157-166.	7.1	16
1517	Recent advances and future perspectives of rechargeable chloride-based batteries. Nano Energy, 2023, 110, 108364.	8.2	10
1518	Cu2+ intercalation boosts zinc energy reactivity of MnO2 with enhanced capacity and longevity. Applied Surface Science, 2023, 623, 157060.	3.1	11
1519	Solvothermal synthesis of VO2 and in situ electrochemical transformation of Zn2V2O7 as cathode for long-life aqueous zinc-ion batteries. Journal of Power Sources, 2023, 569, 233006.	4.0	6
1520	A three-dimensional interconnected molybdenum disulfide/multi-walled carbon nanotubes cathode with enlarged interlayer spacing for aqueous zinc-ion storage. Journal of Colloid and Interface Science, 2023, 639, 292-301.	5.0	2
1521	Stabilizing Zn anodes by constructing PEGMA protecting layers for high-performance Zn-ion batteries. Journal of Power Sources, 2023, 570, 233048.	4.0	10
1522	A three-dimensional zincophilic nano-copper host enables dendrite-free and anode-free Zn batteries. Materials Today Energy, 2023, 34, 101284.	2.5	12
1523	Mnco2o4 spinel microsphere assembled with flake structure as a cathode for high-performance zinc ion battery. Journal of Energy Storage, 2023, 64, 107148.	3.9	1
1524	A self-assembled nanoporous polyelectrolytic interlayer for highly stable zinc metal anodes. Chemical Engineering Journal, 2023, 462, 142276.	6.6	7
1525	Design strategy and comprehensive performance assessment towards Zn anode for alkaline rechargeable batteries. Journal of Energy Chemistry, 2023, 82, 122-138.	7.1	14
1526	Zn@cellulose nanofibrils composite three-dimensional carbon framework for long-life Zn anode. Industrial Crops and Products, 2023, 194, 116343.	2.5	13

# 1527	ARTICLE Understanding Synergistic Catalysis on Cuâ€Se Dual Atom Sites via <i>Operando</i> Xâ€ray Absorption Spectroscopy in Oxygen Reduction Reaction. Angewandte Chemie - International Edition, 2023, 62, .	IF 7.2	CITATIONS
1528	Understanding Synergistic Catalysis on Cuâ€Se Dual Atom Sites via <i>Operando</i> Xâ€ray Absorption Spectroscopy in Oxygen Reduction Reaction. Angewandte Chemie, 2023, 135, .	1.6	0
1529	Synergy of regulating zinc electrodeposition and suppressing hydrogen evolution by functional coating layer for highly reversible zinc anode. Journal of Power Sources, 2023, 560, 232711.	4.0	2
1530	Exploration and Application of Selfâ€Healing Strategies in Lithium Batteries. Advanced Functional Materials, 2023, 33, .	7.8	13
1531	In-Depth Insight into a Passive Film through Hydrogen-Bonding Network in an Aqueous Zinc Battery. ACS Applied Materials & Interfaces, 2023, 15, 7949-7958.	4.0	4
1532	Breaking intramolecular hydrogen bonds of polymer films to enable dendrite-free and hydrogen-suppressed zinc metal anode. Chemical Engineering Journal, 2023, 461, 141707.	6.6	13
1533	Weakly Solvating Effect Spawning Reliable Interfacial Chemistry for Aqueous Zn/Na Hybrid Batteries. Advanced Energy Materials, 2023, 13, .	10.2	21
1534	Zincophilic Design and the Electrode/Electrolyte Interface for Aqueous Zincâ€lon Batteries: A Review. Batteries and Supercaps, 2023, 6, .	2.4	1
1535	Reversible aqueous aluminum metal batteries enabled by a water-in-salt electrolyte. Green Energy and Environment, 2023, , .	4.7	4
1536	Towards the commercialization of rechargeable aqueous zinc ion batteries: The challenge of the zinc electrodeposition at the anode. Current Opinion in Electrochemistry, 2023, 38, 101230.	2.5	2
1537	2D Materials Boost Advanced Zn Anodes: Principles, Advances, and Challenges. Nano-Micro Letters, 2023, 15, .	14.4	19
1538	Intercalation Pseudocapacitance of Cation-Exchanged Molybdenum-Based Polyoxometalate for the Fast and Stable Zinc-Ion Storage. ACS Applied Materials & Interfaces, 2023, 15, 9350-9361.	4.0	4
1539	Hexamethylenetetramine additive with zincophilic head and hydrophobic tail for realizing ultra-stable Zn anode. Chemical Engineering Journal, 2023, 460, 141902.	6.6	22
1540	Decoupling, quantifying, and restoring aging-induced Zn-anode losses in rechargeable aqueous zinc batteries. Joule, 2023, 7, 366-379.	11.7	36
1541	Morphology controllable fabrication of arch-like covalent triazine framework nanosheets for high-rate and high energy density zinc-ion hybrid supercapacitors. Chemical Engineering Journal, 2023, 461, 141925.	6.6	9
1542	Retaining the reversible capacity by Lorentz forces for enhanced cyclability of aqueous zinc-bromide batteries using internal magnets. Chemical Engineering Journal, 2023, 461, 141900.	6.6	4
1543	Aqueous air cathodes and catalysts for metal–air batteries. Current Opinion in Electrochemistry, 2023, 38, 101246.	2.5	8
1544	A UiO-66-NH ₂ MOF derived N doped porous carbon and ZrO ₂ composite cathode for zinc-ion hybrid supercapacitors. Inorganic Chemistry Frontiers, 2023, 10, 2115-2124.	3.0	5

#	Article	IF	CITATIONS
1545	Molecular brush: an ion-redistributor to homogenize fast Zn ²⁺ flux and deposition for calendar-life Zn batteries. Energy and Environmental Science, 2023, 16, 1610-1619.	15.6	36
1546	Nano-scaled hydrophobic confinement of aqueous electrolyte by a nonionic amphiphilic polymer for long-lasting and wide-temperature Zn-based energy storage. Energy and Environmental Science, 2023, 16, 1662-1675.	15.6	43
1547	Simultaneous tailoring of hydrogen evolution and dendrite growth <i>via</i> a fertilizer-derived additive for the stabilization of the zinc anode interface. Journal of Materials Chemistry A, 2023, 11, 6403-6412.	5.2	7
1548	Performance improvement of aqueous zinc batteries by zinc oxide and Ketjen black co-modified glass fiber separators. RSC Advances, 2023, 13, 6453-6458.	1.7	1
1549	A Heteroanionic Zinc Ion Conductor for Dendriteâ€Free Zn Metal Anodes. Advanced Materials, 2023, 35, .	11.1	36
1550	The challenges and perspectives of developing solid-state electrolytes for rechargeable multivalent battery. Journal of Solid State Electrochemistry, 2023, 27, 1291-1327.	1.2	6
1551	Interfacial reconstruction via electronegative sulfonated carbon dots in hybrid electrolyte for ultra-durable zinc battery. Chemical Engineering Journal, 2023, 461, 142105.	6.6	11
1552	Regulating Inorganic and Organic Components to Build Amorphousâ€ZnF _x Enriched Solidâ€Electrolyte Interphase for Highly Reversible Zn Metal Chemistry. Advanced Materials, 2023, 35, .	11.1	34
1553	Zincâ€Contained Alloy as a Robustly Adhered Interfacial Lattice Locking Layer for Planar and Stable Zinc Electrodeposition. Advanced Materials, 2023, 35, .	11.1	14
1554	Zn-Ion Transporting, <i>In Situ</i> Formed Robust Solid Electrolyte Interphase for Stable Zinc Metal Anodes over a Wide Temperature Range. ACS Energy Letters, 2023, 8, 1613-1625.	8.8	48
1555	Reconstructing the Anode Interface and Solvation Shell for Reversible Zinc Anodes. ACS Applied Materials & Interfaces, 2023, 15, 11940-11948.	4.0	20
1556	Constructing an ionâ€oriented channel on a zinc electrode through surface engineering. , 2023, 5, .		3
1557	lonic Liquid "Water Pocket―for Stable and Environmentâ€Adaptable Aqueous Zinc Metal Batteries. Advanced Materials, 2023, 35, .	11.1	31
1558	A perspective on the role of anions in highly concentrated aqueous electrolytes. Energy and Environmental Science, 2023, 16, 1480-1501.	15.6	37
1559	Recent progress of dendriteâ€free stable zinc anodes for advanced zincâ€based rechargeable batteries: Fundamentals, challenges, and perspectives. SusMat, 2023, 3, 180-206.	7.8	15
1560	Ultralowâ€Saltâ€Concentration Electrolyte for Highâ€Voltage Aqueous Zn Metal Batteries. Advanced Functional Materials, 2023, 33, .	7.8	24
1561	Unraveling the regulation of a polyhydroxy electrolyte additive for a reversible, dendrite-free zinc anode. Journal of Materials Chemistry A, 2023, 11, 8057-8065.	5.2	11
1562	Reversible Zn Metal Anodes Enabled by Trace Amounts of Underpotential Deposition Initiators. Angewandte Chemie, 2023, 135, .	1.6	1

#	Article	IF	CITATIONS
1563	Reversible Zn Metal Anodes Enabled by Trace Amounts of Underpotential Deposition Initiators. Angewandte Chemie - International Edition, 2023, 62, .	7.2	74
1564	Regulation of desolvation process and dense electrocrystalization behavior for stable Zn metal anode. Energy Storage Materials, 2023, 57, 628-638.	9.5	21
1565	Electrolyte Modulation Strategies for High Performance Zinc Batteries. Batteries and Supercaps, 2023, 6, .	2.4	3
1566	Solid Interhalogen Compounds with Effective Br ⁰ Fixing for Stable Highâ€energy Zinc Batteries. Angewandte Chemie - International Edition, 2023, 62, .	7.2	9
1567	Solid Interhalogen Compounds with Effective Br ⁰ Fixing for Stable Highâ€energy Zinc Batteries. Angewandte Chemie, 2023, 135, .	1.6	3
1568	High Interspace-Layer Manganese Selenide Nanorods as a High-Performance Cathode for Aqueous Zinc-Ion Batteries. ACS Applied Energy Materials, 2023, 6, 3225-3235.	2.5	11
1569	Promoting Zn2+ migration through polar perovskite dielectric layer on Zn metal anode for the enhanced aqueous Zn-ion batteries. Chemical Engineering Journal, 2023, 462, 142308.	6.6	10
1570	Materials and structural design for preferable Zn deposition behavior towardÂstable Zn anodes. SmartMat, 2024, 5, .	6.4	7
1571	High-performance anodes for aqueous Zn–iodine batteries from spent Zn–air batteries. Materials Advances, 2023, 4, 1623-1627.	2.6	1
1572	Electrode/electrolyte interfacial engineering for aqueous Znâ€ion batteries. , 2023, 2, 186-212.		9
1573	Synergistic effect of small-size MnO2 nanodots and conductive reduced graphene oxide boosting cathode materials for high-performance aqueous zinc-based energy storage. Journal of Power Sources, 2023, 566, 232915.	4.0	6
1574	Research progress of "rocking chair―type zinc-ion batteries with zinc metal-free anodes. Chinese Chemical Letters, 2023, 34, 108307.	4.8	9
1575	Eutectic electrolytes with leveling effects achieving high depth-of-discharge of rechargeable zinc batteries. Energy Storage Materials, 2023, 58, 9-19.	9.5	23
1576	Redox-enhanced zinc-ion hybrid capacitors with high energy density enabled by high-voltage active aqueous electrolytes based on low salt concentration. Energy Storage Materials, 2023, 58, 30-39.	9.5	4
1577	Mass-producible in-situ amorphous solid/electrolyte interface with high ionic conductivity for long-cycling aqueous Zn-ion batteries. Journal of Colloid and Interface Science, 2023, 641, 229-238.	5.0	7
1578	Advanced Aqueous Ammonium-Ion Batteries Enabled by Hydrogen Bond Modulation. Journal of Physical Chemistry C, 2023, 127, 6233-6238.	1.5	1
1579	Solute-solvent dual engineering toward versatile electrolyte for high-voltage aqueous zinc-based energy storage devices. Fundamental Research, 2023, , .	1.6	2
1580	Interphases in aqueous rechargeable zinc metal batteries. Journal of Materials Chemistry A, 2023, 11, 8470-8496.	5.2	6

#	Article	IF	CITATIONS
1581	Insight into the development of electrolytes for aqueous zinc metal batteries from alkaline to neutral. Chinese Chemical Letters, 2024, 35, 108337.	4.8	5
1582	Hybrid Aqueous/Nonâ€aqueous Electrolytes for Lithiumâ€lon and Zincâ€lon Batteries: A Miniâ€Review. Batteries and Supercaps, 2023, 6, .	2.4	3
1583	Sustainable high-energy aqueous zinc–manganese dioxide batteries enabled by stress-governed metal electrodeposition and fast zinc diffusivity. Energy and Environmental Science, 2023, 16, 2133-2141.	15.6	15
1584	The Proofâ€ofâ€Concept of Anodeâ€Free Rechargeable Mg Batteries. Advanced Science, 2023, 10, .	5.6	5
1585	Inhibition of side reactions and dendrite growth using a low-cost and non-flammable eutectic electrolyte for high-voltage and super-stable zinc hybrid batteries. Journal of Materials Chemistry A, 2023, 11, 8368-8379.	5.2	6
1586	Solvothermal Synthesis of Organic–Inorganic Cathode Vanadyl Acetate Nanobelts for Aqueous Zinc-Ion Batteries. ACS Sustainable Chemistry and Engineering, 2023, 11, 5105-5114.	3.2	1
1587	Crystallographic engineering of Zn anodes for aqueous batteries. EScience, 2023, 3, 100120.	25.0	34
1588	Organic pH Buffer for Dendriteâ€Free and Shuttleâ€Free Znâ€I ₂ Batteries. Angewandte Chemie, 2023, 135, .	1.6	1
1589	Chloride electrolyte enabled practical zinc metal battery with a near-unity Coulombic efficiency. Nature Sustainability, 2023, 6, 806-815.	11.5	52
1590	Silica-based electrolyte regulation for stable aqueous zinc-manganese batteries. Journal of Central South University, 2023, 30, 434-442.	1.2	5
1591	Organic pH Buffer for Dendriteâ€Free and Shuttleâ€Free Znâ€I ₂ Batteries. Angewandte Chemie - International Edition, 2023, 62, .	7.2	65
1592	Regulating the Inner Helmholtz Plane with a High Donor Additive for Efficient Anode Reversibility in Aqueous Znâ€lon Batteries. Angewandte Chemie - International Edition, 2023, 62, .	7.2	41
1593	A dendrite-free Ga-In-Sn-Zn solid-liquid composite anode for rechargeable zinc batteries. Energy Storage Materials, 2023, 58, 195-203.	9.5	12
1594	Regulating the Inner Helmholtz Plane with a High Donor Additive for Efficient Anode Reversibility in Aqueous Znâ€lon Batteries. Angewandte Chemie, 2023, 135, .	1.6	7
1595	Versatile metallo-supramolecular polymeric interphase for highly reversible zinc metal anodes. Energy Storage Materials, 2023, 58, 204-214.	9.5	5
1596	Manipulating Zn ²⁺ solvation environment in poly(propylene glycol)â€based aqueous Li ⁺ /Zn ²⁺ electrolytes for highâ€voltage hybrid ion batteries. , 2023, 5, .		7
1597	Zincophobic Electrolyte Achieves Highly Reversible Zincâ€Ion Batteries. Advanced Functional Materials, 2023, 33, .	7.8	37
1598	Water Confinement by a Zn ²⁺ -Conductive Aqueous/Inorganic Hybrid Electrolyte for High-Voltage Zinc-Ion Batteries. ACS Applied Energy Materials, 2023, 6, 3705-3713.	2.5	2

#	Article	IF	CITATIONS
1599	Recent Progress in Aqueous Zincâ€lon Batteries: From FundamentalScience to Structure Design. Chemical Record, 2023, 23, .	2.9	10
1600	Functional group differentiation of isomeric solvents enables distinct zinc anode chemistry. , 2023, 2, e9120064.		15
1602	Manipulating Electric Double Layer Adsorption for Stable Solidâ€Electrolyte Interphase in 2.3â€Ah Znâ€Pouch Cells. Angewandte Chemie - International Edition, 2023, 62, .	7.2	25
1603	Manipulating Electric Double Layer Adsorption for Stable Solidâ€Electrolyte Interphase in 2.3â€Ah Znâ€Pouch Cells. Angewandte Chemie, 2023, 135, .	1.6	1
1604	Layered and honeycomb N-doped porous carbon for advanced Zn-ion hybrid supercapacitors and Li-ion batteries. Chemical Engineering Science, 2023, 276, 118702.	1.9	2
1605	High urrent Capable and Nonâ€Flammable Protic Organic Electrolyte for Rechargeable Zn Batteries. Angewandte Chemie - International Edition, 2023, 62, .	7.2	8
1606	Nanocelluloseâ€Carboxymethylcellulose Electrolyte for Stable, Highâ€Rate Zincâ€Ion Batteries. Advanced Functional Materials, 2023, 33, .	7.8	50
1607	Highâ€Current Capable and Nonâ€Flammable Protic Organic Electrolyte for Rechargeable Zn Batteries. Angewandte Chemie, 0, , .	1.6	0
1608	Manipulating Coulombic Efficiency of Cathodes in Aqueous Zinc Batteries by Anion Chemistry. Angewandte Chemie - International Edition, 2023, 62, .	7.2	13
1609	Utilizing Cationic Vacancies and Spontaneous Polarization on Cathode to Enhance Zincâ€lon Storage and Inhibit Dendrite Growth in Zincâ€lon Batteries. Angewandte Chemie, 2023, 135, .	1.6	0
1610	Multiâ€Scale Structure Engineering of ZnSnO ₃ for Ultraâ€Longâ€Life Aqueous Zincâ€Metal Batteries. Advanced Materials, 2023, 35, .	11.1	17
1611	An organic–inorganic solid–electrolyte interface generated from dichloroisocyanurate electrolyte additive for a stable Zn metal anode in aqueous Zn batteries. Chemical Communications, 2023, 59, 5079-5082.	2.2	4
1612	Anomalous Inferior Zn Anode in Highâ€Concentration Electrolyte: Leveraging Solidâ€Electrolyteâ€Interface for Stabilized Cycling of Aqueous Znâ€Metal Batteries. ChemSusChem, 2023, 16, .	3.6	3
1613	Rationalized Electroepitaxy toward Scalable Single rystal Zn Anodes. Advanced Materials, 2023, 35, .	11.1	15
1614	Synergetic modulation on ionic association and solvation structure by electron-withdrawing effect for aqueous zinc-ion batteries. Proceedings of the National Academy of Sciences of the United States of America, 2023, 120, .	3.3	22
1615	Competitive Solvation-Induced Interphases Enable Highly Reversible Zn Anodes. ACS Energy Letters, 2023, 8, 2086-2096.	8.8	34
1616	Examining Concentrationâ€Reliant Zn Deposition/Stripping Behavior in Organic Alcohol/Sulfonesâ€Modified Aqueous Electrolytes. Small, 2023, 19, .	5.2	5
1617	Uniform Longitudinal Zinc Growth beyond Interface Guided by Anionic Covalent Organic Framework for Dendriteâ€Free Aqueous Zinc Batteries. Batteries and Supercaps, 2023, 6, .	2.4	4

#	Article	IF	Citations
1618	In Situ Construction of Highâ€Density Solid Electrolyte Interphase from MOFs for Advanced Zn Metal Anodes. Advanced Functional Materials, 2023, 33, .	7.8	18
1619	Rational Design of Electrode–Electrolyte Interphase and Electrolytes for Rechargeable Proton Batteries. Nano-Micro Letters, 2023, 15, .	14.4	5
1620	New Concepts and Tools. , 2023, , 714-764.		0
1621	A hydrated deep eutectic electrolyte with finely-tuned solvation chemistry for high-performance zinc-ion batteries. Energy and Environmental Science, 2023, 16, 2540-2549.	15.6	50
1622	Reconstruction of helmholtz plane to stabilize zinc metal anode/electrolyte interface. Energy Storage Materials, 2023, 59, 102774.	9.5	12
1623	Regulating the Water Molecular in the Solvation Structure for Stable Zinc Metal Batteries. Advanced Functional Materials, 2023, 33, .	7.8	9
1624	Emergent solvation phenomena in non-aqueous electrolytes with multiple anions. CheM, 2023, 9, 1955-1971.	5.8	7
1625	Distinct chemistry between Zn and Li at varied temperature. Science Bulletin, 2023, 68, 998-1007.	4.3	5
1626	Recent advances in interfacial modification of zinc anode for aqueous rechargeable zinc ion batteries. Journal of Energy Chemistry, 2023, 83, 287-303.	7.1	36
1627	Understanding of the charge storage mechanism of MnO2-based aqueous zinc-ion batteries: Reaction processes and regulation strategies. Journal of Energy Chemistry, 2023, 82, 423-463.	7.1	18
1628	Organics-free aqueous hybrid electrolyte for high-performance zinc ion hybrid capacitors operating at low temperature. Journal of Power Sources, 2023, 571, 233061.	4.0	0
1629	Ultra-strong zinc-ion adsorption layer constructed by zeolite molecular sieve for advanced aqueous zinc-ion batteries. Journal of Power Sources, 2023, 571, 233090.	4.0	4
1630	Structure-performance relations for carbons in Zn-air battery cathodes with non-alkaline electrolytes. Electrochimica Acta, 2023, 456, 142462.	2.6	4
1631	Toward stable and highly reversible zinc anodes for aqueous batteries via electrolyte engineering. Journal of Energy Chemistry, 2023, 83, 209-228.	7.1	8
1634	Roles of electrolyte additive in Zn chemistry. Nano Research, 2023, 16, 9179-9194.	5.8	6
1635	Zinc Batteries: Basics, Materials Functions, and Applications. , 2023, , 2331-2367.		1
1644	Advances in functional organic material-based interfacial engineering on metal anodes for rechargeable secondary batteries. Nanoscale, 2023, 15, 9256-9289.	2.8	5
1681	Recent developments in zinc metal anodes, cathodes, and electrolytes for zinc-ion hybrid capacitors. Sustainable Energy and Fuels, 2023, 7, 3776-3795.	2.5	5

#	Article	IF	CITATIONS
1702	Opportunities and challenges of zinc anodes in rechargeable aqueous batteries. Journal of Materials Chemistry A, 2023, 11, 11987-12001.	5.2	21
1709	A Near 0 V and Low-Strain Intercalative Anode for Aqueous Zinc-Ion Batteries. ACS Energy Letters, 2023, 8, 3171-3179.	8.8	5
1737	Design strategies for rechargeable aqueous metal-ion batteries. Science China Chemistry, 0, , .	4.2	3
1747	Porous framework materials for stable Zn anodes in aqueous zinc-ion batteries. Inorganic Chemistry Frontiers, 2023, 10, 5555-5572.	3.0	1
1750	Review of vanadium-based oxide cathodes as aqueous zinc-ion batteries. Rare Metals, 2023, 42, 2868-2905.	3.6	10
1756	The pitfalls of using stainless steel (SS) coin cells in aqueous zinc battery research. Energy and Environmental Science, 2023, 16, 4320-4325.	15.6	1
1764	Recent advances in aqueous zinc–sulfur batteries: overcoming challenges for sustainable energy storage. Journal of Materials Chemistry A, 2023, 11, 18029-18045.	5.2	1
1780	Recent Advances in Structural Optimization and Surface Modification on Current Collectors for High-Performance Zinc Anode: Principles, Strategies, and Challenges. Nano-Micro Letters, 2023, 15, .	14.4	10
1785	Sustainable zinc–air battery chemistry: advances, challenges and prospects. Chemical Society Reviews, 2023, 52, 6139-6190.	18.7	24
1801	On Energy Storage Chemistry of Aqueous Zn-Ion Batteries: From Cathode to Anode. Electrochemical Energy Reviews, 2023, 6, .	13.1	7
1869	A long-term stable zinc metal anode enabled by a mannitol additive. Journal of Materials Chemistry A, 2023, 11, 23779-23786.	5.2	1
1873	Trend of Developing Aqueous Liquid and Gel Electrolytes for Sustainable, Safe, and High-Performance Li-Ion Batteries. Nano-Micro Letters, 2024, 16, .	14.4	0
1874	Ammonium fluoride additive-modified interphase chemistry stabilizes zinc anodes in aqueous electrolytes. Chemical Communications, 2023, 59, 13891-13894.	2.2	1
1880	An Electrochemical Perspective of Aqueous Zinc Metal Anode. Nano-Micro Letters, 2024, 16, .	14.4	1
1891	Electrolyte Strategies Toward Optimizing Zn Anode for Zinc-Ion Batteries. Transactions of Tianjin University, 2023, 29, 407-431.	3.3	1
1944	Advance in reversible Zn anodes promoted by 2D materials. Rare Metals, 0, , .	3.6	0
1989	A low concentration electrolyte additive for constructing solid–electrolyte interphase on a Zn metal anode for aqueous batteries. Chemical Communications, 2024, 60, 1317-1320.	2.2	1
2006	Recent advances and perspectives of zinc metal-free anodes for zinc ion batteries. International Journal of Minerals, Metallurgy and Materials, 2024, 31, 33-47.	2.4	0

#	Article	IF	CITATIONS
2013	Recent progress of high-performance in-plane zinc ion hybrid micro-supercapacitors: design, achievements, and challenges. Nanoscale, 2024, 16, 4542-4562.	2.8	1
2053	Aqueous and Non-aqueous Electrolytes for Zn-ion Batteries. , 2024, , 113-139.		0
2056	High-concentration Electrolytes for Rechargeable Batteries. , 2024, , 293-328.		0
2060	Electrochemistry of elements Zinc. , 2023, , .		0