Entrapped Single Tungstate Site in Zeolite for Cooperat with BrÃ, nsted Acid Site

Journal of the American Chemical Society 140, 6661-6667 DOI: 10.1021/jacs.8b03012

Citation Report

#	Article	IF	CITATIONS
1	Influence of Framework Heteroatoms on Olefin Metathesis Activity Using MoO ₃ -MFI Catalysts. Organic Process Research and Development, 2018, 22, 1683-1686.	1.3	6
2	MoO3 on zeolites MCM-22, MCM-56 and 2D-MFI as catalysts for 1-octene metathesis. Beilstein Journal of Organic Chemistry, 2018, 14, 2931-2939.	1.3	3
3	Covalent Organic Frameworks: Promising Materials as Heterogeneous Catalysts for C-C Bond Formations. Catalysts, 2018, 8, 404.	1.6	38
4	A versatile route to fabricate single atom catalysts with high chemoselectivity and regioselectivity in hydrogenation. Nature Communications, 2019, 10, 3663.	5.8	270
5	Formation of isolated tungstate sites on hierarchical structured SiO2- and HY zeolite-supported WOx catalysts for propene metathesis. Journal of Catalysis, 2019, 376, 150-160.	3.1	19
6	Heterogeneous Ligand-Free Rhodium Oxide Catalyst Embedded within Zeolitic Microchannel to Enhance Regioselectivity in Hydroformylation. Industrial & Engineering Chemistry Research, 2019, 58, 21285-21295.	1.8	23
7	Cascade Conversion of Acetic Acid to Isobutene over Yttrium-Modified Siliceous Beta Zeolites. ACS Catalysis, 2019, 9, 9726-9738.	5.5	36
8	The chemistry of the carbon-transition metal double and triple bond: Annual survey covering the year 2018. Coordination Chemistry Reviews, 2019, 401, 213051.	9.5	10
9	Permanent porous hydrogen-bonded frameworks with two types of BrÃ,nsted acid sites for heterogeneous asymmetric catalysis. Nature Communications, 2019, 10, 600.	5.8	126
10	Ring-Opening Transformation of 5-Hydroxymethylfurfural Using a Golden Single-Atomic-Site Palladium Catalyst. ACS Catalysis, 2019, 9, 6212-6222.	5.5	60
11	The effect of phase composition and crystallite size on activity and selectivity of ZrO2 in non-oxidative propane dehydrogenation. Journal of Catalysis, 2019, 371, 313-324.	3.1	74
12	Non defect-stabilized thermally stable single-atom catalyst. Nature Communications, 2019, 10, 234.	5.8	452
13	Effect of confinement space on adsorption energy and electronic structure of molecule-metal pairs. Structural Chemistry, 2020, 31, 233-241.	1.0	2
14	Solid–State Molecular Organometallic Catalysis in Gas/Solid Flow (Flow-SMOM) as Demonstrated by Efficient Room Temperature and Pressure 1-Butene Isomerization. ACS Catalysis, 2020, 10, 1984-1992.	5.5	15
15	Well-Defined Materials for Heterogeneous Catalysis: From Nanoparticles to Isolated Single-Atom Sites. Chemical Reviews, 2020, 120, 623-682.	23.0	794
16	CrO supported on high-silica HZSM-5 for propane dehydrogenation. Journal of Energy Chemistry, 2020, 47, 225-233.	7.1	51
17	Insight into the Effect of Lewis Acid of W/Al-MCM-41 Catalyst on Metathesis of 1-Butene and Ethylene. Applied Catalysis A: General, 2020, 604, 117772.	2.2	11
18	A rational study on the geometric and electronic properties of single-atom catalysts for enhanced catalytic performance. Nanoscale, 2020, 12, 23206-23212.	2.8	13

#	Article	IF	CITATIONS
19	Single-Atom Catalysts Based on the Metal–Oxide Interaction. Chemical Reviews, 2020, 120, 11986-12043.	23.0	486
20	Evaluation of BrÃ,nsted and Lewis acid sites in H-ZSM-5 and H-USY with or without metal modification using probe molecule-synchrotron X-ray powder diffraction. Applied Catalysis A: General, 2020, 596, 117528.	2.2	5
21	Entrapped NbOx clusters in MFI zeolite for sustainable acid catalysis. Microporous and Mesoporous Materials, 2020, 305, 110361.	2.2	9
22	Superelectrophilic Fe(III)–Ion Pairs as Stronger Lewis Acid Catalysts for (<i>E</i>)-Selective Intermolecular Carbonyl–Olefin Metathesis. Organic Letters, 2020, 22, 3155-3160.	2.4	21
23	Singleâ€Atom Catalysts Supported by Crystalline Porous Materials: Views from the Inside. Advanced Materials, 2020, 32, e2002910.	11.1	65
24	Enantiospecificity in achiral zeolites for asymmetric catalysis. Physical Chemistry Chemical Physics, 2020, 22, 18757-18764.	1.3	6
25	Enhanced Olefin Metathesis Performance of Tungsten and Niobium Incorporated Bimetallic Silicates: Evidence of Synergistic Effects. ChemCatChem, 2020, 12, 2004-2013.	1.8	9
26	Effect of tungsten oxide on ceria nanorods to support copper species as CO oxidation catalysts. Journal of Rare Earths, 2021, 39, 43-50.	2.5	10
27	Incorporation of Active Metal Species in Crystalline Porous Materials for Highly Efficient Synergetic Catalysis. Small, 2021, 17, e2003971.	5.2	31
28	Cooperative catalytically active sites for methanol activation by single metal ion-doped H-ZSM-5. Chemical Science, 2021, 12, 210-219.	3.7	15
29	Enormous passivation effects of a surrounding zeolitic framework on Pt clusters for the catalytic dehydrogenation of propane. Catalysis Science and Technology, 0, , .	2.1	10
30	Surface Coordination Chemistry of Nanomaterials and Catalysis. , 2021, , 204-227.		1
31	Rational Design of Synergistic Active Sites for Catalytic Ethene/2-Butene Cross-Metathesis in a Rhenium-Doped Y Zeolite Catalyst. ACS Catalysis, 2021, 11, 3530-3540.	5.5	9
32	Atomic cale Designing of Zeolite Based Catalysts by Atomic Layer Deposition. ChemPhysChem, 2021, 22, 1287-1301.	1.0	6
33	Induced Active Sites by Adsorbate in Zeotype Materials. Journal of the American Chemical Society, 2021, 143, 8761-8771.	6.6	19
34	Strategic Defect Engineering of Metal–Organic Frameworks for Optimizing the Fabrication of Singleâ€Atom Catalysts. Advanced Functional Materials, 2021, 31, 2103597.	7.8	68
35	Emerging applications of zeolites in catalysis, separation and host–guest assembly. Nature Reviews Materials, 2021, 6, 1156-1174.	23.3	209
36	Metal Containing Nanoclusters in Zeolites. , 2021, , .		1

CITATION REPORT

CITATION REPORT

#	Article	IF	CITATIONS
37	Enhanced metal–support interaction between Pd and hierarchical Nb ₂ O ₅ <i>via</i> oxygen defect induction to promote CO oxidative coupling to dimethyl oxalate. Nanoscale, 2021, 13, 18773-18779.	2.8	9
38	Solid/Gas Reactivity of Organometallic Species in Confined Spaces. Monographs in Supramolecular Chemistry, 2021, , 282-321.	0.2	0
39	Noble Metal-Free Hierarchical ZrY Zeolite Efficient for Hydrogenation of Biomass-Derived Levulinic Acid. Frontiers in Chemistry, 2021, 9, 725175.	1.8	4
40	Room-Temperature Metathesis of Ethylene with 2-Butene to Propene Over MoOx-Based Catalysts: Mixed Oxides as Perspective Support Materials. Catalysis Letters, 0, , 1.	1.4	4
41	Computational Insights into Active Site Formation during Alkene Metathesis over a MoO _{<i>x</i>} /SiO ₂ Catalyst: The Role of Surface Silanols. ACS Catalysis, 2021, 11, 13575-13590.	5.5	15
42	Encapsulating subnanometric metal clusters in zeolites for catalysis and their challenges. Chemical Engineering Journal, 2022, 430, 132925.	6.6	36
43	Post-fabrication structural changes and enhanced photodegradation activity of semiconductors@zeolite composites towards noxious contaminants. Chemosphere, 2022, 288, 132609.	4.2	10
44	Cross-metathesis of biomass to olefins: Molecular catalysis bridging the gap between fossil and bio-energy. Chinese Journal of Chemical Engineering, 2022, 48, 44-60.	1.7	2
45	Enhancing Propene Formation in the Metathesis of Ethylene with 2-Butene at Close to Room Temperature over MoO <i>_x</i> /SiO ₂ through Support Promotion with P, Cl, or S. ACS Catalysis, 2021, 11, 14159-14167.	5.5	6
46	Sacrificial Templateâ€Assisted Synthesis of Inorganic Nanosheets with Highâ€Loading Singleâ€Atom Catalysts: A General Approach. Advanced Functional Materials, 2022, 32, 2110485.	7.8	18
47	Zeolites catalyze selective reactions of large organic molecules. Advances in Catalysis, 2021, 69, 59-102.	0.1	0
48	Oxygen vacancies promoted heterogeneous catalytic ozonation of atrazine by defective 4A zeolite. Journal of Cleaner Production, 2022, 336, 130376.	4.6	18
49	Conversion of butanol to propene in flow: A triple dehydration, isomerisation and metathesis cascade. Catalysis Communications, 2022, 164, 106421.	1.6	2
50	Co Anchored B 36 Cluster as a Novel Single Atom Catalyst for Removing Toxic CO Molecules: A Mechanistic Firstâ€Principles Study. ChemistrySelect, 2022, 7, .	0.7	2
51	Theoretical Understanding and Brief Insight into Heterogeneous Single Atom Catalysis. SSRN Electronic Journal, 0, , .	0.4	0
52	Identification of the Encapsulation Effect of Heteropolyacid in the Si–Al Framework toward Benzene Alkylation. ACS Catalysis, 2022, 12, 4765-4776.	5.5	8
53	Unusual Mesoporous Titanium Niobium Oxides Realizing Sodiumâ€lon Batteries Operated at â^'40°C. Advanced Materials, 2022, 34, e2202873.	11.1	28
54	A comprehensive study on heterogeneous single atom catalysis: Current progress, and challengesâ~†. Coordination Chemistry Reviews, 2022, 470, 214710.	9.5	27

CITATION REPORT

#	Article	IF	CITATIONS
55	Copper dual-atom catalyst mediated C3–H amination of indoles at room temperature. Catalysis Science and Technology, 2022, 12, 5390-5396.	2.1	7
56	Atomically dispersed 3d metal bimetallic dual-atom catalysts and classification of the structural descriptors. Chem Catalysis, 2022, 2, 2346-2363.	2.9	5
57	Metal Sites in Zeolites: Synthesis, Characterization, and Catalysis. Chemical Reviews, 2023, 123, 6039-6106.	23.0	95
58	Investigating porous catalysts with synchrotron X-rays and neutrons. Chem Catalysis, 2022, 2, 3290-3303.	2.9	2
59	Symmetry dependent optical properties of zeolites: A quantum mechanical study. International Journal of Quantum Chemistry, 2023, 123, .	1.0	0
60	Promotional nature of Sn on Pt/CeO2 for the oxidative dehydrogenation of propane with carbon dioxide. Nano Research, 2023, 16, 6237-6250.	5.8	5
61	Noble metal single-atoms for lithium-ion batteries: A booster for ultrafast charging/discharging in carbon electrodes. Applied Surface Science, 2023, 624, 157161.	3.1	3
62	Dimensional Regulation of Titanosilicate by Kinetically Controlled Intergrowth Crystals. Advanced Functional Materials, 2023, 33, .	7.8	3
63	Cu–Co Dual-Atom Catalysts Supported on Hierarchical USY Zeolites for an Efficient Cross-Dehydrogenative C(sp ²)–N Coupling Reaction. Journal of the American Chemical Society, 0, , .	6.6	1