Metal Catalysts for Heterogeneous Catalysis: From Sing Nanoparticles

Chemical Reviews 118, 4981-5079

DOI: 10.1021/acs.chemrev.7b00776

Citation Report

#	Article	IF	CITATIONS
2	Die facettenreiche Reaktivitäheterogener Einzelatomâ€Katalysatoren. Angewandte Chemie, 2018, 130, 15538-15552.	2.0	36
3	Atomically dispersed gold-supported catalysts: preparation and potential for low-temperature CO oxidation. Materials Today Nano, 2018, 4, 54-69.	4.6	7
4	Stabilization of noble metal nanostructures for catalysis and sensing. Nanoscale, 2018, 10, 20492-20504.	5.6	36
5	Shape selection through epitaxy of supported platinum nanocrystals. Nanoscale, 2018, 10, 22730-22736.	5.6	6
6	Bioinspired interconnected hydrogel capsules for enhanced catalysis. RSC Advances, 2018, 8, 37050-37056.	3.6	1
7	Hidden Resources of Coordinated XPS and DFT Studies. , 0, , .		0
8	Nucleation of Cu <i>_n</i> (<i>n</i> = 1–5) Clusters and Equilibrium Morphology of Cu Particles Supported on CeO ₂ Surface: A Density Functional Theory Study. Journal of Physical Chemistry C, 2018, 122, 27402-27411.	3.1	15
9	Confined Pt ₁ ¹⁺ Water Clusters in a MOF Catalyze the Lowâ€Temperature Water–Gas Shift Reaction with both CO ₂ Oxygen Atoms Coming from Water. Angewandte Chemie - International Edition, 2018, 57, 17094-17099.	13.8	54
10	Confined Pt ₁ ¹⁺ Water Clusters in a MOF Catalyze the Lowâ€Temperature Water–Gas Shift Reaction with both CO ₂ Oxygen Atoms Coming from Water. Angewandte Chemie, 2018, 130, 17340-17345.	2.0	4
11	Ru/Al2O3 catalyzed CO2 hydrogenation: Oxygen-exchange on metal-support interfaces. Journal of Catalysis, 2018, 367, 194-205.	6.2	74
12	Case Studies in Nanocluster Synthesis and Characterization: Challenges and Opportunities. Accounts of Chemical Research, 2018, 51, 2456-2464.	15.6	104
13	Alkynyl Approach toward the Protection of Metal Nanoclusters. Accounts of Chemical Research, 2018, 51, 2465-2474.	15.6	384
14	Synergy between Defects, Photoexcited Electrons, and Supported Single Atom Catalysts for CO ₂ Reduction. ACS Catalysis, 2018, 8, 10464-10478.	11.2	85
15	Solventless Olefin Epoxidation Using a Mo–Loaded Sisal Derived Acidâ€Char Catalyst. ChemistrySelect, 2018, 3, 10357-10363.	1.5	3
16	Defects on carbons for electrocatalytic oxygen reduction. Chemical Society Reviews, 2018, 47, 7628-7658.	38.1	432
17	Formation of hierarchically-ordered nanoporous silver foam and its electrocatalytic properties in reductive dehalogenation of organic compounds. New Journal of Chemistry, 2018, 42, 17499-17512.	2.8	6
18	Ethene Dimerization and Hydrogenation over a Zeolite-Supported Rh(I)-Carbonyl Complex: Mechanistic Insights from DFT Modeling. ACS Catalysis, 2018, 8, 9836-9846.	11.2	14
19	Sulfuration of an Fe–N–C Catalyst Containing Fe <i>_x</i> C/Fe Species to Enhance the Catalysis of Oxygen Reduction in Acidic Media and for Use in Flexible Zn–Air Batteries. Advanced Materials, 2018, 30, e1804504.	21.0	269

#	Article	IF	CITATIONS
20	Encapsulation of Metal Nanoparticle Catalysts Within Mesoporous Zeolites and Their Enhanced Catalytic Performances: A Review. Frontiers in Chemistry, 2018, 6, 550.	3.6	74
21	The Multifaceted Reactivity of Singleâ€Atom Heterogeneous Catalysts. Angewandte Chemie - International Edition, 2018, 57, 15316-15329.	13.8	261
22	Semireduction of Alkynes Using Formic Acid with Reusable Pd-Catalysts. Journal of Organic Chemistry, 2018, 83, 13574-13579.	3.2	16
23	Achieving Atomic Dispersion of Highly Loaded Transition Metals in Smallâ€Pore Zeolite SSZâ€13: Highâ€Capacity and Highâ€Efficiency Lowâ€Temperature CO and Passive NO _{<i>x</i>} Adsorbers. Angewandte Chemie - International Edition, 2018, 57, 16672-16677.	13.8	129
24	Quantifying Support Interactions and Reactivity Trends of Single Metal Atom Catalysts over TiO ₂ . Journal of Physical Chemistry C, 2018, 122, 25274-25289.	3.1	31
25	Achieving Atomic Dispersion of Highly Loaded Transition Metals in Smallâ€Pore Zeolite SSZâ€13: Highâ€Capacity and Highâ€Efficiency Lowâ€Temperature CO and Passive NO _{<i>x</i>} Adsorbers. Angewandte Chemie, 2018, 130, 16914-16919.	2.0	34
26	Recent Developments on Supported Hydrogenâ€bond Organocatalysts. ChemCatChem, 2018, 10, 5554-5572.	3.7	24
27	Donor/Acceptor Concepts for Developing Efficient Suzuki Cross-Coupling Catalysts Using Graphene-Supported Ni, Cu, Fe, Pd, and Bimetallic Pd/Ni Clusters. Journal of Physical Chemistry C, 2018, 122, 25396-25403.	3.1	37
28	Ligand Migration from Cluster to Support: A Crucial Factor for Catalysis by Thiolateâ€protected Gold Clusters. ChemCatChem, 2018, 10, 5372-5376.	3.7	44
29	A robust iron catalyst for the selective hydrogenation of substituted (iso)quinolones. Chemical Science, 2018, 9, 8134-8141.	7.4	63
30	Structure-, dimension-, and particle size-engineering toward highly efficient supported nanoparticulate metal catalysts. Journal of Materials Chemistry A, 2018, 6, 18561-18570.	10.3	11
31	Functionalised heterogeneous catalysts for sustainable biomass valorisation. Chemical Society Reviews, 2018, 47, 8349-8402.	38.1	493
32	Facile fabrication of Cu-based alloy nanoparticles encapsulated within hollow octahedral N-doped porous carbon for selective oxidation of hydrocarbons. Chemical Science, 2018, 9, 8703-8710.	7.4	35
33	Scalable Solidâ€6tate Synthesis of Highly Dispersed Uncapped Metal (Rh, Ru, Ir) Nanoparticles for Efficient Hydrogen Evolution. Advanced Energy Materials, 2018, 8, 1801698.	19.5	149
34	Composition Dependence of Ethanol Oxidation at Ruthenium-Tin Oxide/Carbon Supported Platinum Catalysts. Journal of the Electrochemical Society, 2018, 165, J3019-J3025.	2.9	11
35	Iodide-induced differential control of metal ion reduction rates: synthesis of terraced palladium–copper nanoparticles with dilute bimetallic surfaces. Journal of Materials Chemistry A, 2018, 6, 22179-22188.	10.3	17
36	Combining active phase and support optimization in MnO2-Au nanoflowers: Enabling high activities towards green oxidations. Journal of Colloid and Interface Science, 2018, 530, 282-291.	9.4	32
37	Accelerated active phase transformation of NiO powered by Pt single atoms for enhanced oxygen evolution reaction. Chemical Science, 2018, 9, 6803-6812.	7.4	96

#	Article	IF	CITATIONS
38	On the feasibility of the bottom-up synthesis of Mg2CoH5 nanoparticles supported on a porous carbon and their hydrogen desorption behaviour. Nano Structures Nano Objects, 2018, 16, 144-150.	3.5	8
39	Single-Atom Catalysts: Synthetic Strategies and Electrochemical Applications. Joule, 2018, 2, 1242-1264.	24.0	1,618
40	Engineering Functional Metal Materials at the Atomic Level. Advanced Materials, 2018, 30, e1802751.	21.0	170
41	Improving Catalytic Hydrogenation Performance of Pd Nanoparticles by Electronic Modulation Using Phosphine Ligands. ACS Catalysis, 2018, 8, 6476-6485.	11.2	148
42	Single‣ite Heterogeneous Catalysts: From Synthesis to NMR Signal Enhancement. Chemistry - A European Journal, 2019, 25, 1420-1431.	3.3	27
43	Oxideâ€Supported Gold Clusters and Nanoparticles in Catalysis: A Computational Chemistry Perspective. ChemCatChem, 2019, 11, 73-89.	3.7	37
44	New monatomic layer clusters for advanced catalysis materials. Science China Materials, 2019, 62, 149-153.	6.3	12
45	Synergistic Effects of ppm Levels of Palladium on Natural Clinochlore for Reduction of Nitroarenes. ChemSusChem, 2019, 12, 4240-4248.	6.8	22
46	Tuning the interfaces in the ruthenium-nickel/carbon nanocatalysts for enhancing catalytic hydrogenation performance. Journal of Catalysis, 2019, 377, 299-308.	6.2	40
47	NiFePd/UiO-66 nanocomposites as highly efficient catalysts to accelerate hydrogen evolution from hydrous hydrazine. Inorganic Chemistry Frontiers, 2019, 6, 2727-2735.	6.0	21
48	Reaction mechanisms at the homogeneous–heterogeneous frontier: insights from first-principles studies on ligand-decorated metal nanoparticles. Catalysis Science and Technology, 2019, 9, 5173-5185.	4.1	33
49	Uniform Ru nanoparticles on N-doped graphene for selective hydrogenation of fatty acids to alcohols. Journal of Catalysis, 2019, 377, 429-437.	6.2	55
50	Remarkable Effect of Jacalin in Diminishing the Protein Corona Interference in the Antibacterial Activity of Pectin-Capped Copper Sulfide Nanoparticles. ACS Omega, 2019, 4, 14049-14056.	3.5	25
51	Synergic Catalysts of Polyoxometalate@Cationic Porous Aromatic Frameworks: Reciprocal Modulation of Both Capture and Conversion Materials. Advanced Materials, 2019, 31, e1902444.	21.0	65
52	Cascade aldol condensation of an aldehyde <i>via</i> the aerobic oxidation of ethanol over an Au/NiO composite. Nanoscale Advances, 2019, 1, 3654-3659.	4.6	14
53	Stable and size-controllable ultrafine Pt nanoparticles derived from a MOF-based single metal ion trap for efficient electrocatalytic hydrogen evolution. Journal of Materials Chemistry A, 2019, 7, 20239-20246.	10.3	29
54	Construction of stabilized bulk-nano interfaces for highly promoted inverse CeO2/Cu catalyst. Nature Communications, 2019, 10, 3470.	12.8	59
55	A nickel–iridium alloy as an efficient heterogeneous catalyst for hydrogenation of olefins. Chemical Communications, 2019, 55, 10519-10522	4.1	15

#	Article	IF	CITATIONS
56	Enantioselective hydrogenation of αâ€ketoesters catalyzed by cinchona alkaloid stabilized Rh nanoparticles in ionic liquid. Chirality, 2019, 31, 818-823.	2.6	2
57	Theoretical insights into selective electrochemical conversion of carbon dioxide. Nano Convergence, 2019, 6, 8.	12.1	22
58	ZSM-5 Microspheres Consisting of Nanocrystals for Preparing Highly Dispersed MoP Clusters with Good Activity in Phenanthrene Hydrogenation. Industrial & Engineering Chemistry Research, 2019, 58, 17289-17299.	3.7	7
59	Isolating contiguous Pt atoms and forming Pt-Zn intermetallic nanoparticles to regulate selectivity in 4-nitrophenylacetylene hydrogenation. Nature Communications, 2019, 10, 3787.	12.8	119
60	Surpassing the single-atom catalytic activity limit through paired Pt-O-Pt ensemble built from isolated Pt1 atoms. Nature Communications, 2019, 10, 3808.	12.8	225
61	Stable Multimetallic Nanoparticles for Oxygen Electrocatalysis. Nano Letters, 2019, 19, 5149-5158.	9.1	94
62	Getting Insights into the Temperature-Specific Active Sites on Platinum Nanoparticles for CO Oxidation: A Combined in Situ Spectroscopic and ab Initio Density Functional Theory Study. ACS Catalysis, 2019, 9, 7759-7768.	11.2	33
63	Realâ€īime Imaging of Nanoscale Redox Reactions over Bimetallic Nanoparticles. Advanced Functional Materials, 2019, 29, 1903242.	14.9	36
64	Noble Metal Particles Confined in Zeolites: Synthesis, Characterization, and Applications. Advanced Science, 2019, 6, 1900299.	11.2	127
65	The Chemical Bond between Transition Metals and Oxygen: Electronegativity, d-Orbital Effects, and Oxophilicity as Descriptors of Metal–Oxygen Interactions. Journal of Physical Chemistry C, 2019, 123, 18432-18444.	3.1	92
66	Understanding Heterolytic H ₂ Cleavage and Water-Assisted Hydrogen Spillover on Fe ₃ O ₄ (001)-Supported Single Palladium Atoms. ACS Catalysis, 2019, 9, 7876-7887.	11.2	63
67	On the catalytic transfer hydrogenation of nitroarenes by a cubane-type Mo ₃ S ₄ cluster hydride: disentangling the nature of the reaction mechanism. Physical Chemistry Chemical Physics, 2019, 21, 17221-17231.	2.8	6
68	Understanding the Nature and Activity of Supported Platinum Catalysts for the Water–Gas Shift Reaction: From Metallic Nanoclusters to Alkali-Stabilized Single-Atom Cations. ACS Catalysis, 2019, 9, 7721-7740.	11.2	48
69	Development of Nonbonded Models for Metal Cations Using the Electronic Continuum Correction. Journal of Computational Chemistry, 2019, 40, 2464-2472.	3.3	15
70	Atomically dispersed metal catalysts for the oxygen reduction reaction: synthesis, characterization, reaction mechanisms and electrochemical energy applications. Energy and Environmental Science, 2019, 12, 2890-2923.	30.8	317
71	Controllable synthesis of mussel-inspired catechol-formaldehyde resin microspheres and their silver-based nanohybrids for catalytic and antibacterial applications. Polymer Chemistry, 2019, 10, 4537-4550.	3.9	25
72	From agriculture residue to catalyst support; A green and sustainable cellulose-based dip catalyst for C C coupling and direct arylation. Carbohydrate Polymers, 2019, 223, 115060.	10.2	41
73	Hydrodeoxygenation of phenol over Ni-based bimetallic single-atom surface alloys: mechanism, kinetics and descriptor. Catalysis Science and Technology, 2019, 9, 4314-4326.	4.1	65

#	Article	IF	Citations
74	Transition Metal-Functionalized Janus MoSSe Monolayer: A Magnetic and Efficient Single-Atom Photocatalyst for Water-Splitting Applications. Journal of Physical Chemistry C, 2019, 123, 18347-18354.	3.1	46
75	Statistical Analysis and Discovery of Heterogeneous Catalysts Based on Machine Learning from Diverse Published Data. ChemCatChem, 2019, 11, 4537-4547.	3.7	54
76	Synthesis of mesoporous Fe/h-CeO2 hollow micro-spheres with enhanced visible light photocatalytic activity. Materials Research Express, 2019, 6, 095516.	1.6	5
77	Nanocatalytic Medicine. Advanced Materials, 2019, 31, e1901778.	21.0	396
78	Catalytic consequences of ultrafine Pt clusters supported on SrTiO3 for photocatalytic overall water splitting. Journal of Catalysis, 2019, 376, 180-190.	6.2	67
79	Introduction to Single-Atom Catalysis. , 2019, , 1-20.		7
80	Microenvironment Engineering of Ruthenium Nanoparticles Incorporated into Silica Nanoreactors for Enhanced Hydrogenations. Angewandte Chemie - International Edition, 2019, 58, 14483-14488.	13.8	71
81	Highly Dispersed Single-Atom Pt and Pt Clusters in the Fe-Modified KL Zeolite with Enhanced Selectivity for <i>n</i> -Heptane Aromatization. ACS Applied Materials & Interfaces, 2019, 11, 29858-29867.	8.0	49
82	Microenvironment Engineering of Ruthenium Nanoparticles Incorporated into Silica Nanoreactors for Enhanced Hydrogenations. Angewandte Chemie, 2019, 131, 14625-14630.	2.0	10
83	NiCu Bimetallic Nanoparticles on Silica Support for Catalytic Hydrolysis of Ammonia Borane: Composition-Dependent Activity and Support Size Effect. ACS Applied Energy Materials, 2019, 2, 5851-5861.	5.1	53
84	lonic mesoporous polyamides enable highly dispersed ultrafine Ru nanoparticles: a synergistic stabilization effect and remarkable efficiency in levulinic acid conversion into γ-valerolactone. Journal of Materials Chemistry A, 2019, 7, 19140-19151.	10.3	37
85	CuO-CeO2 nanocomposite catalysts produced by mechanochemical synthesis. AIP Advances, 2019, 9, .	1.3	8
86	Ru subnanoparticles on N-doped carbon layer coated SBA-15 as efficient Catalysts for arene hydrogenation. Applied Catalysis A: General, 2019, 585, 117183.	4.3	21
87	Photoresponses of Supported Au Single Atoms on TiO ₂ (110) through the Metal-Induced Gap States. Journal of Physical Chemistry Letters, 2019, 10, 4683-4691.	4.6	18
88	Atomically Dispersed Reduced Graphene Aerogel-Supported Iridium Catalyst with an Iridium Loading of 14.8 wt %. ACS Catalysis, 2019, 9, 9905-9913.	11.2	55
89	Metal-organic framework encapsulated single-atom Pt catalysts for efficient photocatalytic hydrogen evolution. Journal of Catalysis, 2019, 375, 351-360.	6.2	86
90	The reactivity of CO on bimetallic Ni3M clusters (M = Sc, Ti, V, Cr, Mn, Fe, Co, Cu, Rh, Ru, Ag, Pd and Pt) by density functional theory. New Journal of Chemistry, 2019, 43, 11363-11373.	2.8	3
91	The effects of size and shape on the structural and thermal stability of platinum nanoparticles. Computational Materials Science, 2019, 169, 109090.	3.0	16

#	Article	IF	CITATIONS
92	Precise fabrication of porous one-dimensional gC3N4 nanotubes doped with Pd and Cu atoms for efficient CO oxidation and CO2 reduction. Inorganic Chemistry Communication, 2019, 107, 107460.	3.9	49
93	Regioselective generation and reactivity control of subnanometric platinum clusters in zeolites for high-temperature catalysis. Nature Materials, 2019, 18, 866-873.	27.5	339
94	Different toxicities of nanoscale titanium dioxide particles in the roots and leaves of wheat seedlings. RSC Advances, 2019, 9, 19243-19252.	3.6	9
95	Surveying Iron–Organic Framework TAL-1-Derived Materials in Ligandless Heterogeneous Oxidative Catalytic Transformations of Alkylarenes. Synlett, 2019, 30, 1536-1540.	1.8	3
96	Supported Nobleâ€Metal Single Atoms for Heterogeneous Catalysis. Advanced Materials, 2019, 31, e1902031.	21.0	207
97	Determination of the Evolution of Heterogeneous Single Metal Atoms and Nanoclusters under Reaction Conditions: Which Are the Working Catalytic Sites?. ACS Catalysis, 2019, 9, 10626-10639.	11.2	197
98	Electrocatalytic Oxygen Reduction Reaction over the Au ₂₂ (L ⁸) ₆ Nanocluster with Promising Activity: A DFT Study. Journal of Physical Chemistry C, 2019, 123, 27116-27123.	3.1	19
99	Oxygenation of Styrenes Catalyzed by N-Doped Carbon Incarcerated Cobalt Nanoparticles. Bulletin of the Chemical Society of Japan, 2019, 92, 1980-1985.	3.2	15
100	Rational Design of Bimetallic Nanocatalysts for Tandem Transformations. Trends in Chemistry, 2019, 1, 707-708.	8.5	1
101	Atomic‣ocal Environments of Singleâ€Atom Catalysts: Synthesis, Electronic Structure, and Activity. Advanced Energy Materials, 2019, 9, 1900722.	19.5	128
102	Single-atom electrocatalysis: a new approach to in vivo electrochemical biosensing. Science China Chemistry, 2019, 62, 1720-1724.	8.2	57
103	A universal ligand mediated method for large scale synthesis of transition metal single atom catalysts. Nature Communications, 2019, 10, 4585.	12.8	441
104	Two-Dimensional Fe-Hexaaminobenzene Metal–Organic Frameworks as Promising CO ₂ Catalysts with High Activity and Selectivity. Journal of Physical Chemistry C, 2019, 123, 26460-26466.	3.1	16
105	Reduction of N ₂ O by H ₂ Catalyzed by Keggin–Type Phosphotungstic Acid Supported Single-Atom Catalysts: An Insight from Density Functional Theory Calculations. Environmental Science & Technology, 2019, 53, 12893-12903.	10.0	21
106	Tuning the Electrocatalytic Activity of Co ₃ O ₄ through Discrete Elemental Doping. ACS Applied Materials & Interfaces, 2019, 11, 39706-39714.	8.0	21
107	Metal–organic framework derived Pd/ZrO ₂ @CN as a stable catalyst for the catalytic hydrogenation of 2,3,5â€trimethylbenzoquinone. Applied Organometallic Chemistry, 2019, 33, e5233.	3.5	13
108	Ultrafine Ag Nanoparticles as Active Catalyst for Electrocatalytic Hydrogen Production. ChemCatChem, 2019, 11, 5976-5981.	3.7	21
109	Selective C(sp ²)â€H Amination Catalyzed by Highâ€Valent Cobalt(III)/(IV)â€bpy Complex Immobilized on Silica Nanoparticles. ChemCatChem, 2019, 11, 5615-5624.	3.7	10

	CITATION R	CITATION REPORT	
# 110	ARTICLE Ultrasmall Co@Co(OH) ₂ Nanoclusters Embedded in Nâ€Enriched Mesoporous Carbon Networks as Efficient Electrocatalysts for Water Oxidation. ChemSusChem, 2019, 12, 5117-5125.	IF 6.8	Citations
111	Rapid, Highâ€Temperature, In Situ Microwave Synthesis of Bulk Nanocatalysts. Small, 2019, 15, e1904881.	10.0	28
112	Emissions Control Catalysis. Catalysts, 2019, 9, 912.	3.5	3
113	Synthesis of Dendrimerâ€Stabilized Au Nanoparticles and Their Application in the Generation of Hydroxyl Radicals. ChemistrySelect, 2019, 4, 9897-9900.	1.5	5
114	Pd nanoparticles immobilized on MIL-53(Al) as highly effective bifunctional catalysts for oxidation of liquid methanol to methyl formate. Petroleum Science, 2019, 16, 901-911.	4.9	12
115	Ligand-Mediated Nanocluster Formation with Classical and Autocatalytic Growth. Journal of Physical Chemistry C, 2019, 123, 29954-29963.	3.1	6
116	Cyclodextrin polymer networks decorated with subnanometer metal nanoparticles for high-performance low-temperature catalysis. Science Advances, 2019, 5, eaax6976.	10.3	35
117	Pocketlike Active Site of Rh ₁ /MoS ₂ Single-Atom Catalyst for Selective Crotonaldehyde Hydrogenation. Journal of the American Chemical Society, 2019, 141, 19289-19295.	13.7	141
118	Control of metal-support interactions in heterogeneous catalysts to enhance activity and selectivity. Nature Catalysis, 2019, 2, 955-970.	34.4	1,192
119	Ultrahigh Photocatalytic Rate at a Singleâ€Metalâ€Atomâ€Oxide. Advanced Materials, 2019, 31, e1903491.	21.0	53
120	Designing Catalytic Sites on Surfaces with Optimal H-Atom Binding via Atom Doping Using the Inverse Molecular Design Approach. Journal of Physical Chemistry B, 2019, 123, 10252-10259.	2.6	3
121	Au-Ag synergistic effect in CF3-ketone alkynylation catalyzed by precise nanoclusters. Journal of Catalysis, 2019, 378, 220-225.	6.2	13
122	In-situ synthesis of magnetic nanoparticle immobilized heterogeneous catalyst through mussel mimetic approach for the efficient removal of water pollutants. Colloids and Interface Science Communications, 2019, 33, 100218.	4.1	52
123	Sustainable Ligandâ€Free, Palladiumâ€Catalyzed Suzuki–Miyaura Reactions in Water: Insights into the Role of Base. ChemSusChem, 2019, 12, 5265-5273.	6.8	18
124	Zeoliteâ€Encaged Singleâ€Atom Rhodium Catalysts: Highlyâ€Efficient Hydrogen Generation and Shapeâ€Selective Tandem Hydrogenation of Nitroarenes. Angewandte Chemie, 2019, 131, 18743-18749.	2.0	26
125	Zeoliteâ€Encaged Singleâ€Atom Rhodium Catalysts: Highlyâ€Efficient Hydrogen Generation and Shapeâ€Selective Tandem Hydrogenation of Nitroarenes. Angewandte Chemie - International Edition, 2019, 58, 18570-18576.	13.8	281
126	Fabrication of Pd/SiO ₂ with Controllable Wettability for Enhanced Catalytic Hydrogenation Activity at Ambient H ₂ Pressure. ChemCatChem, 2019, 11, 5430-5434.	3.7	14
127	Performance of Density Functional Theory for Transition Metal Oxygen Bonds. ChemPhysChem, 2019, 20, 3210-3220.	2.1	9

#	Article	IF	CITATIONS
128	Structure Sensitivity of Acetylene Semi-Hydrogenation on Pt Single Atoms and Subnanometer Clusters. ACS Catalysis, 2019, 9, 11030-11041.	11.2	111
129	<i>In Situ</i> Observation of Nanoparticle Exsolution from Perovskite Oxides: From Atomic Scale Mechanistic Insight to Nanostructure Tailoring. ACS Nano, 2019, 13, 12996-13005.	14.6	144
130	Engineering polyoxometalate anions on porous ionic network towards highly catalytic active noble metal clusters. Applied Surface Science, 2019, 496, 143650.	6.1	20
131	Transforming Energy with Single-Atom Catalysts. Joule, 2019, 3, 2897-2929.	24.0	216
132	The adsorption of small size Pd clusters on a g-C ₃ N ₄ quantum dot: DFT and TD-DFT study. Materials Research Express, 2019, 6, 105079.	1.6	10
133	Uniform, Scalable, High-Temperature Microwave Shock for Nanoparticle Synthesis through Defect Engineering. Matter, 2019, 1, 759-769.	10.0	58
134	An Au ₂₂ (L ⁸) ₆ nanocluster with <i>in situ</i> uncoordinated Au as a highly active catalyst for O ₂ activation and CO oxidation. Physical Chemistry Chemical Physics, 2019, 21, 20144-20150.	2.8	11
135	Exploring the Catalytic Properties of Unsupported and TiO ₂ -Supported Cu ₅ Clusters: CO ₂ Decomposition to CO and CO ₂ Photoactivation. Journal of Physical Chemistry C, 2019, 123, 23064-23074.	3.1	39
136	A Highly Selective Palladium-Catalyzed Aerobic Oxidative Aniline–Aniline Cross-Coupling Reaction. Organic Letters, 2019, 21, 7279-7283.	4.6	17
137	Operando Insights into Nanoparticle Transformations during Catalysis. ACS Catalysis, 2019, 9, 10020-10043.	11.2	98
138	The influence of support materials on the structural and electronic properties of gold nanoparticles – a DFT study. Physical Chemistry Chemical Physics, 2019, 21, 19011-19025.	2.8	39
139	Biomolecule-derived supported cobalt nanoparticles for hydrogenation of industrial olefins, natural oils and more in water. Green Chemistry, 2019, 21, 5104-5112.	9.0	11
140	Removal of Residual Poly(vinylpyrrolidone) from Gold Nanoparticles Immobilized on SiO2by Ultraviolet–Ozone Treatment. ACS Applied Nano Materials, 2019, 2, 5720-5729.	5.0	8
141	Recent advances in synthesizing metal nanocluster-based nanocomposites for application in sensing, imaging and catalysis. Nano Today, 2019, 28, 100767.	11.9	149
142	CO oxidation by neutral gold-vanadium oxide clusters. Chinese Journal of Chemical Physics, 2019, 32, 207-212.	1.3	12
143	Promotion of Pt/CeO ₂ catalyst by hydrogen treatment for low-temperature CO oxidation. RSC Advances, 2019, 9, 27002-27012.	3.6	53
144	Highly Active and Stable Metal Single-Atom Catalysts Achieved by Strong Electronic Metal–Support Interactions. Journal of the American Chemical Society, 2019, 141, 14515-14519.	13.7	455
145	Insights into the reaction mechanism and particle size effects of CO oxidation over supported Pt nanoparticle catalysts. Journal of Catalysis, 2019, 377, 662-672.	6.2	29

ARTICLE IF CITATIONS # Pd Nanoparticles Capped with [CpPd(II)Cl]₂ Complexes for Hydrogenation and Acid-Free 146 5.0 3 Acetalization of $\hat{I}\pm,\hat{I}^2$ -Unsaturated Aldehydes. ACS Applied Nano Materials, 2019, 2, 5634-5642. Ionothermal synthesis of a photoelectroactive titanophosphite with a three-dimensional 2.6 open-framework. CrystEngComm, 2019, 21, 5867-5871. Direct immobilization of an atomically dispersed Pt catalyst by suppressing heterogeneous nucleation 148 10.3 61 at â^'40 °C. Journal of Materials Chemistry A, 2019, 7, 25779-25784. Size control over metal–organic framework porous nanocrystals. Chemical Science, 2019, 10, 149 9396-9408. Controlling Dynamic Structural Transformation of Atomically Dispersed CuO_{<i>x</i>} 150 11.2 52 Species and Influence on Their Catalytic Performances. ACS Catalysis, 2019, 9, 9840-9851. Unfolding adsorption on metal nanoparticles: Connecting stability with catalysis. Science Advances, 10.3 2019, 5, eaax5101. Electroactive Area from Porous Oxide Films Loaded with Silver Nanoparticles: Electrochemical and 152 8.0 1 Electron Tomography Observations. ACS Applied Materials & amp; Interfaces, 2019, 11, 37270-37278. Regular Arrays of Pt Clusters on Alumina: A New Superstructure on Al₂O₃/Ni₃Al(111). Journal of Physical Chemistry C, 2019, 123, 3.124487-24494. Atomic-level dispersed catalysts for PEMFCs: Progress and future prospects. EnergyChem, 2019, 1, 154 19.1 50 100018. <i>In Situ</i> Observation of Metal to Metal Oxide Progression: A Study of Charge Transfer 14.6 Phenomenon at Ru–CuO Interfaces. ACS Nano, 2019, 13, 12425-12437. Unraveling the coordination structure-performance relationship in Pt1/Fe2O3 single-atom catalyst. 156 12.8 279 Nature Communications, 2019, 10, 4500. Green Fabrication of 2D Fe3O4/Mg(OH)2 and 2D Fe3O4/MgO Nanocomposites Using [OMIM]Br Ionic Liquid and Comparing Catalytic Activity with Green Metrics. Polycyclic Aromatic Compounds, 2019, , 2.6 1-20New trends in tailoring active sites in zeolite-based catalysts. Chemical Society Reviews, 2019, 48, 158 38.1 330 1095-1149. Au@zirconium-phosphonate nanoparticles as an effective catalytic system for the chemoselective and 159 36 switchable reduction of nitroarenes. Green Chemistry, 2019, 21, 614-626. <i>In situ</i> formation of AuNPs using fatty <i>N</i>-acylamino hydrazide organogelators as 160 2.8 7 templates. New Journal of Chemistry, 2019, 43, 295-303. Single Metal Atom Photocatalysis. Small Methods, 2019, 3, 1800447. 140 Monitoring plasmonic hot-carrier chemical reactions at the single particle level. Faraday Discussions, 162 3.228 2019, 214, 73-87. Development of ratiometric sensing and white light-harvesting materials based on all-copper nanoclusters. Nanoscale Advances, 2019, 1, 1086-1095.

#	Article	IF	CITATIONS
164	Controllable in Situ Surface Restructuring of Cu Catalysts and Remarkable Enhancement of Their Catalytic Activity. ACS Catalysis, 2019, 9, 2213-2221.	11.2	53
165	Ultrasmall (<2 nm) Au@Pt Nanostructures: Tuning the Surface Electronic States for Electrocatalysis. ACS Applied Materials & amp; Interfaces, 2019, 11, 5661-5667.	8.0	22
166	Production of bacterial nanocellulose (BNC) and its application as a solid support in transition metal catalysed cross-coupling reactions. International Journal of Biological Macromolecules, 2019, 129, 351-360.	7.5	33
167	lridium Single-Atom Catalyst Performing a Quasi-homogeneous Hydrogenation Transformation of CO2 to Formate. CheM, 2019, 5, 693-705.	11.7	181
168	Gold Nanocluster-Decorated Nanocomposites with Enhanced Emission and Reactive Oxygen Species Generation. ACS Applied Materials & amp; Interfaces, 2019, 11, 7369-7378.	8.0	53
169	Atomically precise Ag nanoclusters intercalated in zirconium pyrophosphate for efficient hydrogenation of nitroaromatics. Applied Catalysis A: General, 2019, 574, 1-9.	4.3	20
170	Atomic (single, double, and triple atoms) catalysis: frontiers, opportunities, and challenges. Journal of Materials Chemistry A, 2019, 7, 3492-3515.	10.3	252
171	Metal-Organic-Framework-Based Single-Atom Catalysts for Energy Applications. CheM, 2019, 5, 786-804.	11.7	555
172	Real-time monitoring of electrochemical reactions on single nanoparticles by dark-field and Raman microscopy. Dalton Transactions, 2019, 48, 3809-3814.	3.3	12
173	Pd Nanoparticles Stabilized by Hypercrosslinked Polystyrene Catalyze Selective Triple C-C Bond Hydrogenation and Suzuki Cross-Coupling. Journal of Nanomaterials, 2019, 2019, 1-7.	2.7	9
174	Controlling catalytic activity and selectivity for partial hydrogenation by tuning the environment around active sites in iridium complexes bonded to supports. Chemical Science, 2019, 10, 2623-2632.	7.4	40
175	Achieving an exceptionally high loading of isolated cobalt single atoms on a porous carbon matrix for efficient visible-light-driven photocatalytic hydrogen production. Chemical Science, 2019, 10, 2585-2591.	7.4	50
176	Generation of gold nanoclusters encapsulated in an MCM-22 zeolite for the aerobic oxidation of cyclohexane. Chemical Communications, 2019, 55, 1607-1610.	4.1	48
177	A General Strategy for Fabricating Isolated Single Metal Atomic Site Catalysts in Y Zeolite. Journal of the American Chemical Society, 2019, 141, 9305-9311.	13.7	191
178	Pd–Au–Y as Efficient Catalyst for C–C Coupling Reactions, Benzylic C–H Bond Activation, and Oxidation of Ethanol for Synthesis of Cinnamaldehydes. ACS Catalysis, 2019, 9, 5860-5875.	11.2	35
179	Can a Single Valence Electron Alter the Electrocatalytic Activity and Selectivity for CO ₂ Reduction on the Subnanometer Scale?. Journal of Physical Chemistry C, 2019, 123, 14591-14609.	3.1	10
180	Activity of Atomically Precise Titania Nanoparticles in CO Oxidation. Angewandte Chemie, 2019, 131, 8086-8090.	2.0	8
181	Carbon dioxide photo/electroreduction with cobalt. Journal of Materials Chemistry A, 2019, 7, 16622-16642.	10.3	59

#	Article	IF	CITATIONS
182	Mild synthesis of single-nanosized plasmonic copper nanoparticles and their catalytic reduction of methylene blue. Colloids and Interface Science Communications, 2019, 31, 100187.	4.1	9
183	Starch functionalized creatine for stabilization of gold nanoparticles: Efficient heterogeneous catalyst for the reduction of nitroarenes. Inorganica Chimica Acta, 2019, 495, 118965.	2.4	23
184	Precise regulation of the selectivity of supported nano-Pd catalysts using polysiloxane coatings with tunable surface wettability. Chemical Communications, 2019, 55, 8305-8308.	4.1	15
185	One-pot three-component synthesis of α-amino nitriles using ZnO as a heterogeneous, reusable, and eco-friendly catalyst. Journal of Cleaner Production, 2019, 234, 329-339.	9.3	10
186	Transformation of Jatropha Oil into High-Quality Biofuel over Ni–W Bimetallic Catalysts. ACS Omega, 2019, 4, 10580-10592.	3.5	22
187	Controlled assembly of Ag nanoparticles on the surface of phosphate pillar [6]arene functionalized single-walled carbon nanotube for enhanced catalysis and sensing performance. Electrochimica Acta, 2019, 318, 711-719.	5.2	23
188	Control loading Au nanoparticles on the surface of hydroxyl pillar[5]arene functionalized single-walled carbon nanotubes and its application in catalysis and sensing. Sustainable Energy and Fuels, 2019, 3, 2312-2320.	4.9	10
189	Self-cleaning mechanism of synthesized SnO2/TiO2 nanostructure for photocatalytic activity application for waste water treatment. Surfaces and Interfaces, 2019, 17, 100346.	3.0	43
190	Solid-supported Pt-catalyzed remote C-H etherification of arylamines: A simple and practical approach for the synthesis of aromatic ethers. Catalysis Communications, 2019, 129, 105722.	3.3	3
191	A nanoscale iron catalyst for heterogeneous direct <i>N</i> - and <i>C</i> -alkylations of anilines and ketones using alcohols under hydrogen autotransfer conditions. Chemical Communications, 2019, 55, 8490-8493.	4.1	29
192	Nonâ€metal Singleâ€lodineâ€Atom Electrocatalysts for the Hydrogen Evolution Reaction. Angewandte Chemie, 2019, 131, 12380-12385.	2.0	23
193	Nonâ€metal Singleâ€ŀodineâ€Atom Electrocatalysts for the Hydrogen Evolution Reaction. Angewandte Chemie - International Edition, 2019, 58, 12252-12257.	13.8	175
194	Involving Single-Atom Silver(0) in Selective Dehalogenation by AgF under Visible-Light Irradiation. ACS Catalysis, 2019, 9, 6335-6341.	11.2	45
195	Ag 10 Ti 28 â€Oxo Cluster Containing Singleâ€Atom Silver Sites: Atomic Structure and Synergistic Electronic Properties. Angewandte Chemie, 2019, 131, 11048-11051.	2.0	9
196	Thermally Induced Structural Evolution of Palladium eria Catalysts. Implication for CO Oxidation. ChemCatChem, 2019, 11, 3505-3521.	3.7	26
197	Porphyrinâ€Stabilized Transition Metal Nanoparticles and Their Applications in the Reduction of 4â€Nitrophenol and the Generation of Hydroxyl Radicals. European Journal of Inorganic Chemistry, 2019, 2019, 2806-2810.	2.0	9
198	Computational mechanistic insights into CO oxidation reaction over Fe decorated C24N24 fullerene. Inorganic Chemistry Communication, 2019, 106, 190-196.	3.9	26
199	Heterogeneous copper-catalyzed C S coupling via insertion of sulfur dioxide: A novel and regioselective approach for the synthesis of sulfur-containing compounds. Catalysis Communications, 2019, 128, 105708.	3.3	14

#	Article	IF	CITATIONS
200	Ultrafine AuPd Nanoclusters on Layered Double Hydroxides by the Capt-Capped AuPd Cluster Precursor Method: Synergistic Effect for Highly Efficient Aerobic Oxidation of Alcohols. Journal of Physical Chemistry C, 2019, 123, 15483-15494.	3.1	17
201	Single-cluster Au as an usher for deeply cyclable Li metal anodes. Journal of Materials Chemistry A, 2019, 7, 14496-14503.	10.3	51
202	Surfaceâ€supported cluster catalysis: Ensembles of metastable states run the show. Wiley Interdisciplinary Reviews: Computational Molecular Science, 2019, 9, e1420.	14.6	36
203	Tunable Aminooxyâ€Functionalized Monolayerâ€Protected Gold Clusters for Nonpolar and Aqueous Oximation Reactions. Particle and Particle Systems Characterization, 2019, 36, 1900093.	2.3	8
204	Gold nanoparticles deposited on MnO2 nanorods modified graphene oxide composite: A potential ternary nanocatalyst for efficient synthesis of betti bases and bisamides. Molecular Catalysis, 2019, 474, 110415.	2.0	13
205	Ag ₁₀ Ti ₂₈ â€Oxo Cluster Containing Singleâ€Atom Silver Sites: Atomic Structure and Synergistic Electronic Properties. Angewandte Chemie - International Edition, 2019, 58, 10932-10935.	13.8	57
206	Drying of supported catalysts for high metal concentrations: A reduced parameter model. Chemical Engineering Science, 2019, 206, 361-374.	3.8	5
207	Carbon vacancy defect-activated Pt cluster for hydrogen generation. Journal of Materials Chemistry A, 2019, 7, 15364-15370.	10.3	57
208	The Ligandâ€Exchange Reactions of Rodâ€Like Au 25â€n M n (M=Au, Ag, Cu, Pd, Pt) Nanoclusters with Cysteine – A Density Functional Theory Study. ChemPhysChem, 2019, 20, 1822-1829.	2.1	4
209	Carbonâ€Rich Nonprecious Metal Single Atom Electrocatalysts for CO ₂ Reduction and Hydrogen Evolution. Small Methods, 2019, 3, 1900210.	8.6	136
210	Visible light driven efficient metal free single atom catalyst supported on nanoporous carbon nitride for nitrogen fixation. Physical Chemistry Chemical Physics, 2019, 21, 12346-12352.	2.8	64
211	Understanding the strain effect of Au@Pd nanocatalysts by <i>in situ</i> surface-enhanced Raman spectroscopy. Chemical Communications, 2019, 55, 8824-8827.	4.1	11
212	Supported Au Nanoparticlesâ€Catalyzed Regioselective Dehydrogenative Disilylation of Allenes by Dihydrosilane. Chemistry - A European Journal, 2019, 25, 9170-9173.	3.3	7
213	Product Selectivity Controlled by Nanoporous Environments in Zeolite Crystals Enveloping Rhodium Nanoparticle Catalysts for CO ₂ Hydrogenation. Journal of the American Chemical Society, 2019, 141, 8482-8488.	13.7	242
214	A graphdiyne-based carbon material for electroless deposition and stabilization of sub-nanometric Pd catalysts with extremely high catalytic activity. Journal of Materials Chemistry A, 2019, 7, 13142-13148.	10.3	34
215	Magnetic organic-silica hybrid supported Pt nanoparticles for carbon sequestration reaction. Chemical Papers, 2019, 73, 2241-2253.	2.2	5
216	PdO/CuO Nanoparticles on Zeolite-Y for Nitroarene Reduction and Methanol Oxidation. ACS Applied Nano Materials, 2019, 2, 3769-3779.	5.0	26
217	Activity of Atomically Precise Titania Nanoparticles in CO Oxidation. Angewandte Chemie - International Edition, 2019, 58, 8002-8006.	13.8	22

#	Article	IF	CITATIONS
218	Cobalt single atoms anchored on N-doped ultrathin carbon nanosheets for selective transfer hydrogenation of nitroarenes. Science China Materials, 2019, 62, 1306-1314.	6.3	44
219	Structural evolution of atomically dispersed Pt catalysts dictates reactivity. Nature Materials, 2019, 18, 746-751.	27.5	404
220	Atomâ€byâ€Atom Resolution of Structure–Function Relations over Lowâ€Nuclearity Metal Catalysts. Angewandte Chemie, 2019, 131, 8816-8821.	2.0	21
221	CeO ₂ (111) electronic reducibility tuned by ultra-small supported bimetallic Pt–Cu clusters. Physical Chemistry Chemical Physics, 2019, 21, 15286-15296.	2.8	20
222	Pillarquinoneâ€Based Porous Polymer for a Highlyâ€Efficient Heterogeneous Organometallic Catalysis. ChemCatChem, 2019, 11, 2864-2869.	3.7	27
223	Enhancing electrostatic interactions to activate polar molecules: ammonia borane methanolysis on a Cu/Co(OH) ₂ nanohybrid. Catalysis Science and Technology, 2019, 9, 2828-2835.	4.1	14
224	Silica-Encapsulated Gold Nanoclusters for Efficient Acetylene Hydrogenation to Ethylene. ACS Applied Nano Materials, 2019, 2, 2999-3006.	5.0	23
225	Atomâ€byâ€Atom Resolution of Structure–Function Relations over Lowâ€Nuclearity Metal Catalysts. Angewandte Chemie - International Edition, 2019, 58, 8724-8729.	13.8	108
226	Single platinum atoms embedded in nanoporous cobalt selenide as electrocatalyst for accelerating hydrogen evolution reaction. Nature Communications, 2019, 10, 1743.	12.8	430
227	Nitrogen- and phosphorus-codoped carbon-based catalyst for acetylene hydrochlorination. Journal of Catalysis, 2019, 373, 240-249.	6.2	62
228	Intermetallic Differences at CdS–Metal (Ni, Pd, Pt, and Au) Interfaces: From Single-Atom to Subnanometer Metal Clusters. Journal of Physical Chemistry C, 2019, 123, 9298-9310.	3.1	7
229	Beyond Nanoparticles: The Role of Sub-nanosized Metal Species in Heterogeneous Catalysis. Catalysis Letters, 2019, 149, 1441.	2.6	15
230	Efficient "Clickâ€â€Ðendrimerâ€Supported Synergistic Bimetallic Nanocatalysis for Hydrogen Evolution by Sodium Borohydride Hydrolysis. ChemCatChem, 2019, 11, 2341-2349.	3.7	26
231	The Metal Hydride Problem of Computational Chemistry: Origins and Consequences. Journal of Physical Chemistry A, 2019, 123, 2888-2900.	2.5	26
232	Structural and Electronic Properties, Isomerization, and NO Dissociation Reactions on Au, Ag, Cu Clusters. Journal of Computer Chemistry Japan, 2019, 18, 64-69.	0.1	2
233	Atomically Dispersed Supported Metal Catalysts: Seeing Is Believing. Trends in Chemistry, 2019, 1, 99-110.	8.5	55
234	Theoretical Approach To Predict the Stability of Supported Single-Atom Catalysts. ACS Catalysis, 2019, 9, 3289-3297.	11.2	101
235	Single-Atom Catalysis: How Structure Influences Catalytic Performance. Catalysis Letters, 2019, 149, 1137-1146.	2.6	85

		CITATION REPORT		
#	Article		IF	CITATIONS
236	Confinement Effects in Zeolite onfined Noble Metals. Angewandte Chemie, 2019, 7	131, 12468-12482.	2.0	57
237	Multiscale simulation on thermal stability of supported metal nanocatalysts. Wiley Inte Reviews: Computational Molecular Science, 2019, 9, e1405.	erdisciplinary	14.6	3
238	Structure regulation of noble-metal-based nanomaterials at an atomic level. Nano Toda 164-175.	эу, 2019, 26,	11.9	33
239	Citrate-Stabilized Gold Nanoparticles as High-Performance Electrocatalysts: The Role o Electroreduction of Oxygen. Journal of Physical Chemistry C, 2019, 123, 9807-9812.	f Size in the	3.1	40
240	A general route <i>via</i> formamide condensation to prepare atomically dispersed metal–nitrogen–carbon electrocatalysts for energy technologies. Energy and Envi 2019, 12, 1317-1325.	ronmental Science,	30.8	290
241	Postfunctionalized Metalloligand-Based Catenated Coordination Polymers: Syntheses, and Effect of Labile Sites on Catalysis. Crystal Growth and Design, 2019, 19, 2723-273		3.0	7
242	Simple physical preparation of single copper atoms on amorphous carbon <i>via</i> C explosion. Nanoscale, 2019, 11, 7595-7599.	oulomb	5.6	9
243	Atomic Cu on nanodiamond-based sp2/sp3 hybrid nanostructures for selective hydrog phenylacetylene. Chemical Physics Letters, 2019, 723, 39-43.	enation of	2.6	4
244	Effect of Structural Evolution of Gold Species Supported on Ceria in Catalyzing CO Ox Journal of Physical Chemistry C, 2019, 123, 9001-9012.	idation.	3.1	28
245	Isomerizations of a Pt ₄ cluster revealed by spatiotemporal microscopic an Communications, 2019, 55, 4753-4756.	nalysis. Chemical	4.1	28
246	Insight of the stability and activity of platinum single atoms on ceria. Nano Research, 2 1401-1409.	2019, 12,	10.4	121
247	Fly-through synthesis of nanoparticles on textile and paper substrates. Nanoscale, 201	9, 11, 6174-6181.	5.6	25
248	Single-atomic-site cobalt stabilized on nitrogen and phosphorus co-doped carbon for s oxidation of primary alcohols. Nanoscale Horizons, 2019, 4, 902-906.	elective	8.0	29
249	Selective Hydrogenation of CO2 to Formic Acid over Alumina-Supported Ru Nanoparti Multifunctional Ionic Liquid. Catalysis Letters, 2019, 149, 1464-1475.	cles with	2.6	17
250	Electronic Metal–Support Interactions between Pt Nanoparticles and Co(OH) _{ CO Oxidation. Journal of Physical Chemistry C, 2019, 123, 10907-10916.}	2 Flakes for	3.1	24
251	Pd-Mediated Synthesis of Ag ₃₃ Chiral Nanocluster with Core–Shell Stru Group. Journal of the American Chemical Society, 2019, 141, 7107-7114.	ucture in T Point	13.7	71
252	Highly accessible aqueous synthesis of well-dispersed dendrimer type platinum nanopa their catalytic applications. Nano Research, 2019, 12, 1083-1092.	articles and	10.4	10
253	Mott–Schottky Effect Leads to Alkyne Semihydrogenation over Pd-Nanocube@N-Dc Catalysis, 2019, 9, 4632-4641.	oped Carbon. ACS	11.2	93

#	Article	IF	CITATIONS
254	Reactive Oxygen Species (ROS)-Based Nanomedicine. Chemical Reviews, 2019, 119, 4881-4985.	47.7	1,519
255	The catalytic evaluation of bimetallic Pd-based nanocatalysts supported on ion exchange resin in nitro and alkyne reduction reactions. New Journal of Chemistry, 2019, 43, 7083-7092.	2.8	13
256	Reduction of N ₂ O by CO via Mans–van Krevelen Mechanism over Phosphotungstic Acid Supported Single-Atom Catalysts: A Density Functional Theory Study. Inorganic Chemistry, 2019, 58, 5221-5229.	4.0	15
257	Silicon Nanocages for Selective Carbon Dioxide Conversion under Visible Light. Journal of Physical Chemistry C, 2019, 123, 9973-9980.	3.1	21
258	General and Chemoselective Copper Oxide Catalysts for Hydrogenation Reactions. ACS Catalysis, 2019, 9, 4302-4307.	11.2	56
259	Optimising surface d charge of AuPd nanoalloy catalysts for enhanced catalytic activity. Nature Communications, 2019, 10, 1428.	12.8	149
260	Unravelling platinum nanoclusters as active sites to lower the catalyst loading for formaldehyde oxidation. Communications Chemistry, 2019, 2, .	4.5	47
261	In situ XAS study of the local structure and oxidation state evolution of palladium in a reduced graphene oxide supported Pd(ii) carbene complex during an undirected C–H acetoxylation reaction. Catalysis Science and Technology, 2019, 9, 2025-2031.	4.1	20
262	Formation and Functioning of Bimetallic Nanocatalysts: The Power of Xâ€ray Probes. Angewandte Chemie - International Edition, 2019, 58, 13220-13230.	13.8	31
263	Temperatureâ€Dependent Study of Catalytic Ag Nanoparticles Entrapped Resin Nanocomposite towards Reduction of 4â€Nitrophenol. ChemistrySelect, 2019, 4, 3665-3671.	1.5	32
264	In situ formed Co clusters in selective oxidation of α-C H bond: Stabilizing effect from reactants. Molecular Catalysis, 2019, 470, 1-7.	2.0	16
265	Catalytic CO oxidation by Fe doped penta-graphene: A density functional study. Molecular Catalysis, 2019, 470, 48-55.	2.0	31
266	Au/NiO Composite: A Catalyst for One-Pot Cascade Conversion of Furfural. ACS Applied Energy Materials, 2019, 2, 2654-2661.	5.1	28
267	Effects of Ni particle size on amination of monoethanolamine over Ni-Re/SiO2 catalysts. Chinese Journal of Catalysis, 2019, 40, 567-579.	14.0	18
268	Effect of organic capping agents on the optical and photocatalytic activity of mesoporous TiO2 nanoparticles by sol–gel method. SN Applied Sciences, 2019, 1, 1.	2.9	20
269	Mini-review on an engineering approach towards the selection of transition metal complex-based catalysts for photocatalytic H ₂ production. Catalysis Science and Technology, 2019, 9, 2716-2727.	4.1	42
270	Formation and Functioning of Bimetallic Nanocatalysts: The Power of Xâ€ray Probes. Angewandte Chemie, 2019, 131, 13354-13364.	2.0	6
271	Nano-bio-computing lipid nanotablet. Science Advances, 2019, 5, eaau2124.	10.3	28

#	Article	IF	CITATIONS
272	Self- regeneration of Au/CeO2 based catalysts with enhanced activity and ultra-stability for acetylene hydrochlorination. Nature Communications, 2019, 10, 914.	12.8	86
273	Nanocatalysis by noble metal nanoparticles: controlled synthesis for the optimization and understanding of activities. Journal of Materials Chemistry A, 2019, 7, 5857-5874.	10.3	229
274	Chemical Design of Palladiumâ€Based Nanoarchitectures for Catalytic Applications. Small, 2019, 15, e1804378.	10.0	90
275	Moving Frontiers in Transition Metal Catalysis: Synthesis, Characterization and Modeling. Advanced Materials, 2019, 31, e1807381.	21.0	36
276	In Situ/Operando Techniques for Characterization of Single-Atom Catalysts. ACS Catalysis, 2019, 9, 2521-2531.	11.2	296
277	Controlled Assembly of Hierarchical Metal Catalysts with Enhanced Performances. CheM, 2019, 5, 805-837.	11.7	24
278	Bulky Calixarene Ligands Stabilize Supported Iridium Pair-Site Catalysts. Journal of the American Chemical Society, 2019, 141, 4010-4015.	13.7	34
279	Stabilizing High Metal Loadings of Thermally Stable Platinum Single Atoms on an Industrial Catalyst Support. ACS Catalysis, 2019, 9, 3978-3990.	11.2	233
280	Nitrogen Reduction to Ammonia on Atomicâ€6cale Active Sites under Mild Conditions. Small Methods, 2019, 3, 1800501.	8.6	148
281	Globally Optimized Equilibrium Shapes of Zirconia-Supported Rh and Pt Nanoclusters: Insights into Site Assembly and Reactivity. Journal of Physical Chemistry C, 2019, 123, 7209-7216.	3.1	9
282	Precursor-mediated size tuning of monodisperse PtRh nanocubes as efficient electrocatalysts for ethylene glycol oxidation. Journal of Materials Chemistry A, 2019, 7, 7891-7896.	10.3	78
283	Catalytic CO Oxidation by Noble-Metal-Free Ni ₂ VO _{4,5} [–] Clusters: A CO Self-Promoted Mechanism. Journal of Physical Chemistry Letters, 2019, 10, 1133-1138.	4.6	23
284	A heterogeneous single Cu catalyst of Cu atoms confined in the spinel lattice of MgAl ₂ O ₄ with goodÂcatalytic activity and stability for NO reduction by CO. Journal of Materials Chemistry A, 2019, 7, 7202-7212.	10.3	27
285	Confinement Effects in Zeolite onfined Noble Metals. Angewandte Chemie - International Edition, 2019, 58, 12340-12354.	13.8	143
286	Supported Single Atoms as New Class of Catalysts for Electrochemical Reduction of Carbon Dioxide. Small Methods, 2019, 3, 1800440.	8.6	155
287	Recent Advances for MOFâ€Derived Carbonâ€Supported Singleâ€Atom Catalysts. Small Methods, 2019, 3, 1800471.	8.6	315
288	Reversible Metal Aggregation and Redispersion Driven by the Catalytic Water Gas Shift Half-Reactions: Interconversion of Single-Site Rhodium Complexes and Tetrarhodium Clusters in Zeolite HY. ACS Catalysis, 2019, 9, 3311-3321.	11.2	31
289	Supported Cobalt Nanoparticles for Hydroformylation Reactions. Chemistry - A European Journal, 2019, 25, 5534-5538.	3.3	34

#	Article	IF	CITATIONS
290	Advances in porous and nanoscale catalysts for viable biomass conversion. Chemical Society Reviews, 2019, 48, 2366-2421.	38.1	457
291	Increasing the optical response of TiO ₂ and extending it into the visible region through surface activation with highly stable Cu ₅ clusters. Journal of Materials Chemistry A, 2019, 7, 7489-7500.	10.3	35
292	Atomistic Origin of the Complex Morphological Evolution of Aluminum Nanoparticles during Oxidation: A Chain-like Oxide Nucleation and Growth Mechanism. ACS Nano, 2019, 13, 3005-3014.	14.6	69
293	A simple approach for synthesis of hollow mesoporous nanotubes loaded with metallic and magnetic nanoparticles: Only one step is required. Applied Organometallic Chemistry, 2019, 33, e4849.	3.5	4
294	MOF-Derived Subnanometer Cobalt Catalyst for Selective C–H Oxidative Sulfonylation of Tetrahydroquinoxalines with Sodium Sulfinates. ACS Catalysis, 2019, 9, 2718-2724.	11.2	45
295	Superparamagnetic nanoparticle-catalyzed coupling of 2-amino pyridines/pyrimidines with <i>trans</i> -chalcones. RSC Advances, 2019, 9, 5501-5511.	3.6	23
296	Atomic Feâ€Doped MOFâ€Derived Carbon Polyhedrons with High Activeâ€Center Density and Ultraâ€High Performance toward PEM Fuel Cells. Advanced Energy Materials, 2019, 9, 1802856.	19.5	196
297	Synthesis of Gold Nanoparticles Using Mimosa tenuiflora Extract, Assessments of Cytotoxicity, Cellular Uptake, and Catalysis. Nanoscale Research Letters, 2019, 14, 334.	5.7	96
298	New and Renewable Catalyst Based on Electro-Activated Carbon for Hydrogen Generation. , 2019, , .		1
299	Unravelling the Different Reaction Pathways for Low Temperature CO Oxidation on Pt/CeO ₂ and Pt/Al ₂ O ₃ by Spatially Resolved Structure–Activity Correlations. Journal of Physical Chemistry Letters, 2019, 10, 7698-7705.	4.6	58
300	Low-Temperature Catalytic NO Reduction with CO by Subnanometric Pt Clusters. ACS Catalysis, 2019, 9, 11530-11541.	11.2	70
301	Synthesis and support interaction effects on the palladium nanoparticle catalyst characteristics. Advances in Catalysis, 2019, , 1-120.	0.2	12
302	Understanding electro-catalysis by using density functional theory. Physical Chemistry Chemical Physics, 2019, 21, 23782-23802.	2.8	53
303	Bulk gold catalyzes hydride transfer in the Cannizzaro and related reactions. New Journal of Chemistry, 2019, 43, 19137-19148.	2.8	2
304	Pt nanoparticles embedded in flowerlike NH ₂ -UiO-68 for enhanced photocatalytic carbon dioxide reduction. Journal of Materials Chemistry A, 2019, 7, 26490-26495.	10.3	76
305	The dual-defective SnS ₂ monolayers: promising 2D photocatalysts for overall water splitting. Physical Chemistry Chemical Physics, 2019, 21, 26292-26300.	2.8	18
306	Reactive nanotemplates for synthesis of highly efficient electrocatalysts: beyond simple morphology transfer. Nanoscale, 2019, 11, 20392-20410.	5.6	11
307	Ru nanoclusters confined in porous organic cages for catalytic hydrolysis of ammonia borane and tandem hydrogenation reaction. Nanoscale, 2019, 11, 21513-21521.	5.6	53

ARTICLE IF CITATIONS # Single-atom catalysts templated by metal–organic frameworks for electrochemical nitrogen 308 10.3 152 reduction. Journal of Materials Chemistry A, 2019, 7, 26371-26377. Fast, scalable and accurate finite-element based <i>ab initio</i> 309 28 computing., 2019,,. Silver-Copper Oxide Heteronanostructures for the Plasmonic-Enhanced Photocatalytic Oxidation of 310 2.9 11 N-Hexane in the Visible-NIR Range. Materials, 2019, 12, 3858. Precise Tailoring of Ir-FeO<sub><i>x</i> Interfaces for Improved Catalytic Performance in Preferential Oxidation of Carbon Monoxide in Hydrogen. Journal of Physical Chemistry C, 2019, 123, 3.1 29262-29270. Multicomponent Plasmonic Nanoparticles: From Heterostructured Nanoparticles to Colloidal 312 47.7 289 Composite Nanostructures. Chemical Reviews, 2019, 119, 12208-12278. Understanding supported noble metal catalysts using first-principles calculations. Journal of Chemical Physics, 2019, 151, 180902. Large Scale Synthesis of Transition Metal Single Atom Catalysts by a Universal Ligand Mediated 314 2.6 3 Method. Chemical Research in Chinese Universities, 2019, 35, 951-952. Four-Component Fusion Protocol with NiO/ZrO₂ as a Robust Recyclable Catalyst for 3.5 19 Novel 1,4-Dihydropyridines. ACS Omega, 2019, 4, 21187-21196. Engineering ultrasmall metal nanoclusters for photocatalytic and electrocatalytic applications. 316 5.6 55 Nanoscale, 2019, 11, 20437-20448. Theoretical investigation of various aspects of two dimensional holey boroxine, 3.6 B₃O₃. RSC Advances, 2019, 9, 37526-37536. Density-Functional Tight-Binding for Platinum Clusters and Bulk: Electronic vs Repulsive Parameters. 318 3 0.9 MRS Advances, 2019, 4, 1821-1832. Effect of Single-Atom Cocatalysts on the Activity of Faceted TiO₂ Photocatalysts. 319 54 Langmuir, 2019, 35, 391-397. Partial deligandation of M/Ce-BTC nanorods (M = Au, Cu, au-cu) with $\hat{a} \in \mathbb{C}$ Quasi-MOF $\hat{a} \in \mathbb{C}$ -structures towards 320 4.3 46 improving catalytic activity and stability. Applied Catalysis A: General, 2019, 572, 34-43. Optical Spectroscopy of the Au₄⁺ Cluster: The Resolved Vibronic Structure Indicates an Unexpected Isomer. Angewandte Chemie, 2019, 131, 3394-3398. G-C3N4-based films: A rising star for photoelectrochemical water splitting. Sustainable Materials and 322 3.3 44 Technologies, 2019, 19, e00089. Design strategies for shape-controlled magnetic iron oxide nanoparticles. Advanced Drug Delivery Reviews, 2019, 138, 68-104. Combined Automated Reaction Pathway Searches and Sparse Modeling Analysis for Catalytic Properties of Lowest Energy Twins of Cu₁₃. Journal of Physical Chemistry A, 2019, 123, 324 2.518 210-217. Optical Spectroscopy of the Au₄⁺ Cluster: The Resolved Vibronic Structure 13.8 Indicates an Unexpected Isomer. Angewandte Chemie - International Edition, 2019, 58, 3356-3360.

#	Article	IF	Citations
326	Constructing Mononuclear Palladium Catalysts by Precoordination/Solvothermal Polymerization: Recyclable Catalyst for Regioselective Oxidative Heck Reactions. Angewandte Chemie - International Edition, 2019, 58, 2448-2453.	13.8	64
327	Constructing Mononuclear Palladium Catalysts by Precoordination/Solvothermal Polymerization: Recyclable Catalyst for Regioselective Oxidative Heck Reactions. Angewandte Chemie, 2019, 131, 2470-2475.	2.0	7
328	Structural properties of sub-nanometer metallic clusters. Journal of Physics Condensed Matter, 2019, 31, 113001.	1.8	35
329	Defectâ€Based Singleâ€Atom Electrocatalysts. Small Methods, 2019, 3, 1800406.	8.6	139
330	Catalysis with Two-Dimensional Materials Confining Single Atoms: Concept, Design, and Applications. Chemical Reviews, 2019, 119, 1806-1854.	47.7	745
331	Metal Nanoclusters: New Paradigm in Catalysis for Water Splitting, Solar and Chemical Energy Conversion. ChemSusChem, 2019, 12, 1517-1548.	6.8	81
332	Recent advances in emerging single atom confined two-dimensional materials for water splitting applications. Materials Today Energy, 2019, 11, 1-23.	4.7	189
333	The Nature and Catalytic Function of Cation Sites in Zeolites: a Computational Perspective. ChemCatChem, 2019, 11, 134-156.	3.7	96
334	Aerobic Toluene Oxidation Catalyzed by Subnano Metal Particles. Angewandte Chemie, 2019, 131, 1014-1018.	2.0	11
335	Metal alloy hybrid nanoparticles with enhanced catalytic activities in fuel cell applications. Journal of Solid State Chemistry, 2019, 270, 295-303.	2.9	26
336	Recent advances in transition metal–based catalysts with heterointerfaces for energy conversion and storage. Materials Today Chemistry, 2019, 11, 16-28.	3.5	72
337	Aerobic Toluene Oxidation Catalyzed by Subnano Metal Particles. Angewandte Chemie - International Edition, 2019, 58, 1002-1006.	13.8	59
338	Non defect-stabilized thermally stable single-atom catalyst. Nature Communications, 2019, 10, 234.	12.8	452
339	A Systematic Study on Bond Activation Energies of NO, N ₂ , and O ₂ on Hexamers of Eight Transition Metals. ChemCatChem, 2019, 11, 1346-1353.	3.7	2
340	Two-dimensional-related catalytic materials for solar-driven conversion of CO _x into valuable chemical feedstocks. Chemical Society Reviews, 2019, 48, 1972-2010.	38.1	350
341	Enhanced catalysis of gold nanoparticles in microgels upon on site altering the gold–polymer interface interaction. Journal of Catalysis, 2019, 369, 462-468.	6.2	33
342	Co ₃ O ₄ –CuCoO ₂ Nanomesh: An Interface-Enhanced Substrate that Simultaneously Promotes CO Adsorption and O ₂ Activation in H ₂ Purification. ACS Applied Materials & Interfaces, 2019, 11, 6042-6053.	8.0	55
343	Structural isomer and high-yield of Pt1Ag28 nanocluster via one-pot chemical wet method. Nano Research, 2019, 12, 309-314.	10.4	36

#	Article	IF	CITATIONS
344	Computational Approach to Molecular Catalysis by 3d Transition Metals: Challenges and Opportunities. Chemical Reviews, 2019, 119, 2453-2523.	47.7	260
345	In-situ reactive loading of platinum onto tin oxide nanocrystals with superior catalytic performance for hydrogenation of 4-nitrophenol. Applied Surface Science, 2019, 471, 469-474.	6.1	12
346	Ultrasmall Ni/NiO Nanoclusters on Thiol-Functionalized and -Exfoliated Graphene Oxide Nanosheets for Durable Oxygen Evolution Reaction. ACS Applied Energy Materials, 2019, 2, 363-371.	5.1	74
347	Computational Screening of Efficient Singleâ€Atom Catalysts Based on Graphitic Carbon Nitride (g ₃ N ₄) for Nitrogen Electroreduction. Small Methods, 2019, 3, 1800368.	8.6	347
348	Modulating the catalytic behavior of non-noble metal nanoparticles by inter-particle interaction for chemoselective hydrogenation of nitroarenes into corresponding azoxy or azo compounds. Journal of Catalysis, 2019, 369, 312-323.	6.2	43
349	Single-Atom Catalysis toward Efficient CO ₂ Conversion to CO and Formate Products. Accounts of Chemical Research, 2019, 52, 656-664.	15.6	348
350	Sub nanometer clusters in catalysis. Journal of Physics Condensed Matter, 2019, 31, 013002.	1.8	23
351	Toward Understanding of the Support Effect on Pd ₁ Single-Atom-Catalyzed Hydrogenation Reactions. Journal of Physical Chemistry C, 2019, 123, 7922-7930.	3.1	63
352	Ultrasmall Metal Nanoparticles Confined within Crystalline Nanoporous Materials: A Fascinating Class of Nanocatalysts. Advanced Materials, 2019, 31, e1803966.	21.0	260
353	Probe active sites of heterogeneous electrocatalysts by X-ray absorption spectroscopy: From single atom to complex multi-element composites. Current Opinion in Electrochemistry, 2019, 14, 7-15.	4.8	22
354	State of the Art and Prospects in Metal–Organic Framework (MOF)-Based and MOF-Derived Nanocatalysis. Chemical Reviews, 2020, 120, 1438-1511.	47.7	1,505
355	Uniform small metal nanoparticles anchored on CeO2 nanorods driven by electroless chemical deposition. Rare Metals, 2020, 39, 806-814.	7.1	9
356	When Nanozymes Meet Singleâ€Atom Catalysis. Angewandte Chemie - International Edition, 2020, 59, 2565-2576.	13.8	422
357	When Nanozymes Meet Singleâ€Atom Catalysis. Angewandte Chemie, 2020, 132, 2585-2596.	2.0	117
358	Recent progress of mesoscience in design of electrocatalytic materials for hydrogen energy conversion. Particuology, 2020, 48, 19-33.	3.6	12
359	Atomically Precise Noble Metal Nanoclusters as Efficient Catalysts: A Bridge between Structure and Properties. Chemical Reviews, 2020, 120, 526-622.	47.7	849
360	Selective Hydrogenation over Supported Metal Catalysts: From Nanoparticles to Single Atoms. Chemical Reviews, 2020, 120, 683-733.	47.7	871
361	Surface and Interface Control in Nanoparticle Catalysis. Chemical Reviews, 2020, 120, 1184-1249.	47.7	492

#	Article	IF	CITATIONS
362	Polymer hydrogel confined palladium nanoparticles as recyclable catalysts for Suzuki and Heck cross-coupling reactions. Chinese Chemical Letters, 2020, 31, 1630-1634.	9.0	10
363	A new trick for an old support: Stabilizing gold single atoms on LaFeO3 perovskite. Applied Catalysis B: Environmental, 2020, 261, 118178.	20.2	31
364	Quaternized polyhedral oligomeric silsesquioxanes stabilized Pd nanoparticles as efficient nanocatalysts for reduction reaction. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 585, 124110.	4.7	9
365	The Comparison between Single Atom Catalysis and Surface Organometallic Catalysis. Chemical Reviews, 2020, 120, 734-813.	47.7	201
366	Nanomaterials Developed for Removing Air Pollutants. , 2020, , 203-247.		1
367	Small and Narrowly Distributed Copper Nanoparticles Supported on Carbon Prepared by Surface Organometallic Chemistry for Selective Hydrogenation and CO 2 Electroconversion Processes. ChemCatChem, 2020, 12, 305-313.	3.7	9
368	Unpaired 3d Electrons on Atomically Dispersed Cobalt Centres in Coordination Polymers Regulate both Oxygen Reduction Reaction (ORR) Activity and Selectivity for Use in Zinc–Air Batteries. Angewandte Chemie - International Edition, 2020, 59, 286-294.	13.8	200
369	Palladium Nanocatalysts Encapsulated on Porous Silica @ Magnetic Carbonâ€Coated Cobalt Nanoparticles for Sustainable Hydrogenation of Nitroarenes, Alkenes and Alkynes ChemCatChem, 2020, 12, 569-575.	3.7	20
370	Functional nanostructured materials: Aerosol, aerogel, and de novo synthesis to emerging energy and environmental applications. Advanced Powder Technology, 2020, 31, 104-120.	4.1	28
371	Quantitatively loaded ultra-small Ag nanoparticles on molecularly imprinted mesoporous silica for highly efficient catalytic reduction process. Journal of Materials Science, 2020, 55, 1475-1488.	3.7	9
372	From Bulk to Atoms: The Influence of Particle and Cluster Size on the Hydrogen Evolution Reaction. Zeitschrift Fur Physikalische Chemie, 2020, 234, 847-865.	2.8	12
373	Synthesis and characterisation of (Fe, Co, Ni)-polyoxometalates to degrade O, O-diethyl-S-(p-tolyl) phosphorothioate under visible light irradiation. International Journal of Environmental Analytical Chemistry, 2020, 100, 1376-1389.	3.3	4
374	A green road map for heterogeneous photocatalysis. Pure and Applied Chemistry, 2020, 92, 63-73.	1.9	4
375	Charge Transfer Modulated Activity of Carbonâ€Based Electrocatalysts. Advanced Energy Materials, 2020, 10, 1901227.	19.5	156
376	Geometric structures, electronic characteristics, stabilities, catalytic activities, and descriptors of graphene-based single-atom catalysts. Nano Materials Science, 2020, 2, 120-131.	8.8	55
377	Particle-modified electrodes: General mass transport theory, experimental validation, and the role of electrostatics. Applied Materials Today, 2020, 18, 100480.	4.3	9
378	Inorganic nanoparticles with enzyme-mimetic activities for biomedical applications. Coordination Chemistry Reviews, 2020, 403, 213092.	18.8	110
379	Precatalyst or dosing-device? The [Pd2{μ-(C6H4) PPh2}2{μ-O2C(C6H5)}2] complex anchored on a carboxypolystyrene polymer as an effective supplier of palladium catalytically active nanoparticles for the Suzuki-Miyaura reaction. Journal of Catalysis, 2020, 381, 26-37.	6.2	8

#	Article	IF	CITATIONS
380	Unpaired 3d Electrons on Atomically Dispersed Cobalt Centres in Coordination Polymers Regulate both Oxygen Reduction Reaction (ORR) Activity and Selectivity for Use in Zinc–Air Batteries. Angewandte Chemie, 2020, 132, 292-300.	2.0	21
381	Bimetallic Agâ€Au Nanoparticles Inside Mesoporous Titania Thin Films: Synthesis by Photoreduction and Galvanic Replacement, and Catalytic Activity. European Journal of Inorganic Chemistry, 2020, 2020, 568-574.	2.0	7
382	Polynuclear organometallic clusters: synthesis, structure, and reactivity studies. Chemical Communications, 2020, 56, 1915-1925.	4.1	23
383	A redox interaction-engaged strategy for multicomponent nanomaterials. Chemical Society Reviews, 2020, 49, 736-764.	38.1	32
384	Formation of an Alkynylâ€Protected Ag ₁₁₂ Silver Nanocluster as Promoted by Chloride Released In Situ from CH ₂ Cl ₂ . Angewandte Chemie - International Edition, 2020, 59, 5312-5315.	13.8	82
385	Composites of palladium nanoparticles and graphene oxide as a highly active and reusable catalyst for the hydrogenation of nitroarenes. Microporous and Mesoporous Materials, 2020, 296, 110014.	4.4	34
386	Carbon-Based Single-Atom Catalysts for Advanced Applications. ACS Catalysis, 2020, 10, 2231-2259.	11.2	426
387	Integrated-Trifunctional Single Catalyst with Fine Spatial Distribution via Stepwise Anchored Strategy for Multistep Autotandem Catalysis. ACS Sustainable Chemistry and Engineering, 2020, 8, 966-976.	6.7	16
388	Designing Atomic Active Centers for Hydrogen Evolution Electrocatalysts. Angewandte Chemie - International Edition, 2020, 59, 20794-20812.	13.8	257
389	The application of metal-organic frameworks in electrocatalytic nitrogen reduction. Chinese Chemical Letters, 2020, 31, 1768-1772.	9.0	38
390	A Ketimide-Stabilized Palladium Nanocluster with a Hexagonal Aromatic Pd ₇ Core. Inorganic Chemistry, 2020, 59, 1471-1480.	4.0	24
391	Ligand-protected atomically precise gold nanoclusters as model catalysts for oxidation reactions. Chemical Communications, 2020, 56, 1163-1174.	4.1	52
392	Geometric effect of Au nanoclusters on room temperature CO oxidation. Chemical Communications, 2020, 56, 876-879.	4.1	8
393	Toward greener methods of producing branched metal nanostructures. CrystEngComm, 2020, 22, 399-411.	2.6	14
394	MOF-derived nanostructured catalysts for low-temperature ammonia synthesis. Catalysis Science and Technology, 2020, 10, 105-112.	4.1	13
395	^{ĵ3} -Alumina-supported Pt ₁₇ cluster: controlled loading, geometrical structure, and size-specific catalytic activity for carbon monoxide and propylene oxidation. Nanoscale Advances, 2020, 2, 669-678.	4.6	16
396	Photo/electrocatalysis and photosensitization using metal nanoclusters for green energy and medical applications. Nanoscale Advances, 2020, 2, 17-36.	4.6	79
397	Atomically dispersed Fe atoms anchored on COF-derived N-doped carbon nanospheres as efficient multi-functional catalysts. Chemical Science, 2020, 11, 786-790.	7.4	110

#	Article	IF	CITATIONS
398	Single-atom catalysts for electrochemical clean energy conversion: recent progress and perspectives. Sustainable Energy and Fuels, 2020, 4, 996-1011.	4.9	36
399	Review—Recent Advances in Nanostructured Graphitic Carbon Nitride as a Sensing Material for Heavy Metal Ions. Journal of the Electrochemical Society, 2020, 167, 037519.	2.9	57
400	CO oxidation over Pt/Cr1.3Fe0.7O3 catalysts: Enhanced activity on single Pt atom by H2O promotion. Journal of Catalysis, 2020, 382, 192-203.	6.2	41
401	Unravelling the formation mechanism of alkynyl protected gold clusters: a case study of phenylacetylene stabilized Au ₁₄₄ molecules. Nanoscale, 2020, 12, 2980-2986.	5.6	14
402	Role of Intermediate Dynamics in Controlling Hydrogenation Selectivity by Heterogeneous Catalysis. ACS Omega, 2020, 5, 1270-1276.	3.5	2
403	Mild Homogeneous Synthesis of Gold Nanoparticles through the Epoxide Route: Kinetics, Mechanisms, and Related Oneâ€Pot Composites. Chemistry - A European Journal, 2020, 26, 3157-3165.	3.3	8
404	Influence of Acidity of Mesoporous ZSM-5-Supported Pt on Naphthalene Hydrogenation. Industrial & Engineering Chemistry Research, 2020, 59, 1056-1064.	3.7	37
405	Effect of Hydrotalcites Interlayer Water on Pt-Catalyzed Aqueous-Phase Selective Hydrogenation of Cinnamaldehyde. ACS Applied Materials & Interfaces, 2020, 12, 2516-2524.	8.0	28
406	A conjugated microporous polymer as a recyclable heterogeneous ligand for highly efficient regioselective hydrosilylation of allenes. Chemical Communications, 2020, 56, 1597-1600.	4.1	20
407	Aerosol synthesis of thermally stable porous noble metals and alloys by using bi-functional templates. Materials Horizons, 2020, 7, 541-550.	12.2	13
408	Organic–inorganic hybrids for CO2 sensing, separation and conversion. Nanoscale Horizons, 2020, 5, 431-453.	8.0	25
409	Highly Active Palladium Nanocatalysts for Low-Temperature Carbon Monoxide Oxidation. Polytechnica, 2020, 3, 1-25.	2.1	12
410	On the mechanism of H2 activation over single-atom catalyst: An understanding of Pt1/WO in the hydrogenolysis reaction. Chinese Journal of Catalysis, 2020, 41, 524-532.	14.0	50
411	Unscrambling illusionary catalysis in three-dimensional particle-modified electrodes: Reversible reactions at conducting particles. Applied Materials Today, 2020, 18, 100514.	4.3	10
412	Nitrogen precursor-mediated construction of N-doped hierarchically porous carbon-supported Pd catalysts with controllable morphology and composition. Carbon, 2020, 159, 451-460.	10.3	50
413	Well-Defined Materials for Heterogeneous Catalysis: From Nanoparticles to Isolated Single-Atom Sites. Chemical Reviews, 2020, 120, 623-682.	47.7	794
414	Mesoporous Core–Shell Nanostructures Bridging Metal and Biocatalyst for Highly Efficient Cascade Reactions. ACS Catalysis, 2020, 10, 1375-1380.	11.2	51
415	Modus Operandi of Simultaneous Covering Synthesis from Precursor Heterogeneity for Shelled Nanorods for Multipotent Cancer Theranostics. Advanced Functional Materials, 2020, 30, 1907203.	14.9	7

#	Article	IF	CITATIONS
416	Confining Subâ€Nanometer Pt Clusters in Hollow Mesoporous Carbon Spheres for Boosting Hydrogen Evolution Activity. Advanced Materials, 2020, 32, e1901349.	21.0	255
417	Origin of the High CO Oxidation Activity on CeO ₂ Supported Pt Nanoparticles: Weaker Binding of CO or Facile Oxygen Transfer from the Support?. ChemCatChem, 2020, 12, 1726-1733.	3.7	44
418	Characterization of Metalâ€∉eolite Composite Catalysts: Determining the Environment of the Active Phase. ChemCatChem, 2020, 12, 1826-1852.	3.7	29
419	Synthesis of Copper Sulfide Nanoparticles by Thermal Decomposition Approach and Morphology Dependent Peroxidase-Like Activity. Journal of Nanoscience and Nanotechnology, 2020, 20, 2763-2780.	0.9	5
420	Subâ€3 nm Intermetallic Ordered Pt ₃ In Clusters for Oxygen Reduction Reaction. Advanced Science, 2020, 7, 1901279.	11.2	57
421	Metal nanoparticle-embedded bacterial cellulose aerogels via swelling-induced adsorption for nitrophenol reduction. International Journal of Biological Macromolecules, 2020, 143, 922-927.	7.5	26
422	Scalable preparation of stable and reusable silica supported palladium nanoparticles as catalysts for N-alkylation of amines with alcohols. Journal of Catalysis, 2020, 382, 141-149.	6.2	30
423	Site dependent reactivity of Pt single atoms on anatase TiO ₂ (101) in an aqueous environment. Physical Chemistry Chemical Physics, 2020, 22, 10455-10461.	2.8	7
424	Construction of a thermo-responsive copolymer-stabilized Fe ₃ O ₄ @CD@PdNP hybrid and its application in catalytic reduction. Polymer Chemistry, 2020, 11, 1177-1187.	3.9	8
425	Copper-catalyzed [4 + 2] annulation reaction of β-enaminones and aryl diazonium salts without external oxidant: synthesis of highly functionalized 3 <i>H</i> 1,2,4-triazines <i>via</i> homogeneous or heterogeneous strategy. Organic Chemistry Frontiers, 2020, 7, 457-463.	4.5	17
426	Nickel-Catalyzed Direct Synthesis of Quinoxalines from 2-Nitroanilines and Vicinal Diols: Identifying Nature of the Active Catalyst. Journal of Organic Chemistry, 2020, 85, 2775-2784.	3.2	59
427	A sacrificial Zn strategy enables anchoring of metal single atoms on the exposed surface of holey 2D molybdenum carbide nanosheets for efficient electrocatalysis. Journal of Materials Chemistry A, 2020, 8, 3071-3082.	10.3	48
428	Oneâ€Pot Cooperation of Singleâ€Atom Rh and Ru Solid Catalysts for a Selective Tandem Olefin Isomerizationâ€Hydrosilylation Process. Angewandte Chemie - International Edition, 2020, 59, 5806-5815.	13.8	76
429	Atomic-level insights into strain effect on p-nitrophenol reduction via Au@Pd core–shell nanocubes as an ideal platform. Journal of Catalysis, 2020, 381, 427-433.	6.2	30
430	Machine Learning for Catalysis Informatics: Recent Applications and Prospects. ACS Catalysis, 2020, 10, 2260-2297.	11.2	309
431	Uniformity Is Key in Defining Structure–Function Relationships for Atomically Dispersed Metal Catalysts: The Case of Pt/CeO ₂ . Journal of the American Chemical Society, 2020, 142, 169-184.	13.7	170
432	Vacancy concentration of films and nanoparticles. Computational Materials Science, 2020, 173, 109416.	3.0	8
433	Microplasmas for Advanced Materials and Devices. Advanced Materials, 2020, 32, e1905508.	21.0	130

#	Article	IF	Citations
434	Adsorption and catalytic activation of N2 molecule on iron dimer supported by different two-dimensional carbon-based substrates: A computational study. Applied Surface Science, 2020, 506, 144943.	6.1	21
435	Facile Synthesis of Pdâ^'Cu Bimetallic Twin Nanocubes and a Mechanistic Understanding of the Shape Evolution. ChemNanoMat, 2020, 6, 386-391.	2.8	3
436	Importance of Size and Contact Structure of Gold Nanoparticles for the Genesis of Unique Catalytic Processes. Chemical Reviews, 2020, 120, 464-525.	47.7	386
437	Predicting the adsorption capacity of iron nanoparticles with metallic impurities (Cu, Ni and Pd) for arsenic removal: a DFT study. Adsorption, 2020, 26, 127-139.	3.0	6
438	Growth and structure of Cu, Ag and Au clusters on α-Fe2O3(0001): A comparative density functional study. Computational Materials Science, 2020, 173, 109392.	3.0	4
439	Highly Active ZnO-ZrO ₂ Aerogels Integrated with H-ZSM-5 for Aromatics Synthesis from Carbon Dioxide. ACS Catalysis, 2020, 10, 302-310.	11.2	216
440	Electronic/steric effects in hydrogenation of nitroarenes over the heterogeneous Pd@BEA and Pd@MWW catalysts. Catalysis Today, 2020, 345, 39-47.	4.4	11
441	Metalâ€Decorated Pickering Emulsion for Continuous Flow Catalysis. Particle and Particle Systems Characterization, 2020, 37, 1900382.	2.3	8
442	Relationship between Atomic Scale Structure and Reactivity of Pt Catalysts: Hydrodeoxygenation of <i>m</i> -Cresol over Isolated Pt Cations and Clusters. ACS Catalysis, 2020, 10, 595-603.	11.2	68
443	Evaluation of the silver species nature in Ag-ITQ2 zeolites by the CO oxidation reaction. Catalysis Today, 2020, 345, 22-26.	4.4	10
444	Oneâ€Pot Fabrication of Pd Nanoparticles@Covalentâ€Organicâ€Frameworkâ€Derived Hollow Polyamine Spheres as a Synergistic Catalyst for Tandem Catalysis. Chemistry - A European Journal, 2020, 26, 1864-1870.	3.3	18
445	Editors' Choice—Review—Nanostructured Electrodes as Random Arrays of Active Sites: Modeling and Theoretical Characterization. Journal of the Electrochemical Society, 2020, 167, 013530.	2.9	6
446	Supported Palladium Nanocatalysts: Recent Findings in Hydrogenation Reactions. Processes, 2020, 8, 1172.	2.8	6
447	Effects of composition on catalytic activities of molybdenum doped platinum nanoparticles. Turkish Journal of Chemistry, 2020, 44, 1016-1030.	1.2	0
448	Dualâ€Metal Interbonding as the Chemical Facilitator for Singleâ€Atom Dispersions. Advanced Materials, 2020, 32, e2003484.	21.0	90
449	A Singleâ€Source Precursor Route toward Smallâ€Sized Nickel Particles Embedded into SiO 2 Sheet as Magnetic Separable Catalyst. ChemistrySelect, 2020, 5, 11708-11712.	1.5	1
450	Green fabrication of reduced graphene oxide decorated with Ag nanoparticles (rGO/Ag NPs) nanocomposite: A reusable catalyst for the degradation of environmental pollutants in aqueous medium. Journal of Molecular Liquids, 2020, 319, 114302.	4.9	78
451	A density functional theoretical study on the stability of Pt clusters in MOF-808. Physical Chemistry Chemical Physics, 2020, 22, 23645-23656.	2.8	6

#	Article	IF	CITATIONS
452	New gold standard: weakly capped infant Au nanoclusters with record high catalytic activity for 4-nitrophenol reduction and hydrogen generation from an ammonia borane–sodium borohydride mixture. Nanoscale Advances, 2020, 2, 5384-5395.	4.6	3
453	Bi-active sites of stable and highly dispersed platinum and oxygen vacancy constructed by reducing a loaded perovskite-type oxide for CO oxidation. Applied Surface Science, 2020, 532, 147455.	6.1	14
454	Tuning the coordination number of Fe single atoms for the efficient reduction of CO ₂ . Green Chemistry, 2020, 22, 7529-7536.	9.0	49
455	Experimental evidence for a general model of modulated MOF nanoparticle growth. Chemical Science, 2020, 11, 11539-11547.	7.4	31
456	Engineering Ultrasmall Metal Nanoclusters as Promising Theranostic Agents. Trends in Chemistry, 2020, 2, 665-679.	8.5	92
457	Effect of reduction temperature on the structure and catalytic performance of mesoporous Ni–Fe–Al ₂ O ₃ in oxidative dehydrogenation of ethane. New Journal of Chemistry, 2020, 44, 18994-19001.	2.8	6
458	Carbon supported noble metal nanoparticles as efficient catalysts for electrochemical water splitting. Nanoscale, 2020, 12, 20165-20170.	5.6	34
459	Catalytic effect of platinum and silver in a hydrogen peroxide monopropellant ceramic microthruster. Propulsion and Power Research, 2020, 9, 216-224.	4.3	10
460	Single-Atom Catalysts across the Periodic Table. Chemical Reviews, 2020, 120, 11703-11809.	47.7	690
461	Dynamics of Pd Dopant Atoms inside Au Nanoclusters during Catalytic CO Oxidation. Journal of Physical Chemistry C, 2020, 124, 23626-23636.	3.1	28
462	Hydrophobically made Ag nanoclusters with enhanced performance for CO2 aqueous electroreduction. Journal of Power Sources, 2020, 476, 228705.	7.8	17
463	Preparation of Ag nanoparticles by spark ablation in gas as catalysts for electrocatalytic hydrogen production. RSC Advances, 2020, 10, 38583-38587.	3.6	17
464	Pentacoordinated Aluminum Species: New Frontier for Tailoring Acidity-Enhanced Silica–Alumina Catalysts. Accounts of Chemical Research, 2020, 53, 2648-2658.	15.6	32
465	Atomic Layer Deposition-Derived Nanomaterials: Oxides, Transition Metal Dichalcogenides, and Metal–Organic Frameworks. Chemistry of Materials, 2020, 32, 9056-9077.	6.7	25
466	Transforming Hydroxide-Containing Metal–Organic Framework Nodes for Transition Metal Catalysis. Trends in Chemistry, 2020, 2, 965-979.	8.5	14
467	Rational one-step synthesis of cobalt clusters embedded-graphitic carbon nitrides for the efficient photocatalytic CO2 reduction under ambient conditions. Journal of Catalysis, 2020, 392, 88-96.	6.2	25
468	Regulating the coordination structure of metal single atoms for efficient electrocatalytic CO ₂ reduction. Energy and Environmental Science, 2020, 13, 4609-4624.	30.8	188
469	Orbital-regulated interfacial electronic coupling endows Ni3N with superior catalytic surface for hydrogen evolution reaction. Science China Chemistry, 2020, 63, 1563-1569.	8.2	22

#	Article	IF	CITATIONS
470	High-performance light-driven heterogeneous CO2 catalysis with near-unity selectivity on metal phosphides. Nature Communications, 2020, 11, 5149.	12.8	82
471	Revealing high temperature stability of platinum nanocatalysts deposited on graphene oxide by in-situ TEM. Materials Characterization, 2020, 170, 110706.	4.4	5
472	Recent progress in noble metal nanocluster and single atom electrocatalysts for the hydrogen evolution reaction. Journal of Materials Chemistry A, 2020, 8, 22467-22487.	10.3	92
473	Unveiling Single Atom Nucleation for Isolating Ultrafine fcc Ru Nanoclusters with Outstanding Dehydrogenation Activity. Advanced Energy Materials, 2020, 10, 2002138.	19.5	29
474	Identifying the Types and Characterization of the Active Sites on Mâ^'Xâ^'C Singleâ€Atom Catalysts. ChemPhysChem, 2020, 21, 2486-2496.	2.1	12
475	Catalytic CO Oxidation by O 2 Mediated with Single Gold Atom Doped Titanium Oxide Cluster Anions AuTi 2 O 4–6 â~'. ChemPhysChem, 2020, 21, 2550-2556.	2.1	6
476	Engineering ultrafine Pd clusters on laminar polyamide: A promising catalyst for benzyl alcohol oxidation under air in water. Molecular Catalysis, 2020, 497, 111203.	2.0	2
477	Solvation Free Energies and Adsorption Energies at the Metal/Water Interface from Hybrid Quantum-Mechanical/Molecular Mechanics Simulations. Journal of Chemical Theory and Computation, 2020, 16, 6539-6549.	5.3	34
478	Recent developments in plasmon-assisted photocatalysis—A personal Perspective. Applied Physics Letters, 2020, 117, .	3.3	32
479	A library of carbon-supported ultrasmall bimetallic nanoparticles. Nano Research, 2020, 13, 2735-2740.	10.4	18
479 480	A library of carbon-supported ultrasmall bimetallic nanoparticles. Nano Research, 2020, 13, 2735-2740. Alkali ions secure hydrides for catalytic hydrogenation. Nature Catalysis, 2020, 3, 703-709.	10.4 34.4	18 123
480	Alkali ions secure hydrides for catalytic hydrogenation. Nature Catalysis, 2020, 3, 703-709. Synthesis of carbon-supported sub-2 nanometer bimetallic catalysts by strong metal–sulfur	34.4	123
480 481	Alkali ions secure hydrides for catalytic hydrogenation. Nature Catalysis, 2020, 3, 703-709. Synthesis of carbon-supported sub-2 nanometer bimetallic catalysts by strong metal–sulfur interaction. Chemical Science, 2020, 11, 7933-7939. Identification of Active Sites on High-Performance Pt/Al ₂ O ₃ Catalyst for	34.4 7.4	123 17
480 481 482	Alkali ions secure hydrides for catalytic hydrogenation. Nature Catalysis, 2020, 3, 703-709. Synthesis of carbon-supported sub-2 nanometer bimetallic catalysts by strong metal–sulfur interaction. Chemical Science, 2020, 11, 7933-7939. Identification of Active Sites on High-Performance Pt/Al ₂ O ₃ Catalyst for Cryogenic CO Oxidation. ACS Catalysis, 2020, 10, 8815-8824. Core-shell iron oxide@cathecol-polymer@palladium/copper nanocomposites as efficient and	34.4 7.4 11.2	123 17 54
480 481 482 483	Alkali ions secure hydrides for catalytic hydrogenation. Nature Catalysis, 2020, 3, 703-709. Synthesis of carbon-supported sub-2 nanometer bimetallic catalysts by strong metal–sulfur interaction. Chemical Science, 2020, 11, 7933-7939. Identification of Active Sites on High-Performance Pt/Al ₂ O ₃ Catalyst for Cryogenic CO Oxidation. ACS Catalysis, 2020, 10, 8815-8824. Core-shell iron oxide@cathecol-polymer@palladium/copper nanocomposites as efficient and sustainable catalysts in cross-coupling reactions. Molecular Catalysis, 2020, 493, 111042. Recyclable copper catalyst on chitosan for facile preparation of alkyl/aryl mixed phosphates via deaminated esterification between diphenylphosphoryl azides and aliphatic alcohols. Molecular	34.4 7.4 11.2 2.0	123 17 54 6
480 481 482 483 484	Alkali ions secure hydrides for catalytic hydrogenation. Nature Catalysis, 2020, 3, 703-709. Synthesis of carbon-supported sub-2 nanometer bimetallic catalysts by strong metal–sulfur interaction. Chemical Science, 2020, 11, 7933-7939. Identification of Active Sites on High-Performance Pt/Al ₂ O ₃ Catalyst for Cryogenic CO Oxidation. ACS Catalysis, 2020, 10, 8815-8824. Core-shell iron oxide@cathecol-polymer@palladium/copper nanocomposites as efficient and sustainable catalysts in cross-coupling reactions. Molecular Catalysis, 2020, 493, 111042. Recyclable copper catalyst on chitosan for facile preparation of alkyl/aryl mixed phosphates via dearninated esterification between diphenylphosphoryl azides and aliphatic alcohols. Molecular Catalysis, 2020, 494, 111120. Nanocluster Growth and Coalescence Modulated by Ligands. Journal of Physical Chemistry C, 2020,	34.4 7.4 11.2 2.0 2.0	123 17 54 6 14

#	Article	IF	CITATIONS
488	A General Strategy to Atomically Dispersed Precious Metal Catalysts for Unravelling Their Catalytic Trends for Oxygen Reduction Reaction. ACS Nano, 2020, 14, 1990-2001.	14.6	116
489	Mapping the oxygen structure of γ-Al2O3 by high-field solid-state NMR spectroscopy. Nature Communications, 2020, 11, 3620.	12.8	42
490	Gramâ€Scale Synthesis of Highâ€Loading Singleâ€Atomicâ€Site Fe Catalysts for Effective Epoxidation of Styrene. Advanced Materials, 2020, 32, e2000896.	21.0	181
491	Imaging electrochemically synthesized Cu2O cubes and their morphological evolution under conditions relevant to CO2 electroreduction. Nature Communications, 2020, 11, 3489.	12.8	133
492	Structural Regulation and Support Coupling Effect of Singleâ€Atom Catalysts for Heterogeneous Catalysis. Advanced Energy Materials, 2020, 10, 2001482.	19.5	172
493	Active Learning A Neural Network Model For Gold Clusters & Bulk From Sparse First Principles Training Data. ChemCatChem, 2020, 12, 4796-4806.	3.7	17
494	Controlling the formation of encapsulated gold nanoparticles for highly reactive catalysts in the homocoupling of phenylboronic acid. Catalysis Today, 2020, , .	4.4	6
495	Selective Synthesis of Monodisperse CoO Nanooctahedra as Catalysts for Electrochemical Water Oxidation. Langmuir, 2020, 36, 13804-13816.	3.5	16
496	Visible-Light Acceleration of H ₂ Evolution from Aqueous Solutions of Inorganic Hydrides Catalyzed by Gold-Transition-Metal Nanoalloys. ACS Applied Materials & Interfaces, 2020, 12, 53816-53826.	8.0	26
497	Nanoalloys for Energy Applications. , 2020, , 347-380.		3
498	Direct Synthesis of Atomically Dispersed Palladium Atoms Supported on Graphitic Carbon Nitride for Efficient Selective Hydrogenation Reactions. ACS Applied Materials & Interfaces, 2020, 12, 54146-54154.	8.0	31
499	Multilayer stabilization for fabricating high-loading single-atom catalysts. Nature Communications, 2020, 11, 5892.	12.8	195
500	Ultrafine Palladium Nanoparticles Stabilized in the Porous Liquid of Covalent Organic Cages for Photocatalytic Hydrogen Evolution. ACS Applied Energy Materials, 2020, 3, 12108-12114.	5.1	23
501	Anomalous Transition of Hole Transfer Pathways in Gold Nanocluster-Sensitized TiO ₂ Photoelectrodes. ACS Energy Letters, 2020, 5, 3718-3724.	17.4	11
502	Hybrid polyindole‑gold nanobrush for electrochemical oxidation of ascorbic acid. Journal of Electroanalytical Chemistry, 2020, 877, 114664.	3.8	14
503	Advances in Single-Atom Catalysts for Lignin Conversion. ACS Symposium Series, 2020, , 93-125.	0.5	2
504	Tuning CO ₂ Capture at the Gas/Amine Solution Interface by Changing the Solvent Polarity. Journal of Physical Chemistry B, 2020, 124, 10245-10256.	2.6	11
505	Synthesis and Catalytic Application of Silver Nanoparticles Supported on Lactobacillus kefiri S-Layer Proteins. Nanomaterials, 2020, 10, 2322.	4.1	15

#	Article	IF	CITATIONS
506	A straightforward method to prepare supported Au clusters by mechanochemistry and its application in photocatalysis. Applied Materials Today, 2020, 21, 100873.	4.3	7
508	Synthesis and Crystal-Phase Engineering of Mesoporous Palladium–Boron Alloy Nanoparticles. ACS Central Science, 2020, 6, 2347-2353.	11.3	36
509	Synthesis of Quasiâ€Bilayer Subnano Metalâ€Oxide Interfacial Cluster Catalysts for Advanced Catalysis. Small, 2020, 16, e2005571.	10.0	10
510	Single-Site Heterogeneous Catalysts and Photocatalysts for Emerging Applications. ACS Symposium Series, 2020, , 151-188.	0.5	3
511	In Situ and Real-Time Nanoscale Monitoring of Ultra-Thin Metal Film Growth Using Optical and Electrical Diagnostic Tools. Nanomaterials, 2020, 10, 2225.	4.1	17
512	Deciphering the Nature of Ru Sites in Reductively Exsolved Oxides with Electronic and Geometric Metal–Support Interactions. Journal of Physical Chemistry C, 2020, 124, 25299-25307.	3.1	18
513	lsomerization and Selective Hydrogenation of Propyne: Screening of Metal–Organic Frameworks Modified by Atomic Layer Deposition. Journal of the American Chemical Society, 2020, 142, 20380-20389.	13.7	15
514	Advancements in chemical methodologies for the synthesis of 3-aroylimidazo[1,2-a]pyridines: an update of the decade. Synthetic Communications, 2020, 50, 3507-3534.	2.1	9
515	Zeoliteâ€Encaged Pd–Mn Nanocatalysts for CO ₂ Hydrogenation and Formic Acid Dehydrogenation. Angewandte Chemie, 2020, 132, 20358-20366.	2.0	22
516	Zeoliteâ€Encaged Pd–Mn Nanocatalysts for CO ₂ Hydrogenation and Formic Acid Dehydrogenation. Angewandte Chemie - International Edition, 2020, 59, 20183-20191.	13.8	175
517	Synergistic engineering of MoS2 via dual-metal doping strategy towards hydrogen evolution reaction. Applied Surface Science, 2020, 529, 147117.	6.1	22
518	Highly selective aromatic ring hydrogenation of lignin-derived compounds over macroporous Ru/Nb2O5 with the lost acidity at room temperature. Fuel, 2020, 282, 118869.	6.4	27
519	Intermetallic Pd In /Al2O3 catalysts with isolated single-atom Pd sites for one-pot hydrogenation of diphenylacetylene into trans-stilbene. Mendeleev Communications, 2020, 30, 468-471.	1.6	12
520	Molecule template method for precise synthesis of Mo-based alloy clusters and electrocatalytic nitrogen reduction on partially reduced PtMo alloy oxide cluster. Nano Energy, 2020, 78, 105211.	16.0	38
521	Revealing the Correlation between Catalytic Selectivity and the Local Coordination Environment of Pt Single Atom. Nano Letters, 2020, 20, 6865-6872.	9.1	42
522	Terpolymer Multicompartment Nanofibers as Templates for Hybrid Pt Double Helices. ACS Applied Materials & Interfaces, 2020, 12, 39586-39594.	8.0	6
523	Recent advances in co-reaction accelerators for sensitive electrochemiluminescence analysis. Chemical Communications, 2020, 56, 10989-10999.	4.1	60
524	Transition metal atoms encapsulated within microporous Silicalite-1 zeolite: A systematic computational study. Microporous and Mesoporous Materials, 2020, 308, 110462.	4.4	7

#	Article	IF	CITATIONS
525	Understanding and Breaking the Scaling Relations in the Oxygen Reduction Reaction on PdxCu4–x Subnanoclusters Supported by Defective Two-Dimensional Boron Nitride Materials. Journal of Physical Chemistry C, 2020, 124, 19530-19537.	3.1	7
526	Regulating Heterogeneous Catalysis of Gold Nanoparticles with Polymer Mechanochemistry. ACS Macro Letters, 2020, 9, 1192-1197.	4.8	12
527	Photocatalytic CO ₂ conversion: What can we learn from conventional CO _x hydrogenation?. Chemical Society Reviews, 2020, 49, 6579-6591.	38.1	268
528	Nanocluster and single-atom catalysts for thermocatalytic conversion of CO and CO ₂ . Catalysis Science and Technology, 2020, 10, 5772-5791.	4.1	32
529	Temperature-responsive mesoporous silica nanoreactor with polymer gatings immobilized surface via a †̃grafting-to' approach as peroxidase-like catalyst. Microporous and Mesoporous Materials, 2020, 306, 110472.	4.4	5
530	Autogenous growth of the hierarchical V-doped NiFe layer double metal hydroxide electrodes for an enhanced overall water splitting. Dalton Transactions, 2020, 49, 11217-11225.	3.3	26
531	Ultrafast Encapsulation of Metal Nanoclusters into MFI Zeolite in the Course of Its Crystallization: Catalytic Application for Propane Dehydrogenation. Angewandte Chemie, 2020, 132, 19837-19842.	2.0	3
532	Heterogeneous CoSe2–CoO nanoparticles immobilized into N-doped carbon fibers for efficient overall water splitting. Electrochimica Acta, 2020, 356, 136822.	5.2	19
533	Amidation of Aldehydes with Amines under Mild Conditions Using Metalâ€Organic Framework Derived NiO@Ni Mottâ€Schottky Catalyst. ChemCatChem, 2020, 12, 5743-5749.	3.7	20
534	Interface Engineering with Ultralow Ruthenium Loading for Efficient Water Splitting. ACS Applied Materials & Interfaces, 2020, 12, 36177-36185.	8.0	35
535	Porous organic polymer material supported palladium nanoparticles. Journal of Materials Chemistry A, 2020, 8, 17360-17391.	10.3	93
536	Preparing Pd catalysts based on urea ligand via electrospinning for Suzuki–Miyaura crossâ€coupling reactions. Applied Organometallic Chemistry, 2020, 34, e5877.	3.5	5
537	Porous Ligand Creates New Reaction Route: Bifunctional Single-Atom Palladium Catalyst for Selective Distannylation of Terminal Alkynes. CheM, 2020, 6, 2300-2313.	11.7	92
538	Uniform, Anticorrosive, and Antiabrasive Coatings on Metallic Surfaces for Cation–Metal and Cationâ^'l€ Interactions. ACS Applied Materials & Interfaces, 2020, 12, 38638-38646.	8.0	13
539	Utilizing ballistic nanoparticle impact to reconfigure the metal support interaction in Pt–TiN electrocatalysts. Nanoscale Horizons, 2020, 5, 1407-1414.	8.0	5
540	In-situ fabrication of porous-silica-microsphere-supported platinum nanocluster catalyst by γ-ray radiation. Applied Surface Science, 2020, 531, 147333.	6.1	7
541	Challenges and opportunities in the bottom-up mechanochemical synthesis of noble metal nanoparticles. Journal of Materials Chemistry A, 2020, 8, 16114-16141.	10.3	138
542	Selective Visibleâ€Light Photocatalytic Aerobic Oxidation of Alkenes to Epoxides with Pd/ZnO Nanoparticles. ChemistrySelect, 2020, 5, 8853-8857.	1.5	11

#	Article	IF	CITATIONS
543	Controlling the Oxidation State of Pt Single Atoms for Maximizing Catalytic Activity. Angewandte Chemie, 2020, 132, 20872-20877.	2.0	28
544	Dioxygen Binding to all 3d, 4d, and 5d Transition Metals from Coupledâ€Cluster Theory. ChemPhysChem, 2020, 21, 2173-2186.	2.1	2
545	Unveiling Synergistic Effects of Interstitial Boron in Palladium-Based Nanocatalysts for Ethanol Oxidation Electrocatalysis. Journal of Physical Chemistry Letters, 2020, 11, 6632-6639.	4.6	41
546	Hydrogen production in microreactors. , 2020, , 141-182.		3
547	White Emitting Magic Sized CdSe Nanoclusters Using Edible Oils: A Green Approach. Journal of Nanoscience and Nanotechnology, 2020, 20, 2946-2954.	0.9	5
548	Controlling the Oxidation State of Pt Single Atoms for Maximizing Catalytic Activity. Angewandte Chemie - International Edition, 2020, 59, 20691-20696.	13.8	113
549	Phenoxide-Modified Half-Titanocenes Supported on Star-Shaped ROMP Polymers as Catalyst Precursors for Ethylene Copolymerization. Organometallics, 2020, 39, 2998-3009.	2.3	8
550	Highâ€Density and Thermally Stable Palladium Singleâ€Atom Catalysts for Chemoselective Hydrogenations. Angewandte Chemie - International Edition, 2020, 59, 21613-21619.	13.8	103
551	Low Valent Palladium Clusters: Synthesis, Structures and Catalytic Applications. Chinese Journal of Chemistry, 2020, 38, 1897-1908.	4.9	10
552	Adsorption and activation of molecular oxygen over atomic copper(I/II) site on ceria. Nature Communications, 2020, 11, 4008.	12.8	95
553	Recent Advances in MOFâ€Derived Single Atom Catalysts for Electrochemical Applications. Advanced Energy Materials, 2020, 10, 2001561.	19.5	265
554	Highâ€Density and Thermally Stable Palladium Singleâ€Atom Catalysts for Chemoselective Hydrogenations. Angewandte Chemie, 2020, 132, 21797-21803.	2.0	19
555	Single-atom site catalysts for environmental catalysis. Nano Research, 2020, 13, 3165-3182.	10.4	252
556	Atomic-level understanding on the evolution behavior of subnanometric Pt and Sn species during high-temperature treatments for generation of dense PtSn clusters in zeolites. Journal of Catalysis, 2020, 391, 11-24.	6.2	30
557	Surface Coordination Chemistry of Atomically Dispersed Metal Catalysts. Chemical Reviews, 2020, 120, 11810-11899.	47.7	325
558	Using statistical learning to predict interactions between single metal atoms and modified MgO(100) supports. Npj Computational Materials, 2020, 6, .	8.7	16
559	Rational design of transition metal single-atom electrocatalysts: a simulation-based, machine learning-accelerated study. Journal of Materials Chemistry A, 2020, 8, 19290-19299.	10.3	57
560	Ultrasonic-Assisted Cathodic Plasma Electrolysis Approach for Producing of Graphene Nanosheets. , 0, , .		3

#	Article	IF	CITATIONS
561	Gold nanoclusters decorated amine-functionalized graphene oxide nanosheets for capture, oxidative stress, and photothermal destruction of bacteria. Colloids and Surfaces B: Biointerfaces, 2020, 196, 111313.	5.0	23
562	Electronic Tuning of Ni by Mo Species for Highly Efficient Hydroisomerization of <i>n</i> -Alkanes Comparable to Pt-Based Catalysts. ACS Catalysis, 2020, 10, 10449-10458.	11.2	63
563	Advanced Electrocatalysts with Single-Metal-Atom Active Sites. Chemical Reviews, 2020, 120, 12217-12314.	47.7	563
564	Heterogeneous Atomic Catalysts Overcoming the Limitations of Single-Atom Catalysts. ACS Nano, 2020, 14, 14355-14374.	14.6	97
565	Atomically Dispersed Metals on Well-Defined Supports including Zeolites and Metal–Organic Frameworks: Structure, Bonding, Reactivity, and Catalysis. Chemical Reviews, 2020, 120, 11956-11985.	47.7	137
566	Application of a quantum genetic algorithm and QTAIM analysis in the study of structural and electronic properties of neutral bimetallic clusters NaxLiy (4 â‰≇€‰x + y â‰≇€‰10). Journa Modeling, 2020, 26, 317.	al o f. 8 Molec	cular
567	Revitalizing silver nanocrystals as a redox catalyst by modifying their surface with an isocyanide-based compound. Chemical Science, 2020, 11, 11214-11223.	7.4	7
568	In Situ Synthesis of Trimeric Ruthenium Cluster-Encapsulated ZIF-11 and Its Carbon Derivatives for Simultaneous Conversion of Glycerol and CO ₂ . Chemistry of Materials, 2020, 32, 10084-10095.	6.7	21
569	Single-Atom Catalysts Based on the Metal–Oxide Interaction. Chemical Reviews, 2020, 120, 11986-12043.	47.7	486
570	Carbon-Supported Cobalt Nanoparticles as Catalysts for the Selective Hydrogenation of Nitroarenes to Arylamines and Pharmaceuticals. ACS Applied Nano Materials, 2020, 3, 11070-11079.	5.0	38
571	Ru and Ni—Privileged Metal Combination for Environmental Nanocatalysis. Catalysts, 2020, 10, 992.	3.5	10
572	Atop adsorption of oxygen on small sized gold clusters: Analysis of size and site reactivity from restructuring perspective. Computational and Theoretical Chemistry, 2020, 1191, 113014.	2.5	5
573	Electrocatalytic Behavior of PtCu Clusters Produced by Nanoparticle Beam Deposition. Journal of Physical Chemistry C, 2020, 124, 23683-23689.	3.1	9
574	Ab Initio Molecular Dynamics Reveals New Metal-Binding Sites in Atomically Dispersed Pt ₁ /TiO ₂ Catalysts. Journal of Physical Chemistry C, 2020, 124, 24187-24195.	3.1	17
575	Computational Study of Carbon-Doped Boron Nitride Nanotubes Loaded with Pd Atoms as Single-Atom Catalysts for Heck Reactions. ACS Applied Nano Materials, 2020, 3, 10905-10913.	5.0	3
576	Bromide Ions Triggered Synthesis of Noble Metal–Based Intermetallic Nanocrystals. Small, 2020, 16, 2003782.	10.0	21
577	Supported Metal Clusters: Fabrication and Application in Heterogeneous Catalysis. ACS Catalysis, 2020, 10, 11011-11045.	11.2	260
578	Theoretical insights into single-atom catalysts. Chemical Society Reviews, 2020, 49, 8156-8178.	38.1	231

ARTICLE IF CITATIONS Precisely modulating the surface sites on atomically monodispersed gold-based nanoclusters for 579 5.6 17 controlling their catalytic performances. Nanoscale, 2020, 12, 18004-18012. Singleâ€atom Automobile Exhaust Catalysts. ChemNanoMat, 2020, 6, 1659-1682. 580 2.8 Atomically-precise dopant-controlled single cluster catalysis for electrochemical nitrogen 581 12.8 110 reduction. Nature Communications, 2020, 11, 4389. Quantitative and qualitative performance of density functional theory rationalized by reduced density gradient distributions. Physical Review B, 2020, 102, . Ru–Pd Thermoresponsive Nanocatalyst Based on a Poly(ionic liquid) for Highly Efficient and Selectively Catalyzed Suzuki Coupling and Asymmetric Transfer Hydrogenation in the Aqueous Phase. 583 8.0 16 ACS Applied Materials & amp; Interfaces, 2020, 12, 44094-44102. Particle Size and PdO–Support Interactions in PdO/CeO2-Î³ Al2O3 Catalysts and Effect on Methane Combustion. Catalysts, 2020, 10, 976. 584 3.5 Precise Synthesis of Nanoparticles and Their Catalytic Behavior. Topics in Organometallic Chemistry, 585 0.7 0 2020, 131-170. Optical Properties of Alloyed Noble Metal Nanoparticles: A Nanotechnology Experiment for Chemistry 586 2.3 and Engineering Students. Journal of Chemical Education, 2020, 97, 3778-3783. Tracking the formation, fate and consequence for catalytic activity of Pt single sites on CeO2. Nature 587 34.4 209 Catalysis, 2020, 3, 824-833. High-Entropy Alloys as a Platform for Catalysis: Progress, Challenges, and Opportunities. ACS 11.2 Catalysis, 2020, 10, 11280-11306. A perspective on oxide-supported single-atom catalysts. Nanoscale Advances, 2020, 2, 3624-3631. 589 12 4.6 Ultrafast and surfactant-free synthesis of Sub-3 nm nanoalloys by shear-assisted liquid-metal 590 4.6 reduction. Nanoscale Advances, 2020, 2, 4873-4880. The optical nanosizer $\hat{a} \in \hat{a}$ quantitative size and shape analysis of individual nanoparticles by 591 5.6 13 high-throughput widefield extinction microscopy. Nanoscale, 2020, 12, 16215-16228. Coâ^'MOFâ€74@Cuâ^'MOFâ€74 Derived Bifunctional Coâ^'C@Cuâ^'C for Oneâ€Pot Production of 1, 4â€Diphenylâ€3, 3â€Butadiene from Phenylacetylene. ChemCatChem, 2020, 12, 6241-6247. Mechanistic Study of Silane Alcoholysis Reactions with Self-Assembled Monolayer-Functionalized 593 3.5 4 Gold Nanoparticle Catalysts. Catalysts, 2020, 10, 908. Kooperative Zusammenarbeit von Nâ€heterocyclischen Carbenen auf einer Goldoberflähe. Angewandte 594 2.0 Chemie, 2020, 132, 21416-21422. Phase transformation of PiMoCo and their electrocatalytic activity for oxygen evolution reaction. 595 2.6 1 CrystEngComm, 2020, 22, 6003-6009. Spectral Decomposition of X-ray Absorption Spectroscopy Datasets: Methods and Applications. 596 2.2 Crystals, 2020, 10, 664.

#	Article	IF	CITATIONS
597	Visible-light-driven photocatalytic selective organic oxidation reactions. Journal of Materials Chemistry A, 2020, 8, 20897-20924.	10.3	60
598	Activation of subnanometric Pt on Cu-modified CeO2 via redox-coupled atomic layer deposition for CO oxidation. Nature Communications, 2020, 11, 4240.	12.8	101
599	Computational screening of efficient graphene-supported transition metal single atom catalysts toward the oxygen reduction reaction. Journal of Materials Chemistry A, 2020, 8, 19319-19327.	10.3	49
600	Ultra-Fine CeO ₂ Particles Triggered Strong Interaction with LaFeO ₃ Framework for Total and Preferential CO Oxidation. ACS Applied Materials & Interfaces, 2020, 12, 42274-42284.	8.0	24
601	Structural Isomerism of Two Ceâ€BTC for Fabricating Pt/CeO ₂ Nanorods toward Lowâ€Temperature CO Oxidation. Small, 2020, 16, e2003597.	10.0	62
602	Nontraditional Catalyst Supports in Surface Organometallic Chemistry. ACS Catalysis, 2020, 10, 11822-11840.	11.2	94
603	Isolated Single Atoms Anchored on N-Doped Carbon Materials as a Highly Efficient Catalyst for Electrochemical and Organic Reactions. ACS Sustainable Chemistry and Engineering, 2020, 8, 14630-14656.	6.7	88
604	Single Fe Site on the Surface of γ-Al ₂ O ₃ : Insights from Density Functional Theory Periodic Boundary Approach. Journal of Physical Chemistry C, 2020, 124, 20931-20941.	3.1	7
605	A Tandem Adsorption-Catalysis Strategy for the Removal of Copper Ions and Catalytic Reduction of 4-Nitrophenol. ACS Omega, 2020, 5, 23372-23377.	3.5	5
606	Using <i>Fomitopsis pinicola</i> for bioinspired synthesis of titanium dioxide and silver nanoparticles, targeting biomedical applications. RSC Advances, 2020, 10, 32137-32147.	3.6	46
607	Sinter-Resistant Nanoparticle Catalysts Achieved by 2D Boron Nitride-Based Strong Metal–Support Interactions: A New Twist on an Old Story. ACS Central Science, 2020, 6, 1617-1627.	11.3	42
608	Adsorption-Induced Liquid-to-Solid Phase Transition of Cu Clusters in Catalytic Dissociation of CO2. Journal of Physical Chemistry Letters, 2020, 11, 7954-7959.	4.6	15
609	Thermoregulated Ionic Liquid-Stabilizing Ru/CoO Nanocomposites for Catalytic Hydrogenation. Langmuir, 2020, 36, 11589-11599.	3.5	12
610	Pulsing Liquid Alloys for Nanomaterials Synthesis. ACS Nano, 2020, 14, 14070-14079.	14.6	52
611	Site-specific electrodeposition enables self-terminating growth of atomically dispersed metal catalysts. Nature Communications, 2020, 11, 4558.	12.8	131
612	Cluster Superlattice Membranes. ACS Nano, 2020, 14, 13629-13637.	14.6	6
613	Emerging Metal Single Atoms in Electrocatalysts and Batteries. Advanced Functional Materials, 2020, 30, 2003870.	14.9	38
614	The Ultrasmall Palladium Nanoparticles Catalyzed Telomerization of CO 2 with 1,3â€Butadiene at Room Temperature: Selective Synthesis of δ‣actone. ChemistrySelect, 2020, 5, 9404-9408.	1.5	7

#	Article	IF	CITATIONS
615	Ultrafast Construction of Oxygen-Containing Scaffold over Graphite for Trapping Ni ²⁺ into Single Atom Catalysts. ACS Nano, 2020, 14, 11662-11669.	14.6	20
616	Cooperation of Nâ€Heterocyclic Carbenes on a Gold Surface. Angewandte Chemie - International Edition, 2020, 59, 21230-21235.	13.8	22
617	Origin of the Unusual Stability of Zeolite-Encapsulated Sub-Nanometer Platinum. ACS Catalysis, 2020, 10, 11057-11068.	11.2	20
618	Sustainability Perspective-Oriented Synthetic Strategy for Zinc Single-Atom Catalysts Boosting Electrocatalytic Reduction of Carbon Dioxide and Oxygen. ACS Sustainable Chemistry and Engineering, 2020, 8, 13813-13822.	6.7	35
619	Enhanced photocatalytic reduction of Cr(vi) to Cr(iii) over g-C3N4 catalysts with Ag nanoclusters in conjunction with Cr(iii) quantification based on operando low-field NMR relaxometry. Environmental Science: Nano, 2020, 7, 2823-2832.	4.3	8
620	Dehydrogenation of bioethanol using Cu nanoparticles supported on Nâ€doped ordered mesoporous carbon. ChemCatChem, 2020, 12, 5644-5655.	3.7	12
621	Carbon-Based Materials for the Development of Highly Dispersed Metal Catalysts: Towards Highly Performant Catalysts for Fine Chemical Synthesis. Catalysts, 2020, 10, 1407.	3.5	24
622	Palladium Nanoparticles in Glycerol/Ionic Liquid/Carbon Dioxide Medium as Hydrogenation Catalysts. ACS Applied Nano Materials, 2020, 3, 12240-12249.	5.0	11
623	Insights into the Pt (111) Surface Aid in Predicting the Selective Hydrogenation Catalyst. Catalysts, 2020, 10, 1473.	3.5	3
624	Designing the future atomic electrocatalyst for efficient energy systems. Engineering Reports, 2020, 2, e12327.	1.7	5
625	The regulating effect of doping Cu on the catalytic performance of CO oxidative coupling to DMO on PdxCuy/GDY: A DFT study. Green Energy and Environment, 2022, 7, 742-754.	8.7	6
626	Designing Structurally Ordered Pt/Sn Nanoparticles in Ionic Liquids and their Enhanced Catalytic Performance. ChemNanoMat, 2020, 6, 1854-1862.	2.8	7
627	Synergetic effect of N/P/B coordinated Fe/Co on carbon support catalysts for removing odor-chemicals of cooking source. SN Applied Sciences, 2020, 2, 1.	2.9	1
628	Nucleic Acid Based Constitutional Dynamic Networks: From Basic Principles to Applications. Journal of the American Chemical Society, 2020, 142, 21577-21594.	13.7	56
629	Intrinsic Activity of Metal Centers in Metal–Nitrogen–Carbon Single-Atom Catalysts for Hydrogen Peroxide Synthesis. Journal of the American Chemical Society, 2020, 142, 21861-21871.	13.7	163
630	Selective Hydrogenation on a Highly Active Single-Atom Catalyst of Palladium Dispersed on Ceria Nanorods by Defect Engineering. ACS Applied Materials & Interfaces, 2020, 12, 57569-57577.	8.0	34
631	Single-Atom Catalysis: An Analogy between Heterogeneous and Homogeneous Catalysts. ACS Symposium Series, 2020, , 1-15.	0.5	1
632	Nanosized Metal/Metal Oxides for Auto-Exhaust Purification. ACS Symposium Series, 2020, , 373-401.	0.5	Ο

#	Article	IF	CITATIONS
633	Supported Metal Nanoparticles as Heterogeneous Catalysts for Transformation of Biomass-Derived Platform Chemicals. ACS Symposium Series, 2020, , 183-211.	0.5	1
634	Metal Nanoparticles Supported on Mesoporous Polymers: Realizing the Synergetic Effect to Achieve Superior Catalytic Performance. ACS Symposium Series, 2020, , 483-511.	0.5	1
635	Recent Advances of Heterogeneous Nanosized Hybrid Catalysts for Water Treatment Application. ACS Symposium Series, 2020, , 227-240.	0.5	0
636	Supported Metal Nanoparticles and Single-Atoms for Catalytic CO ₂ Utilization. ACS Symposium Series, 2020, , 241-266.	0.5	0
637	Recent developments in the control of selectivity in hydrogenation reactions by confined metal functionalities. Catalysis Science and Technology, 2020, 10, 8140-8172.	4.1	28
639	Metal Clusters and Their Reactivity. , 2020, , .		9
640	Recent Advances in the Development of Singleâ€Atom Catalysts for Oxygen Electrocatalysis and Zinc–Air Batteries. Advanced Energy Materials, 2020, 10, 2003018.	19.5	181
641	Advances in Heterogeneous Catalysis: Concepts of Nanocatalysis and Single-Atom Catalysis. ACS Symposium Series, 2020, , 1-49.	0.5	1
642	Low-dimensional catalysts for oxygen reduction reaction. Progress in Natural Science: Materials International, 2020, 30, 787-795.	4.4	35
643	Palladium supported on triazolyl-functionalized hypercrosslinked polymers as a recyclable catalyst for Suzuki–Miyaura coupling reactions. RSC Advances, 2020, 10, 17123-17128.	3.6	11
644	Recent Progress in Low Pt Content Electrocatalysts for Hydrogen Evolution Reaction. Advanced Materials Interfaces, 2020, 7, 2000396.	3.7	84
645	Coordination structure dominated performance of single-atomic Pt catalyst for anti-Markovnikov hydroboration of alkenes. Science China Materials, 2020, 63, 972-981.	6.3	74
646	Finely Controlled Platinum Nanoparticles over ZnO Nanorods for Selective Hydrogenation of 3â€Nitrostyrene to 3â€Vinylaniline. Chemistry - A European Journal, 2020, 26, 8990-8996.	3.3	7
647	Highly fluorescent few atoms silver nanoclusters with strong photocatalytic activity synthesized by ultrashort light pulses. Scientific Reports, 2020, 10, 8217.	3.3	33
648	Elucidation of Active Sites on S, N Codoped Carbon Cubes Embedding Co–Fe Carbides toward Reversible Oxygen Conversion in Highâ€Performance Zinc–Air Batteries. Small, 2020, 16, e1907368.	10.0	66
649	Structure–Activity–Selectivity Relationships in Propane Dehydrogenation over Rh/ZrO ₂ Catalysts. ACS Catalysis, 2020, 10, 6377-6388.	11.2	47
650	The Dynamic Structure of Au ₃₈ (SR) ₂₄ Nanoclusters Supported on CeO ₂ upon Pretreatment and CO Oxidation. ACS Catalysis, 2020, 10, 6144-6148.	11.2	35
651	A smart porous wood-supported flower-like NiS/Ni conjunction with vitrimer co-effect as a multifunctional material with reshaping, shape-memory, and self-healing properties for applications in high-performance supercapacitors, catalysts, and sensors. Journal of Materials Chemistry A, 2020, 8, 10898-10908	10.3	107

	CITATION RI	CITATION REPORT	
# 652	ARTICLE Controllable synthesis of Fe–N ₄ species for acidic oxygen reduction. , 2020, 2, 452-460.	IF	Citations
653	Recent Advances in Electrochemical Oxygen Reduction to H ₂ O ₂ : Catalyst and Cell Design. ACS Energy Letters, 2020, 5, 1881-1892.	17.4	185
654	Non-noble metal single-atom catalysts with phosphotungstic acid (PTA) support: A theoretical study of ethylene epoxidation. Science China Materials, 2020, 63, 1003-1014.	6.3	41
655	Reaction-driven transformation of Ni/NiO hybrid structure into Ni single atoms. Materials Today Energy, 2020, 17, 100436.	4.7	10
656	New insights into the size and support effects of γ-Al2O3 supported Au catalysts for HCHO oxidation at room temperature. Catalysis Science and Technology, 2020, 10, 4571-4579.	4.1	10
657	Synthesis of Pdâ^'Rh Bimetallic Nanoparticles with Different Morphologies in Reverse Micelles and Characterization of Their Catalytic Properties. Protection of Metals and Physical Chemistry of Surfaces, 2020, 56, 63-74.	1.1	3
658	Metal–Organic Frameworks as a Good Platform for the Fabrication of Single-Atom Catalysts. ACS Catalysis, 2020, 10, 6579-6586.	11.2	240
659	Atomically dispersed metal active centers as a chemically tunable platform for energy storage devices. Journal of Materials Chemistry A, 2020, 8, 15358-15372.	10.3	16
660	Gold Nanoparticles for Oxidation Reactions: Critical Role of Supports and Au Particle Size. Topics in Organometallic Chemistry, 2020, , 1-48.	0.7	2
661	Elucidating the Role of Bifunctional Cobaltâ€Manganese Catalyst Interactions for Higher Alcohol Synthesis. European Journal of Inorganic Chemistry, 2020, 2020, 2312-2324.	2.0	9
662	A Shellâ€byâ€Shell Approach for Synthesis of Mesoporous Multiâ€Shelled Hollow MOFs for Catalytic Applications. Particle and Particle Systems Characterization, 2020, 37, 2000101.	2.3	15
663	Cobalt Singleâ€Atom Catalysts with High Stability for Selective Dehydrogenation of Formic Acid. Angewandte Chemie - International Edition, 2020, 59, 15849-15854.	13.8	156
664	Rational Catalyst Design for N ₂ Reduction under Ambient Conditions: Strategies toward Enhanced Conversion Efficiency. ACS Catalysis, 2020, 10, 6870-6899.	11.2	273
665	Alcohol amination over titania-supported ruthenium nanoparticles. Catalysis Science and Technology, 2020, 10, 4396-4404.	4.1	15
666	Cobalt Singleâ€Atom Catalysts with High Stability for Selective Dehydrogenation of Formic Acid. Angewandte Chemie, 2020, 132, 15983-15988.	2.0	13
667	Syntheses of Ptâ€Ni Hollow Nanoalloy for Hydrogen Generation from Catalytic Hydrolysis of Ammonia Borane. ChemCatChem, 2020, 12, 4257-4261.	3.7	16
668	Gas Diffusion Strategy for Inserting Atomic Iron Sites into Graphitized Carbon Supports for Unusually Highâ€Efficient CO ₂ Electroreduction and Highâ€Performance Zn–CO ₂ Batteries. Advanced Materials, 2020, 32, e2002430.	21.0	141
669	Ultra-selective desulfurization of 4, 6-dimethyldibenzothiophene via carbon-sulfur bond cleavage with the bimetal single atom on N-rGO. Journal of Hazardous Materials, 2020, 399, 122803.	12.4	9

#	Article	IF	CITATIONS
670	A metal-free heterogeneous photocatalyst for the selective oxidative cleavage of Cî€C bonds in aryl olefins <i>via</i> harvesting direct solar energy. Green Chemistry, 2020, 22, 4516-4522.	9.0	84
671	Engineering unsymmetrically coordinated Cu-S1N3 single atom sites with enhanced oxygen reduction activity. Nature Communications, 2020, 11, 3049.	12.8	537
672	Structural modulation and direct measurement of subnanometric bimetallic PtSn clusters confined in zeolites. Nature Catalysis, 2020, 3, 628-638.	34.4	182
673	Enhanced activity and stability of Ni/La2O2CO3 catalyst for CO2 methanation by metal-carbonate interaction. Applied Catalysis B: Environmental, 2020, 277, 119271.	20.2	56
674	Unexpected Dual Action of Cetyltrimethylammonium Bromide (CTAB) in the Selfâ€Assembly of Colloidal Nanoparticles at Liquid–Liquid Interfaces. Advanced Materials Interfaces, 2020, 7, 2000391.	3.7	20
675	Synergistic CNFs/CoS ₂ /MoS ₂ Flexible Films with Unprecedented Selectivity for NO Gas at Room Temperature. ACS Applied Materials & Interfaces, 2020, 12, 29778-29786.	8.0	11
676	Galvanic Replacement-Enabled Synthesis of In(OH) ₃ /Ag/C Nanocomposite as an Effective Photocatalyst for Ultraviolet C Degradation of Methylene Blue. ACS Omega, 2020, 5, 13719-13728.	3.5	4
677	Nanocasting SiO2 into metal–organic frameworks imparts dual protection to high-loading Fe single-atom electrocatalysts. Nature Communications, 2020, 11, 2831.	12.8	321
678	Highly Active and Carbon-Resistant Nickel Single-Atom Catalysts for Methane Dry Reforming. Catalysts, 2020, 10, 630.	3.5	42
679	Design Principles of Single Atoms on Carbons for Lithium–Sulfur Batteries. Small Methods, 2020, 4, 2000315.	8.6	84
680	CO2 electrochemical reduction using single-atom catalysts.ÂPreparation, characterization and anchoring strategies: a review. Environmental Chemistry Letters, 2020, 18, 1593-1623.	16.2	19
681	Atomically dispersed catalysts for hydrogen/oxygen evolution reactions and overall water splitting. Journal of Power Sources, 2020, 471, 228446.	7.8	74
682	Development and application of palladium nanoparticles on renewable polysaccharides as catalysts for the Suzuki cross-coupling of halobenzenes and phenylboronic acids. Molecular Catalysis, 2020, 493, 111048.	2.0	21
683	Cr/Al2O3 catalysts with strong metal-support interactions for stable catalytic dehydrogenation of propane to propylene. Molecular Catalysis, 2020, 493, 111052.	2.0	18
684	Singleâ€Atom Catalysts for Electrocatalytic Applications. Advanced Functional Materials, 2020, 30, 2000768.	14.9	390
685	Catalytic Plasma Fischer–Tropsch Synthesis Using Hierarchically Connected Porous Co/SiO ₂ Catalysts Prepared by Microwave-Induced Co-assembly. Industrial & Engineering Chemistry Research, 2020, 59, 12013-12027.	3.7	16
686	Boosting Catalysis of Pd Nanoparticles in MOFs by Pore Wall Engineering: The Roles of Electron Transfer and Adsorption Energy. Advanced Materials, 2020, 32, e2000041.	21.0	151
687	MOFâ€Mediated Synthesis of Supported Feâ€Doped Pd Nanoparticles under Mild Conditions for Magnetically Recoverable Catalysis**. Chemistry - A European Journal, 2020, 26, 13659-13667.	3.3	9

		CITATION REPORT	
#	Article	IF	CITATIONS
688	Atomically dispersed materials for rechargeable batteries. Nano Energy, 2020, 76, 105085.	16.0	18
689	Ultrasmall Ag Clusters Modified W ₁₈ O ₄₉ Ultrathin Nanowires for Sensitive Surface Enhanced Raman Spectroscopy Detection. ChemistrySelect, 2020, 5, 3105-3112.	1.5	2
690	Advances in carbon dots: from the perspective of traditional quantum dots. Materials Chemistry Frontiers, 2020, 4, 1586-1613.	5.9	208
691	Reductive amination using cobalt-based nanoparticles for synthesis of amines. Nature Protocols, 2020, 15, 1313-1337.	12.0	56
692	Catalytic conversion of methyl oleate to hydrocarbons: impact of cobalt oxide species integration in SiO ₂ –Al ₂ O ₃ . Sustainable Energy and Fuels, 2020, 4, 3308-3317.	4.9	7
693	The influence of oxygen vacancy and Ce3+ ion positions on the properties of small gold clusters supported on CeO2â^'x(111). Journal of Materials Chemistry A, 2020, 8, 15695-15705.	10.3	17
694	Heterogeneous Single-Atom Photocatalysts: Fundamentals and Applications. Chemical Reviews, 2020, 120, 12175-12216.	47.7	620
695	Rareâ€Earth Single Erbium Atoms for Enhanced Photocatalytic CO ₂ Reduction. Angewandte Chemie, 2020, 132, 10738-10744.	2.0	49
696	Rareâ€Earth Single Erbium Atoms for Enhanced Photocatalytic CO ₂ Reduction. Angewandte Chemie - International Edition, 2020, 59, 10651-10657.	13.8	314
697	Dissociative adsorption of H2O onto a Pt thin film in direct contact with GaN (0001): Effect of electronic communications between catalyst and a semiconducting support. Applied Surface Science, 2020, 516, 146127.	6.1	5
698	Recent Advances in Metal-Catalyzed Alkyl–Boron (C(sp3)–C(sp2)) Suzuki-Miyaura Cross-Couplings. Catalysts, 2020, 10, 296.	3.5	39
699	On the Technology of Heterogenization of Transition Metal Catalysts towards the Synthetic Applications in Ionic Liquid Matrix. , 2020, , .		0
700	High-loading and thermally stable Pt1/MgAl1.2Fe0.8O4 single-atom catalysts for high-temperature applications. Science China Materials, 2020, 63, 949-958.	6.3	31
701	Singleâ€Atom Catalytic Materials for Advanced Battery Systems. Advanced Materials, 2020, 32, e1906548.	21.0	156
702	The influence of gold nanoparticles on reduction of [Co(NH3)5Br](NO3)2 by iron(II). SN Applied Sciences, 2020, 2, 1.	2.9	0
703	Pd/Fe3O4 Nanofibers for the Catalytic Conversion of Lignin-Derived Benzyl Phenyl Ether under Transfer Hydrogenolysis Conditions. Catalysts, 2020, 10, 20.	3.5	19
704	Strong metal-support interaction promoted scalable production of thermally stable single-atom catalysts. Nature Communications, 2020, 11, 1263.	12.8	198
705	Dynamic changes of single-atom Pt-C3N4 photocatalysts. Science Bulletin, 2020, 65, 1055-1056.	9.0	10

#	Article	IF	CITATIONS
706	Evolution of Isolated Atoms and Clusters in Catalysis. Trends in Chemistry, 2020, 2, 383-400.	8.5	138
707	C–O bond activation using ultralow loading of noble metal catalysts on moderately reducible oxides. Nature Catalysis, 2020, 3, 446-453.	34.4	131
708	Manipulating Atomic Structures at the Au/TiO ₂ Interface for O ₂ Activation. Journal of the American Chemical Society, 2020, 142, 6456-6460.	13.7	79
709	In Situ Raman Monitoring and Manipulating of Interfacial Hydrogen Spillover by Precise Fabrication of Au/TiO ₂ /Pt Sandwich Structures. Angewandte Chemie - International Edition, 2020, 59, 10343-10347.	13.8	70
710	Modulating Location of Single Copper Atoms in Polymeric Carbon Nitride for Enhanced Photoredox Catalysis. ACS Catalysis, 2020, 10, 5715-5722.	11.2	80
711	Light-Induced Coalescence of Plasmonic Dimers and Clusters. ACS Nano, 2020, 14, 4982-4987.	14.6	26
712	In Situ Raman Monitoring and Manipulating of Interfacial Hydrogen Spillover by Precise Fabrication of Au/TiO 2 /Pt Sandwich Structures. Angewandte Chemie, 2020, 132, 10429-10433.	2.0	44
713	Super-Resolution Fluorescence Microscopy Reveals Nanoscale Catalytic Heterogeneity on Single Copper Nanowires. ACS Applied Nano Materials, 2020, 3, 3163-3167.	5.0	9
714	A facile synthesis of mesoporous graphitic carbon nitride supported palladium nanoparticles as highly effective and reusable catalysts for Stille coupling reactions under mild conditions. New Journal of Chemistry, 2020, 44, 6714-6723.	2.8	11
715	Controlled Assembly of Cu/Coâ€Oxide Beaded Nanoclusters on Thiolated Graphene Oxide Nanosheets for Highâ€Performance Oxygen Evolution Catalysts. Chemistry - A European Journal, 2020, 26, 11209-11219.	3.3	15
716	Metal–Organic Frameworks in Heterogeneous Catalysis: Recent Progress, New Trends, and Future Perspectives. Chemical Reviews, 2020, 120, 8468-8535.	47.7	1,001
717	Ab initio investigation of the formation mechanism of nano-interfaces between 3d-late transition-metals and ZrO2 nanoclusters. Physical Chemistry Chemical Physics, 2020, 22, 8067-8076.	2.8	2
718	Theoretical screening of single atoms anchored on defective graphene for electrocatalytic N ₂ reduction reactions: a DFT study. Physical Chemistry Chemical Physics, 2020, 22, 9322-9329.	2.8	29
719	Role of the Support in Gold-Containing Nanoparticles as Heterogeneous Catalysts. Chemical Reviews, 2020, 120, 3890-3938.	47.7	275
720	Enhanced CO ₂ Electroreduction on Neighboring Zn/Co Monomers by Electronic Effect. Angewandte Chemie - International Edition, 2020, 59, 12664-12668.	13.8	164
721	Cyclic (Alkyl)- and (Aryl)-(amino)carbene Coinage Metal Complexes and Their Applications. Chemical Reviews, 2020, 120, 4141-4168.	47.7	196
722	Chemical Synthesis of Single Atomic Site Catalysts. Chemical Reviews, 2020, 120, 11900-11955.	47.7	806
723	Computational Insights on the Electrocatalytic Behavior of [Cp*Rh] Molecular Catalysts Immobilized on Graphene for Heterogeneous Hydrogen Evolution Reaction. Scientific Reports, 2020, 10, 5777.	3.3	4

#	Article	IF	CITATIONS
724	Investigating lattice strain impact on the alloyed surface of small Au@PdPt core–shell nanoparticles. Nanoscale, 2020, 12, 8687-8692.	5.6	16
725	Surface Modification Strategy for Promoting the Performance of Non-noble Metal Single-Atom Catalysts in Low-Temperature CO Oxidation. ACS Applied Materials & Interfaces, 2020, 12, 19457-19466.	8.0	12
726	Modulating the local coordination environment of single-atom catalysts for enhanced catalytic performance. Nano Research, 2020, 13, 1842-1855.	10.4	532
727	Controlled engineering of nickel carbide induced N-enriched carbon nanotubes for hydrogen and oxygen evolution reactions in wide pH range. Electrochimica Acta, 2020, 341, 136032.	5.2	45
728	Copper (triazole-5-yl)methanamine complexes onto MCM-41: the synthesis of pyridine-containing pseudopeptides through the 6- <i>endo</i> -dig cyclization of 1,5-enynes. RSC Advances, 2020, 10, 10577-10583.	3.6	7
729	Exploring the properties of Ag ₅ –TiO ₂ interfaces: stable surface polaron formation, UV-Vis optical response, and CO ₂ photoactivation. Journal of Materials Chemistry A, 2020, 8, 6842-6853.	10.3	26
730	Synthesis, Structure, Properties, and Applications of Bimetallic Nanoparticles of Noble Metals. Advanced Functional Materials, 2020, 30, 1909260.	14.9	274
731	Edgeâ€Rich Feâ^'N ₄ Active Sites in Defective Carbon for Oxygen Reduction Catalysis. Advanced Materials, 2020, 32, e2000966.	21.0	215
732	Single-atom Pd dispersed on nanoscale anatase TiO2 for the selective hydrogenation of phenylacetylene. Science China Materials, 2020, 63, 982-992.	6.3	65
733	Efficient Preparation of Bio-based <i>n</i> -Butane Directly from Levulinic Acid over Pt/C. Industrial & Engineering Chemistry Research, 2020, 59, 5736-5744.	3.7	6
734	Regioselective Generation of Singleâ€ s ite Iridium Atoms and Their Evolution into Stabilized Subnanometric Iridium Clusters in MWW Zeolite. Angewandte Chemie, 2020, 132, 15825-15832.	2.0	5
735	Selective Activation of C–OH, C–O–C, or C╀ in Furfuryl Alcohol by Engineered Pt Sites Supported on Layered Double Oxides. ACS Catalysis, 2020, 10, 8032-8041.	11.2	73
736	Ultrafast Encapsulation of Metal Nanoclusters into MFI Zeolite in the Course of Its Crystallization: Catalytic Application for Propane Dehydrogenation. Angewandte Chemie - International Edition, 2020, 59, 19669-19674.	13.8	63
737	FeCrAl as a Catalyst Support. Chemical Reviews, 2020, 120, 7516-7550.	47.7	59
738	Single Cu Atoms as Catalysts for Efficient Hydrazine Oxidation Reaction. ChemNanoMat, 2020, 6, 1474-1478.	2.8	7
739	Single atom alloy: An emerging atomic site material for catalytic applications. Nano Today, 2020, 34, 100917.	11.9	91
740	Inâ€Situ Dispersion of Palladium on TiO ₂ During Reverse Water–Gas Shift Reaction: Formation of Atomically Dispersed Palladium. Angewandte Chemie, 2020, 132, 17810-17816.	2.0	18
741	Novel magnetic propylsulfonic acid-anchored isocyanurate-based periodic mesoporous organosilica (Iron oxide@PMO-ICS-PrSO3H) as a highly efficient and reusable nanoreactor for the sustainable synthesis of imidazopyrimidine derivatives. Scientific Reports, 2020, 10, 10646.	3.3	30

#	Article	IF	CITATIONS
742	Encapsulating ruthenium in silica using a single source precursor: Differing outcomes for a cycloaddition reaction. Inorganica Chimica Acta, 2020, 512, 119833.	2.4	1
743	Universal Approach to Fabricating Graphene-Supported Single-Atom Catalysts from Doped ZnO Solid Solutions. ACS Central Science, 2020, 6, 1431-1440.	11.3	69
744	Emerging Multifunctional Single-Atom Catalysts/Nanozymes. ACS Central Science, 2020, 6, 1288-1301.	11.3	159
745	A triple atom catalyst with ultrahigh loading potential for nitrogen electrochemical reduction. Journal of Materials Chemistry A, 2020, 8, 15086-15093.	10.3	48
746	Nanopore‣upported Metal Nanocatalysts for Efficient Hydrogen Generation from Liquidâ€Phase Chemical Hydrogen Storage Materials. Advanced Materials, 2020, 32, e2001818.	21.0	226
747	FTIR investigation under reaction conditions during CO oxidation over Ru(x)-CeO2 catalysts. Molecular Catalysis, 2020, 493, 111086.	2.0	6
748	Metal-support interaction for heterogeneous catalysis: from nanoparticles to single atoms. Materials Today Nano, 2020, 12, 100093.	4.6	89
749	Regioselective Generation of Single‣ite Iridium Atoms and Their Evolution into Stabilized Subnanometric Iridium Clusters in MWW Zeolite. Angewandte Chemie - International Edition, 2020, 59, 15695-15702.	13.8	46
750	Bicatalytic poly(N-acryloyl glycinamide) microgels. European Polymer Journal, 2020, 133, 109760.	5.4	7
751	Graph theory approach to determine configurations of multidentate and high coverage adsorbates for heterogeneous catalysis. Npj Computational Materials, 2020, 6, .	8.7	37
752	Inâ€Situ Dispersion of Palladium on TiO ₂ During Reverse Water–Gas Shift Reaction: Formation of Atomically Dispersed Palladium. Angewandte Chemie - International Edition, 2020, 59, 17657-17663.	13.8	51
753	Barrierless methane-to-methanol conversion: the unique mechanism of AlO ⁺ . Physical Chemistry Chemical Physics, 2020, 22, 14544-14550.	2.8	3
754	Catalyst design concept based on a variety of alloy materials: a personal account and relevant studies. Journal of Materials Chemistry A, 2020, 8, 15620-15645.	10.3	30
755	Towards high-performance heterogeneous palladium nanoparticle catalysts for sustainable liquid-phase reactions. Reaction Chemistry and Engineering, 2020, 5, 1556-1618.	3.7	21
756	Singleâ€Atom Catalysts Supported by Crystalline Porous Materials: Views from the Inside. Advanced Materials, 2020, 32, e2002910.	21.0	65
757	Progress in the Selective Semi-hydrogenation of Alkynes by Nanocatalysis. Molecular Catalysis, 2020, , 303-344.	1.3	9
758	Nanomaterials properties. , 2020, , 343-359.		44
759	Stabilizing platinum atoms on CeO2 oxygen vacancies by metal-support interaction induced interface distortion: Mechanism and application. Applied Catalysis B: Environmental, 2020, 278, 119304.	20.2	120

#	Article	IF	CITATIONS
760	Particle size effect of ZrO ₂ supports on catalytic liquid-phase oxidation of phenol over Pt/CeO ₂ -ZrO ₂ -Bi ₂ O ₃ /ZrO ₂ catalysts. Journal of Asian Ceramic Societies, 2020, 8, 745-752.	2.3	7
761	Rich atomic interfaces between sub-1 nm RuOx clusters and porous Co3O4 nanosheets boost oxygen electrocatalysis bifunctionality for advanced Zn-air batteries. Energy Storage Materials, 2020, 32, 20-29.	18.0	84
762	Enhanced Catalytic Performance of Subnano Copper Oxide Particles. ACS Nano, 2020, 14, 1804-1810.	14.6	43
763	Green Synthesis of M ⁰ Nanoparticles (M=Pd, Pt, and Ru) for Electrocatalytic Hydrogen Evolution. Israel Journal of Chemistry, 2020, 60, 630-637.	2.3	4
764	Metal-support interaction enhanced electrochemical reduction of CO2 to formate between graphene and Bi nanoparticles. Journal of CO2 Utilization, 2020, 37, 353-359.	6.8	41
765	Multifunctional porous organic polymers (POPs): Inverse adsorption of hydrogen over nitrogen, stabilization of Pd(0) nanoparticles, and catalytic cross-coupling reactions and reductions. Journal of Catalysis, 2020, 384, 61-71.	6.2	32
766	Synergism of Iron and Platinum Species for Low-Temperature CO Oxidation: From Two-Dimensional Surface to Nanoparticle and Single-Atom Catalysts. Journal of Physical Chemistry Letters, 2020, 11, 2219-2229.	4.6	29
767	New insights into HER catalysis: the effect of nano-silica support on catalysis by silver nanoparticles. Physical Chemistry Chemical Physics, 2020, 22, 6401-6405.	2.8	9
768	lsotopic Oxygen Exchange Study to Unravel Noble Metal Oxide/Support Interactions: The Case of RuO ₂ and IrO ₂ Nanoparticles Supported on CeO ₂ , TiO ₂ and YSZ. ChemCatChem, 2020, 12, 2548-2555.	3.7	6
769	Highly durable metal ensemble catalysts with full dispersion for automotive applications beyond single-atom catalysts. Nature Catalysis, 2020, 3, 368-375.	34.4	220
770	State of the art and perspectives in heterogeneous catalysis of CO ₂ hydrogenation to methanol. Chemical Society Reviews, 2020, 49, 1385-1413.	38.1	605
771	A kinetic Monte Carlo-blueprint for oxygen reduction on oxide-supported PtNi nanoalloys. Journal of Chemical Physics, 2020, 152, 034107.	3.0	4
772	Recent Advances on the Rational Design of Non-Precious Metal Oxide Catalysts Exemplified by CuOx/CeO2 Binary System: Implications of Size, Shape and Electronic Effects on Intrinsic Reactivity and Metal-Support Interactions. Catalysts, 2020, 10, 160.	3.5	66
773	Oneâ€Pot Cooperation of Singleâ€Atom Rh and Ru Solid Catalysts for a Selective Tandem Olefin Isomerizationâ€Hydrosilylation Process. Angewandte Chemie, 2020, 132, 5855-5864.	2.0	21
774	A simple way to prepare palladium nanoparticles decorated with cyclodextrins and ionic liquid. The effects of coating on the catalytic activity and colloidal stability. Journal of Molecular Liquids, 2020, 304, 112725.	4.9	8
775	Ultra-small cobalt nanoparticles from molecularly-defined Co–salen complexes for catalytic synthesis of amines. Chemical Science, 2020, 11, 2973-2981.	7.4	43
776	Reductant composition influences the coordination of atomically dispersed Rh on anatase TiO ₂ . Catalysis Science and Technology, 2020, 10, 1597-1601.	4.1	34
777	Plasma Generating—Chemical Looping Catalyst Synthesis by Microwave Plasma Shock for Nitrogen Fixation from Air and Hydrogen Production from Water for Agriculture and Energy Technologies in Global Warming Prevention. Catalysts, 2020, 10, 152.	3.5	18

#	Article	IF	CITATIONS
778	Universal Surfactantâ€Free Strategy for Selfâ€Standing 3D Tremellaâ€Like Pd–M (M = Ag, Pb, and Au) Nanosheets for Superior Alcohols Electrocatalysis. Advanced Functional Materials, 2020, 30, 2000255.	14.9	191
779	On the Controlled Loading of Single Platinum Atoms as a Coâ€Catalyst on TiO ₂ Anatase for Optimized Photocatalytic H ₂ Generation. Advanced Materials, 2020, 32, e1908505.	21.0	189
780	On the Real Nature of Rh Singleâ€Atom Catalysts Dispersed on the ZrO ₂ Surface. ChemCatChem, 2020, 12, 2595-2604.	3.7	23
781	Beyond Dimensionally Stable Anodes: Singleâ€Atom Catalysts with Superior Chlorine Selectivity. ChemElectroChem, 2020, 7, 1528-1530.	3.4	12
782	Selective photodegradation of tetracycline by molecularly imprinted ZnO@NH2-UiO-66 composites. Chemical Engineering Journal, 2020, 390, 124614.	12.7	95
783	Etching high-Fe-content PtPdFe nanoparticles as efficient catalysts towards glycerol electrooxidation. New Journal of Chemistry, 2020, 44, 4604-4612.	2.8	11
784	Synergistic effect of CuO nanocrystals and Cu-oxo-Fe clusters on silica support in promotion of total catalytic oxidation of toluene as a model volatile organic air pollutant. Applied Catalysis B: Environmental, 2020, 268, 118749.	20.2	63
785	Zeolite-Enhanced Sustainable Pd-Catalyzed C–C Cross-Coupling Reaction: Controlled Release and Capture of Palladium. ACS Applied Materials & Interfaces, 2020, 12, 11419-11427.	8.0	23
786	Design and Remarkable Efficiency of the Robust Sandwich Cluster Composite Nanocatalysts ZIF-8@Au ₂₅ @ZIF-67. Journal of the American Chemical Society, 2020, 142, 4126-4130.	13.7	141
787	Enhanced photocatalytic activity under visible light by the synergistic effects of plasmonics and Ti3+-doping at the Ag/TiO2- heterojunction. Ceramics International, 2020, 46, 10667-10677.	4.8	51
788	Palladium Nanoclusters Confined in MOF@COP as a Novel Nanoreactor for Catalytic Hydrogenation. ACS Applied Materials & Interfaces, 2020, 12, 7285-7294.	8.0	79
789	A facile route to fabricate double atom catalysts with controllable atomic spacing for the r-WGS reaction. Journal of Materials Chemistry A, 2020, 8, 2364-2368.	10.3	37
790	<i>In situ</i> observations of the structural dynamics of platinum–cobalt–hydroxide nanocatalysts under CO oxidation. Nanoscale, 2020, 12, 3273-3283.	5.6	14
791	Reduction of NO by CO catalyzed by Fe-oxide/Al2O3: Strong catalyst-support interaction for enhanced catalytic activity. Applied Surface Science, 2020, 509, 145300.	6.1	11
792	Adsorption of Colloidal Metal Nanoparticles via Solvent Engineering. ACS Catalysis, 2020, 10, 2378-2383.	11.2	7
793	Recover the activity of sintered supported catalysts by nitrogen-doped carbon atomization. Nature Communications, 2020, 11, 335.	12.8	69
794	Tuning Polarity of Cu-O Bond in Heterogeneous Cu Catalyst to Promote Additive-free Hydroboration of Alkynes. CheM, 2020, 6, 725-737.	11.7	87
795	Atomically dispersed Pt–N4 sites as efficient and selective electrocatalysts for the chlorine evolution reaction. Nature Communications, 2020, 11, 412.	12.8	154

#	Article	IF	CITATIONS
796	FeNi intermetallic compound nanoparticles wrapped with N-doped graphitized carbon: a novel cocatalyst for boosting photocatalytic hydrogen evolution. Journal of Materials Chemistry A, 2020, 8, 3481-3490.	10.3	45
797	Selective transformation of ethanol to acetaldehyde catalyzed by Au/h-BN interface prepared on Rh(111) surface. Applied Catalysis A: General, 2020, 592, 117440.	4.3	10
798	Formation of an Alkynylâ€Protected Ag 112 Silver Nanocluster as Promoted by Chloride Released In Situ from CH 2 Cl 2. Angewandte Chemie, 2020, 132, 5350-5353.	2.0	22
799	Selective steam reforming of <scp><i>n</i></scp> â€dodecane over stable subnanometric NiPt clusters encapsulated in Silicaliteâ€1 zeolite. AICHE Journal, 2020, 66, e16917.	3.6	22
800	Colloidal Co single-atom catalyst: a facile synthesis strategy and high catalytic activity for hydrogen generation. Green Chemistry, 2020, 22, 1269-1274.	9.0	15
801	Single-atom catalysis for a sustainable and greener future. Current Opinion in Green and Sustainable Chemistry, 2020, 22, 54-64.	5.9	33
802	Surface Metallization of Porous Polymer Materials for Multifunctional Applications. Langmuir, 2020, 36, 1454-1461.	3.5	9
803	Single-Atom Catalysts for Electrochemical Hydrogen Evolution Reaction: Recent Advances and Future Perspectives. Nano-Micro Letters, 2020, 12, 21.	27.0	159
804	Introduction: Nanoparticles in Catalysis. Chemical Reviews, 2020, 120, 461-463.	47.7	334
805	Ultrasmall Pd uâ€Pt Trimetallic Twin Icosahedrons Boost the Electrocatalytic Performance of Glycerol Oxidation at the Operating Temperature of Fuel Cells. Advanced Functional Materials, 2020, 30, 1908235.	14.9	89
806	Design aktiver atomarer Zentren für HERâ€Elektrokatalysatoren. Angewandte Chemie, 2020, 132, 20978-20998.	2.0	18
807	Singleâ€Atom Catalysts in Catalytic Biomedicine. Advanced Materials, 2020, 32, e1905994.	21.0	260
808	Particle-Size-Dependent Methane Selectivity Evolution in Cobalt-Based Fischer–Tropsch Synthesis. ACS Catalysis, 2020, 10, 2799-2816.	11.2	46
809	Recent Advances on Metal Organic Framework–Derived Catalysts for Electrochemical Oxygen Reduction Reaction. ACS Symposium Series, 2020, , 231-278.	0.5	6
810	Selectivity Regulation in Au-Catalyzed Nitroaromatic Hydrogenation by Anchoring Single-Site Metal Oxide Promoters. ACS Catalysis, 2020, 10, 2837-2844.	11.2	42
811	Facile mechanochemical synthesis of Co@NC catalysts for oxidative esterification of benzyl alcohol with methanol. Catalysis Communications, 2020, 137, 105952.	3.3	15
812	Single Atom Dynamics in Chemical Reactions. Accounts of Chemical Research, 2020, 53, 390-399.	15.6	49
813	DFT-Assisted Spectroscopic Studies on the Coordination of Small Ligands to Palladium: From Isolated Ions to Nanoparticles. Journal of Physical Chemistry C, 2020, 124, 4781-4790.	3.1	4

#	Article	IF	CITATIONS
814	Atomic-dispersed platinum anchored on porous alumina sheets as an efficient catalyst for diboration of alkynes. Chemical Communications, 2020, 56, 3127-3130.	4.1	17
815	Atomic-Layered α-V ₂ O ₅ Nanosheets Obtained via Fast Gas-Driven Exfoliation for Superior Aerobic Oxidative Desulfurization. Energy & Fuels, 2020, 34, 2612-2616.	5.1	30
816	Importance of the Pd and Surrounding Sites in Hydrosilylation of Internal Alkynes by Palladium–Gold Alloy Catalyst. Organometallics, 2020, 39, 528-537.	2.3	10
817	Lattice oxygen activation in transition metal doped ceria. Chinese Journal of Catalysis, 2020, 41, 977-984.	14.0	31
818	Pt-Ligand single-atom catalysts: tuning activity by oxide support defect density. Catalysis Science and Technology, 2020, 10, 3353-3365.	4.1	28
819	Thermal effects – an alternative mechanism for plasmon-assisted photocatalysis. Chemical Science, 2020, 11, 5017-5027.	7.4	135
820	Importance of the decoration in shaped cobalt nanoparticles in the acceptor-less secondary alcohol dehydrogenation. Catalysis Science and Technology, 2020, 10, 4923-4937.	4.1	14
821	Metal–Organic Framework-Based Catalysts with Single Metal Sites. Chemical Reviews, 2020, 120, 12089-12174.	47.7	692
822	Encapsulation of Cu nanoparticles in nanovoids of plate-like silica sodalite through interlayer condensation of Cu ²⁺ ion-exchanged layered silicate RUB-15. Dalton Transactions, 2020, 49, 8067-8074.	3.3	3
823	Highly Dispersed MnOx Nanoparticles on Shape-Controlled SiO2 Spheres for Ecofriendly Selective Allylic Oxidation of Cyclohexene. Catalysis Letters, 2020, 150, 3023-3035.	2.6	7
824	Synthesis and Immobilization of Metal Nanoparticles Using Photoactive Polymerâ€Decorated Zeolite L Crystals and Their Application in Catalysis. Advanced Synthesis and Catalysis, 2020, 362, 2245-2253.	4.3	2
825	Synthesis of Amidesâ€Functionalized POPs‣upported Nanoâ€Pd Catalysts for Phosphine Ligandâ€Free Heterogeneous Hydroaminocarbonylation of Alkynes. Advanced Synthesis and Catalysis, 2020, 362, 2348-2353.	4.3	11
826	Enhanced CO ₂ Electroreduction on Neighboring Zn/Co Monomers by Electronic Effect. Angewandte Chemie, 2020, 132, 12764-12768.	2.0	23
827	Small Gold(I) and Gold(I)–Silver(I) Clusters by Câ^'Si Auration. Chemistry - A European Journal, 2020, 26, 7309-7313.	3.3	6
828	Recent progress on functional mesoporous materials as catalysts in organic synthesis. Emergent Materials, 2020, 3, 247-266.	5.7	17
829	A strategy for fast and facile embedding platinum nanoparticles in silicaliteâ€1 crystallites with a stable and catalytic active structure. Chemical Engineering Journal, 2020, 394, 124990.	12.7	11
830	Recent advances of metal nanoclusters for aerobic oxidation. Materials Today Nano, 2020, 11, 100080.	4.6	11
831	Charge redistribution within platinum–nitrogen coordination structure to boost hydrogen evolution. Nano Energy, 2020, 73, 104739.	16.0	55

#	Article	IF	CITATIONS
832	AgNPs Immobilized over Functionalized 2D Hexagonal SBA-15 for Catalytic C–H Oxidation of Hydrocarbons with Molecular Oxygen under Solvent-Free Conditions. ACS Sustainable Chemistry and Engineering, 2020, 8, 5856-5867.	6.7	40
833	Chain-End Functionalized Polymers for the Controlled Synthesis of Sub-2 nm Particles. Journal of the American Chemical Society, 2020, 142, 7350-7355.	13.7	17
834	From metal–organic frameworks to single/dual-atom and cluster metal catalysts for energy applications. Energy and Environmental Science, 2020, 13, 1658-1693.	30.8	323
835	<i>Ab initio</i> investigation of quantum size effects on the adsorption of CO ₂ , CO, H ₂ O, and H ₂ on transition-metal particles. Physical Chemistry Chemical Physics, 2020, 22, 8998-9008.	2.8	19
836	Recent advances in nanostructured intermetallic electrocatalysts for renewable energy conversion reactions. Journal of Materials Chemistry A, 2020, 8, 8195-8217.	10.3	64
837	Molecular Tuning Nanoarchitectonics for Molecular Recognition and Molecular Manipulation. ChemNanoMat, 2020, 6, 870-880.	2.8	25
838	Atomically dispersed palladium catalyses Suzuki–Miyaura reactions under phosphine-free conditions. Communications Chemistry, 2020, 3, .	4.5	34
839	Unraveling the single-atom electrocatalytic activity of transition metal-doped phosphorene. Nanoscale Advances, 2020, 2, 2410-2421.	4.6	23
840	Earth-Abundant and Precious Metal Nanoparticle Catalysis. Topics in Organometallic Chemistry, 2020, , 77-129.	0.7	2
841	One-step In-situ Synthesis of Vacancy-rich CoFe2O4@Defective Graphene Hybrids as Bifunctional Oxygen Electrocatalysts for Rechargeable Zn-Air Batteries. Chemical Research in Chinese Universities, 2020, 36, 479-487.	2.6	20
842	Temperatureâ€Induced Structure Reconstruction to Prepare a Thermally Stable Singleâ€Atom Platinum Catalyst. Angewandte Chemie, 2020, 132, 13664-13669.	2.0	2
843	Temperatureâ€Induced Structure Reconstruction to Prepare a Thermally Stable Singleâ€Atom Platinum Catalyst. Angewandte Chemie - International Edition, 2020, 59, 13562-13567.	13.8	69
844	Recent Advances of Precise Cu Nanoclusters in Microporous Materials. Chemistry - an Asian Journal, 2020, 15, 1819-1828.	3.3	8
845	Identifying the role of excess electrons and holes for initiating the photocatalytic dissociation of methanol on a TiO ₂ (110) surface. Physical Chemistry Chemical Physics, 2020, 22, 11086-11094.	2.8	0
846	Strong Metal–Support Interactions between Pt Single Atoms and TiO ₂ . Angewandte Chemie, 2020, 132, 11922-11927.	2.0	46
847	Bimetal Cu-Mn porous silica-supported catalyst for Fenton-like degradation of organic dyes in wastewater at neutral pH. Catalysis Today, 2020, 358, 270-277.	4.4	32
849	Strong Metal–Support Interactions between Pt Single Atoms and TiO ₂ . Angewandte Chemie - International Edition, 2020, 59, 11824-11829.	13.8	309
850	Renewable RGO@Cul Nanocomposites for Redox Triggered Single Electron Transfer (SET) Reaction Under Aerobic and Anaerobic Conditions. ChemCatChem, 2020, 12, 3728-3736.	3.7	2

#	Article	IF	CITATIONS
851	Insight into the Selective Conversion via a Steered Adsorption and Protonation from Tantalatesâ€based Solid Acid's Intrinsic Proton for Hydrideâ€ŧransfer Reduction. ChemCatChem, 2020, 12, 3489-3495.	3.7	2
852	Eight new coordination polymers containing rigid 4-(4-carboxy-phenyl)-pyridine-2-carboxylic acid: Synthesis, structural diversity, fluorescence and magnetic properties. Inorganica Chimica Acta, 2020, 507, 119600.	2.4	4
853	High-Temperature Gas Sensor Based on Novel Pt Single Atoms@SnO ₂ Nanorods@SiC Nanosheets Multi-heterojunctions. ACS Applied Materials & Interfaces, 2020, 12, 21808-21817.	8.0	59
854	Structural Rearrangements of Subnanometer Cu Oxide Clusters Govern Catalytic Oxidation. ACS Catalysis, 2020, 10, 5309-5317.	11.2	36
855	Fe Single-Atom Catalyst for Visible-Light-Driven Photofixation of Nitrogen Sensitized by Triphenylphosphine and Sodium Iodide. ACS Catalysis, 2020, 10, 5502-5510.	11.2	51
856	In Situ Phosphatizing of Triphenylphosphine Encapsulated within Metal–Organic Frameworks to Design Atomic Co ₁ –P ₁ N ₃ Interfacial Structure for Promoting Catalytic Performance. Journal of the American Chemical Society, 2020, 142, 8431-8439.	13.7	259
857	Atomic Pt-Catalyzed Heterogeneous Anti-Markovnikov C–N Formation: Pt ₁ ⁰ Activating N–H for Pt ₁ ^{δ+} -Activated C╀ Attack. Journal of the American Chemical Society, 2020, 142, 9017-9027.	13.7	18
858	Synthesis of a binary alloy nanoparticle catalyst with an immiscible combination of Rh and Cu assisted by hydrogen spillover on a TiO ₂ support. Chemical Science, 2020, 11, 4194-4203.	7.4	32
859	Striking dual functionality of a novel Pd@Eu-MOF nanocatalyst in C(sp ²)–C(sp ²) bond-forming and CO ₂ fixation reactions. Dalton Transactions, 2020, 49, 6368-6376.	3.3	20
860	Insight into the correlation of Pt–support interactions with electrocatalytic activity and durability in fuel cells. Journal of Materials Chemistry A, 2020, 8, 9420-9446.	10.3	62
861	Pd-Promoted cross coupling of iodobenzene with vinylgold <i>via</i> an unprecedented phenyl transmetalation from Pd to Au. Chemical Communications, 2020, 56, 6213-6216.	4.1	8
862	Polymer-Immobilized Clusters and Metal Nanoparticles in Catalysis. Kinetics and Catalysis, 2020, 61, 198-223.	1.0	33
863	Silver-Nanoparticles Embedded Pyridine-Cholesterol Xerogels as Highly Efficient Catalysts for 4-nitrophenol Reduction. Materials, 2020, 13, 1486.	2.9	1
864	Synthesis and characterization of a supported Pd complex on carbon nanofibers for the selective decarbonylation of stearic acid to 1-heptadecene: the importance of subnanometric Pd dispersion. Catalysis Science and Technology, 2020, 10, 2970-2985.	4.1	6
865	Fabrication of Pd3@Beta for catalytic combustion of VOCs by efficient Pd3 cluster and seed-directed hydrothermal syntheses. RSC Advances, 2020, 10, 12772-12779.	3.6	12
866	Intrinsic Electrocatalytic Activity Regulation of M–N–C Singleâ€Atom Catalysts for the Oxygen Reduction Reaction. Angewandte Chemie - International Edition, 2021, 60, 4448-4463.	13.8	433
867	Intrinsische elektrokatalytische Aktivitästeuerung von Mâ€Nâ€Câ€Einzelatomâ€Katalysatoren für die Sauerstoffreduktionsreaktion. Angewandte Chemie, 2021, 133, 4496-4512.	2.0	40
868	Restructuring effects of the chemical environment in metal nanocatalysis and single-atom catalysis. Catalysis Today, 2021, 373, 80-97.	4.4	53

#	Article	IF	CITATIONS
869	Single Cu atom supported on modified h-BN monolayer as n-p codoped catalyst for CO oxidation: A computational study. Catalysis Today, 2021, 368, 148-160.	4.4	9
870	Insights into formation of Pt species in Pt/CeO2 catalysts: Effect of treatment conditions and metal-support interaction. Catalysis Today, 2021, 375, 36-47.	4.4	35
871	Ultra-Small Silver Nanoparticles Immobilized in Mesoporous SBA-15. Microwave-Assisted Synthesis and Catalytic Activity in the 4-Nitrophenol Reduction. Catalysis Today, 2021, 362, 81-89.	4.4	23
872	Recent progress on single atom/sub-nano electrocatalysts for energy applications. Progress in Materials Science, 2021, 115, 100711.	32.8	27
873	Tailoring catalytic properties of V2O3 to propane dehydrogenation through single-atom doping: A DFT study. Catalysis Today, 2021, 368, 46-57.	4.4	29
874	Magnetic-field-assisted electrodeposition of metal to obtain conically structured ferromagnetic layers. Electrochimica Acta, 2021, 365, 137374.	5.2	23
875	Incorporation of Active Metal Species in Crystalline Porous Materials for Highly Efficient Synergetic Catalysis. Small, 2021, 17, e2003971.	10.0	31
876	Coinage metal clusters: From superatom chemistry to genetic materials. Coordination Chemistry Reviews, 2021, 429, 213643.	18.8	57
877	Recyclable and ultrasensitive SERS sensing platform: Deposition of atomically precise Ag152 nanoclusters on surface of plasmonic 3D ZnO-NC/AuNP arrays. Applied Surface Science, 2021, 540, 148324.	6.1	19
878	Synergistic catalysis of the Brönsted acid and highly dispersed Cu on the mesoporous Beta zeolite in the intermolecular aminoazidation of styrene. Applied Catalysis A: General, 2021, 609, 117907.	4.3	12
879	Ultra-low loading of iron oxide on Pt/Al2O3 for enhanced catalytic activity of CO oxidation at room temperature: A simple method for applications. Chemical Engineering Journal, 2021, 404, 126560.	12.7	23
880	Highly dispersible <scp>Fe₃O₄â€Ag</scp> @ <scp>OPO</scp> (<scp>OH</scp>) ₂ nanocomposites as a novel ecoâ€friendly magnetic retrievable catalyst for the reduction of <i>p</i> â€nitrophenol. Journal of the Chinese Chemical Society. 2021, 68, 322-332.	1.4	3
881	Noble-Metal Nanocrystals with Controlled Shapes for Catalytic and Electrocatalytic Applications. Chemical Reviews, 2021, 121, 649-735.	47.7	388
882	Design, Identification, and Evolution of a Surface Ruthenium(II/III) Single Site for CO Activation. Angewandte Chemie, 2021, 133, 1232-1239.	2.0	0
883	Recyclable nanocellulose-confined palladium nanoparticles with enhanced room-temperature catalytic activity and chemoselectivity. Science China Materials, 2021, 64, 621-630.	6.3	19
884	High-temperature flame spray pyrolysis induced stabilization of Pt single-atom catalysts. Applied Catalysis B: Environmental, 2021, 281, 119471.	20.2	85
885	Environmental Materials beyond and below the Nanoscale: Single-Atom Catalysts. ACS ES&T Engineering, 2021, 1, 157-172.	7.6	88
886	Cucurbiturilsâ€Mediated Noble Metal Nanoparticles for Applications in Sensing, SERS, Theranostics, and Catalysis. Advanced Functional Materials, 2021, 31, .	14.9	79

#	Article	IF	CITATIONS
887	Design, Identification, and Evolution of a Surface Ruthenium(II/III) Single Site for CO Activation. Angewandte Chemie - International Edition, 2021, 60, 1212-1219.	13.8	8
888	Development Trends on Nickelâ€Based Electrocatalysts for Direct Hydrazine Fuel Cells. ChemCatChem, 2021, 13, 81-110.	3.7	38
889	Tunable synthesis of imines and secondary-amines from tandem hydrogenation-coupling of aromatic nitro and aldehyde over NiCo5 bi-metallic catalyst. Applied Catalysis B: Environmental, 2021, 280, 119448.	20.2	17
890	Atomic Nanoarchitectonics for Catalysis. Advanced Materials Interfaces, 2021, 8, 2001395.	3.7	15
891	Confining isolated atoms and clusters in crystalline porous materials forÂcatalysis. Nature Reviews Materials, 2021, 6, 244-263.	48.7	219
892	β-Cyclodextrin polymer networks stabilized gold nanoparticle with superior catalytic activities. Nano Research, 2021, 14, 1018-1025.	10.4	15
893	Recent progress on hybrid electrocatalysts for efficient electrochemical CO2 reduction. Nano Energy, 2021, 80, 105504.	16.0	78
894	Hydrogen evolution/spillover effect of single cobalt atom on anatase TiO2 from first-principles calculations. Applied Surface Science, 2021, 536, 147831.	6.1	13
895	Effect of support on the formation of CuPd alloy nanoparticles for the hydrogenation of succinic acid. Applied Catalysis B: Environmental, 2021, 282, 119619.	20.2	21
896	Hydrothermal synthesis of Co3O4 with different morphology: Investigation of magnetic and electrochemical properties. Journal of Molecular Structure, 2021, 1226, 129414.	3.6	21
897	Single metal atom decorated photocatalysts: Progress and challenges. Nano Research, 2021, 14, 934-944.	10.4	62
898	Confined Ru Nanocatalysts on Surface to Enhance Ammonia Synthesis: An In situ ETEM Study. ChemCatChem, 2021, 13, 534-538.	3.7	10
899	Synthesis of highly porous polymer microspheres with interconnected open pores for catalytic microreactors. Chemical Engineering Journal, 2021, 420, 127628.	12.7	32
900	Electrochemical Oxygen Reduction to Hydrogen Peroxide via a Twoâ€Electron Transfer Pathway on Carbonâ€Based Singleâ€Atom Catalysts. Advanced Materials Interfaces, 2021, 8, 2001360.	3.7	35
901	A comprehensive update on antibiotics as an emerging water pollutant and their removal using nano-structured photocatalysts. Journal of Environmental Chemical Engineering, 2021, 9, 104796.	6.7	46
902	Control of the single atom/nanoparticle ratio in Pd/C catalysts to optimize the cooperative hydrogenation of alkenes. Catalysis Science and Technology, 2021, 11, 984-999.	4.1	30
903	Self-activated cathode substrates in rechargeable zinc–air batteries. Energy Storage Materials, 2021, 35, 530-537.	18.0	11
904	Almost 100 % Peroxymonosulfate Conversion to Singlet Oxygen on Singleâ€Atom CoN ₂₊₂ Sites. Angewandte Chemie, 2021, 133, 4638-4643.	2.0	224

		CITATION REPORT	
# 905	ARTICLE Impurity Control in Catalyst Design: The Role of Sodium in Promoting and Stabilizing Co and Co ₂ C for Syngas Conversion. ChemCatChem, 2021, 13, 1186-1194.	IF 3.7	CITATIONS 6
906	Exerting charge transfer to stabilize Au nanoclusters for enhanced photocatalytic performance toward selective oxidation of amines. Applied Catalysis B: Environmental, 2021, 284, 119704.	20.2	31
907	Enhanced solar-driven benzaldehyde oxidation with simultaneous hydrogen production on Pt single-atom catalyst. Applied Catalysis B: Environmental, 2021, 284, 119759.	20.2	34
908	Salt melt synthesis of Chlorella-derived nitrogen-doped porous carbon with atomically dispersed CoN4 sites for efficient oxygen reduction reaction. Journal of Colloid and Interface Science, 2021, 586, 498-504.	9.4	29
909	Silver Singleâ€Atom Catalyst for Efficient Electrochemical CO ₂ Reduction Synthesized from Thermal Transformation and Surface Reconstruction. Angewandte Chemie - International Edition, 2021, 60, 6170-6176.	13.8	236
910	Noble-Metal Nanoframes and Their Catalytic Applications. Chemical Reviews, 2021, 121, 796-833.	47.7	115
911	Plasma catalytic ammonia synthesis on Ni nanoparticles: The size effect. Journal of Catalysis, 2021, 393, 369-380.	6.2	34
912	Design of Local Atomic Environments in Singleâ€Atom Electrocatalysts for Renewable Energy Conversions. Advanced Materials, 2021, 33, e2003075.	21.0	187
913	From doubleâ€∎tom catalysts to singleâ€cluster catalysts: A new frontier in heterogeneous catalysis. Nano Select, 2021, 2, 251-270.	3.7	40
914	Defect Electrocatalysts and Alkaline Electrolyte Membranes in Solidâ€6tate Zinc–Air Batteries: Recent Advances, Challenges, and Future Perspectives. Small Methods, 2021, 5, e2000868.	8.6	42
915	Metal-organic framework-derived porous carbon templates for catalysis. , 2021, , 73-121.		0
916	Recent advances in the development of palladium nanocatalysts for sustainable organic transformations. Inorganic Chemistry Frontiers, 2021, 8, 499-545.	6.0	30
917	Global optimization of chemical cluster structures: Methods, applications, and challenges. International Journal of Quantum Chemistry, 2021, 121, e26553.	2.0	31
918	Cobalt Single Atoms on Tetrapyridomacrocyclic Support for Efficient Peroxymonosulfate Activation. Environmental Science & Technology, 2021, 55, 1242-1250.	10.0	185
919	Comparative study of aryl halides in Pd-mediated reactions: key factors beyond the oxidative addition step. Inorganic Chemistry Frontiers, 2021, 8, 620-635.	6.0	25
920	A <scp>Topâ€Down</scp> Approach towards Cu(I) Alkynyl Clusters with Unusual Geometry. Chinese Journal of Chemistry, 2021, 39, 937-941.	4.9	9
921	Stabilization of Metal Single Atoms on Carbon and TiO ₂ Supports for CO ₂ Hydrogenation: The Importance of Regulating Charge Transfer. Advanced Materials Interfaces, 2021, 8, 2001777.	3.7	26
922	Almost 100 % Peroxymonosulfate Conversion to Singlet Oxygen on Singleâ€Atom CoN ₂₊₂ Sites. Angewandte Chemie - International Edition, 2021, 60, 4588-4593.	13.8	337

#	ARTICLE	IF	CITATIONS
923	Carboxymethyl cellulose nanocomposite beads as super-efficient catalyst for the reduction of organic and inorganic pollutants. International Journal of Biological Macromolecules, 2021, 167, 101-116.	7.5	41
924	Electrocatalytic and photocatalytic applications of atomically precise gold-based nanoclusters. Science China Chemistry, 2021, 64, 1065-1075.	8.2	18
925	Synthesis and high catalytic activity of ISOBAM-104 stabilized Fe colloidal catalysts for hydrogen generation. Catalysis Today, 2021, 374, 20-28.	4.4	11
926	Integration of Pd nanoparticles with engineered pore walls in MOFs for enhanced catalysis. CheM, 2021, 7, 686-698.	11.7	146
927	Use of rare earth elements in single-atom site catalysis: A critical review — CommemoratingÂtheÂ100thÂanniversaryÂofÂtheAbirthÂofÂAcademicianÂGuangxianÂXu. Journal of Rare Earths, 2021, 39, 233-242.	4.8	28
928	Correlations between the fundamentals and applications of ultrasmall metal nanoclusters: Recent advances in catalysis and biomedical applications. Nano Today, 2021, 36, 101053.	11.9	86
929	Computational strategies to address the catalytic activity of nanoclusters. Wiley Interdisciplinary Reviews: Computational Molecular Science, 2021, 11, e1508.	14.6	5
930	Towards full-spectrum photocatalysis: Successful approaches and materials. Applied Catalysis A: General, 2021, 610, 117966.	4.3	36
931	Carbon monoxide oxidation over copper and nitrogen modified titanium dioxide⋆. Applied Catalysis B: Environmental, 2021, 285, 119748.	20.2	23
932	Continuous flow reduction of organic dyes over Pd-Fe alloy based fibrous catalyst in a fixed-bed system. Chemical Engineering Science, 2021, 231, 116303.	3.8	45
933	Insights on the dual role of two-dimensional materials as catalysts and supports for energy and environmental catalysis. Journal of Materials Chemistry A, 2021, 9, 2018-2042.	10.3	34
934	Atomically Dispersed Reactive Centers for Electrocatalytic CO ₂ Reduction and Water Splitting. Angewandte Chemie - International Edition, 2021, 60, 13177-13196.	13.8	143
935	Electrocatalytic Oxygen Reduction to Hydrogen Peroxide: From Homogeneous to Heterogeneous Electrocatalysis. Advanced Energy Materials, 2021, 11, 2003323.	19.5	150
936	Interplay between CO Disproportionation and Oxidation: On the Origin of the CO Reaction Onset on Atomic Layer Deposition-Grown Pt/ZrO ₂ Model Catalysts. ACS Catalysis, 2021, 11, 208-214.	11.2	27
937	FeS ₂ -anchored transition metal single atoms for highly efficient overall water splitting: a DFT computational screening study. Journal of Materials Chemistry A, 2021, 9, 2438-2447.	10.3	73
938	Recyclable catalysts for the synthesis of heterocyclic compounds using carbon materials. Journal of Heterocyclic Chemistry, 2021, 58, 1039-1057.	2.6	11
939	Understanding the Activity of Carbon-Based Single-Atom Electrocatalysts from <i>Ab Initio</i> Simulations. , 2021, 3, 110-120.		19
940	Which is Better for Nanomedicines: Nanocatalysts or Singleâ€Atom Catalysts?. Advanced Healthcare Materials, 2021, 10, e2001897.	7.6	13

#	Article	IF	CITATIONS
941	Atomically Dispersed Reactive Centers for Electrocatalytic CO ₂ Reduction and Water Splitting. Angewandte Chemie, 2021, 133, 13285-13304.	2.0	20
942	Green synthesis of gold nanoparticles using aqueous extract of Mentha Longifolia leaf and investigation of its anti-human breast carcinoma properties in the in vitro condition. Arabian Journal of Chemistry, 2021, 14, 102931.	4.9	49
943	Collaboration between a Pt-dimer and neighboring Co–Pd atoms triggers efficient pathways for oxygen reduction reaction. Physical Chemistry Chemical Physics, 2021, 23, 1822-1834.	2.8	16
944	Coordination tunes the activity and selectivity of the nitrogen reduction reaction on single-atom iron catalysts: a computational study. Journal of Materials Chemistry A, 2021, 9, 1240-1251.	10.3	135
945	Silver Singleâ€Atom Catalyst for Efficient Electrochemical CO ₂ Reduction Synthesized from Thermal Transformation and Surface Reconstruction. Angewandte Chemie, 2021, 133, 6235-6241.	2.0	22
946	Preparation of PdAuCu/C as a Highly Active Catalyst for the Reduction of 4â€Nitrophenol by Controlling the Deposition of Noble Metals. Chemistry - an Asian Journal, 2021, 16, 165-173.	3.3	4
947	Recent Advances in Graphitic Carbon Nitride Supported Singleâ€Atom Catalysts for Energy Conversion. ChemCatChem, 2021, 13, 1250-1270.	3.7	46
948	Catalytic Property and Stability of Subnanometer Pt Cluster on Carbon Nanotube in Direct Propane Dehydrogenation. Chinese Journal of Chemistry, 2021, 39, 661-665.	4.9	11
949	Surface interactions with the metal oxide surface control Ru nanoparticle formation and catalytic performance. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 610, 125722.	4.7	9
950	Evaluating the electro-sensing behaviors of single-atom catalysts based on mechanistic insights. Current Opinion in Electrochemistry, 2021, 25, 100646.	4.8	3
951	Efficient drop reactor processing of methylene blue degradation with silver nanowire catalysts. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 610, 125749.	4.7	3
952	A Perspective on New Opportunities in Atom-by-Atom Synthesis of Heterogeneous Catalysts Using Atomic Layer Deposition. Catalysis Letters, 2021, 151, 1535-1545.	2.6	30
953	Tutorial: structural characterization of isolated metal atoms and subnanometric metal clusters in zeolites. Nature Protocols, 2021, 16, 1871-1906.	12.0	30
954	Precise fabrication of single-atom alloy co-catalyst with optimal charge state for enhanced photocatalysis. National Science Review, 2021, 8, nwaa224.	9.5	125
955	Applications of Atomically Dispersed Oxygen Reduction Catalysts in Fuel Cells and Zinc–Air Batteries. Energy and Environmental Materials, 2021, 4, 307-335.	12.8	58
956	Construction of Bridged Polycyclic Skeletons via Transitionâ€Metal Catalyzed Carbon–Carbon Bondâ€Forming Reactions. Chemistry - A European Journal, 2021, 27, 3944-3956.	3.3	20
957	Designing of Highly Active and Sustainable Encapsulated Stabilized Palladium Nanoclusters as well as Real Exploitation for Catalytic Hydrogenation in Water. Catalysis Letters, 2021, 151, 803-820.	2.6	4
958	Enhanced catalytic activity in hydrogen production from hydrolysis of sodium borohydride using starch hydrogel-CoNi bimetallic alloys. Journal of the Iranian Chemical Society, 2021, 18, 689-699.	2.2	7

#	Article	IF	CITATIONS
959	Ruthenium Catalyst Supported on Multi-Walled Carbon Nanotubes for CO Oxidation. Modern Research in Catalysis, 2021, 10, 73-91.	1.7	6
960	One-pot synthesis of mesoporous palladium/C nanodendrites as high-performance oxygen reduction eletrocatalysts through a facile dual surface protecting agent-assisted strategy. Dalton Transactions, 2021, 50, 6297-6305.	3.3	4
961	Nanoporous ultra-high-entropy alloys containing fourteen elements for water splitting electrocatalysis. Chemical Science, 2021, 12, 11306-11315.	7.4	88
962	Direct transformation of raw biomass into a Fe–N _x –C single-atom catalyst for efficient oxygen reduction reaction. Materials Chemistry Frontiers, 2021, 5, 3093-3098.	5.9	11
963	Interfacial sites in platinumâ^'hydroxideâ^'cobalt hybrid nanostructures for promoting CO oxidation activity. Nanoscale, 2021, 13, 2593-2600.	5.6	11
964	Preparation and characterization of biomass-based nanocatalyst for hydrolysis and fermentation of catalytic hydrolysate to bioethanol. Biomass Conversion and Biorefinery, 2023, 13, 1601-1612.	4.6	10
965	<i>N</i> -Heterocyclic carbene–carbodiimide (NHC–CDI) betaine adducts: synthesis, characterization, properties, and applications. Chemical Science, 2021, 12, 2699-2715.	7.4	8
966	Tri-atomic Pt clusters induce effective pathways in a Co _{core} –Pd _{shell} nanocatalyst surface for a high-performance oxygen reduction reaction. Physical Chemistry Chemical Physics, 2021, 23, 18012-18025.	2.8	5
967	Insights into oxygen activation on metal clusters for catalyst design. Journal of Materials Chemistry A, 2021, 9, 11726-11733.	10.3	4
968	Synergy between copper and iron sites inside carbon nanofibers for superior electrocatalytic denitrification. Nanoscale, 2021, 13, 10108-10115.	5.6	20
969	Developments and advances in <i>in situ</i> transmission electron microscopy for catalysis research. Catalysis Science and Technology, 2021, 11, 3634-3658.	4.1	19
970	Designing stable bimetallic nanoclusters <i>via</i> an iterative two-step optimization approach. Molecular Systems Design and Engineering, 2021, 6, 545-557.	3.4	6
971	Pt ₁ –O ₄ as active sites boosting CO oxidation <i>via</i> a non-classical Mars–van Krevelen mechanism. Catalysis Science and Technology, 2021, 11, 3578-3588.	4.1	5
972	Electrocatalysis of gold-based nanoparticles and nanoclusters. Materials Horizons, 2021, 8, 1657-1682.	12.2	49
973	Conversion of Syngas with Carbon Dioxide to Fuels. , 2021, , 1-36.		0
974	Chemical ordering in Pt–Au, Pt–Ag and Pt–Cu nanoparticles from density functional calculations using a topological approach. Materials Advances, 2021, 2, 6589-6602.	5.4	12
975	Trace thioether inserted polyamine patches on a support mediate uniform gold nanoclusters as ultrahigh active catalysts. Journal of Materials Chemistry A, 2021, 9, 15714-15723.	10.3	9
976	Synthesis Strategies, Catalytic Applications, and Performance Regulation of Singleâ€Atom Catalysts. Advanced Functional Materials, 2021, 31, 2008318.	14.9	133

#	Article	IF	CITATIONS
977	A combination of heterogeneous catalysis and photocatalysis for the olefination of quinoxalin-2(1 <i>H</i>)-ones with ketones in water: a green and efficient route to (<i>Z</i>)-enaminones. Green Chemistry, 2021, 23, 2123-2129.	9.0	48
978	Global Activity Search Uncovers Reaction Induced Concomitant Catalyst Restructuring for Alkane Dissociation on Model Pt Catalysts. ACS Catalysis, 2021, 11, 1877-1885.	11.2	26
979	Copper nanoclusters: designed synthesis, structural diversity, and multiplatform applications. Nanoscale, 2021, 13, 6283-6340.	5.6	105
980	A review on key design and operational parameters to optimize and develop hydrothermal liquefaction of biomass for biorefinery applications. Green Chemistry, 2021, 23, 1404-1446.	9.0	117
981	Cobalt single atom site catalysts with ultrahigh metal loading for enhanced aerobic oxidation of ethylbenzene. Nano Research, 2021, 14, 2418-2423.	10.4	248
982	Biomedicine Meets Fenton Chemistry. Chemical Reviews, 2021, 121, 1981-2019.	47.7	400
983	Decorating Pt@cyclodextrin nanoclusters on C ₃ N ₄ /MXene for boosting the photocatalytic H ₂ O ₂ production. Journal of Materials Chemistry A, 2021, 9, 6872-6880.	10.3	39
984	Mechanistic study of C–H bond activation by O ₂ on negatively charged Au clusters: α,β-dehydrogenation of 1-methyl-4-piperidone by supported Au catalysts. Catalysis Science and Technology, 2021, 11, 3333-3346.	4.1	5
985	Continuous Flow Hydrogenation of Flavorings and Fragrances Using 3D-Printed Catalytic Static Mixers. Industrial & Engineering Chemistry Research, 2021, 60, 1989-2002.	3.7	23
986	Challenges with atomically dispersed supported metal catalysts: Controlling performance, improving stability, and enhancing metal loading. , 2023, , 86-111.		2
987	Thermodynamically driven self-formation of Ag nanoparticles in Zn-embedded carbon nanofibers for efficient electrochemical CO2 reduction. RSC Advances, 2021, 11, 24702-24708.	3.6	2
988	Directed design of hydrogenation Ziegler systems. New Journal of Chemistry, 2021, 45, 4525-4533.	2.8	6
989	The dome of gold nanolized for catalysis. Chemical Science, 2021, 12, 5664-5671.	7.4	3
990	Metallic Nanoparticles in Heterogeneous Catalysis. Catalysis Letters, 2021, 151, 2153.	2.6	50
991	Molecular engineered palladium single atom catalysts with an M-C ₁ N ₃ subunit for Suzuki coupling. Journal of Materials Chemistry A, 2021, 9, 11427-11432.	10.3	18
992	Evaluation of the role of graphene-based Cu(<scp>i</scp>) catalysts in borylation reactions. Catalysis Science and Technology, 2021, 11, 3501-3513.	4.1	8
993	Surface activation by electron scavenger metal nanorod adsorption on TiH ₂ , TiC, TiN, and Ti ₂ O ₃ . Physical Chemistry Chemical Physics, 2021, 23, 16577-16593.	2.8	9
994	Metal–organic framework based catalytic nanoreactors: synthetic challenges and applications. Materials Chemistry Frontiers, 2021, 5, 3986-4021.	5.9	14

#	Article	IF	CITATIONS
995	Controlling the selectivity of bimetallic platinum–ruthenium nanoparticles supported on N-doped graphene by adjusting their metal composition. Catalysis Science and Technology, 2021, 11, 494-505.	4.1	13
996	Hydroxyl improving the activity, selectivity and stability of supported Ni single atoms for selective semi-hydrogenation. Chemical Science, 2021, 12, 10290-10298.	7.4	13
997	Highly dispersed Pt atoms and clusters on hydroxylated indium tin oxide: a view from first-principles calculations. Journal of Materials Chemistry A, 2021, 9, 15724-15733.	10.3	8
998	Designing the electronic and geometric structures of single-atom and nanocluster catalysts. Journal of Materials Chemistry A, 2021, 9, 18773-18784.	10.3	9
999	Surface electronic states mediate concerted electron and proton transfer at metal nanoscale interfaces for catalytic hydride reduction of –NO ₂ to –NH ₂ . Physical Chemistry Chemical Physics, 2021, 23, 12950-12957.	2.8	15
1000	The design and synthesis of heterogeneous catalysts for environmental applications. Dalton Transactions, 2021, 50, 4765-4771.	3.3	12
1001	Activation and conversion of alkanes in the confined space of zeolite-type materials. Chemical Society Reviews, 2021, 50, 8511-8595.	38.1	87
1002	Effects of the morphology and heteroatom doping of CeO ₂ support on the hydrogenation activity of Pt single-atoms. Catalysis Science and Technology, 2021, 11, 2844-2851.	4.1	23
1003	Insight into the Metal‣upport Interactions between Ruthenium and Nanodiamondâ€derived Carbon material for CO Oxidation. ChemCatChem, 2021, 13, 1368-1374.	3.7	5
1004	First-Principles Calculations of Stability, Electronic Structure, and Sorption Properties of Nanoparticle Systems. Journal of Computer Chemistry Japan, 2021, 20, 23-47.	0.1	0
1005	Recent advance in single-atom catalysis. Rare Metals, 2021, 40, 767-789.	7.1	116
1006	Enormous passivation effects of a surrounding zeolitic framework on Pt clusters for the catalytic dehydrogenation of propane. Catalysis Science and Technology, 0, , .	4.1	10
1007	Phase junction-confined single-atom TiO ₂ –Pt ₁ –CeO ₂ for multiplying catalytic oxidation efficiency. Catalysis Science and Technology, 2021, 11, 4650-4657.	4.1	3
1008	Recent developments in the synthesis of polysubstituted pyridines <i>via</i> multicomponent reactions using nanocatalysts. New Journal of Chemistry, 2021, 45, 12328-12345.	2.8	42
1009	Selectivity controlled transformation of carbon dioxide into a versatile bi-functional multi-carbon oxygenate using a physically mixed ruthenium–iridium catalyst. Catalysis Science and Technology, 2021, 11, 4719-4731.	4.1	2
1010	The loading effect of Pt clusters on Pt/graphene nano sheets catalysts. Scientific Reports, 2021, 11, 2532.	3.3	13
1011	Cooperativity in supported metal single atom catalysis. Nanoscale, 2021, 13, 5985-6004.	5.6	29
1012	Recent advances in metal-free heteroatom-doped carbon heterogonous catalysts. RSC Advances, 2021, 11, 23725-23778.	3.6	28

#	Article	IF	CITATIONS
1013	Pd Single-Atom Sites on the Surface of PdAu Nanoparticles: A DFT-Based Topological Search for Suitable Compositions. Nanomaterials, 2021, 11, 122.	4.1	8
1014	Local structure and NO adsorption/desorption property of Pd ²⁺ cations at different paired Al sites in CHA zeolite. Physical Chemistry Chemical Physics, 2021, 23, 22273-22282.	2.8	15
1015	Mechanism of electrochemical oxygen reduction reaction at two-dimensional Pt-doped MoSe ₂ material: an efficient electrocatalyst. Journal of Materials Chemistry C, 2021, 9, 11331-11342.	5.5	27
1016	Rational Component and Structure Design of Nobleâ€Metal Composites for Optical and Catalytic Applications. Small Structures, 2021, 2, 2000138.	12.0	31
1017	Tuning the shape and crystal phase of TiO ₂ nanoparticles for catalysis. Chemical Communications, 2021, 57, 6838-6850.	4.1	21
1018	Selective hydrogenolysis of catechyl lignin into propenylcatechol over an atomically dispersed ruthenium catalyst. Nature Communications, 2021, 12, 416.	12.8	97
1019	Evidence for "cocktail―type catalysis in Buchwald–Hartwig reaction. A mechanistic study. Catalysis Science and Technology, 2021, 11, 7171-7188.	4.1	15
1020	Mechanistic insights into the two-phase synthesis of heteroleptic Au nanoclusters. Nanoscale, 2021, 13, 3512-3518.	5.6	8
1021	Catalytic conversion of NO and CO into N ₂ and CO ₂ by rhodium–aluminum oxides in the gas phase. Journal of Materials Chemistry A, 2022, 10, 6031-6037.	10.3	12
1022	Photocatalytic functionalizations of alkynes. Chemical Communications, 2021, 57, 11285-11300.	4.1	33
1023	Multi-purpose heterogeneous catalyst material from an amorphous cobalt metal–organic framework. Materials Advances, 2021, 2, 4009-4015.	5.4	6
1024	Non-noble MNP@MOF materials: synthesis and applications in heterogeneous catalysis. Dalton Transactions, 2021, 50, 10340-10353.	3.3	29
1025	Silver nanomaterials: synthesis and (electro/photo) catalytic applications. Chemical Society Reviews, 2021, 50, 11293-11380.	38.1	79
1026	The effect of size, charge state and composition on the binding of propene to yttrium-doped gold clusters. RSC Advances, 2021, 11, 29186-29195.	3.6	6
1027	Rational design of an Fe cluster catalyst for robust nitrogen activation. Journal of Materials Chemistry A, 2021, 9, 21219-21227.	10.3	24
1028	Transformation of Bulk Pd to Pd Cations in Small-Pore CHA Zeolites Facilitated by NO. Jacs Au, 2021, 1, 201-211.	7.9	34
1029	MOF-Derived Materials for Energy Conversion. , 2021, , 165-209.		0
1030	Rational Fabrication of Low oordinate Singleâ€Atom Ni Electrocatalysts by MOFs for Highly Selective CO ₂ Reduction. Angewandte Chemie - International Edition, 2021, 60, 7607-7611.	13.8	368

	Сітатіо	n Report	
# 1031	ARTICLE Ultrathin Au–Ag Heterojunctions on Nanoarchitectonics Based Biomimetic Substrates for Dip Catalysis. Journal of Inorganic and Organometallic Polymers and Materials, 2021, 31, 1954-1966.	IF 3.7	Citations
1032	Subnanoscale Platinum by Repeated UV Irradiation: From One and Few Atoms to Clusters for the Automotive PEMFC. ACS Applied Materials & amp; Interfaces, 2021, 13, 8395-8404.	8.0	10
1033	Efficient oxidative desulfurization over highly dispersed molybdenum oxides supported on mesoporous titanium phosphonates. Microporous and Mesoporous Materials, 2021, 315, 110921.	4.4	32
1034	Boosting Highly Ordered Porosity in Lanthanum Metal-Organic Frameworks for Ring-Opening Polymerization of Î ³ -Butyrolactone. CheM, 2021, 7, 463-479.	11.7	21
1035	An overview of non-noble metal electrocatalysts and their associated air cathodes for Mg-air batteries. Materials Reports Energy, 2021, 1, 100002.	3.2	12
1036	Size Effect in Hydrogenation of Nitroaromatics Using Support-Immobilized Atomically Precise Gold Clusters. Journal of Physical Chemistry C, 2021, 125, 3327-3336.	3.1	5
1037	Rational Fabrication of Low oordinate Singleâ€Atom Ni Electrocatalysts by MOFs for Highly Selective CO ₂ Reduction. Angewandte Chemie, 2021, 133, 7685-7689.	2.0	39
1038	Protein-protected metal nanoclusters as diagnostic and therapeutic platforms for biomedical applications. Materials Today, 2023, 66, 159-193.	14.2	59
1039	Harnessing the Synergistic Interplay of Fischerâ€Tropsch Synthesis (Fe o) Bimetallic Oxides in Naâ€FeMnCo/HZSMâ€5 Composite Catalyst for Syngas Conversion to Aromatic Hydrocarbons. ChemCatChem, 2021, 13, 1966-1980.	3.7	18
1040	Construction of Dualâ€Active‧ite Copper Catalyst Containing both CuN ₃ and CuN ₄ Sites. Small, 2021, 17, e2006834.	10.0	52
1041	In situ and operando electron microscopy in heterogeneous catalysis—insights into multi-scale chemical dynamics. Journal of Physics Condensed Matter, 2021, 33, 153001.	1.8	22
1042	Soluble/MOF-Supported Palladium Single Atoms Catalyze the Ligand-, Additive-, and Solvent-Free Aerobic Oxidation of Benzyl Alcohols to Benzoic Acids. Journal of the American Chemical Society, 2021, 143, 2581-2592.	13.7	74
1043	Using Reduction Kinetics to Control and Predict the Outcome of a Colloidal Synthesis of Noble-Metal Nanocrystals. Inorganic Chemistry, 2021, 60, 4182-4197.	4.0	10
1044	Catalytic Nanomaterials toward Atomic Levels for Biomedical Applications: From Metal Clusters to Single-Atom Catalysts. ACS Nano, 2021, 15, 2005-2037.	14.6	148
1045	Advances in Transitionâ€Metal Catalyzed Carbonylative Suzukiâ€Miyaura Coupling Reaction: An Update. Advanced Synthesis and Catalysis, 2021, 363, 1597-1624.	4.3	51
1046	Structural transformations of solid electrocatalysts and photocatalysts. Nature Reviews Chemistry, 2021, 5, 256-276.	30.2	93
1047	Mechanochemical Synthesis of Catalytic Materials. Chemistry - A European Journal, 2021, 27, 6819-6847.	3.3	130
1048	Method to Construct Volcano Relations by Multiscale Modeling: Building Bridges between the Catalysis and Biosimulation Communities. Journal of Physical Chemistry B, 2021, 125, 2098-2104.	2.6	1

#	Article	IF	CITATIONS
1049	Dipâ€Pen Nanolithography Enabled Functional Nanomaterials and Their Applications. Advanced Materials Technologies, 2021, 6, 2000897.	5.8	10
1050	Organic Transformation Using Heterogeneous Catalysts. Current Organic Chemistry, 2021, 25, 331-331.	1.6	0
1051	Singleâ€Atom Catalysts Derived from Metal–Organic Frameworks for Electrochemical Applications. Small, 2021, 17, e2004809.	10.0	139
1053	Emerging Nanomedicineâ€Enabled/Enhanced Nanodynamic Therapies beyond Traditional Photodynamics. Advanced Materials, 2021, 33, e2005062.	21.0	117
1054	Electrolysis Can Be Used to Resolve Hydrogenation Pathways at Palladium Surfaces in a Membrane Reactor. Jacs Au, 2021, 1, 336-343.	7.9	11
1055	Physically Compatible Machine Learning Study on the Pt–Ni Nanoclusters. Journal of Physical Chemistry Letters, 2021, 12, 1573-1580.	4.6	7
1057	3D Porous Polymeric-Foam-Supported Pd Nanocrystal as a Highly Efficient and Recyclable Catalyst for Organic Transformations. ACS Applied Materials & Interfaces, 2021, 13, 10120-10130.	8.0	14
1058	Site-Selective Loading of Single-Atom Pt on TiO ₂ for Photocatalytic Oxidation and Reductive Hydrodefluorination. ACS ES&T Engineering, 2021, 1, 512-522.	7.6	42
1059	Singleâ€Atom Catalysts: A Sustainable Pathway for the Advanced Catalytic Applications. Small, 2021, 17, e2006473.	10.0	135
1060	Size effect-tuned water gas shift reaction activity and pathway on ceria supported platinum catalysts. Journal of Catalysis, 2021, 394, 121-130.	6.2	41
1061	Charging Effects on the Adsorption and Diffusion of Au Adatoms on MgO(100). Journal of the Physical Society of Japan, 2021, 90, 034602.	1.6	4
1062	Atomic-Step Enriched Ruthenium–lridium Nanocrystals Anchored Homogeneously on MOF-Derived Support for Efficient and Stable Oxygen Evolution in Acidic and Neutral Media. ACS Catalysis, 2021, 11, 3402-3413.	11.2	87
1063	High-Throughput Screening of Nitrogen-Coordinated Bimetal Catalysts for Multielectron Reduction of CO ₂ to CH ₄ with High Selectivity and Low Limiting Potential. Journal of Physical Chemistry C, 2021, 125, 7155-7165.	3.1	36
1064	Threeâ€Ðimensional Grapheneâ€Based Macrostructures for Electrocatalysis. Small, 2021, 17, e2005255.	10.0	34
1065	Enhanced Performance of Palladium Catalyst Confined Within Carbon Nanotubes for Heck Reaction. Catalysis Letters, 2021, 151, 3230-3238.	2.6	6
1066	Hierarchical Carbon/Metal Nanostructure with a Combination of 0D Nanoparticles, 1D Nanofibers, and 2D Nanosheets: An Efficient Bifunctional Catalyst for Zincâ€Air Batteries. ChemElectroChem, 2021, 8, 1107-1116.	3.4	7
1067	Synthesis and Antitumor Application of Antiangiogenetic Gold Nanoclusters. ACS Applied Materials & Interfaces, 2021, 13, 11708-11720.	8.0	11
1068	Co ₃ O ₄ /Nitrogen-Doped Graphitic Carbon/Fe ₃ O ₄ Nanocomposites as Reusable Catalysts for Hydrogenation of Quinoline, Cinnamaldehyde, and Nitroarenes. ACS Applied Nano Materials, 2021, 4, 3508-3518.	5.0	22

#	Article	IF	CITATIONS
1069	Effectively Regulating the Microenvironment of Atomically Dispersed Rh through Co and Pi to Promote the Selectivity in Olefin Hydroformylation. ACS Applied Materials & Interfaces, 2021, 13, 15113-15121.	8.0	18
1070	Direct synthesis of quinazolinones via the carbon-supported acid-catalyzed cascade reaction of isatoic anhydrides with amides and aldehydes. Tetrahedron Letters, 2021, 66, 152835.	1.4	9
1071	Interfacial engineering of heterogeneous catalysts for electrocatalysis. Materials Today, 2021, 48, 115-134.	14.2	96
1072	Functionalized Carbon Materials in Syngas Conversion. Small, 2021, 17, e2007527.	10.0	29
1073	Interzeolite Transformations as a Method for Zeolite Catalyst Synthesis. Petroleum Chemistry, 2021, 61, 251-275.	1.4	16
1074	Formation and Location of Pt Single Sites Induced by Pentacoordinated Al Species on Amorphous Silica–Alumina. Journal of Physical Chemistry Letters, 2021, 12, 2536-2546.	4.6	11
1075	Operando Surface Spectroscopy and Microscopy during Catalytic Reactions: From Clusters via Nanoparticles to Mesoâ€Scale Aggregates. Small, 2021, 17, e2004289.	10.0	47
1076	Radical α–alkylation of ketones with unactivated alkenes under catalytic and sustainable industrial conditions. Applied Catalysis A: General, 2021, 613, 118021.	4.3	9
1077	Crossâ€Linked Polymeric Micelles as Catalytic Nanoreactors. European Journal of Inorganic Chemistry, 2021, 2021, 1420-1427.	2.0	22
1078	Highly dispersed Ni2P clusters inlaid in micropore openings on mesoporous ZSM-5 zeolite and its catalytic performance in the phenylacetylene semi-hydrogenation. Journal of Industrial and Engineering Chemistry, 2021, 95, 376-387.	5.8	10
1079	Insights into the Interfacial Effects in Heterogeneous Metal Nanocatalysts toward Selective Hydrogenation. Journal of the American Chemical Society, 2021, 143, 4483-4499.	13.7	106
1080	Exploring Novel Catalysis Using Polymer-Stabilized Metal Clusters. Bulletin of the Chemical Society of Japan, 2021, 94, 1036-1044.	3.2	12
1081	Reactivity of Single Transition Metal Atoms on a Hydroxylated Amorphous Silica Surface: A Periodic Conceptual DFT Investigation. Chemistry - A European Journal, 2021, 27, 6050-6063.	3.3	11
1082	Harnessing the Extracellular Electron Transfer Capability of <i>Geobacter sulfurreducens</i> for Ambient Synthesis of Stable Bifunctional Singleâ€Atom Electrocatalyst for Water Splitting. Advanced Functional Materials, 2021, 31, 2010916.	14.9	11
1083	Acridineâ€1,8â€diones: Synthesis and Biological Applications. ChemistrySelect, 2021, 6, 2210-2251.	1.5	17
1084	Structural design of metal catalysts based on ZIFs: From nanoscale to atomic level. Nano Select, 2021, 2, 1902-1925.	3.7	6
1085	Large magnetic anisotropy in an OsIr dimer anchored in defective graphene. Nanotechnology, 2021, 32, 230001.	2.6	10
1086	Atomic Design and Fine-Tuning of Subnanometric Pt Catalysts to Tame Hydrogen Generation. ACS Catalysis, 2021, 11, 4146-4156.	11.2	52

#	Article	IF	CITATIONS
1087	Probing Singleâ€Atom Catalysts and Catalytic Reaction Processes by Shellâ€Isolated Nanoparticleâ€Enhanced Raman Spectroscopy. Angewandte Chemie - International Edition, 2021, 60, 9306-9310.	13.8	41
1088	Probing Singleâ€Atom Catalysts and Catalytic Reaction Processes by Shellâ€Isolated Nanoparticleâ€Enhanced Raman Spectroscopy. Angewandte Chemie, 2021, 133, 9392-9396.	2.0	7
1089	Efficient and sustainable Co3O4 nanocages based nickel catalyst: A suitable platform for the synthesis of quinoxaline derivatives. Molecular Catalysis, 2021, 504, 111454.	2.0	9
1090	Recent Advancements of Porphyrinâ€Like Singleâ€Atom Catalysts: Synthesis and Applications. Small Structures, 2021, 2, 2100007.	12.0	77
1091	Facet-Dependent Reactivity of Ceria Nanoparticles Exemplified by CeO2-Based Transition Metal Catalysts: A Critical Review. Catalysts, 2021, 11, 452.	3.5	33
1092	Atomically Dispersed Copper on Nâ€Doped Carbon Nanosheets for Electrocatalytic Synthesis of Carbamates from CO ₂ as a C ₁ Source. ChemSusChem, 2021, 14, 2050-2055.	6.8	11
1093	Photocatalytic Surface Restructuring in Individual Silver Nanoparticles. ACS Catalysis, 2021, 11, 3478-3486.	11.2	19
1094	Probing Activity Enhancement of Photothermal Catalyst under Near-Infrared Irradiation. Journal of Physical Chemistry Letters, 2021, 12, 3443-3448.	4.6	23
1095	Zr-Based Metal–Organic Framework/Reduced Graphene Oxide Composites for Catalytic Synthesis of 2,3-Dihydroquinazolin-4(1 <i>H</i>)-one Derivatives. ACS Applied Nano Materials, 2021, 4, 2682-2693.	5.0	27
1096	Toward Rational Design of Single-Atom Catalysts. Journal of Physical Chemistry Letters, 2021, 12, 2837-2847.	4.6	45
1097	Single Atomâ€Based Nanoarchitectured Electrodes for Highâ€Performance Lithium–Sulfur Batteries. Advanced Materials Interfaces, 2021, 8, 2002159.	3.7	22
1098	Janus Nanocages of Platinumâ€Group Metals and Their Use as Effective Dualâ€Electrocatalysts. Angewandte Chemie, 2021, 133, 10472-10480.	2.0	4
1099	Recent Progress in Heterogeneous Catalysis by Atomically and Structurally Precise Metal Nanoclusters. Chemical Record, 2021, 21, 879-892.	5.8	44
1100	Laser Electrodispersion of Metals for the Synthesis of Nanostructured Catalysts: Achievements and Prospects. Russian Journal of Physical Chemistry A, 2021, 95, 451-474.	0.6	11
1101	Atomically Dispersed Vanadium Sites Anchored on N-Doped Porous Carbon for the Efficient Oxidative Coupling of Amines to Imines. ACS Applied Materials & amp; Interfaces, 2021, 13, 15168-15177.	8.0	25
1102	Structural Evolution of the Surface and Interface in Bimetallic High-Index Faceted Heterogeneous Nanoparticles. Journal of Physical Chemistry Letters, 2021, 12, 2454-2462.	4.6	5
1103	Thermally Stable Singleâ€Atom Heterogeneous Catalysts. Advanced Materials, 2021, 33, e2004319.	21.0	127
1104	Janus Nanocages of Platinumâ€Group Metals and Their Use as Effective Dualâ€Electrocatalysts. Angewandte Chemie - International Edition, 2021, 60, 10384-10392.	13.8	33

#	Article	IF	CITATIONS
1105	Short-Range Ordered Iridium Single Atoms Integrated into Cobalt Oxide Spinel Structure for Highly Efficient Electrocatalytic Water Oxidation. Journal of the American Chemical Society, 2021, 143, 5201-5211.	13.7	287
1106	Impregnating Subnanometer Metallic Nanocatalysts into Self-Pillared Zeolite Nanosheets. Journal of the American Chemical Society, 2021, 143, 6905-6914.	13.7	124
1107	Liquid versus gas phase dehydrogenation of formic acid over Co@N-doped carbon materials. The role of single atomic sites. Molecular Catalysis, 2021, 504, 111457.	2.0	10
1108	Monitoring and modeling the deposition of metal nanoparticles on surfaces by impedance. Applied Surface Science, 2021, 544, 148806.	6.1	2
1109	Structure Sensitivity of Auâ€TiO ₂ Strong Metal–Support Interactions. Angewandte Chemie - International Edition, 2021, 60, 12074-12081.	13.8	161
1110	High-Loading Single-Atomic-Site Silver Catalysts with an Ag ₁ –C ₂ N ₁ Structure Showing Superior Performance for Epoxidation of Styrene. ACS Catalysis, 2021, 11, 4946-4954.	11.2	62
1111	Design of Glycerol-Based Solvents for the Immobilization of Palladium Nanocatalysts: A Hydrogenation Study. ACS Sustainable Chemistry and Engineering, 2021, 9, 6875-6885.	6.7	16
1112	Kinetics of liquid-phase diphenylacetylene hydrogenation on "single-atom alloy―Pd-Ag catalyst: Experimental study and kinetic analysis. Molecular Catalysis, 2021, 506, 111550.	2.0	9
1113	Oxygen Bridged Bimetallic CuMoO ₄ Nanocatalyst for Benzylic Alcohol Oxidation; Mechanism and DFT Study. Asian Journal of Organic Chemistry, 2021, 10, 1117-1122.	2.7	7
1114	On-site refreshing active species responsible for catalytic activity during cooling catalyst in H2-rich reaction atmosphere. Applied Surface Science, 2021, 546, 149073.	6.1	4
1115	Thermal Stability of Ru–Re NPs in H2 and O2 Atmosphere and Their Activity in VOCs Oxidation: Effect of Ru Precursor. Catalysis Letters, 2022, 152, 55-74.	2.6	3
1116	Quantitative Determination of the Surface Distribution of Supported Metal Nanoparticles: A Laser Ablation–ICP–MS Based Approach. Chemosensors, 2021, 9, 77.	3.6	2
1117	Computational high-throughput screening of alloy nanoclusters for electrocatalytic hydrogen evolution. Npj Computational Materials, 2021, 7, .	8.7	46
1118	Structure Sensitivity of Auâ€TiO 2 Strong Metal–Support Interactions. Angewandte Chemie, 2021, 133, 12181-12188.	2.0	11
1119	Platinumâ€Based Electrocatalysts for Direct Alcohol Fuel Cells: Enhanced Performances toward Alcohol Oxidation Reactions. ChemPlusChem, 2021, 86, 574-586.	2.8	28
1120	The Use of the ROS Scavenger Cysteine as a Surface Ligand of Metal Nanoclusters and Its Bactericidal Elimination Effect. Applied Sciences (Switzerland), 2021, 11, 4095.	2.5	3
1121	Ab-initio study of the effects of charging on the adsorption and diffusion of Au2 on MgO(100). Current Applied Physics, 2021, 24, 39-45.	2.4	4
1122	Single-atom electrocatalysts templated by MOF for determination of levodopa. Talanta, 2021, 225, 122042.	5.5	16

#	Article	IF	CITATIONS
1123	Cu Nanocluster-Loaded TiO ₂ Nanosheets for Highly Efficient Generation of CO-Free Hydrogen by Selective Photocatalytic Dehydrogenation of Methanol to Formaldehyde. ACS Applied Materials & Interfaces, 2021, 13, 18619-18626.	8.0	21
1125	Highly dispersed Cu-ZnO-ZrO2 nanoparticles on hydrotalcite adsorbent as efficient composite catalysts for CO2 hydrogenation to methanol. Korean Journal of Chemical Engineering, 2021, 38, 747-755.	2.7	5
1126	New Magic Au ₂₄ Cluster Stabilized by PVP: Selective Formation, Atomic Structure, and Oxidation Catalysis. Jacs Au, 2021, 1, 660-668.	7.9	21
1127	High-Efficiency Water Gas Shift Reaction Catalysis on α-MoC Promoted by Single-Atom Ir Species. ACS Catalysis, 2021, 11, 5942-5950.	11.2	65
1128	Concepts, models, and methods in computational heterogeneous catalysis illustrated through <scp>CO₂</scp> conversion. Wiley Interdisciplinary Reviews: Computational Molecular Science, 2021, 11, e1530.	14.6	24
1129	Metal Nanoparticles Immobilized on Molecularly Modified Surfaces: Versatile Catalytic Systems for Controlled Hydrogenation and Hydrogenolysis. Accounts of Chemical Research, 2021, 54, 2144-2157.	15.6	45
1130	Development of a Structural Comparison Method to Promote Exploration of the Potential Energy Surface in the Global Optimization of Nanoclusters. Journal of Chemical Information and Modeling, 2021, 61, 1732-1744.	5.4	8
1131	A review of synthesis strategies for MOF-derived single atom catalysts. Korean Journal of Chemical Engineering, 2021, 38, 1104-1116.	2.7	22
1132	Interfacial Electron Engineering of Palladium and Molybdenum Carbide for Highly Efficient Oxygen Reduction. Journal of the American Chemical Society, 2021, 143, 6933-6941.	13.7	62
1133	Emerging Materials and Methods toward Ammoniaâ€Based Energy Storage and Conversion. Advanced Materials, 2021, 33, e2005721.	21.0	137
1134	Chemical and Structural Characterization of Amorphous and Crystalline Alumina Obtained by Alternative Sol–Gel Preparation Routes. Materials, 2021, 14, 1761.	2.9	13
1135	AgAu nanoclusters supported on zeolites: Structural dynamics during CO oxidation. Catalysis Today, 2022, 384-386, 166-176.	4.4	13
1136	Widening Temperature Window for CO Preferential Oxidation in H ₂ by Ir Nanoparticles Interaction with Framework Fe of Hexaaluminate. ACS Catalysis, 2021, 11, 5709-5717.	11.2	18
1137	Visible light induced nano copper catalyzed one pot synthesis of novel quinoline bejeweled thiobarbiturates as potential hypoglycemic agents. Journal of Heterocyclic Chemistry, 2021, 58, 1446-1460.	2.6	2
1138	Atomic Undercoordination in Ag Islands on Ru(0001) Grown via Size-Selected Cluster Deposition: An Experimental and Theoretical High-Resolution Core-Level Photoemission Study. Journal of Physical Chemistry C, 2021, 125, 9556-9563.	3.1	4
1139	Palladium Immobilized on a Polyimide Covalent Organic Framework: An Efficient and Recyclable Heterogeneous Catalyst for the Suzuki–Miyaura Coupling Reaction and Nitroarene Reduction in Water. Catalysis Letters, 0, , 1.	2.6	8
1140	Regioirregular and catalytic Mizoroki–Heck reactions. Nature Catalysis, 2021, 4, 293-303.	34.4	42
1141	Proximity Enhanced Hydrogen Evolution Reactivity of Substitutional Doped Monolayer WS ₂ . ACS Applied Materials & Interfaces, 2021, 13, 19406-19413.	8.0	24

#	Article	IF	CITATIONS
1142	Environment of Metal–O–Fe Bonds Enabling High Activity in CO ₂ Reduction on Single Metal Atoms and on Supported Nanoparticles. Journal of the American Chemical Society, 2021, 143, 5540-5549.	13.7	54
1143	Efficient Nonâ€Precious Metal Catalyst for Propane Dehydrogenation: Atomically Dispersed Cobaltâ€nitrogen Compounds on Carbon Nanotubes. ChemCatChem, 2021, 13, 3067-3073.	3.7	21
1144	Synthesis of silver nanoparticles supported on multiwalled carbon nanotubes via a surfactant-assisted microwave method and their antimicrobial assessment in solution. Chemical Papers, 2021, 75, 4687-4695.	2.2	4
1145	Zeolite Fixed Metal Nanoparticles: New Perspective in Catalysis. Accounts of Chemical Research, 2021, 54, 2579-2590.	15.6	117
1146	Perspectives on Multifunctional Catalysts Derived from Layered Double Hydroxides toward Upgrading Reactions of Biomass Resources. ACS Catalysis, 2021, 11, 6440-6454.	11.2	46
1147	Single-Atom Ni Heterogeneous Catalysts Supported UiO-66 Structure: Synthesis and Catalytic Activities. Journal of Nanomaterials, 2021, 2021, 1-16.	2.7	9
1148	Lowâ€Temperature H 2 Reduction of Copper Oxide Subnanoparticles. Chemistry - A European Journal, 2021, 27, 8410-8410.	3.3	1
1149	Electronic tuning of confined sub-nanometer cobalt oxide clusters boosting oxygen catalysis and rechargeable Zn–air batteries. Nano Energy, 2021, 83, 105813.	16.0	103
1150	Formation of Mercury Droplets at Ambient Conditions through the Interaction of Hg(II) with Graphene Quantum Dots. Inorganic Chemistry, 2021, 60, 7834-7843.	4.0	5
1151	Dual-atom Pt heterogeneous catalyst with excellent catalytic performances for the selective hydrogenation and epoxidation. Nature Communications, 2021, 12, 3181.	12.8	156
1152	Regulating coordination number in atomically dispersed Pt species on defect-rich graphene for n-butane dehydrogenation reaction. Nature Communications, 2021, 12, 2664.	12.8	111
1153	Machine learning-accelerated prediction of overpotential of oxygen evolution reaction of single-atom catalysts. IScience, 2021, 24, 102398.	4.1	48
1154	Cu–Ag Alloy Nanoparticles in Hydrogel Nanofibers for the Catalytic Reduction of Organic Compounds. ACS Applied Nano Materials, 2021, 4, 6045-6056.	5.0	21
1155	Active Solvent Hydrogen-Enhanced <i>p</i> -Nitrophenol Reduction Using Heterogeneous Silver Nanocatalysts@Surface-Functionalized Multiwalled Carbon Nanotubes. Industrial & Engineering Chemistry Research, 2021, 60, 7050-7064.	3.7	11
1156	Immobilization of La on THH-CO2H@Fe3O4 nanocomposite for the synthesis of oneâ€pot multicomponent reactions. Materials Research Express, 2021, 8, 056101.	1.6	4
1157	Synthesis of Highly Dispersed Palladium Nanoparticles Supported on Silica for Catalytic Combustion of Methane. Industrial & Engineering Chemistry Research, 2021, 60, 7545-7557.	3.7	5
1158	Transforming cobalt hydroxide nanowires into single atom site catalysts. Nano Energy, 2021, 83, 105799.	16.0	19
1159	A Supported Pd ₂ Dualâ€Atom Site Catalyst for Efficient Electrochemical CO ₂ Reduction. Angewandte Chemie, 2021, 133, 13500-13505.	2.0	29

#	Article	IF	CITATIONS
1160	Polyoxometalate‧ingle Atom Catalysts (POM‧ACs) in Energy Research and Catalysis. Advanced Energy Materials, 2021, 11, 2101120.	19.5	57
1161	Intrinsic Molybdenumâ€Based POMOFs with Impressive Gas Adsorptions and Photochromism. Chemistry - A European Journal, 2021, 27, 9643-9653.	3.3	15
1162	Core-shell Ag–Pt nanoparticles: A versatile platform for the synthesis of heterogeneous nanostructures towards catalyzing electrochemical reactions. Chinese Chemical Letters, 2021, 32, 3288-3297.	9.0	18
1163	Tuning Interfacial Electronic Properties of Palladium Oxide on Vacancy-Abundant Carbon Nitride for Low-Temperature Dehydrogenation. ACS Catalysis, 2021, 11, 6193-6199.	11.2	33
1164	Sulfur stabilizing metal nanoclusters on carbon at high temperatures. Nature Communications, 2021, 12, 3135.	12.8	104
1165	Regulating Electronic Status of Platinum Nanoparticles by Metal–Organic Frameworks for Selective Catalysis. CCS Chemistry, 2021, 3, 1607-1614.	7.8	21
1166	Recovery/Reuse of Heterogeneous Supported Spent Catalysts. Catalysts, 2021, 11, 591.	3.5	112
1167	Facile synthesis of the magnetic Ni-Cr-Fe alloy nanoparticles and its catalytic properties. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2021, 267, 115117.	3.5	4
1168	Support Acidity Improves Pt Activity in Propane Combustion in the Presence of Steam by Reducing Water Coverage on the Active Sites. ACS Catalysis, 2021, 11, 6672-6683.	11.2	19
1169	Turning metal-organic frameworks into efficient single-atom catalysts via pyrolysis with a focus on oxygen reduction reaction catalysts. EnergyChem, 2021, 3, 100056.	19.1	51
1170	N-Heterocyclic carbenes as tunable ligands for catalytic metal surfaces. Nature Catalysis, 2021, 4, 352-363.	34.4	134
1171	Single Mn Atom Anchored on Nitrogenâ€Doped Graphene as a Highly Efficient Electrocatalyst for Oxygen Reduction Reaction. Chemistry - A European Journal, 2021, 27, 9686-9693.	3.3	15
1172	Imidazolium-type ionic liquid-assisted formation of the MFI zeolite loaded with metal nanoparticles for hydrogenation reactions. Chemical Engineering Journal, 2021, 412, 128599.	12.7	11
1173	A Supported Pd ₂ Dualâ€Atom Site Catalyst for Efficient Electrochemical CO ₂ Reduction. Angewandte Chemie - International Edition, 2021, 60, 13388-13393.	13.8	201
1174	Oneâ€dimensional nanomaterial supported metal singleâ€atom electrocatalysts: Synthesis, characterization, and applications. Nano Select, 2021, 2, 2072-2111.	3.7	12
1175	In Situ Growth of Transition Metal Nanoparticles on Aluminosilicate Minerals for Oxygen Evolution. Advanced Energy and Sustainability Research, 2021, 2, 2100057.	5.8	3
1176	Lowâ€Temperature H ₂ Reduction of Copper Oxide Subnanoparticles. Chemistry - A European Journal, 2021, 27, 8452-8456.	3.3	16
1177	Skeleton-Sn anchoring isolated Pt site to confine subnanometric clusters within *BEA topology. Journal of Catalysis, 2021, 397, 44-57.	6.2	36

#	Article	IF	CITATIONS
1178	Binding and stability of MgO monomers on anatase TiO2(101). Journal of Chemical Physics, 2021, 154, 204703.	3.0	3
1179	Ligand–Metal Charge Transfer Induced <i>via</i> Adjustment of Textural Properties Controls the Performance of Single-Atom Catalysts during Photocatalytic Degradation. ACS Applied Materials & Interfaces, 2021, 13, 25858-25867.	8.0	51
1180	Electrochemical ammonia synthesis via nitrate reduction on Fe single atom catalyst. Nature Communications, 2021, 12, 2870.	12.8	605
1181	An Earthâ€Abundant Niâ€Based Singleâ€Atom Catalyst for Selective Photodegradation of Pollutants. Solar Rrl, 2021, 5, 2100176.	5.8	39
1182	Agglomeration of Pt nanoparticles on the g-C ₃ N ₄ surface dominated by oriented attachment mechanism and way of inhibition. Materials Research Express, 2021, 8, 055504.	1.6	4
1183	Characterization and Electrocatalytic Features of PtPd and PdPt Bimetallic Nanoparticles for Methanol Electroâ€oxidation. ChemNanoMat, 2021, 7, 958-965.	2.8	8
1184	Patchy Micelles with a Crystalline Core: Self-Assembly Concepts, Properties, and Applications. Polymers, 2021, 13, 1481.	4.5	20
1185	Effect of Metal Nanoparticle Aggregate Structure on the Thermodynamics of Oxidative Dissolution. Langmuir, 2021, 37, 7320-7327.	3.5	8
1186	Disordered-Layer-Mediated Reverse Metal–Oxide Interactions for Enhanced Photocatalytic Water Splitting. Nano Letters, 2021, 21, 5247-5253.	9.1	18
1187	What We Currently Know about Carbonâ€Supported Metal and Metal Oxide Nanomaterials in Electrochemical CO ₂ Reduction. ChemElectroChem, 2021, 8, 2397-2406.	3.4	15
1188	Interplay of electrochemical and electrical effects induces structural transformations in electrocatalysts. Nature Catalysis, 2021, 4, 479-487.	34.4	68
1189	Ambient Hydrogenation and Deuteration of Alkenes Using a Nanostructured Ni ore–Shell Catalyst. Angewandte Chemie - International Edition, 2021, 60, 18591-18598.	13.8	30
1190	Ambient Hydrogenation and Deuteration of Alkenes Using a Nanostructured Ni ore–Shell Catalyst. Angewandte Chemie, 2021, 133, 18739-18746.	2.0	15
1192	A heterogeneous iridium single-atom-site catalyst for highly regioselective carbenoid O–H bond insertion. Nature Catalysis, 2021, 4, 523-531.	34.4	103
1193	Selectively coupled small Pd nanoparticles on sp2-hybridized domain of graphene-based aerogel with enhanced catalytic activity and stability. Science of the Total Environment, 2021, 771, 145396.	8.0	11
1194	Engineering Pt and Fe dual-metal single atoms anchored on nitrogen-doped carbon with high activity and durability towards oxygen reduction reaction for zinc-air battery. Applied Catalysis B: Environmental, 2021, 286, 119891.	20.2	122
1195	<scp>Polydopamineâ€Encapsulated</scp> Dendritic Organosilica Nanoparticles as Amphiphilic Platforms for Highly Efficient Heterogeneous Catalysis in Water. Chinese Journal of Chemistry, 2021, 39, 1975-1982.	4.9	8
1197	Manipulating the Coordination Chemistry of RuN(O)C Moieties for Fast Alkaline Hydrogen Evolution Kinetics. Advanced Functional Materials, 2021, 31, 2100698.	14.9	74

#	Article	IF	CITATIONS
1198	Rhodium Encapsulated within Silicaliteâ€l Zeolite as Highly Efficient Catalyst for Nitrous Oxide Decomposition: From Single Atoms to Nanoclusters and Nanoparticles. European Journal of Inorganic Chemistry, 2021, 2021, 2201-2210.	2.0	9
1199	A Practice of Reticular Chemistry: Construction of a Robust Mesoporous Palladium Metal–Organic Framework via Metal Metathesis. Journal of the American Chemical Society, 2021, 143, 9901-9911.	13.7	60
1200	Identification of the active sites in supported subnanometric metal catalysts. Nature Catalysis, 2021, 4, 453-456.	34.4	58
1201	Exceptional Electrochemical HER Performance with Enhanced Electron Transfer between Ru Nanoparticles and Single Atoms Dispersed on a Carbon Substrate. Angewandte Chemie - International Edition, 2021, 60, 16044-16050.	13.8	200
1202	Defect engineering for high-selection-performance of NO reduction to NH3 over CeO2 (111) surface: A DFT study. Chinese Chemical Letters, 2022, 33, 527-532.	9.0	53
1203	Quantifying Competitive Degradation Processes in Supported Nanocatalyst Systems. Nano Letters, 2021, 21, 5324-5329.	9.1	10
1204	Exceptional Electrochemical HER Performance with Enhanced Electron Transfer between Ru Nanoparticles and Single Atoms Dispersed on a Carbon Substrate. Angewandte Chemie, 2021, 133, 16180-16186.	2.0	31
1205	Octagold selenido nanoclusters: Significance of surface ligands on tuning geometric and electronic structure of Au8Se2 kernel. Nano Research, 2021, 14, 3343-3351.	10.4	19
1206	Computational catalysis for metal-organic frameworks: An overview. Coordination Chemistry Reviews, 2021, 436, 213777.	18.8	34
1207	Machine-learning-accelerated discovery of single-atom catalysts based on bidirectional activation mechanism. Chem Catalysis, 2021, 1, 183-195.	6.1	50
1208	Molybdenum-based materials for electrocatalytic nitrogen reduction reaction. Cell Reports Physical Science, 2021, 2, 100447.	5.6	30
1209	Activity of Pdn (n = 1–5) Clusters on Alumina Film on Ni3Al(111) for CO Oxidation: A Molecular Beam Study. Journal of Physical Chemistry C, 2021, 125, 13247-13253.	3.1	1
1210	Properties of α-Brass Nanoparticles II: Structure and Composition. Journal of Physical Chemistry C, 2021, 125, 14897-14909.	3.1	9
1211	Activity–Selectivity Enhancement and Catalytic Trend of CO ₂ Electroreduction on Metallic Dimers Supported by N-Doped Graphene: A Computational Study. Journal of Physical Chemistry C, 2021, 125, 13176-13184.	3.1	12
1212	Design of carbon supports for metal-catalyzed acetylene hydrochlorination. Nature Communications, 2021, 12, 4016.	12.8	35
1213	The Synthesis of Pt-CNTs Nanocatalyst Promoted by Visible Light and Catalytic Reduction of <i>4</i> -Nitrophenol. Journal of Nano Research, 0, 68, 81-90.	0.8	1
1214	Flow field-flow fractionation hyphenated with inductively coupled plasma mass spectrometry: a robust technique for characterization of engineered elemental metal nanoparticles in the environment. Applied Spectroscopy Reviews, 2023, 58, 110-131.	6.7	11
1215	Deep Hydrogenation Saturation of Naphthalene Facilitated by Enhanced Adsorption of the Reactants on Microâ€Mesoporous Pd/HY. ChemistrySelect, 2021, 6, 5524-5533.	1.5	7

#	Article	IF	CITATIONS
1216	CO oxidation activity of Pt/CeO2 catalysts below 0 °C: platinum loading effects. Applied Catalysis B: Environmental, 2021, 286, 119931.	20.2	83
1217	Combined experimental and computational study on the role of ionic liquid containing ligand in the catalytic performance of halloysite-based hydrogenation catalyst. Journal of Molecular Liquids, 2021, 331, 115740.	4.9	35
1218	Dynamic Interconversion of Metal Active Site Ensembles in Zeolite Catalysis. Annual Review of Chemical and Biomolecular Engineering, 2021, 12, 115-136.	6.8	12
1219	Development of Nanosensors Based Intelligent Packaging Systems: Food Quality and Medicine. Nanomaterials, 2021, 11, 1515.	4.1	21
1220	Ethene Conversion at a Zeoliteâ€Supported Ir(I) Complex. A Computational Perspective on a Singleâ€Site Catalyst System. ChemCatChem, 2021, 13, 3421-3433.	3.7	2
1221	Dressing of Cu Atom over Nickel Cluster Stimulating the Poisoning-Free CO Oxidation: An Ab Initio Study. Journal of Physical Chemistry A, 2021, 125, 5256-5272.	2.5	4
1222	Encapsulating Cobalt into N-Doping Hollow Frameworks for Efficient Cascade Catalysis. Inorganic Chemistry, 2021, 60, 9757-9761.	4.0	10
1223	Au5Br: A new member of highly stable 2D-type doped gold nanomaterial. Computational Materials Science, 2021, 194, 110446.	3.0	4
1224	Pair Sites on Nodes of Metal–Organic Framework hcp UiO-66 Catalyze <i>tert</i> -Butyl Alcohol Dehydration. Journal of Physical Chemistry Letters, 2021, 12, 6085-6089.	4.6	8
1225	Reversed Charge Transfer and Enhanced Hydrogen Spillover in Platinum Nanoclusters Anchored on Titanium Oxide with Rich Oxygen Vacancies Boost Hydrogen Evolution Reaction. Angewandte Chemie, 2021, 133, 16758-16763.	2.0	34
1226	Boosting nitrous oxide direct decomposition performance based on samarium doping effects. Chemical Engineering Journal, 2021, 414, 128643.	12.7	30
1227	Tuning the Catalytic Performance of Cobalt Nanoparticles by Tungsten Doping for Efficient and Selective Hydrogenation of Quinolines under Mild Conditions. ACS Catalysis, 2021, 11, 8197-8210.	11.2	46
1228	Singleâ€ S ite vs. Cluster Catalysis in High Temperature Oxidations. Angewandte Chemie, 2021, 133, 16090-16098.	2.0	5
1229	Selective hydroboration of unsaturated bonds by an easily accessible heterotopic cobalt catalyst. Nature Communications, 2021, 12, 3813.	12.8	25
1230	Photoinduced Strong Metal–Support Interaction for Enhanced Catalysis. Journal of the American Chemical Society, 2021, 143, 8521-8526.	13.7	85
1231	Recent progress of functional separators with catalytic effects for high-performance lithium-sulfur batteries. Nano Energy, 2021, 84, 105928.	16.0	115
1232	Reversed Charge Transfer and Enhanced Hydrogen Spillover in Platinum Nanoclusters Anchored on Titanium Oxide with Rich Oxygen Vacancies Boost Hydrogen Evolution Reaction. Angewandte Chemie - International Edition, 2021, 60, 16622-16627.	13.8	167
1233	Electronic structure regulations of single-atom site catalysts and their effects on the electrocatalytic performances. Applied Physics Reviews, 2021, 8, .	11.3	29

#	Article	IF	CITATIONS
1234	Editorial Catalysts: Supported Metal Catalysts and Their Applications in Fine Chemicals. Catalysts, 2021, 11, 791.	3.5	2
1235	Sulfur-doped graphene anchoring of ultrafine Au25 nanoclusters for electrocatalysis. Nano Research, 2021, 14, 3509-3513.	10.4	26
1236	Tuning Point Defects by Elastic Strain Modulates Nanoparticle Exsolution on Perovskite Oxides. Chemistry of Materials, 2021, 33, 5021-5034.	6.7	36
1237	Mechanistic Investigations into and Control of Anisotropic Metal–Organic Framework Growth. Inorganic Chemistry, 2021, 60, 10439-10450.	4.0	6
1238	Highly selective and robust single-atom catalyst Ru1/NC for reductive amination of aldehydes/ketones. Nature Communications, 2021, 12, 3295.	12.8	152
1239	A DFT Study on Heterogeneous Pt/CeO ₂ (110) Single Atom Catalysts for CO Oxidation. ChemCatChem, 2021, 13, 3857-3863.	3.7	21
1240	Metal/metal-organic framework interfacial ensemble-induced dual site catalysis towards hydrogen generation. Applied Catalysis B: Environmental, 2021, 286, 119946.	20.2	39
1241	Surface Molecule Manipulated Pt/TiO ₂ Catalysts for Selective Hydrogenation of Cinnamaldehyde. Journal of Physical Chemistry C, 2021, 125, 13304-13312.	3.1	21
1242	Single-Atom Catalysts Designed and Prepared by the Atomic Layer Deposition Technique. ACS Catalysis, 2021, 11, 7018-7059.	11.2	106
1243	Singleâ€ S ite vs. Cluster Catalysis in High Temperature Oxidations. Angewandte Chemie - International Edition, 2021, 60, 15954-15962.	13.8	21
1244	Dual-coupling ultrasmall iron-Ni2P into P-doped porous carbon sheets assembled CuxS nanobrush arrays for overall water splitting. Nano Energy, 2021, 84, 105861.	16.0	62
1245	Carbon Nanofibers as Potential Catalyst Support for Fuel Cell Cathodes: A Review. Energy & Fuels, 2021, 35, 11761-11799.	5.1	37
1246	Fabricating polyoxometalates-stabilized single-atom site catalysts in confined space with enhanced activity for alkynes diboration. Nature Communications, 2021, 12, 4205.	12.8	69
1247	Size Effect of (CuO) _{<i>n</i>} (<i>n</i> = 1–6) Clusters on the Modification of Rutile–TiO ₂ Photocatalysts. Energy Technology, 2022, 10, 2100161.	3.8	7
1248	Nanofibrous Photocatalytic Membranes Based on Tailored Anisotropic Gold/Ceria Nanoparticles. ACS Applied Materials & Interfaces, 2021, 13, 37578-37588.	8.0	12
1249	Advanced Research Progress on Highâ€Efficient Utilization of Pt Electrocatalysts in Fuel Cells. Energy Technology, 2021, 9, 2100227.	3.8	8
1250	Automated Adsorption Workflow for Semiconductor Surfaces and the Application to Zinc Telluride. Journal of Chemical Information and Modeling, 2021, 61, 3908-3916.	5.4	11
1251	Molecular metal nanoclusters for ORR, HER and OER: Achievements, opportunities and challenges. International Journal of Hydrogen Energy, 2021, 46, 25771-25781.	7.1	56

#	Article	IF	CITATIONS
1252	Ceria-Based Materials for Thermocatalytic and Photocatalytic Organic Synthesis. ACS Catalysis, 2021, 11, 9618-9678.	11.2	146
1253	Constructing low-valent Ni nanoparticles for highly selective CO2 reduction. Chinese Chemical Letters, 2022, 33, 424-427.	9.0	12
1254	Adsorption of Keggin-Type Polyoxometalates on Rh Metal Particles under Reductive Conditions. Inorganic Chemistry, 2021, 60, 12413-12424.	4.0	4
1255	Superiority of the (100) Over the (111) Facets of the Nitrides for Hydrogen Evolution Reaction. Topics in Catalysis, 2022, 65, 262-269.	2.8	6
1256	Engineering the Electronic Interaction between Metals and Carbon Supports for Oxygen/Hydrogen Electrocatalysis. , 2021, 3, 1197-1212.		27
1257	Search for Global Minimum Structures of P2n+1+ (n = 1–15) Using xTB-Based Basin-Hopping Algorithm. Frontiers in Chemistry, 2021, 9, 694156.	3.6	3
1258	Laserâ€Induced Graphitic Carbon with Ultrasmall Nickel Nanoparticles for Efficient Overall Water Splitting. Particle and Particle Systems Characterization, 2021, 38, 2100119.	2.3	6
1259	In Situ Preparation of Composite Redox-Active Micelles Bearing Pd Nanoparticles for the Reduction of 4-Nitrophenol. Langmuir, 2021, 37, 9089-9097.	3.5	6
1260	Recent Advances on Heteroatomâ€Doped Porous Carbon/Metal Materials: Fascinating Heterogeneous Catalysts for Organic Transformations. Chemical Record, 2021, 21, 1985-2073.	5.8	31
1261	Synergizing metal–support interactions and spatial confinement boosts dynamics of atomic nickel for hydrogenations. Nature Nanotechnology, 2021, 16, 1141-1149.	31.5	165
1262	The Electronic Metal–Support Interaction Directing the Design of Single Atomic Site Catalysts: Achieving High Efficiency Towards Hydrogen Evolution. Angewandte Chemie, 2021, 133, 19233-19239.	2.0	149
1263	Unraveling the Intermediate Reaction Complexes and Critical Role of Support-Derived Oxygen Atoms in CO Oxidation on Single-Atom Pt/CeO ₂ . ACS Catalysis, 2021, 11, 8701-8715.	11.2	51
1264	Enhanced photocatalytic CO2 reduction with defective TiO2 nanotubes modified by single-atom binary metal components. Environmental Research, 2021, 198, 111176.	7.5	29
1265	Pure Cu particle obtained by ammonia reduction reaction: A new class of electrodes for hybrid supercapacitors. Journal of Energy Storage, 2021, 39, 102636.	8.1	3
1266	Understanding the inter-site distance effect in single-atom catalysts for oxygen electroreduction. Nature Catalysis, 2021, 4, 615-622.	34.4	336
1267	Similar Looks, Different Photoelectrochemical Behavior: Unique Aspects of Metal-Nanocluster-Sensitized Electrodes. ACS Energy Letters, 2021, 6, 2713-2725.	17.4	13
1268	On the Catalytic Activity of Sn Monomers and Dimers at Graphene Edges and the Synchronized Edge Dependence of Diffusing Atoms in Sn Dimers. Advanced Functional Materials, 2021, 31, 2104340.	14.9	4
1269	Singleâ€Atom Electrocatalysts for Multiâ€Electron Reduction of CO ₂ . Small, 2021, 17, e2101443.	10.0	44

#	Article	IF	CITATIONS
1270	Metal Nanoparticles as Free-Floating Electrodes. Encyclopedia, 2021, 1, 551-565.	4.5	2
1271	A Cationic Ru(II) Complex Intercalated into Zirconium Phosphate Layers Catalyzes Selective Hydrogenation via Heterolytic Hydrogen Activation. ChemCatChem, 2021, 13, 3801-3814.	3.7	7
1272	An Investigation into the Bulk and Surface Phase Transformations of Bimetallic Pd-In/Al2O3 Catalyst during Reductive and Oxidative Treatments In Situ. Catalysts, 2021, 11, 859.	3.5	4
1273	Characterization of a Metal–Organic Framework Zr ₆ O ₈ Node-Supported Atomically Dispersed Iridium Catalyst for Ethylene Hydrogenation by X-ray Absorption Near-Edge Structure and Infrared Spectroscopies. Journal of Physical Chemistry C, 2021, 125, 16995-17007.	3.1	5
1274	Iron Single Atom Catalyzed Quinoline Synthesis. Advanced Materials, 2021, 33, e2101382.	21.0	39
1275	State of the Art and Perspectives on the Biofunctionalization of Fluorescent Metal Nanoclusters and Carbon Quantum Dots for Targeted Imaging and Drug Delivery. Langmuir, 2021, 37, 9281-9301.	3.5	24
1276	Effect of palladium on gold in core-shell catalyst for electrooxidation of ethanol in alkaline medium. International Journal of Hydrogen Energy, 2021, 46, 23670-23681.	7.1	8
1277	The Electronic Metal–Support Interaction Directing the Design of Single Atomic Site Catalysts: Achieving High Efficiency Towards Hydrogen Evolution. Angewandte Chemie - International Edition, 2021, 60, 19085-19091.	13.8	189
1278	Catalytic Oxidation of Methane. Catalysts, 2021, 11, 944.	3.5	1
1279	Epitaxy and Shape Heterogeneity of a Nanoparticle Ensemble during Redox Cycles. ACS Nano, 2021, 15, 13267-13278.	14.6	Ο
1280	Recent Advances in Electrode Design for Rechargeable Zinc–Air Batteries. Small Science, 2021, 1, 2100044.	9.9	47
1281	Synthesis of Asymmetric One-Dimensional Pd on Au Bimetallic Nanostructures. Langmuir, 2021, 37, 9901-9909.	3.5	4
1282	Decarboxylationâ€Induced Defects in MOFâ€Derived Single Cobalt Atom@Carbon Electrocatalysts for Efficient Oxygen Reduction. Angewandte Chemie, 2021, 133, 21853-21858.	2.0	16
1283	A Dual-Functional Fibrous Skeleton Implanted with Single-Atomic Co–N _{<i>x</i>} Dispersions for Longevous Li–S Full Batteries. ACS Nano, 2021, 15, 14105-14115.	14.6	72
1284	A comparative study of CO catalytic oxidation on the single vacancy and di-vacancy graphene supported single-atom iridium catalysts: A DFT analysis. Surfaces and Interfaces, 2021, 25, 101293.	3.0	40
1285	Calcination temperature effects on Pd/alumina catalysts: Particle size, surface species and activity in methane combustion. Catalysis Today, 2021, 382, 120-129.	4.4	21
1286	Convenient and Reusable Manganeseâ€Based Nanocatalyst for Amination of Alcohols. ChemCatChem, 2021, 13, 4334-4341.	3.7	14
1287	Burgeoning single atoms as new types of nanozymes and electrocatalysts for sensing, biomedicine and energy conversion. JPhys Materials, 2021, 4, 044013.	4.2	2

#	Article	IF	Citations
1288	Removal of cadmium and tetracycline by lignin hydrogels loaded with nano-FeS: Nanoparticle size control and content calculation. Journal of Hazardous Materials, 2021, 416, 126262.	12.4	18
1289	Tuning surface d charge of Ni-Ru alloys for unprecedented catalytic activity towards hydrogen generation from ammonia borane hydrolysis. Applied Catalysis B: Environmental, 2021, 291, 120094.	20.2	66
1290	Single Indium Atoms and Few-Atom Indium Clusters Anchored onto Graphene via Silicon Heteroatoms. ACS Nano, 2021, 15, 14373-14383.	14.6	19
1291	Single-atom catalysts with anionic metal centers: Promising electrocatalysts for the oxygen reduction reaction and beyond. Journal of Energy Chemistry, 2021, 63, 285-293.	12.9	15
1292	A Simple Entropicâ€Driving Separation Procedure of Low‧ize Silver Clusters, Through Interaction with DNA. ChemistryOpen, 2021, 10, 760-763.	1.9	0
1293	Recent Advances in Catalysis Based on Transition Metals Supported on Zeolites. Frontiers in Chemistry, 2021, 9, 716745.	3.6	20
1294	Water Gas Shift Reaction Catalyzed by Rhodium–Manganese Oxide Cluster Anions. Journal of Physical Chemistry Letters, 2021, 12, 8513-8520.	4.6	6
1295	Decarboxylationâ€Induced Defects in MOFâ€Derived Single Cobalt Atom@Carbon Electrocatalysts for Efficient Oxygen Reduction. Angewandte Chemie - International Edition, 2021, 60, 21685-21690.	13.8	94
1296	Playing on 3D spatial distribution of Cu-Co (oxide) nanoparticles in inorganic mesoporous sieves: Impact on catalytic performance toward the cinnamaldehyde hydrogenation. Applied Catalysis A: General, 2021, 623, 118303.	4.3	4
1297	Morphology Engineering of Î ³ -Alumina Microgranules as Support of Cobalt Catalysts Used for Fischer–Tropsch Synthesis: An Effective Strategy for Improving Catalytic Performance. Journal of Physical Chemistry C, 2021, 125, 17718-17733.	3.1	7
1298	The catalytic role of platinum nanoparticles in laser generated nanocarbons. Applied Surface Science, 2021, 558, 149890.	6.1	9
1299	Support functionalization as an approach for modifying activation entropies of catalytic reactions on atomically dispersed metal sites. Journal of Catalysis, 2021, 404, 883-896.	6.2	17
1300	Confinement Strategies for Precise Synthesis of Efficient Electrocatalysts from the Macroscopic to the Atomic Level. Accounts of Materials Research, 2021, 2, 907-919.	11.7	46
1301	Recent Developments of Microenvironment Engineering of Singleâ€Atom Catalysts for Oxygen Reduction toward Desired Activity and Selectivity. Advanced Functional Materials, 2021, 31, 2103857.	14.9	77
1302	Blurring the boundary between homogenous and heterogeneous catalysis using palladium nanoclusters with dynamic surfaces. Nature Communications, 2021, 12, 4965.	12.8	12
1303	Embedding <scp>Pd u</scp> Alloy Nanoparticles in Shell of <scp>Surfaceâ€Porous Nâ€Doped</scp> Carbon Nanosphere for Selective Hydrogenation of <scp><i>p</i>â€Chloronitrobenzene</scp> . Chinese Journal of Chemistry, 2021, 39, 2843-2851.	4.9	9
1304	H-BPin/KO ^{<i>t</i>} Bu Promoted Activation of Cobalt Salt to a Heterotopic Catalyst for Highly Selective Cyclotrimerization of Alkynes. Organic Letters, 2021, 23, 6925-6930.	4.6	4
1305	Cu Nanoclusters Anchored on the Metal–Organic Framework for the Hydrolysis of Ammonia Borane and the Reduction of Quinolines. Inorganic Chemistry, 2021, 60, 12906-12911.	4.0	18

#	Article	IF	CITATIONS
1306	Quantification of critical particle distance for mitigating catalyst sintering. Nature Communications, 2021, 12, 4865.	12.8	62
1307	Prediction Descriptor for Catalytic Activity of Platinum Nanoparticles/Metal–Organic Framework Composites. ACS Applied Materials & Interfaces, 2021, 13, 38325-38332.	8.0	14
1308	<scp>Fe₃O₄</scp> @C@ <scp>prNHSO₃H</scp> : A novel magnetically recoverable heterogeneous catalyst in green synthesis of diverse triazoles. Journal of the Chinese Chemical Society, 2021, 68, 2071-2084.	1.4	5
1309	Molecular Design of 3D Porous Carbon Framework via Oneâ€6tep Organic Synthesis. ChemSusChem, 2021, 14, 3806-3809.	6.8	Ο
1310	Novel Nonradical Oxidation of Sulfonamide Antibiotics with Co(II)-Doped g-C ₃ N ₄ -Activated Peracetic Acid: Role of High-Valent Cobalt–Oxo Species. Environmental Science & Technology, 2021, 55, 12640-12651.	10.0	115
1311	Transesterification of dimethyl carbonate with glycerol by perovskite-based mixed metal oxide nanoparticles for the atom-efficient production of glycerol carbonate. Journal of Industrial and Engineering Chemistry, 2021, 104, 43-60.	5.8	25
1312	Recent Manganese Oxide Octahedral Molecular Sieves (OMS–2) with Isomorphically Substituted Cationic Dopants and Their Catalytic Applications. Catalysts, 2021, 11, 1147.	3.5	12
1313	A reliable protocol for fast and facile constructing multi-hollow silicalite-1 and encapsulating metal nanoparticles within the hierarchical zeolite. Chemical Engineering Journal, 2021, 419, 129641.	12.7	15
1314	Gold Segregation Improves Electrocatalytic Activity of Icosahedron Au@Pt Nanocluster: Insights from Machine Learning â€. Chinese Journal of Chemistry, 0, , .	4.9	10
1316	Supported Metal Nanoparticles Assisted Catalysis: A Broad Concept in Functionalization of Ubiquitous Câ^'H Bonds. ChemCatChem, 2021, 13, 4655-4678.	3.7	13
1317	Identify the Activity Origin of Pt Single-Atom Catalyst <i>via</i> Atom-by-Atom Counting. Journal of the American Chemical Society, 2021, 143, 15243-15249.	13.7	27
1318	Atomically dispersed metal site in subnanometric clusters catalyze dynamically. Chem Catalysis, 2021, 1, 768-770.	6.1	1
1319	Singleâ€Atom Catalysis: From Simple Reactions to the Synthesis of Complex Molecules. Advanced Materials, 2022, 34, e2103882.	21.0	38
1320	Two-Dimensional Graphdiyne-Confined Platinum Catalyst for Hydrogen Evolution and Oxygen Reduction Reactions. ACS Applied Materials & amp; Interfaces, 2021, 13, 47541-47548.	8.0	15
1321	Coronene-Based 2D Metal–Organic Frameworks: A New Family of Promising Single-Atom Catalysts for Nitrogen Reduction Reaction. Journal of Physical Chemistry C, 2021, 125, 20870-20876.	3.1	13
1322	The Facile Dissociation of Carbon–Oxygen Bonds in CO ₂ and CO on the Surface of LaCoSiH _{<i>x</i>} Intermetallic Compound. Angewandte Chemie - International Edition, 2021, 60, 25538-25545.	13.8	17
1323	Ultra-fine Cu clusters decorated hydrangea-like titanium dioxide for photocatalytic hydrogen production. Rare Metals, 2022, 41, 385-395.	7.1	31
1324	Green synthesis of gold nanoparticles (Au NPs) using Tribulus terrestris extract: Investigation of its catalytic activity in the oxidation of sulfides to sulfoxides and study of its anti-acute leukemia activity. Inorganic Chemistry Communication, 2021, 131, 108781.	3.9	35

#	Article	IF	CITATIONS
1325	Ultrafast Generation of Nanostructured Noble Metal Aerogels by a Microwave Method for Electrocatalytic Hydrogen Evolution and Ethanol Oxidation. ACS Applied Nano Materials, 2021, 4, 11221-11230.	5.0	10
1326	Design concept for electrocatalysts. Nano Research, 2022, 15, 1730-1752.	10.4	396
1327	The Facile Dissociation of Carbon–Oxygen Bonds in CO ₂ and CO on the Surface of LaCoSiH _{<i>x</i>} Intermetallic Compound. Angewandte Chemie, 2021, 133, 25742-25749.	2.0	0
1328	Atomically Dispersed Co Clusters Anchored on Nâ€doped Carbon Nanotubes for Efficient Dehydrogenation of Alcohols and Subsequent Conversion to Carboxylic Acids. ChemSusChem, 2021, 14, 4536-4545.	6.8	11
1329	Design of efficient solar photocatalytic system for hydrogen production and degradation of environmental pollutant. Journal of Materials Research and Technology, 2021, 14, 2497-2512.	5.8	10
1330	Conversion of dinitrogen to ammonia by rhenium doped graphyne. International Journal of Hydrogen Energy, 2021, 46, 33409-33419.	7.1	5
1331	Defect Engineering on CeO ₂ â€Based Catalysts for Heterogeneous Catalytic Applications. Small Structures, 2021, 2, 2100058.	12.0	94
1332	Catalytic Materials: Concepts to Understand the Pathway to Implementation. Industrial & Engineering Chemistry Research, 2021, 60, 18545-18559.	3.7	25
1333	Atomic iridium species anchored on porous carbon network support: An outstanding electrocatalyst for CO2 conversion to CO. Applied Catalysis B: Environmental, 2021, 292, 120173.	20.2	20
1334	Efficient and Economical Preparation of Hypercrosslinked Polymers-palladium Based on Schiff Base as Recyclable Catalyst for Suzuki-Miyaura Reactions. Chemistry Letters, 2021, 50, 1879-1882.	1.3	2
1335	Isolated metal atoms and clusters for alkane activation: Translating knowledge from enzymatic and homogeneous to heterogeneous systems. CheM, 2021, 7, 2347-2384.	11.7	25
1336	New insight into the mechanism of carbon dioxide activation on copper-based catalysts: A theoretical study. Journal of Molecular Graphics and Modelling, 2021, 107, 107979.	2.4	3
1337	Sizeâ€Đependent Cobalt Catalyst for Lithium Sulfur Batteries: From Single Atoms to Nanoclusters and Nanoparticles. Small Methods, 2021, 5, e2100571.	8.6	39
1338	Boosting hydrogen evolution over Ni6(SCH2Ph)12 nanocluster modified TiO2 via pseudo-Z-scheme interfacial charge transfer. Applied Catalysis B: Environmental, 2021, 292, 120158.	20.2	18
1339	Heterogeneous Hydrogenation of Quinoline Derivatives Effected by a Granular Cobalt Catalyst. Synthesis, 2022, 54, 629-642.	2.3	6
1340	Single-atom Co embedded in BCN matrix to achieve 100% conversion of peroxymonosulfate into singlet oxygen. Applied Catalysis B: Environmental, 2022, 300, 120759.	20.2	78
1341	Electron-Rich Ruthenium Single-Atom Alloy for Aqueous Levulinic Acid Hydrogenation. ACS Catalysis, 2021, 11, 12146-12158.	11.2	50
1342	Confinement of atomically dispersed Rh catalysts within porous monophosphine polymers for regioselective hydroformylation of alkenes. Journal of Catalysis, 2021, 401, 321-330.	6.2	30

#	Article	IF	CITATIONS
1343	Preparation of Fe@MFI and CuFe@MFI composite hydrogenation catalysts by reductive demetallation of Fe-zeolites. Catalysis Today, 2022, 390-391, 306-315.	4.4	6
1344	Effect of single atom Platinum (Pt) doping and facet dependent on the electronic structure and light absorption of Lanthanum Titanium Oxide (La2Ti2O7): A Density Functional Theory study. Surface Science, 2022, 715, 121949.	1.9	5
1345	Microporous Sulfur-Doped Carbon Atoms as Supports for Sintering-Resistant Platinum Nanocluster Catalysts. ACS Applied Nano Materials, 2021, 4, 9489-9496.	5.0	9
1346	Base Metalâ€Catalyzed Câ€Methylation Reactions Using Methanol. Advanced Synthesis and Catalysis, 2021, 363, 5028-5046.	4.3	30
1347	Multiscale structural characterization of shaped catalysts. Trends in Chemistry, 2021, 3, 898-901.	8.5	1
1348	Singleâ€Atom Catalystsâ€Enabled Reductive Upgrading of CO ₂ . ChemCatChem, 2021, 13, 4859-4877.	3.7	10
1349	Catalytic hydrocracking, hydrogenation, and isomerization reactions of model biomass tar over (W/Ni)-zeolites. Journal of Industrial and Engineering Chemistry, 2021, 101, 293-306.	5.8	22
1350	Sn Doping on Ta ₂ O ₅ Facilitates Glucose Isomerization for Enriched 5â€Hydroxymethylfurfural Production and its True Response Prediction using a Neural Network Model. ChemCatChem, 2021, 13, 4787-4798.	3.7	4
1351	Galactose Grafted Twoâ€Dimensional Nanosheets as a Scaffold for the In Situ Synthesis of Silver Nanoparticles: A Potential Catalyst for the Reduction of Nitroaromatics. Chemistry - A European Journal, 2021, 27, 14100-14107.	3.3	0
1352	Engineering dual metal single-atom sites with the nitrogen-coordinated nonprecious catalyst for oxygen reduction reaction (ORR) in acidic electrolyte. Applied Surface Science, 2022, 572, 151367.	6.1	35
1353	Bimetallic Fe-Mo sulfide/carbon nanocomposites derived from phosphomolybdic acid encapsulated MOF for efficient hydrogen generation. Journal of Materials Science and Technology, 2021, 84, 76-85.	10.7	26
1354	Insight into the selectivity of nano-catalytic nitroarenes reduction over other active groups by exploring hydrogen sources and metal components. Applied Catalysis A: General, 2021, 626, 118339.	4.3	20
1355	Polystyrene Microspheres Decorated with Au ₄ Cu ₅ Nanoclusters and their Application in Catalytic Reduction of 4â€Nitrophenol. ChemistrySelect, 2021, 6, 8843-8847.	1.5	4
1356	Metal–Organic Frameworksâ€Derived Selfâ€Supported Carbonâ€Based Composites for Electrocatalytic Water Splitting. Chemistry - A European Journal, 2021, 27, 15866-15888.	3.3	35
1357	Palladium supported on urea-containing porous organic polymers as heterogeneous catalysts for C–C cross coupling reactions and reduction of nitroarenes. Journal of Saudi Chemical Society, 2021, 25, 101317.	5.2	9
1358	CeO2-supported Pt–Ag bimetallic catalysts for 4-nitrophenol reduction. Catalysis Today, 2022, 384-386, 12-24.	4.4	15
1359	Postâ€Synthesis Functionalization Enables Fineâ€Tuning the Molecularâ€Sieving Properties of Zeolites for Light Olefin/Paraffin Separations. Advanced Materials, 2021, 33, e2105398.	21.0	20
1360	Catalysis in Single Crystalline Materials: From Discrete Molecules to Metalâ€Organic Frameworks. Chemistry - an Asian Journal, 2021, 16, 3544-3557.	3.3	0

#	Article	IF	CITATIONS
1361	Alkyne Semihydrogenation over Pd Nanoparticles Embedded in N,S-Doped Carbon Nanosheets. ACS Applied Nano Materials, 2021, 4, 9052-9059.	5.0	6
1362	Toward efficient single-atom catalysts for renewable fuels and chemicals production from biomass and CO2. Applied Catalysis B: Environmental, 2021, 292, 120162.	20.2	114
1363	Atomically Dispersed Catalytic Sites: A New Frontier for Cocatalyst/Photocatalyst Composites toward Sustainable Fuel and Chemical Production. Catalysts, 2021, 11, 1168.	3.5	7
1364	Progress in green ammonia production as potential carbon-free fuel. Fuel, 2021, 299, 120845.	6.4	161
1365	Toward Controlled Syntheses of Diphosphine-Protected Homochiral Gold Nanoclusters through Precursor Engineering. ACS Nano, 2021, 15, 16019-16029.	14.6	40
1366	Electrochemical CO ₂ Reduction to HCOOH Catalyzed by Ag <i>_n</i> (NO ₃) <i>_n</i> ₊₁ Clusters Prepared by Laser Ablation at the Air-Liquid Interface. Chemistry Letters, 2021, 50, 1941-1944.	1.3	0
1367	Anchoring single platinum atoms onto nickel nanoparticles affords highly selective catalysts for lignin conversion. Cell Reports Physical Science, 2021, 2, 100567.	5.6	13
1368	Enabling Multiplexed Electrochemical Detection of Biomarkers with High Sensitivity in Complex Biological Samples. Accounts of Chemical Research, 2021, 54, 3529-3539.	15.6	37
1369	Carbonized porous wood as an effective scaffold for loading flower-like CoS, NiS nanofibers with Co, Ni nanoparticles served as electrode material for high-performance supercapacitors. Industrial Crops and Products, 2021, 167, 113545.	5.2	21
1370	Small-sized biomass-derived hydrothermal carbon with enriched oxygen groups quickens benzene hydroxylation to phenol with dioxygen. Applied Catalysis A: General, 2021, 626, 118356.	4.3	4
1371	Adsorption of dyes on multifunctionalized nano-silica KCC-1. Journal of Molecular Liquids, 2021, 338, 116573.	4.9	30
1372	Probing of Pd ⁴⁺ Species in a PdO _{<i>x</i>} –CeO ₂ System by X-Ray Photoelectron Spectroscopy. Journal of Physical Chemistry C, 2021, 125, 20845-20854.	3.1	18
1373	Atomic-Level Copper Sites for Selective CO ₂ Electroreduction to Hydrocarbon. ACS Sustainable Chemistry and Engineering, 2021, 9, 13536-13544.	6.7	14
1374	Selective N2/H2O adsorption onto 2D amphiphilic amorphous photocatalysts for ambient gas-phase nitrogen fixation. Applied Catalysis B: Environmental, 2021, 294, 120240.	20.2	10
1375	Atomistic insights into heterogeneous reaction of hydrogen peroxide on alumina particles: Combining DFT calculation and ReaxFF molecular dynamics simulations. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 626, 127064.	4.7	2
1376	Fe3+-doped ordered mesoporous γ-Fe2O3/SiO2 microspheres as a highly efficient magnetically separable heterogeneous Fenton catalyst. Microporous and Mesoporous Materials, 2021, 326, 111373.	4.4	10
1377	Exploring Metal Cluster Catalysts Using Swarm Intelligence: Start with Hydrogen Adsorption. Topics in Catalysis, 2022, 65, 215-227.	2.8	2
1378	Engaging Ag(0) single atoms in silver(I) salts-mediated C-B and C-S coupling under visible light irradiation. Journal of Catalysis, 2021, 402, 255-263.	6.2	7

#	Article	IF	CITATIONS
1379	Implanting Ru nanoclusters into N-doped graphene for efficient alkaline hydrogen evolution. Carbon, 2021, 183, 362-367.	10.3	36
1380	Selective oxidation of methane to methanol using AuPd@ZIF-8. Catalysis Communications, 2021, 158, 106338.	3.3	13
1381	Pt–CeO2-based composites in environmental catalysis: A review. Applied Catalysis B: Environmental, 2021, 295, 120286.	20.2	85
1382	Schottky-structured 0D/2D composites via electrostatic self-assembly for efficient photocatalytic hydrogen evolution. Ceramics International, 2021, 47, 28304-28311.	4.8	14
1383	Silver-enhanced fluorescence of bimetallic Au/Ag nanoclusters as ultrasensitive sensing probe for the detection of folic acid. Talanta, 2021, 233, 122469.	5.5	35
1384	Rh ₂ P Nanoparticles Stabilized by Carbon Patches for Hydroformylation of Olefins. ACS Applied Nano Materials, 2021, 4, 10743-10753.	5.0	12
1385	Evolution of Electronic State and Properties of Silver Nanoparticles during Their Formation in Aqueous Solution. International Journal of Molecular Sciences, 2021, 22, 10673.	4.1	9
1386	Ru surface density effect on ammonia synthesis activity and hydrogen poisoning of ceria-supported Ru catalysts. Chinese Journal of Catalysis, 2021, 42, 1712-1723.	14.0	29
1387	Metal nanoparticles in ionic liquids: Synthesis and catalytic applications. Coordination Chemistry Reviews, 2021, 445, 213982.	18.8	56
1388	Nitrogen activation to reduction on a recyclable V-SAC/BN-graphene heterocatalyst sifted through dual and multiphilic descriptors. Journal of Colloid and Interface Science, 2021, 600, 480-491.	9.4	17
1389	Decoupling the size and support/metal loadings effect of Ni/SiO2 catalysts for CO2 methanation. Fuel, 2021, 304, 121388.	6.4	83
1390	Controllable modification for adjacent circumstance controls cellulose conversion to ketols on Ni CCCs at particle levels. Fuel, 2021, 303, 121266.	6.4	0
1391	Single noble metal atoms doped 2D materials for catalysis. Applied Catalysis B: Environmental, 2021, 297, 120389.	20.2	49
1392	In situ atomic-scale studies of thermal stability and surface reconstruction of ZnO nanowires based Pd nanocatalysts. Materials and Design, 2021, 209, 109947.	7.0	6
1393	Density functional theory study on the adsorption and decomposition of CO on Ni- and Pt-Au(1 1 1) bimetallic surfaces. Computational and Theoretical Chemistry, 2021, 1205, 113439.	2.5	4
1394	An efficient and durable trifunctional electrocatalyst for zinc–air batteries driven overall water splitting. Applied Catalysis B: Environmental, 2021, 297, 120405.	20.2	127
1395	Substrate augmented catalytic activity towards NRR: A case study of Li doped Al clusters on defective graphene. Applied Surface Science, 2021, 566, 150586.	6.1	8
1396	Synthesis of yolk-shell magnetic porous organic nanospheres supported Pd catalyst for oxidation of alcohols and Heck reactions. Chemical Engineering Journal, 2021, 423, 130237.	12.7	12

	CITATIO	N REPORT	
#	Article	IF	CITATIONS
1397	Towards a library of atomically dispersed catalysts. Materials and Design, 2021, 210, 110080.	7.0	6
1398	Aminoclay/MWCNT supported spherical Pt nanoclusters with enhanced dual-functional electrocatalytic performance for oxygen reduction and methanol oxidation reactions. Applied Surface Science, 2021, 565, 150511.	6.1	13
1399	0D/2D heterostructure constructed by ultra-small chalcogenide-cluster aggregated quaternary sulfides and g-C3N4 for enhanced photocatalytic H2 evolution. Chemical Engineering Journal, 2021, 426, 131216.	12.7	18
1400	Recent advances in engineering cobalt carbonate hydroxide for enhanced alkaline water splitting. Journal of Alloys and Compounds, 2021, 887, 161405.	5.5	23
1401	Controllable dry synthesis of binder-free nanostructured platinum electrocatalysts supported on multi-walled carbon nanotubes and their performance in the oxygen reduction reaction. Chemical Engineering Journal, 2021, 426, 131706.	12.7	17
1402	Carbon dots/PtW6O24 composite as efficient and stable electrocatalyst for hydrogen oxidation reaction in PEMFCs. Chemical Engineering Journal, 2021, 426, 130709.	12.7	25
1403	Defective C3N4 frameworks coordinated diatomic copper catalyst: Towards mild oxidation of methane to C1 oxygenates. Applied Catalysis B: Environmental, 2021, 299, 120682.	20.2	32
1405	A facile and green large-scale fabrication of single atom catalysts for high photocatalytic H2 evolution activity. Chemical Engineering Journal, 2022, 427, 131795.	12.7	26
1406	One-pot synthesis of FeNxC as efficient catalyst for high-performance zinc-air battery. Journal of Energy Chemistry, 2022, 66, 100-106.	12.9	28
1407	Accelerating water reduction towards hydrogen generation via cluster size adjustment in Ru-incorporated carbon nitride. Chemical Engineering Journal, 2022, 429, 132282.	12.7	11
1408	Heterogeneous catalytic rearrangements and other transformations. , 2022, , 543-592.		0
1409	Single-atom catalysts for biomass-derived drop-in chemicals. , 2022, , 63-100.		4
1410	Molecular dynamics and DFT study of 38-atom coinage metal clusters. Computational Materials Science, 2022, 201, 110908.	3.0	9
1411	Ultrasound-assisted synthesis of visible-light-driven Ag/g-C3N4 catalysts in a continuous flow reactor. Chemical Engineering Journal, 2022, 429, 132412.	12.7	11
1412	Solid catalysts for environmentally benign synthesis. , 2022, , 23-80.		0
1413	Nuclearity and Host Effects of Carbonâ€Supported Platinum Catalysts for Dibromomethane Hydrodebromination. Small, 2021, 17, 2005234.	10.0	8
1414	Strong response of Pt clusters to the environment and conditions, formation of metastable states, and simple methods to trace the reversible changes. Physical Chemistry Chemical Physics, 2021, 23, 22718-22732.	2.8	1
1415	Pd-Core-Based Core–Shell Nanoparticles for Catalytic and Electrocatalytic Applications. Nanostructure Science and Technology, 2021, , 343-364.	0.1	0

#	Article	IF	CITATIONS
1416	NaCl-template-based synthesis of TiO ₂ -Pd/Pt hollow nanospheres for H ₂ O ₂ direct synthesis and CO oxidation. Nanoscale, 2021, 13, 2005-2011.	5.6	7
1417	Embedding Single Platinum Atoms Into Nickel Nanoparticles Affords Highly Selective Catalysts for Lignin Conversion. SSRN Electronic Journal, 0, , .	0.4	Ο
1418	Single-Atom Photocatalysts for Energy and Environmental Sustainability. , 2021, , 1-37.		0
1419	A novel yttrium-based metal–organic framework for the efficient solvent-free catalytic synthesis of cyanohydrin silyl ethers. Dalton Transactions, 2021, 50, 11720-11724.	3.3	11
1420	Controllable synthesis and electrocatalytic applications of atomically precise gold nanoclusters. Nanoscale Advances, 2021, 3, 6330-6341.	4.6	14
1421	Tuning metal single atoms embedded in N _x C _y moieties toward high-performance electrocatalysis. Energy and Environmental Science, 2021, 14, 3455-3468.	30.8	176
1422	COF-confined catalysts: from nanoparticles and nanoclusters to single atoms. Journal of Materials Chemistry A, 2021, 9, 24148-24174.	10.3	37
1423	Porphyrin and single atom featured reticular materials: recent advances and future perspective of solar-driven CO ₂ reduction. Green Chemistry, 2021, 23, 8332-8360.	9.0	37
1424	Selfâ€Assembly of Precision Noble Metal Nanoclusters: Hierarchical Structural Complexity, Colloidal Superstructures, and Applications. Small, 2021, 17, e2005718.	10.0	76
1425	Constructing Atomic Heterometallic Sites in Ultrathin Nickel-Incorporated Cobalt Phosphide Nanosheets via a Boron-Assisted Strategy for Highly Efficient Water Splitting. Nano Letters, 2021, 21, 823-832.	9.1	91
1426	Porous Silica-Based Organic-Inorganic Hybrid Catalysts: A Review. Catalysts, 2021, 11, 79.	3.5	29
1427	Non-carbon-supported single-atom site catalysts for electrocatalysis. Energy and Environmental Science, 2021, 14, 2809-2858.	30.8	198
1428	Single-Atom Photocatalysts for Emerging Reactions. ACS Central Science, 2021, 7, 39-54.	11.3	94
1429	Research and application of a non-noble metal catalyst in the removal of trace olefins from aromatics. New Journal of Chemistry, 2021, 45, 3901-3908.	2.8	3
1430	<i>Ab initio</i> investigation of the role of the d-states occupation on the adsorption properties of H ₂ , CO, CH ₄ and CH ₃ OH on the Fe ₁₃ , Co ₁₃ , Ni ₁₃ and Cu ₁₃ clusters. Physical Chemistry Chemical Physics, 2021, 23, 8739-8751.	2.8	18
1431	Cross β-alkylation of primary alcohols catalysed by DMF-stabilized iridium nanoparticles. Organic and Biomolecular Chemistry, 2021, 19, 1950-1954.	2.8	6
1432	Different effects of metal-NHC bond cleavage on the Pd/NHC and Ni/NHC catalyzed α-arylation of ketones with aryl halides. Inorganic Chemistry Frontiers, 2021, 8, 1511-1527.	6.0	12
1433	Tailoring of Core Shell Like Structure in PdPt Bimetallic Catalyst for Catalytic Application. Nanostructure Science and Technology, 2021, , 289-302.	0.1	0

#	Article	IF	CITATIONS
1434	Presenting porous–organic–polymers as next-generation invigorating materials for nanoreactors. Chemical Communications, 2021, 57, 8550-8567.	4.1	37
1435	Ultralow non-noble metal loaded MOF derived bi-functional electrocatalysts for the oxygen evolution and reduction reactions. Journal of Materials Chemistry A, 2021, 9, 9319-9326.	10.3	26
1436	Influence of lattice oxygen on the catalytic activity of blue titania supported Pt catalyst for CO oxidation. Catalysis Science and Technology, 2021, 11, 1698-1708.	4.1	18
1437	N,N-Dimethylformamide-stabilised palladium nanoparticles combined with bathophenanthroline as catalyst for transfer vinylation of alcohols from vinyl ether. Organic and Biomolecular Chemistry, 2021, 19, 3384-3388.	2.8	2
1438	Carbon supported hybrid catalysts for controlled product selectivity in the hydrosilylation of alkynes. Catalysis Science and Technology, 2021, 11, 1888-1898.	4.1	8
1439	Single site Fe on the (110) surface of γ-Al ₂ O ₃ : insights from a DFT study including the periodic boundary approach. Physical Chemistry Chemical Physics, 2021, 23, 7164-7177.	2.8	9
1440	Stabilized open metal sites in bimetallic metal–organic framework catalysts for hydrogen production from alcohols. Journal of Materials Chemistry A, 2021, 9, 10869-10881.	10.3	20
1441	Tandem catalyzing the hydrodeoxygenation of 5-hydroxymethylfurfural over a Ni ₃ Fe intermetallic supported Pt single-atom site catalyst. Chemical Science, 2021, 12, 4139-4146.	7.4	33
1442	Atomically Precise Metal Clusters in Confined Spaces of Metal–Organic Frameworks. Monographs in Supramolecular Chemistry, 2021, , 428-461.	0.2	0
1443	Recent progress in heterogeneous metal and metal oxide catalysts for direct dehydrogenation of ethane and propane. Chemical Society Reviews, 2021, 50, 5590-5630.	38.1	181
1444	Ru ₁ Co <i>_n</i> Single-Atom Alloy for Enhancing Fischer–Tropsch Synthesis. ACS Catalysis, 2021, 11, 1886-1896.	11.2	49
1445	Noble-metal single-atoms in thermocatalysis, electrocatalysis, and photocatalysis. Energy and Environmental Science, 2021, 14, 2954-3009.	30.8	188
1446	N-Bridged Co–N–Ni: new bimetallic sites for promoting electrochemical CO ₂ reduction. Energy and Environmental Science, 2021, 14, 3019-3028.	30.8	128
1447	Trace Pt Clusters Dispersed on SAPOâ€11 Promoting the Synergy of Metal Sites with Acid Sites for Highâ€Effective Hydroisomerization of <i>n</i> â€Alkanes. Small Methods, 2019, 3, 1800510.	8.6	34
1448	Benzene-1,3,5-tricarboxylic acid-functionalized MCM-41 as a novel and recoverable hybrid catalyst for expeditious and efficient synthesis of 2,3-dihydroquinazolin-4(1H)-ones via one-pot three-component reaction. Research on Chemical Intermediates, 2020, 46, 3891-3909.	2.7	22
1449	Common Pitfalls of Reporting Electrocatalysts for Water Splitting. Chemical Research in Chinese Universities, 2020, 36, 360-365.	2.6	12
1450	Strategy to improve gold nanoparticles loading efficiency on defect-free high silica ZSM-5 zeolite for the reduction of nitrophenols. Chemosphere, 2020, 256, 127083.	8.2	57
1451	From nanoparticles to single atoms for Pt/CeO2: Synthetic strategies, characterizations and applications. Journal of Rare Earths, 2020, 38, 850-862.	4.8	32

#	Article	IF	CITATIONS
1452	A facile sulfur-assisted method to synthesize porous alveolate Fe/g-C3N4 catalysts with ultra-small cluster and atomically dispersed Fe sites. Chinese Journal of Catalysis, 2020, 41, 1198-1207.	14.0	37
1453	Influence of metal nuclearity and physicochemical properties of ceria on the oxidation of carbon monoxide. Chinese Journal of Catalysis, 2020, 41, 951-962.	14.0	19
1454	Highly Efficient Zeolite-Supported Pd Catalyst Activated in C–C Cross-Coupling Reaction. Industrial & Engineering Chemistry Research, 2020, 59, 11241-11249.	3.7	14
1456	Tunable Electronic Metal–Support Interactions on Ceria-Supported Noble-Metal Nanocatalysts in Controlling the Low-Temperature CO Oxidation Activity. Inorganic Chemistry, 2021, 60, 4207-4217.	4.0	24
1457	Beryllium and Magnesium Metal Clusters: New Globally Stable Structures and GOWO Calculations. Journal of Physical Chemistry A, 2021, 125, 1424-1435.	2.5	8
1458	Isolated Palladium Atoms Dispersed on Silicoaluminophosphate-31 (SAPO-31) for the Semihydrogenation of Alkynes. ACS Applied Nano Materials, 2021, 4, 861-868.	5.0	11
1459	Controlling the Shapes of Nanoparticles by Dopant-Induced Enhancement of Chemisorption and Catalytic Activity: Application to Fe-Based Ammonia Synthesis. ACS Nano, 2021, 15, 1675-1684.	14.6	11
1460	Size-Controlled Synthesis of CuO Nanoparticles by the Supercritical Antisolvent Method in SBA-15. ACS Sustainable Chemistry and Engineering, 2021, 9, 129-136.	6.7	9
1461	Characterization of Nanoparticles: Advances. RSC Catalysis Series, 2019, , 37-83.	0.1	2
1462	Tuning the structure of bifunctional Pt/SmMn ₂ O ₅ interfaces for promoted low-temperature CO oxidation activity. Nanoscale, 2019, 11, 8150-8159.	5.6	13
1463	PdAg nanoparticles and aminopolymer confined within mesoporous hollow carbon spheres as an efficient catalyst for hydrogenation of CO ₂ to formate. Journal of Materials Chemistry A, 2020, 8, 4437-4446.	10.3	31
1464	Size and function influence study on enhanced catalytic performance of a cooperative MOF for mild, green and fast C–C bond formation. Dalton Transactions, 2020, 49, 3234-3242.	3.3	19
1465	A multifaceted role of a mobile bismuth promoter in alcohol amination over cobalt catalysts. Green Chemistry, 2020, 22, 4270-4278.	9.0	19
1466	Development of coinage metal nanoclusters as antimicrobials to combat bacterial infections. Journal of Materials Chemistry B, 2020, 8, 9466-9480.	5.8	17
1467	Graphene-supported single-atom catalysts and applications in electrocatalysis. Nanotechnology, 2021, 32, 032001.	2.6	33
1468	Silver thin film deposited 3-dimensional gold nanorod arrays for plasmonic catalysis. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2020, 38, .	2.1	10

1469

#	Article	IF	CITATIONS
1471	Review—Hybrid Materials Based on Phthalocyanines and Metal Nanoparticles for Chemiresistive and Electrochemical Sensors: A Mini-Review. ECS Journal of Solid State Science and Technology, 2020, 9, 061001.	1.8	25
1472	Nickel Catalysts Supported on Acetylene Black for High-Efficient Electrochemical Oxidation and Sensitive Detection of Glucose. Nanoscale Research Letters, 2020, 15, 23.	5.7	8
1473	Research on the Preparation and Spectral Characteristics of Graphene/TMDs Hetero-structures. Nanoscale Research Letters, 2020, 15, 219.	5.7	8
1474	Unusual behavior of bimetallic nanoparticles in catalytic processes of hydrogenation and selective oxidation. Pure and Applied Chemistry, 2020, 92, 989-1006.	1.9	5
1475	Effect of Electrodeposition Parameters on the Composition and Surface Topography of Nanostructured Coatings by Tungsten with Iron and Cobalt. Eurasian Chemico-Technological Journal, 2020, 22, 19.	0.6	4
1476	lridium Single-Atom Catalyst Laboring a Quasi-Homogeneous Hydrogenation Transformation of CO2 to Formate. SSRN Electronic Journal, 0, , .	0.4	1
1477	Transition-metal Nanoparticles Catalyzed Carbon-Carbon Coupling Reactions in Water. Current Organic Chemistry, 2019, 23, 689-703.	1.6	6
1479	Cu2O-Supported Atomically Dispersed Pd Catalysts for Semihydrogenation of Terminal Alkynes: Critical Role of Oxide Supports. CCS Chemistry, 2019, 1, 207-214.	7.8	41
1480	The Impact of Engineered Silver Nanomaterials on the Immune System. Nanomaterials, 2020, 10, 967.	4.1	36
1481	Evolution of Surface Catalytic Sites on Bimetal Silica-Based Fenton-Like Catalysts for Degradation of Dyes with Different Molecular Charges. Nanomaterials, 2020, 10, 2419.	4.1	6
1482	Carbon Monoxide Promotes the Catalytic Hydrogenation on Metal Cluster Catalysts. Research, 2020, 2020, 4172794.	5.7	14
1483	One-Step High-Temperature-Synthesized Single-Atom Platinum Catalyst for Efficient Selective Hydrogenation. Research, 2020, 2020, 9140841.	5.7	23
1484	Revealing well-defined cluster-supported bi-atom catalysts for enhanced CO ₂ electroreduction: a theoretical investigation. Physical Chemistry Chemical Physics, 2021, 23, 25143-25151.	2.8	4
1485	One-pot synthesis of Ag@silicalite-1 using different silver amine complexes and their performance for styrene oxidation. New Journal of Chemistry, 2021, 45, 21293-21298.	2.8	2
1486	Porous materials confining noble metals for the catalytic reduction of nitroaromatics: controllable synthesis and enhanced mechanism. Environmental Science: Nano, 2021, 8, 3067-3097.	4.3	22
1487	2-(5-phenyl-4H-1,2,4-triazol-3-ylthio)acetic acid: Greener and efficient organocatalyst for multicomponent reactions under aqueous media. Current Research in Green and Sustainable Chemistry, 2021, 4, 100181.	5.6	3
1488	The solvent determines the product in the hydrogenation of aromatic ketones using unligated RhCl ₃ as catalyst precursor. Catalysis Science and Technology, 2021, 11, 7608-7616.	4.1	0
1489	A confined thermal transformation strategy to synthesize single atom catalysts supported on nitrogen-doped mesoporous carbon nanospheres for selective hydrogenation. Journal of Materials Chemistry A, 2021, 9, 25488-25494.	10.3	3

#	Article	IF	Citations
1490	An electroactive single-atom copper anchored MXene nanohybrid filter for ultrafast water decontamination. Journal of Materials Chemistry A, 2021, 9, 25964-25973.	10.3	43
1491	Thiol-functionalized UiO-66 anchored atomically dispersed metal ions for the photocatalytic selective oxidation of benzyl alcohol. Chemical Communications, 2021, 57, 12151-12154.	4.1	9
1492	Theoretical study of the stability, structure, and optical spectra of small silver clusters and their formation using density functional theory. Physical Chemistry Chemical Physics, 2021, 23, 25507-25517.	2.8	8
1493	Single-atom Ru catalyst for selective synthesis of 3-pentanone <i>via</i> ethylene hydroformylation. Green Chemistry, 2021, 23, 9038-9047.	9.0	14
1494	Ultradispersed Ir _{<i>x</i>} Ni clusters as bifunctional electrocatalysts for high-efficiency water splitting in acid electrolytes. RSC Advances, 2021, 11, 33179-33185.	3.6	9
1495	Electrocatalytic CO ₂ reduction: role of the cross-talk at nano-carbon interfaces. Energy and Environmental Science, 2021, 14, 5816-5833.	30.8	25
1496	Enhancing the inherent catalytic activity and stability of TiO ₂ supported Pt single-atoms at CeO _{<i>x</i>} –TiO ₂ interfaces. Journal of Materials Chemistry A, 2022, 10, 5942-5952.	10.3	7
1497	CH Activation by a Heavy Metal Cation: Production of H2 from the Reaction of Acetylene with C4H4-Os(+) in Gas phase. Journal of Carbon Research, 2021, 7, 68.	2.7	0
1498	Metal nanoclusterâ€based devices: Challenges and opportunities. Aggregate, 2022, 3, e132.	9.9	11
1499	Sintering Rate and Mechanism of Supported Pt Nanoparticles by Multiscale Simulation. Langmuir, 2021, 37, 12529-12538.	3.5	5
1500	A single-step strategy for general construction of metal sub-nanoclusters on graphdiyne. 2D Materials, 2022, 9, 014002.	4.4	3
1501	Magnetically Reusable Fe3O4@NC@Pt Catalyst for Selective Reduction of Nitroarenes. Catalysts, 2021, 11, 1219.	3.5	7
1502	Visualization of Transition Metal Decoration on h-BN Surface. Nano Letters, 2021, 21, 10562-10569.	9.1	5
1503	Single-Atom (Iron-Based) Catalysts: Synthesis and Applications. Chemical Reviews, 2021, 121, 13620-13697.	47.7	136
1504	Engineering catalyst supports to stabilize PdOx two-dimensional rafts for water-tolerant methane oxidation. Nature Catalysis, 2021, 4, 830-839.	34.4	86
1505	Recent Progress of Metal Nanoparticle Catalysts for C–C Bond Forming Reactions. Catalysts, 2021, 11, 1266.	3.5	15
1506	Cr2O3 layer inhibits agglomeration of phosphine-protected Au9 clusters on TiO2 films. Journal of Chemical Physics, 2021, 155, 164702.	3.0	4
1507	The origin of the particle-size-dependent selectivity in 1-butene isomerization and hydrogenation on Pd/Al2O3 catalysts. Nature Communications, 2021, 12, 6098.	12.8	16

#	Article	IF	CITATIONS
1508	Charged Particle-Induced Surface Reactions of Organometallic Complexes as a Guide to Precursor Design for Electron- and Ion-Induced Deposition of Nanostructures. ACS Applied Materials & Interfaces, 2021, 13, 48333-48348.	8.0	8
1509	Direct Observation of Rhodium Ex-Solution from a Ceria Nanodomain and Its Use for Hydrogen Production via Propane Steam Reforming. ACS Applied Materials & Interfaces, 2021, 13, 48508-48515.	8.0	6
1510	Boosting the water gas shift reaction on Pt/CeO2-based nanocatalysts by compositional modification: Support doping versus bimetallic alloying. Journal of Energy Chemistry, 2022, 67, 241-249.	12.9	18
1511	Recent Progress of Metal Organic Frameworksâ€Based Electrocatalysts for Hydrogen Evolution, Oxygen Evolution, and Oxygen Reduction Reaction. Energy and Environmental Materials, 2022, 5, 1084-1102.	12.8	24
1512	Single-Atom Catalysts: Advances and Challenges in Metal-Support Interactions for Enhanced Electrocatalysis. Electrochemical Energy Reviews, 2022, 5, 145-186.	25.5	86
1513	Rational confinement engineering of <scp>MOF</scp> â€derived carbonâ€based electrocatalysts toward <scp>CO₂</scp> reduction and <scp>O₂</scp> reduction reactions. InformaÄnÃ-Materiály, 2022, 4, .	17.3	58
1514	Influence of Hydrogen Pressure on the Structure of Platinum–Titania Catalysts. Journal of Physical Chemistry C, 2021, 125, 22531-22538.	3.1	9
1515	Theoretical analysis of reversible phase evolution in Li-ion conductive halides. Applied Surface Science, 2022, 574, 151621.	6.1	2
1516	Predicting New MXene-like Two-Dimensional Materials Pb ₂ CO ₂ and Sn ₂ CO ₂ as Potential Hydrogen Evolution Reaction Catalysts. Journal of Physical Chemistry C, 2021, 125, 22562-22569.	3.1	5
1517	A review on the structure-performance relationship of the catalysts during propane dehydrogenation reaction. Petroleum Science, 2022, 19, 819-838.	4.9	25
1518	Temperature and Reaction Environment Influence the Nature of Platinum Species Supported on Ceria. ACS Catalysis, 2021, 11, 13041-13049.	11.2	13
1519	Encapsulating subnanometric metal clusters in zeolites for catalysis and their challenges. Chemical Engineering Journal, 2022, 430, 132925.	12.7	36
1520	Singleâ€Atom Ru Implanted on Co ₃ O ₄ Nanosheets as Efficient Dualâ€Catalyst for Liâ€CO ₂ Batteries. Advanced Science, 2021, 8, e2102550.	11.2	56
1521	Theoretical Insights into the NH ₃ Decomposition Mechanism on the Cu- and Pt- Embedded Graphene Surfaces: A DFT Approach. ECS Journal of Solid State Science and Technology, 2021, 10, 101008.	1.8	11
1522	Assessment of metal-metal interactions and catalytic behavior in platinum-tin bimetallic subnanometric clusters by using reactive characterizations. Journal of Catalysis, 2021, 404, 393-399.	6.2	10
1523	Identification of Active Sites in Pt–Co Bimetallic Catalysts for CO Oxidation. ACS Applied Energy Materials, 2021, 4, 11151-11161.	5.1	13
1524	Bimetallic monolayer catalyst breaks the activity–selectivity trade-off on metal particle size for efficient chemoselective hydrogenations. Nature Catalysis, 2021, 4, 840-849.	34.4	102
1525	Plasma Driven Exsolution for Nanoscale Functionalization of Perovskite Oxides. Small Methods, 2021, 5, e2100868.	8.6	19

#	Article	IF	CITATIONS
1526	Molecular Engineering for Bottom-Up Construction of High-Performance Non-Precious-Metal Electrocatalysts with Well-Defined Active Sites. Journal of Physical Chemistry C, 2021, 125, 22397-22420.	3.1	17
1527	Structureâ€Reactivity Relationship for Nanoâ€Catalysts in the Hydrogenation/Dehydrogenation Controlled Reaction Systems. Angewandte Chemie, 2021, 133, 26546.	2.0	1
1528	Structure–Reactivity Relationship for Nanoâ€Catalysts in the Hydrogenation/Dehydrogenation Controlled Reaction Systems. Angewandte Chemie - International Edition, 2021, 60, 26342-26345.	13.8	10
1529	Advances in Catalytic Applications of Zeoliteâ€Supported Metal Catalysts. Advanced Materials, 2021, 33, e2104442.	21.0	113
1530	Nanotitania catalyzes the chemoselective hydration and alkoxylation of epoxides. Molecular Catalysis, 2021, 515, 111927.	2.0	5
1531	Fabrication of Ag nanoparticles supported on amino-functionalized peeled-watermelon structured silica-coated nano-Fe3O4 with enhanced catalytic activity for reduction of 4-nitrophenol. Colloids and Interface Science Communications, 2021, 45, 100521.	4.1	9
1532	Carbon nanosheet-carbon nanocage encapsulated Cu composite from chemical vapor deposition of real-world plastic waste for tailored CO2 conversion to various products. Applied Materials Today, 2021, 25, 101207.	4.3	3
1533	Boosted hydrogen evolution in alkaline media enabled by a facile oxidation-involving surface modification. Electrochimica Acta, 2021, 398, 139337.	5.2	3
1534	Structure sensitivity of nitrogen–doped carbon–supported metal catalysts in dihalomethane hydrodehalogenation. Journal of Catalysis, 2021, 404, 291-305.	6.2	5
1535	Instrumentation for Cluster Science. , 2020, , 11-38.		0
1536	Roles of Coordination Geometry in Single-Atom Catalysts. ACS Symposium Series, 2020, , 37-76.	0.5	4
1537	Preparation, Characterization, and Application of Ru-Silica-Ionic Liquid System for CO2 Hydrogenation Reaction. Letters in Organic Chemistry, 2020, 17, 443-454.	0.5	1
1538	Single Atoms. Revista Facultad De Ciencias Básicas, 2020, 15, 69-81.	0.2	0
1539	Tuning metal catalysts via nitrogen-doped nanocarbons for energy chemistry: From metal nanoparticles to single metal sites. EnergyChem, 2021, 3, 100066.	19.1	31
1540	Reductive Amination, Hydrogenation and Hydrodeoxygenation of 5â€Hydroxymethylfurfural using Silicaâ€supported Cobalt―Nanoparticles. ChemCatChem, 2022, 14, .	3.7	19
1541	Dealumination of the H-BEA Zeolite via the <i>S</i> _{N2} Mechanism: A Theoretical Investigation. Journal of Physical Chemistry C, 2021, 125, 24613-24621.	3.1	6
1542	The Roles of Citrate and Defects in the Anisotropic Growth of Ag Nanostructures. Chemistry of Materials, 2021, 33, 8301-8311.	6.7	16
1543	The self-assembly of gold nanoparticles in large-pore ordered mesoporous carbons. Chinese Journal of Chemical Engineering, 2022, 41, 420-429.	3.5	0

#	Article	IF	CITATIONS
1544	SBA15-supported nano-ruthenium catalyst for the oxidative cleavage of alkenes to aldehydes under flow conditions. Tetrahedron Letters, 2021, 86, 153509.	1.4	3
1545	Factors Affecting the Catalytic Performance of Nanoâ€catalysts. Chinese Journal of Chemistry, 2022, 40, 515-523.	4.9	16
1546	High-pressure cell to study the catalytic behavior of bulk samples and surface deposited mass-selected nanoclusters at atmospheric conditions. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2021, 39, .	2.1	2
1547	Ammonia electrosynthesis on single-atom catalysts: Mechanistic understanding and recent progress. Chemical Physics Reviews, 2021, 2, .	5.7	17
1548	Super-resolution fluorescence microscopy reveals nanoscale catalytic heterogeneity on single copper nanowires. , 0, , .		0
1549	Mixed component metal-organic frameworks: Heterogeneity and complexity at the service of application performances. Coordination Chemistry Reviews, 2022, 451, 214273.	18.8	70
1550	Cobalt-catalyzed dehydrogenative functionalization of alcohols: Progress and future prospect. Coordination Chemistry Reviews, 2022, 451, 214257.	18.8	49
1551	Causation of catalytic activity of Cu-ZnO for CO2 hydrogenation to methanol. Chemical Engineering Journal, 2022, 430, 132784.	12.7	27
1552	Citrate functionalized gold nanoparticles assisted micro extraction of L-cysteine in milk and water samples using Fourier transform infrared spectroscopy. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2022, 267, 120523.	3.9	11
1553	Recent progress in single-atom alloys: Synthesis, properties, and applications in environmental catalysis. Journal of Hazardous Materials, 2022, 424, 127427.	12.4	39
1554	lridium Nanoparticles for Hydrogenation Reactions. Topics in Organometallic Chemistry, 2020, , 397-454.	0.7	5
1555	MOF-Derived Nanoparticles and Single Atoms for Electrochemical Reactions. ACS Symposium Series, 2020, , 127-149.	0.5	0
1556	Carbon dioxide and nitrogen reduction reactions using 2D transition metal dichalcogenide (TMDC) and carbide/nitride (MXene) catalysts. Energy and Environmental Science, 2021, 14, 6242-6286.	30.8	69
1557	Water Purification Using Subnanostructured Photocatalysts. ACS Symposium Series, 2020, , 189-225.	0.5	0
1559	Targeted Catalyst Design to Combat Deactivation in the Liquid Phase. ACS Symposium Series, 2020, , 267-293.	0.5	0
1560	Ligand Effects in Ruthenium Nanoparticle Catalysis. Molecular Catalysis, 2020, , 407-448.	1.3	1
1563	Ligand-Free Sub-Nanometer Metal Clusters in Catalysis. Molecular Catalysis, 2020, , 1-37.	1.3	0
1564	From Subnanometric Clusters toward Single-Atom Catalysts. ACS Symposium Series, 2020, , 17-36.	0.5	2

#	Article	IF	CITATIONS
1565	Reductive Upgrading of Bio-Based Furanic Compounds over Subnanometer Catalysts. ACS Symposium Series, 2020, , 77-92.	0.5	0
1568	Cobalt based coatings as catalysts for methanol oxidation. Functional Materials, 2020, 27, .	0.1	0
1569	Selective hydrogenation of succinic acid to gamma-butyrolactone with PVP-capped CuPd catalysts. Catalysis Science and Technology, 2022, 12, 1060-1069.	4.1	2
1570	Influence of the Pt size and CeO ₂ morphology at the Pt–CeO ₂ interface in CO oxidation. Journal of Materials Chemistry A, 2021, 9, 26381-26390.	10.3	28
1571	Particle Size Measurement of Micro Particles Using a Wedge-shaped Micro Space. Bunseki Kagaku, 2020, 69, 167-172.	0.2	0
1572	Improved productivity of NAD+ reduction under forced convection in aerated solutions. ChemElectroChem, 0, , .	3.4	1
1573	Successive Strong Electrostatic Adsorptions of [RhCl6]3– on Tungstated-Ceria as an Original Approach to Preserve Rh Clusters From Sintering Under High-Temperature Reduction. Journal of Physical Chemistry C, 0, , .	3.1	0
1574	<i>N,N</i> â€Dimethylformamideâ€protected Fe ₂ O ₃ Combined with Pt Nanoparticles: Characterization and Catalysis in Alkene Hydrosilylation. ChemCatChem, 2022, 14, .	3.7	2
1575	Pd immobilization biguanidine modified Zr-UiO-66 MOF as a reusable heterogeneous catalyst in Suzuki–Miyaura coupling. Scientific Reports, 2021, 11, 21883.	3.3	32
1576	Single-Atom Ru on Al ₂ O ₃ for Highly Active and Selective 1,2-Dichloroethane Catalytic Degradation. ACS Applied Materials & Interfaces, 2021, 13, 53683-53690.	8.0	16
1577	Nickel silicate beta zeolite prepared by interzeolite transformation: A highly active and stable catalyst for dry reforming of methane. Chemical Engineering Journal, 2022, 431, 133364.	12.7	29
1578	Nanoscale electrodeposition: Dimension control and 3D conformality. Exploration, 2021, 1, .	11.0	46
1579	Emerging Singleâ€Atom Catalysts/Nanozymes for Catalytic Biomedical Applications. Advanced Healthcare Materials, 2022, 11, e2101682.	7.6	26
1580	Nanostructured Electrolytic Composites Based on Cobalt Alloys with Refractory Metals: Composition and Functional Properties. Springer Proceedings in Physics, 2021, , 733-755.	0.2	0
1581	Controlling the band structure and photocatalytic performance of single atom Ag/C ₃ N ₄ catalysts by variation of silver concentration. Inorganic Chemistry Frontiers, 2022, 9, 302-309.	6.0	20
1582	Highly-dispersed and high-metal-density electrocatalysts on carbon supports for the oxygen reduction reaction: from nanoparticles to atomic-level architectures. Materials Advances, 2022, 3, 779-809.	5.4	45
1583	Electron transfer dynamics and enhanced H2 production activity of hydrangea-like BiOBr/Bi2S3-based photocatalysts with Cu-complex as a redox mediator. Applied Surface Science, 2022, 576, 151870.	6.1	14
1584	Covalent organic frameworks promoted single metal atom catalysis: Strategies and applications. Coordination Chemistry Reviews, 2022, 452, 214298.	18.8	132

		CITATION REP	ORT	
#	Article		IF	Citations
1585	Gas-solid reaction induced particle collision and aggregation. Combustion and Flame, 2	022, 237, 111885.	5.2	5
1586	Functional role of single-atom catalysts in electrocatalytic hydrogen evolution: Current developments and future challenges. Coordination Chemistry Reviews, 2022, 452, 214	289.	18.8	54
1587	Benzene-1,3-disulfonate capped gold nanoparticles: DFT computations in support of pa agent and nano-sensing interactions. Nano Structures Nano Objects, 2021, 28, 10080		3.5	3
1588	Single-Atom Catalysis: Far beyond the Matter of Metal Dispersion. Nano Letters, 2021,	21, 9835-9837.	9.1	35
1589	Race on Highâ€loading Metal Single Atoms and Successful Preparation Strategies. Che 14, .	mCatChem, 2022,	3.7	14
1590	Ionic Cyclopropenium-Derived Triplatinum Cluster Complex [(Ph ₃ C ₃) ₂ Pt ₃ (MeCN) _{4Synthesis, Structure, and Perspectives for Use as a Catalyst for Hydrosilylation Reaction Organometallics. 2021. 40. 3876-3885.}	o>] ²⁺ (BF <sub ns.</sub 	>4	^{–< 10}
1591	Ethanol Dehydrogenation to Acetaldehyde over Co@N-Doped Carbon. Catalysts, 2021	, 11, 1411.	3.5	5
1592	Toward the Continuous Production of Multigram Quantities of Highly Uniform Support Nanoparticles and Their Application for Synthesis of Superior Intermetallic Pt-Alloy ORR Electrocatalysts. ACS Applied Energy Materials, 2021, 4, 13819-13829.	ed Metallic	5.1	21
1593	Noble metal (Pd, Pt and Rh) incorporated LaFeO3 perovskite oxides for catalytic oxidat n-propane. Catalysis Today, 2022, 397-399, 81-93.	ive cracking of	4.4	8
1594	Two-dimensional PdOx rafts as superior catalysts for methane combustion. Science Ch 0, , 1.	ina Chemistry,	8.2	0
1595	Tailoring Locations and Electronic States of Rh Nanoparticles in KL Zeolite by Varying th Temperature for Selective Phenol Hydrogenation. Industrial & 2021, 60, 17489-17499.	ne Reduction try Research,	3.7	2
1596	Atomic-level insights into the steric hindrance effect of single-atom Pd catalyst to boos synthesis of dimethyl carbonate. Applied Catalysis B: Environmental, 2022, 304, 12092		20.2	22
1597	Mg-stabilized subnanometer Rh particles in zeolite Beta as highly efficient catalysts for hydrogenation. Journal of Catalysis, 2022, 405, 489-498.	selective	6.2	8
1598	The role of hydrophobic hydration in the free energy of chemical reactions at the gold/ interface: Size and position effects. Journal of Chemical Physics, 2021, 155, 204706.	vater	3.0	10
1599	Non-Bonding Interaction of Neighboring Fe and Ni Single-Atom Pairs on MOF-Derived N for Enhanced CO ₂ Electroreduction. Journal of the American Chemical So 19417-19424.		13.7	305
1600	Mesoporous CuO/TiO2 catalysts prepared by the ammonia driven deposition precipitat CO preferential oxidation: Effect of metal loading. Fuel, 2022, 311, 122491.	ion method for	6.4	12
1601	Atom-by-atom fabrication of metal clusters for efficient selective hydrogenation. Scienc Chemistry, 2022, 65, 202-203.	ce China	8.2	2
1602	Theory for Potential of Zero Charge and Capacitance on Metals with Nanocorrugated S of Physical Chemistry C, 2021, 125, 25774-25783.	teps. Journal	3.1	4

#	Article	IF	CITATIONS
1603	Carbonâ€Supported Bimetallic Rutheniumâ€Iridium Catalysts for Selective and Stable Hydrodebromination of Dibromomethane. ChemCatChem, 0, , .	3.7	5
1604	Thermal stability, ripening dynamics and coalescing microstructures of reduced graphene oxide-based platinum nanocatalysts: An in-situ TEM study. Diamond and Related Materials, 2021, 120, 108690.	3.9	6
1605	Electronic Interaction between In Situ Formed RuO ₂ Clusters and a Nanoporous Zn ₃ V ₃ O ₈ Support and Its Use in the Oxygen Evolution Reaction. ACS Applied Materials & Interfaces, 2021, 13, 54951-54958.	8.0	7
1606	Atomic Structure of Pd-, Pt-, and PdPt-Based Catalysts of Total Oxidation of Methane: In Situ EXAFS Study. Catalysts, 2021, 11, 1446.	3.5	4
1607	Rate enhancement of phenol hydrogenation on Pt by hydronium ions in the aqueous phase. Journal of Catalysis, 2021, 404, 579-593.	6.2	16
1608	Recent Advances in Design of Electrocatalysts for Highâ€Currentâ€Density Water Splitting. Advanced Materials, 2022, 34, e2108133.	21.0	293
1609	Iridium Nanoparticles Confined within Partially Carbonized Hyperbranched Polymers for Selective Hydrogenation of Nitroarenes at Room Temperature. ACS Applied Nano Materials, 2021, 4, 13995-14003.	5.0	2
1610	Spatially Resolved and Quantitatively Revealed Charge Transfer between Single Atoms and Catalyst Supports. Journal of Materials Chemistry A, 0, , .	10.3	2
1611	Size-induced amorphous structure in tungsten oxide nanoparticles. Nanoscale, 2021, 13, 20144-20156.	5.6	11
1612	Synthesis of palladium supported on mesoporous hydroxyapatite from oyster shells for use as efficient, green, and recyclable catalyst for Heck reactions. Journal of Nanoparticle Research, 2021, 24, 1.	1.9	1
1613	Zeolite-driven Ag species during redox treatments and catalytic implications for SCO of NH ₃ . Journal of Materials Chemistry A, 2021, 9, 27448-27458.	10.3	11
1614	Nanoconfinement Effects of Ni@CNT for Efficient Electrocatalytic Oxygen Reduction and Evolution Reaction. SSRN Electronic Journal, 0, , .	0.4	0
1615	Copper complex stabilized on magnetic lignosulfonate: a magnetically recyclable catalyst for removal of wastewater contaminants. Biomass Conversion and Biorefinery, 0, , 1.	4.6	1
1616	Direct ink writing of Pd-Decorated Al2O3 ceramic based catalytic reduction continuous flow reactor. Ceramics International, 2022, 48, 10843-10851.	4.8	9
1617	Cobalt single-atom catalysts for domino reductive amination and amidation of levulinic acid and related molecules to N-heterocycles. Chem Catalysis, 2022, 2, 178-194.	6.1	30
1618	A casting combined quenching strategy to prepare PdAg single atom alloys designed using the cluster expansion combined Monte Carlo method. Physical Chemistry Chemical Physics, 2022, , .	2.8	2
1619	Single-atom Cu anchored catalysts for photocatalytic renewable H2 production with a quantum efficiency of 56%. Nature Communications, 2022, 13, 58.	12.8	175
1620	Boosting the efficiency of Fe-MoS2/peroxymonosulfate catalytic systems for organic powllutants remediation: Insights into edge-site atomic coordination. Chemical Engineering Journal, 2022, 433, 134511.	12.7	21

#	Article	IF	CITATIONS
1621	Highly dispersed rhodium atoms supported on defect-rich Co(OH) ₂ for the chemoselective hydrogenation of nitroarenes. New Journal of Chemistry, 2022, 46, 1158-1167.	2.8	7
1622	Atomically precise structures of Pt ₂ (S-Adam) ₄ (PPh ₃) ₂ complexes and catalytic application in propane dehydrogenation. Nanoscale, 2022, 14, 2482-2489.	5.6	3
1623	Highly Accurate Synthesis of Quasiâ€subâ€nanoparticles by Dendronâ€assembled Supramolecular Templates. Angewandte Chemie, 0, , .	2.0	0
1624	Highly Accurate Synthesis of Quasiâ€subâ€nanoparticles by Dendronâ€assembled Supramolecular Templates. Angewandte Chemie - International Edition, 2022, , .	13.8	2
1625	Catalytic Performance and Electrophoretic Behavior of an Yttrium–Organic Framework Based on a Tricarboxylic Asymmetric Alkyne. Inorganic Chemistry, 2022, 61, 1377-1384.	4.0	6
1626	Synergistic Effects of Earth-Abundant Metal–Metal Oxide Enable Reductive Amination of Carbonyls at 50 °C. ACS Applied Materials & Interfaces, 2022, 14, 4144-4154.	8.0	15
1627	Self-supported Ag nanoparticles on AgTi2(PO4)3 for hazardous dyes reduction in industrial wastewater. Journal of Environmental Chemical Engineering, 2022, 10, 106939.	6.7	14
1628	DNA-templated coinage metal nanostructures and their applications in bioanalysis and biomedicine. Coordination Chemistry Reviews, 2022, 455, 214381.	18.8	15
1629	Ligand-protected nanoclusters and their role in agriculture, sensing and allied applications. Talanta, 2022, 239, 123134.	5.5	11
1630	Nanoconfinement effects of Ni@CNT for efficient electrocatalytic oxygen reduction and evolution reaction. Journal of Alloys and Compounds, 2022, 897, 163206.	5.5	6
1631	Accelerating the structure search of catalysts with machine learning. Current Opinion in Chemical Engineering, 2022, 35, 100771.	7.8	20
1632	Structure of PtRu/Ru(OÂOÂOÂ1) and AgPd/Pd(1Â1Â1) surface alloys: A kinetic Monte Carlo study. Chemical Physics, 2022, 555, 111428.	1.9	4
1633	Metal nanocluster-based hybrid nanomaterials: Fabrication and application. Coordination Chemistry Reviews, 2022, 456, 214391.	18.8	27
1634	Atomically dispersed catalysts for small molecule electrooxidation in direct liquid fuel cells. Journal of Energy Chemistry, 2022, 68, 439-453.	12.9	18
1635	In situ transmission electron microscopy and artificial intelligence enabled data analytics for energy materials. Journal of Energy Chemistry, 2022, 68, 454-493.	12.9	33
1636	Óxidos nanoestructurados de metales de transición con aplicaciones en catálsisis. Mundo Nano Revista Interdisciplinaria En Nanociencia Y NanotecnologÃa, 2020, 14, 1e-16e.	0.1	1
1637	Plasmonic MoO ₂ embedded MoNi ₄ nanosheets prepared by NiMoO ₄ transformation for visible-light-enhanced 4-nitrophenol reduction. Dalton Transactions, 2021, 50, 17235-17240.	3.3	2
1638	Mo ₂ CS ₂ -Mxene Supported Single-Atom Catalysts for Efficient and Selective CO ₂ Electrochemical Reduction. SSRN Electronic Journal, 0, , .	0.4	0

	Сіта	tion Report	
# 1639	ARTICLE Efficient Visible Light Driven Degradation of Antibiotic Pollutants by Oxygen-Doped Porous Graphitic Carbon Nitride Nanosheets Via the Homogeneous Supramolecular Assembly of Urea. SSRN Electronic Journal, 0, , .	IF C 0.4 C	Citations)
1640	Intelligent Packaging Systems: Food Quality and Intelligent Medicine Box Based on Nano-sensors. Nanotechnology in the Life Sciences, 2021, , 555-587.	0.6 2	2
1641	Active centers of redox catalysts. Catalysis and Petrochemistry, 2021, , 9-31.	0.3 C)
1642	Unsupported and silica-supported nickel nanoparticles: synthesis and application in catalysis. Journal of Nanoparticle Research, 2022, 24, .	1.9 4	
1643	Selective Hydrogenation of Nitroarenes by Single-Atom Pt Catalyst Through Hydrogen Transfer Reaction. Topics in Catalysis, 2022, 65, 1604-1608.	2.8 2	2
1644	Solid-State Preparation of Metal and Metal Oxides Nanostructures and Their Application in Environmental Remediation. International Journal of Molecular Sciences, 2022, 23, 1093.	4.1 1	2
1645	Nanoreactors for particle synthesis. Nature Reviews Materials, 2022, 7, 428-448.	48.7 4	14
1646	Adjusting Pt Nanoparticle Size on SBA-15 by a Sol-Immobilisation Method Towards Naphthalene Hydrogenation. Catalysis Letters, 0, , 1.	2.6 1	
1647	RuFe Alloy Nanoparticle-Supported Mesoporous Carbon: Efficient Bifunctional Catalyst for Li-O ₂ and Zn–Air Batteries. ACS Catalysis, 2022, 12, 1718-1731.	11.2 3	33
1648	An ab initio study of size-selected Pd nanocluster catalysts for the hydrogenation of 1-pentyne. Physical Chemistry Chemical Physics, 2022, 24, 3231-3237.	2.8 1	
1649	The Fabrication of Pd Single Atoms/Clusters on COF Layers as Co-catalysts for Photocatalytic H ₂ Evolution. ACS Applied Materials & Interfaces, 2022, 14, 6885-6893.	8.0 2	26
1650	Redispersion strategy for high-loading carbon-supported metal catalysts with controlled nuclearity. Journal of Materials Chemistry A, 2022, 10, 5953-5961.	10.3 1	.6
1651	C2 weakens the turnover frequency during the melting of Fe _{<i>x</i>} C _{<i>y</i>} : insights from reactive MD simulations. New Journal of Chemistry, 2021, 46, 282-293.	2.8 1	-
1652	Electronic Metal–Support Interaction Modulation of Singleâ€Atom Electrocatalysts for Rechargeable Zinc–Air Batteries. Small Methods, 2022, 6, e2100947.	8.6 2	29

1653	Nickel and Palladium Catalysis: Stronger Demand than Ever. ACS Catalysis, 2022, 12, 1180-1200.	11.2	77
1654	Reducing the Irreducible: Dispersed Metal Atoms Facilitate Reduction of Irreducible Oxides. Journal of Physical Chemistry C, 2022, 126, 933-945.	3.1	11

1655	Impact of capping agent removal from Au NPs@MOF core–shell nanoparticle heterogeneous catalysts. Journal of Materials Chemistry A, 2022, 10, 3201-3205.	10.3	20
1656	Effects of crosslinking density on the in situ formation of gold-polymer composite particles and their catalytic properties. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 640, 128409	4.7	8

#	Article	IF	CITATIONS
1657	Polyoxometalate-based materials: quasi-homogeneous single-atom catalysts with atomic-precision structures. Journal of Materials Chemistry A, 2022, 10, 5758-5770.	10.3	17
1658	Noble-metal based single-atom catalysts for the water-gas shift reaction. Chemical Communications, 2021, 58, 208-222.	4.1	13
1659	A new 2D layered aluminophosphate Hada 6[Al6(PO4)8](H2O)11 supported highly uniform Ag nanoparticles for 4-nitrophenol reduction. Inorganic Chemistry Frontiers, 2022, 9, 343-349.	6.0	1
1660	Therapeutic applications. , 2022, , 623-659.		0
1661	Synthesis of active, robust and cationic Au ₂₅ cluster catalysts on double metal hydroxide by long-term oxidative aging of Au ₂₅ (SR) ₁₈ . Nanoscale, 2022, 14, 3031-3039.	5.6	10
1662	Metal Single-Atom and Nanoparticle Double-Active-Site Relay Catalysts: Design, Preparation, and Application to the Oxidation of 5-Hydroxymethylfurfural. ACS Catalysis, 2022, 12, 971-981.	11.2	40
1663	Single-atom catalysts for photocatalytic energy conversion. Joule, 2022, 6, 92-133.	24.0	229
1664	Segmentation of scanning-transmission electron microscopy images using the ordered median problem. European Journal of Operational Research, 2022, 302, 671-687.	5.7	5
1665	<i>In situ</i> visualisation and analysis of dynamic single atom processes in heterogeneous catalysts. Journal of Materials Chemistry A, 2022, 10, 5850-5862.	10.3	6
1666	Modulating the Local Coordination Environment of Singleâ€Atom Catalysts for Enhanced Catalytic Performance in Hydrogen/Oxygen Evolution Reaction. Small, 2022, 18, e2105680.	10.0	56
1667	Catalytic activity, thermal stability and structural evolution of PdCu single-atom alloy catalysts: the effects of size and morphology. RSC Advances, 2021, 12, 62-71.	3.6	4
1668	Architecture engineering of nanostructured catalyst via layer-by-layer adornment of multiple nanocatalysts on silica nanorod arrays for hydrogenation of nitroarenes. Scientific Reports, 2022, 12, 2.	3.3	10
1669	Functional catalysts for polysulfide conversion in Li–S batteries: from micro/nanoscale to single atom. Rare Metals, 2022, 41, 1080-1100.	7.1	16
1670	Synthesis of Carbon–Metal Oxide Composites as Catalyst Supports by "Cooking Sugar with Salt― ACS Sustainable Chemistry and Engineering, 2022, 10, 731-737.	6.7	3
1671	Interfacial compatibility critically controls Ru/TiO2 metal-support interaction modes in CO2 hydrogenation. Nature Communications, 2022, 13, 327.	12.8	104
1672	Plasmonic catalysis with designer nanoparticles. Chemical Communications, 2022, 58, 2055-2074.	4.1	34
1673	Theoretical framework and experimental methodology to elucidate the supersaturation dynamics of nanocrystal growth. Nanoscale Horizons, 2022, 7, 376-384.	8.0	2
1674	Copper-bismuth Binary Oxide Clusters: An Efficient Catalyst for Selective Styrene Bisperoxidation. Chemistry Letters, 2022, 51, 317-320.	1.3	0

		CITATION R	EPORT	
# 1675	ARTICLE Iridium- and Palladium-Based Catalysts in the Pharmaceutical Industry. Catalysts, 2022, 2	12, 164.	IF 3.5	CITATIONS 8
1676	Bimetallic Synergy on Iridium–Gold Catalysts for the CO Oxidation Reaction. Journal o Chemistry C, 2022, 126, 1742-1750.		3.1	4
1677	Rational Design of a High-Durability Pt-Based ORR Catalyst Supported on Mn/N Codoped for PEMFCs. Energy & Fuels, 2022, 36, 1707-1715.	l Carbon Sheets	5.1	22
1678	An Imidazoleâ€Rich Pd(II)â€Polymer Preâ€catalyst for the Suzukiâ€Miyaura Coupling: St Dissolved Oxygen and Reactants Concentration. ChemCatChem, 0, , .	ability Influenced by	3.7	2
1679	Migration of zeolite-encapsulated Pt and Au under reducing environments. Catalysis Scie Technology, 2022, 12, 1598-1609.	ence and	4.1	4
1680	CO oxidation on MgAl ₂ O ₄ supported lr _{<i>n</i>} : lattice oxygen in the subnanometer regime and emergence of nuclearity-activity volcanc Materials Chemistry A, 2022, 10, 4266-4278.		10.3	4
1681	Confining and Highly Dispersing Single Polyoxometalate Clusters in Covalent Organic Fr Covalent Linkages for CO ₂ Photoreduction. Journal of the American Chemi 2022, 144, 1861-1871.		13.7	197
1682	Enhanced catalytic performance of palladium nanoparticles in MOFs by channel enginee Reports Physical Science, 2022, 3, 100757.	ring. Cell	5.6	6
1683	Single-atom catalysts for thermal- and electro-catalytic hydrogenation reactions. Journal Materials Chemistry A, 2022, 10, 5743-5757.	of	10.3	22
1684	Coordination modulation of iridium single-atom catalyst maximizing water oxidation act Communications, 2022, 13, 24.	ivity. Nature	12.8	99
1685	Double hydrophilic copolymers – synthetic approaches, architectural variety, and curre fields. Chemical Society Reviews, 2022, 51, 995-1044.	ent application	38.1	20
1686	C(<i>sp</i> ⁿ)â^'X (n=1–3) Bond Activation by Palladium. Chemistry - A E 2022, 28, .	uropean Journal,	3.3	7
1687	Graphynes: ideal supports of single atoms for electrochemical energy conversion. Journa Materials Chemistry A, 2022, 10, 3905-3932.	l of	10.3	21
1688	Techniques for the characterization of single atom catalysts. RSC Advances, 2021, 12, 1	216-1227.	3.6	29
1690	Pt Particle Size Affects Both the Charge Separation and Water Reduction Efficiencies of Nanorod Photocatalysts for Light Driven H ₂ Generation. Journal of the Ame Chemical Society, 2022, 144, 2705-2715.		13.7	80
1691	MFC-driven H ₂ S electro-oxidation based on Fe nanoparticles anchored on c aerogel-ZIF-8: a combined experimental and DFT study. Journal of Materials Chemistry C, 1421-1435.		5.5	3
1692	Selective Vapor-Phase Doping of Pt Nanoparticles into Phase-Controlled Nanoalloys. Jour Physical Chemistry C, 2022, 126, 1426-1438.	nal of	3.1	4
1693	Confinement synthesis in porous molecule-based materials: a new opportunity for ultraf nanostructures. Chemical Science, 2022, 13, 1569-1593.	ine	7.4	18

#	Article	IF	CITATIONS
1694	Effect of preparation method of noble metal supported catalyts on formaldehyde oxidation at room temperature: Gas or liquid phase reduction. Journal of Environmental Sciences, 2022, 122, 201-216.	6.1	5
1695	Predicting Segregation Energy in Single Atom Alloys Using Physics and Machine Learning. ACS Omega, 2022, 7, 4471-4481.	3.5	9
1696	Atomically dispersed Pt sites on porous metal–organic frameworks to enable dual reaction mechanisms for enhanced photocatalytic hydrogen conversion. Journal of Catalysis, 2022, 407, 1-9.	6.2	21
1697	Formation of Cu-Rh alloy nanoislands on TiO2 for photoreduction of carbon dioxide. Journal of Alloys and Compounds, 2022, 904, 164012.	5.5	7
1698	Nitrogen vacancies enriched Ce-doped Ni3N hierarchical nanosheets triggering highly-efficient urea oxidation reaction in urea-assisted energy-saving electrolysis. Journal of Energy Chemistry, 2022, 69, 506-515.	12.9	97
1699	TMN4 complex embedded graphene as efficient and selective electrocatalysts for chlorine evolution reactions. Journal of Electroanalytical Chemistry, 2022, 907, 116071.	3.8	16
1700	Highly Stable Co Single Atom Confined in Hierarchical Carbon Molecular Sieve as Efficient Electrocatalysts in Metal–Air Batteries. Advanced Energy Materials, 2022, 12, .	19.5	44
1701	Hollow iron carbides via nanoscale Kirkendall cavitation process for zinc-air batteries. Applied Surface Science, 2022, 585, 152569.	6.1	9
1702	Bimetallic catalyst derived from copper cobalt carbonate hydroxides mediated ZIF-67 composite for efficient hydrogenation of 4-nitrophenol. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 641, 128477.	4.7	8
1703	Selective recovery of gold from e-waste with 3D hierarchical porous amidoximated fabrics and its application in the reduction of 4-nitrophenol. Radiation Physics and Chemistry, 2022, 194, 110006.	2.8	7
1704	Single-atom catalysts for lithium sulfur batteries via atomic layer deposition process. Electrochemistry Communications, 2022, 135, 107215.	4.7	7
1705	Cu nanoparticles embedded on reticular chitosan-derived N-doped carbon: Application to the catalytic hydrogenation of alkenes, alkynes and N-heteroarenes. Molecular Catalysis, 2022, 519, 112104.	2.0	3
1706	Mechanochemical Acetylene Hydrogenation on Fragments of Ni-based Alloys Containing Oxophilic Metal Elements. Chemistry Letters, 2022, 51, 111-113.	1.3	0
1707	Synthetic strategies of single-atoms catalysts and applications in electrocatalysis. Electrochimica Acta, 2022, 409, 139835.	5.2	8
1708	First-principles modelling of the new generation of subnanometric metal clusters: Recent case studies. Journal of Colloid and Interface Science, 2022, 612, 737-759.	9.4	13
1709	Five new isomorphic coordination polymers with large conjugated ligands: Synthesis, crystal structures and performances. Journal of Solid State Chemistry, 2022, 308, 122907.	2.9	2
1710	Microcapsules-supported Pd catalysts with ultralow ionic residues. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 639, 128343.	4.7	0
1711	Charging effects on the vibrational properties of Au and Au2 on MgO(100). Current Applied Physics, 2022, 36, 34-42.	2.4	0

#	Article	IF	CITATIONS
1712	Tuning the location of Pd on HY zeolite by a dual-solvent method for efficient deep hydrogenation saturation of naphthalene. Fuel, 2022, 316, 123166.	6.4	8
1713	Lanthanide-containing clusters for catalytic water splitting and CO2 conversion. Coordination Chemistry Reviews, 2022, 457, 214419.	18.8	41
1714	Nanocatalyzed upcycling of the plastic wastes for a circular economy. Coordination Chemistry Reviews, 2022, 458, 214422.	18.8	54
1715	Heterogeneously catalyzed direct cross-coupling of secondary alcohols to β-disubstituted ketones by Cu/γ-Al2O3. Inorganica Chimica Acta, 2022, 534, 120830.	2.4	1
1716	Catalytic hydrogenation of aromatic ring over ruthenium nanoparticles supported on α-Al2O3 at room temperature. Applied Catalysis B: Environmental, 2022, 307, 121137.	20.2	37
1717	Co-promotion of two-type active sites: PtCu single-atom alloy and copper-ceria interface for preferential oxidation of CO. Applied Catalysis B: Environmental, 2022, 306, 121117.	20.2	29
1718	Unravelling the synergy in platinum-nickel bimetal catalysts designed by atomic layer deposition for efficient hydrolytic dehydrogenation of ammonia borane. Applied Catalysis B: Environmental, 2022, 306, 121116.	20.2	50
1719	Size-dependent selectivity and activity of highly dispersed sub-nanometer Pt clusters integrated with P25 for CO2 photoreduction into methane fuel. Applied Surface Science, 2022, 584, 152532.	6.1	7
1720	ç,"铜(I)纳米团纇的å•̂æ^ã€ç»"构规律ä,Žå‰ç"µæ€§è^. Chinese Science Bulletin, 2022, , .	0.7	1
1721	Chemocatalytic value addition of glucose without carbon–carbon bond cleavage/formation reactions: an overview. RSC Advances, 2022, 12, 4891-4912.	3.6	9
1722	Mechanoresistive single-molecule junctions. Nanoscale, 2022, 14, 2874-2884.	5.6	10
1723	Size and structure effects on platinum nanocatalysts: theoretical insights from methanol dehydrogenation. Nanoscale, 2022, 14, 4145-4155.	5.6	3
1724	The 2D or 3D morphology of sub-nanometer Cu ₅ and Cu ₈ clusters changes the mechanism of CO oxidation. Physical Chemistry Chemical Physics, 2022, 24, 4504-4514.	2.8	3
1725	Surface Noble Metal Concentration on Ceria as a Key Descriptor for Efficient Catalytic CO Oxidation. ACS Catalysis, 2022, 12, 2473-2486.	11.2	19
1726	Construction of single-atom catalysts for electro-, photo- and photoelectro-catalytic applications: State-of-the-art, opportunities, and challenges. Materials Today, 2022, 53, 217-237.	14.2	34
1727	Recyclable polymer-supported iridium-based photocatalysts for photoredox organic transformations. Journal of Catalysis, 2022, 407, 206-212.	6.2	10
1728	A "universal―catalyst for aerobic oxidations to synthesize (hetero)aromatic aldehydes, ketones, esters, acids, nitriles, and amides. CheM, 2022, 8, 508-531.	11.7	37
1729	Stabilization of Cu ₂ O through Site-Selective Formation of a Co ₁ Cu Hybrid Single-Atom Catalyst. Chemistry of Materials, 2022, 34, 2313-2320.	6.7	5

#	Article	IF	Citations
1730	Distinct Crystalâ€Facetâ€Dependent Behaviors for Singleâ€Atom Palladiumâ€Onâ€Ceria Catalysts: Enhanced Stabilization and Catalytic Properties. Advanced Materials, 2022, 34, e2107721.	21.0	78
1731	Efficient Photocatalytic Carbonyl Alkylative Amination Enabled by Titaniumâ€Dioxideâ€Mediated Decarboxylation. Chemistry - A European Journal, 2022, 28, .	3.3	4
1732	Degradation of bisphenol a using peroxymonosulfate activated by single-atomic cobalt catalysts: Different reactive species at acidic and alkaline pH. Chemical Engineering Journal, 2022, 439, 135002.	12.7	33
1733	Bimetallic MxRu100â^'x nanoparticles (MÂ=ÂFe, Co) on supported ionic liquid phases (MxRu100â^'x@SILP) as hydrogenation catalysts: Influence of M and M:Ru ratio on activity and selectivity. Journal of Catalysis, 2022, 407, 141-148.	6.2	5
1734	Effect of surface segregation on the oxidation resistance of <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mi>Cu</mml:mi><mml:n Physical Review Materials, 2022, 6, .</mml:n </mml:msub></mml:mrow></mml:math 	nn ₂3 ⊷/mn	חl:n₂n>
1735	Uniform single atomic Cu1-C4 sites anchored in graphdiyne for hydroxylation of benzene to phenol. National Science Review, 2022, 9, .	9.5	22
1736	Regulating the Tip Effect on Singleâ€Atom and Cluster Catalysts: Forming Reversible Oxygen Species with High Efficiency in Chlorine Evolution Reaction. Angewandte Chemie - International Edition, 2022, 61, .	13.8	76
1737	Efficient visible light driven degradation of antibiotic pollutants by oxygen-doped graphitic carbon nitride via the homogeneous supramolecular assembly of urea. Environmental Research, 2022, 210, 112920.	7.5	14
1738	Tailoring the Surface and Interface Structures of Copperâ€Based Catalysts for Electrochemical Reduction of CO ₂ to Ethylene and Ethanol. Small, 2022, 18, e2107450.	10.0	87
1739	Surface science approach to the heterogeneous cycloaddition of CO2 to epoxides catalyzed by site-isolated metal complexes and single atoms: a review. Green Chemical Engineering, 2022, 3, 210-227.	6.3	26
1740	Abrading bulk metal into single atoms. Nature Nanotechnology, 2022, 17, 403-407.	31.5	102
1741	Strong Oxideâ€Support Interaction over IrO ₂ /V ₂ O ₅ for Efficient pHâ€Universal Water Splitting. Advanced Science, 2022, 9, e2104636.	11.2	77
1742	Decoding reactive structures in dilute alloy catalysts. Nature Communications, 2022, 13, 832.	12.8	35
1743	Regulating the Tip Effect on Singleâ€Atom and Cluster Catalysts: Forming Reversible Oxygen Species with High Efficiency in Chlorine Evolution Reaction. Angewandte Chemie, 2022, 134, .	2.0	25
1744	Ceria-supported Pd catalysts with different size regimes ranging from single atoms to nanoparticles for the oxidation of CO. Journal of Catalysis, 2022, 407, 104-114.	6.2	36
1745	Engineering stable Pt nanoclusters on defective two-dimensional TiO2 nanosheets by introducing SMSI for efficient ambient formaldehyde oxidation. Chemical Engineering Journal, 2022, 435, 135035.	12.7	31
1746	Experimental and Theoretical Insight into the Facet-Dependent Mechanisms of NO Oxidation Catalyzed by Structurally Diverse Mn ₂ O ₃ Nanocrystals. ACS Catalysis, 2022, 12, 397-410.	11.2	38
1747	Atomically Dispersed Heteronuclear Dualâ€Atom Catalysts: A New Rising Star in Atomic Catalysis. Small, 2022, 18, e2106091.	10.0	78

#	Article	IF	CITATIONS
1748	A Highly Active N-Doped Carbon Supported CoFe Alloy Catalyst for Hydroformylation of C ₈ Olefins. Journal of Physical Chemistry C, 2022, 126, 273-281.	3.1	11
1749	Machine learning–accelerated design and synthesis of polyelemental heterostructures. Science Advances, 2021, 7, eabj5505.	10.3	53
1750	A multifunctional AIE gold cluster-based theranostic system: tumor-targeted imaging and Fenton reaction-assisted enhanced radiotherapy. Journal of Nanobiotechnology, 2021, 19, 438.	9.1	15
1751	Nanocatalyzed Upcycling of the Plastic Wastes for a Circular Economy. SSRN Electronic Journal, 0, , .	0.4	0
1752	Multi-Functional ZnS Quantum Dots/Graphene Aerogel Modified Separator for High Performance Lithium-Sulfur Batteries. SSRN Electronic Journal, 0, , .	0.4	0
1753	Degradation of Bisphenol a Using Peroxymonosulfate Activated by Single-Atomic Cobalt Catalysts: Different Reactive Species at Acidic and Alkaline Ph. SSRN Electronic Journal, 0, , .	0.4	0
1754	Engineering Stable Pt Nanoclusters and Oxygen Vacancies on Defective Two-Dimensional Tio2 Nanosheets by Introducing Smsi for Efficient Ambient Formaldehyde Oxidation. SSRN Electronic Journal, 0, , .	0.4	0
1755	Ligand engineering of Au nanoclusters with multifunctional metalloporphyrins for photocatalytic H ₂ O ₂ production. Journal of Materials Chemistry A, 2022, 10, 8371-8377.	10.3	13
1756	Kinetics-controlled synthesis of gold–silver nanosheets with abundant in-plane cracking and their trimetallic derivatives for plasmon-enhanced catalysis. CrystEngComm, 2022, 24, 2451-2463.	2.6	3
1757	Super-resolution imaging of photogenerated charges on CdS/g-C ₃ N ₄ heterojunctions and its correlation with photoactivity. Nanoscale, 2022, 14, 5612-5624.	5.6	10
1758	Catalytically active Rh species stabilized by zirconium and hafnium on zeolites. Inorganic Chemistry Frontiers, 2022, 9, 2395-2402.	6.0	2
1759	Suppression of phosphine-protected Au ₉ cluster agglomeration on SrTiO ₃ particles using a chromium hydroxide layer. Materials Advances, 2022, 3, 3620-3630.	5.4	6
1760	Tuning the activity and selectivity of polymerised ionic liquid-stabilised ruthenium nanoparticles through anion exchange reactions. Nanoscale, 2022, 14, 4635-4643.	5.6	9
1761	Metallosupramolecular polymers as precursors for platinum nanocomposites. Polymer Chemistry, 2022, 13, 1880-1890.	3.9	0
1762	Ligand-free sub-5 nm platinum nanocatalysts on polydopamine supports: size-controlled synthesis and size-dictated reaction pathway selection. Nanoscale, 2022, 14, 5743-5750.	5.6	8
1763	Unique catalytic properties of Ni–Ir alloy for the hydrogenation of <i>N</i> -heteroaromatics. Catalysis Science and Technology, 2022, 12, 2420-2425.	4.1	4
1764	Significance of density functional theory (DFT) calculations for electrocatalysis of N ₂ and CO ₂ reduction reactions. Physical Chemistry Chemical Physics, 2022, 24, 8591-8603.	2.8	17
1765	Higher loadings of Pt single atoms and clusters over reducible metal oxides: application to C–O bond activation. Catalysis Science and Technology, 2022, 12, 2920-2928.	4.1	7

#	Article	IF	Citations
1766	Influence of ionic liquids on the electronic environment of atomically dispersed Ir on (MgO)(100). Physical Chemistry Chemical Physics, 2022, 24, 11305-11314.	2.8	1
1767	Single-atom catalysts for the upgrading of biomass-derived molecules: an overview of their preparation, properties and applications. Green Chemistry, 2022, 24, 2722-2751.	9.0	17
1768	Highly dispersed silver nanoparticles supported on a hydroxyapatite catalyst with different morphologies for CO oxidation. New Journal of Chemistry, 2022, 46, 6940-6945.	2.8	7
1769	Defect-stabilized nickel on beta zeolite as a promising catalyst for dry reforming of methane. Catalysis Science and Technology, 2022, 12, 3106-3115.	4.1	13
1770	Effects of alloying for steam or dry reforming of methane: a review of recent studies. Catalysis Science and Technology, 2022, 12, 3387-3411.	4.1	32
1771	Effect of oxygen termination on the interaction of first row transition metals with M ₂ C MXenes and the feasibility of single-atom catalysts. Journal of Materials Chemistry A, 2022, 10, 8846-8855.	10.3	18
1772	Ab Initio Random Structure Searching and Catalytic Properties of Copper-Based Nanocluster with Earth-Abundant Metals for the Electrocatalytic Co2-to-Co Conversion. SSRN Electronic Journal, 0, , .	0.4	0
1773	Conversion of biomass-derived feedstocks into value-added chemicals over single-atom catalysts. Green Chemistry, 2022, 24, 2267-2286.	9.0	45
1774	Single-atom catalysts for high-efficiency photocatalytic and photoelectrochemical water splitting: distinctive roles, unique fabrication methods and specific design strategies. Journal of Materials Chemistry A, 2022, 10, 6835-6871.	10.3	63
1775	Triggering Electronic Coupling between Neighbouring Hetero-Diatomic Metal Sites Promotes Hydrogen Evolution Reaction Kinetics. SSRN Electronic Journal, 0, , .	0.4	0
1776	Understanding and controlling the formation of surface anion vacancies for catalytic applications. Catalysis Science and Technology, 2022, 12, 2398-2410.	4.1	2
1777	Anchored complexes of rhodium and iridium for the hydrogenation of alkynes and olefins with parahydrogen. Catalysis Science and Technology, 2022, 12, 3247-3253.	4.1	11
1778	Rapid 3D 'Roll-Up' of Gas-Phase Small-Sized Planar Gold Clusters and Relative Affinity and Alienation for Mg and Ge: A DFT Study of Mggeaun (N=1-12) Clusters. SSRN Electronic Journal, 0, , .	0.4	0
1779	Identification of Fenton-like active Cu sites by heteroatom modulation of electronic density. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	7.1	132
1781	<scp>Singleâ€atom</scp> catalysts supported on ordered porous materials: Synthetic strategies and applications. InformaÄnA-MateriAily, 2022, 4, .	17.3	32
1782	Azide-Alkyne Click Chemistry over a Heterogeneous Copper-Based Single-Atom Catalyst. ACS Catalysis, 2022, 12, 2947-2958.	11.2	68
1783	Fe Nanoparticle Size Control of the Fe-MOF-Derived Catalyst Using a Solvothermal Method: Effect on FTS Activity and Olefin Production. ACS Omega, 2022, 7, 8403-8419.	3.5	13
1784	Synthesis of cobalt single atom catalyst by a solid-state transformation strategy for direct C-C cross-coupling of primary and secondary alcohols. Nano Research, 2022, 15, 4023-4031.	10.4	16

#	Article	IF	CITATIONS
1785	Controlled Formation of Dimers and Spatially Isolated Atoms in Bimetallic Auâ€Ru Catalysts via Carbonâ€Host Functionalization. Small, 2022, 18, e2200224.	10.0	9
1786	Engineering Multienzymeâ€Mimicking Covalent Organic Frameworks as Pyroptosis Inducers for Boosting Antitumor Immunity. Advanced Materials, 2022, 34, e2108174.	21.0	91
1787	MXeneâ€Supported, Atomicâ€Layered Iridium Catalysts Created by Nanoparticle Reâ€Dispersion for Efficient Alkaline Hydrogen Evolution. Small, 2022, 18, e2105226.	10.0	16
1789	Kinetics of Nanoparticles Nucleation/Growth and Control of the Pt/C Catalysts Microstructure and Activity. IOP Conference Series: Earth and Environmental Science, 2022, 987, 012022.	0.3	0
1790	Reaction product-driven restructuring and assisted stabilization of a highly dispersed Rh-on-ceria catalyst. Nature Catalysis, 2022, 5, 119-127.	34.4	46
1791	Graphene oxide-derived single-atom catalysts for electrochemical energy conversion. Rare Metals, 2022, 41, 1703-1726.	7.1	37
1793	Cu–Ga <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mrow /><mml:mn>2</mml:mn></mml:mrow </mml:msub></mml:math> O <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mrow /><mml:mn>3</mml:mn></mml:mrow </mml:msub>nanoparticles supported on ordered mesoporous silica for the catalytic hydrogenation of cinnamaldehyde. Comptes Rendus Chimie, 2022, 25, 81-94.</mml:math 	0.5	0
1794	Design of Experiment: A Rational and Still Unexplored Approach to Inorganic Materials' Synthesis. Sustainable Chemistry, 2022, 3, 114-130.	4.7	8
1795	Exploiting the Fracture in Metalâ€Organic Frameworks: A General Strategy for Bifunctional Atomâ€Precise Nanocluster/ZIFâ€8(300°C) Composites. Small, 2022, 18, e2107459.	10.0	11
1796	Iron Nanoparticles Confined in Periodic Mesoporous Organosilicon as Nanoreactors for Efficient Nitrate Reduction. ACS Applied Nano Materials, 2022, 5, 5149-5157.	5.0	9
1797	Al ³⁺ Dopants Induced Mg ²⁺ Vacancies Stabilizing Single-Atom Cu Catalyst for Efficient Free-Radical Hydrophosphinylation of Alkenes. Journal of the American Chemical Society, 2022, 144, 4321-4326.	13.7	32
1798	Oxidation Control of 5-Hydroxymethylfurfural to Polymer Building Blocks by Au Clusters and Nanoparticles on Hollow CeO ₂ Spheres. ACS Applied Nano Materials, 2022, 5, 4603-4608.	5.0	4
1799	In Situ Transformation of ZIF-8 into Porous Overlayer on Ru/ZnO for Enhanced Hydrogenation Catalysis. ACS Applied Materials & amp; Interfaces, 2022, 14, 12295-12303.	8.0	8
1800	DFT reveals the support effects in Pd nanoclusters over defect-ridden graphene for the oxidative addition of bromobenzene. Molecular Catalysis, 2022, 521, 112205.	2.0	1
1801	Experimental and Theoretical Investigation of Metal–Support Interactions in Metal-Oxide-Supported Rhenium Materials. Journal of Physical Chemistry C, 2022, 126, 4472-4482.	3.1	5
1802	Identification of Catalytic Active Sites for Durable Proton Exchange Membrane Fuel Cell: Catalytic Degradation and Poisoning Perspectives. Small, 2022, 18, e2106279.	10.0	25
1803	Circumventing the OCl versus OOH scaling relation in the chlorine evolution reaction: Beyond dimensionally stable anodes. Current Opinion in Electrochemistry, 2022, 34, 100979.	4.8	12
1804	Mechanism of Nucleation of Gold(I) Thiolate Oligomers into Gold–Thiolate Nanoclusters. Journal of Physical Chemistry C, 2022, 126, 5980-5990.	3.1	3

#	Article	IF	CITATIONS
1805	Synergetic Function of the Single-Atom Ru–N ₄ Site and Ru Nanoparticles for Hydrogen Production in a Wide pH Range and Seawater Electrolysis. ACS Applied Materials & Interfaces, 2022, 14, 15250-15258.	8.0	35
1806	Water-Based Synthesis of Ultrasmall Nanoparticles of Platinum Group Metal Oxides (1.8 nm). Inorganic Chemistry, 2022, 61, 5133-5147.	4.0	6
1807	Singleâ€Atom Fe Catalysts for Fentonâ€Like Reactions: Roles of Different N Species. Advanced Materials, 2022, 34, e2110653.	21.0	158
1808	Intramolecular hydroamination of alkynes driven by isomeric Au36(SR)24 nanocluster catalysts. Nano Research, 2023, 16, 3641-3648.	10.4	3
1809	Remarkable Activity of 002 Facet of Ruthenium Nanoparticles Grown on Graphene Films on the Photocatalytic CO ₂ Methanation. Advanced Sustainable Systems, 2022, 6, .	5.3	7
1810	Tridimensional N, P-Codoped Carbon Sponges as Highly Selective Catalysts for Aerobic Oxidative Coupling of Benzylamine. ACS Omega, 2022, 7, 11092-11100.	3.5	5
1811	Nanoporous nickel with rich adsorbed oxygen for efficient alkaline hydrogen evolution electrocatalysis. Science China Materials, 2022, 65, 1825-1832.	6.3	6
1812	Crystal-Phase-Mediated Restructuring of Pt on TiO ₂ with Tunable Reactivity: Redispersion versus Reshaping. ACS Catalysis, 2022, 12, 3634-3643.	11.2	44
1813	Photocatalytic Abstraction of Hydrogen Atoms from Water Using Hydroxylated Graphitic Carbon Nitride for Hydrogenative Coupling Reactions. Angewandte Chemie - International Edition, 2022, 61, .	13.8	27
1814	Atom by atom built subnanometer copper cluster catalyst for the highly selective oxidative dehydrogenation of cyclohexene. Journal of Chemical Physics, 2022, 156, 114302.	3.0	6
1815	Toward Totally Defined Nanocatalysis: Deep Learning Reveals the Extraordinary Activity of Single Pd/C Particles. Journal of the American Chemical Society, 2022, 144, 6071-6079.	13.7	13
1816	Insight into metal-support interactions from the hydrodesulfurization of dibenzothiophene over Pd catalysts supported on UiO-66 and its amino-functionalized analogues. Journal of Catalysis, 2022, 407, 333-341.	6.2	6
1817	Pt-Based Multimetal Electrocatalysts and Potential Applications: Recent Advancements in the Synthesis of Nanoparticles by Modified Polyol Methods. Crystals, 2022, 12, 375.	2.2	10
1818	Emerging Ultrahighâ€Density Singleâ€Atom Catalysts for Versatile Heterogeneous Catalysis Applications: Redefinition, Recent Progress, and Challenges. Small Structures, 2022, 3, .	12.0	41
1819	Photocatalytic Abstraction of Hydrogen Atoms from Water Using Hydroxylated Graphitic Carbon Nitride for Hydrogenative Coupling Reactions. Angewandte Chemie, 2022, 134, .	2.0	3
1820	Enhanced Methanol Production over Non-promoted Cu–MgO–Al ₂ O ₃ Materials with Ex-solved 2 nm Cu Particles: Insights from an Operando Spectroscopic Study. ACS Catalysis, 2022, 12, 3845-3857.	11.2	14
1821	Modulating the Electronic Metalâ€6upport Interactions in Singleâ€Atom Pt ₁ â^'CuO Catalyst for Boosting Acetone Oxidation. Angewandte Chemie, 2022, 134, .	2.0	4
1822	Designing Sites in Heterogeneous Catalysis: Are We Reaching Selectivities Competitive With Those of Homogeneous Catalysts?. Chemical Reviews, 2022, 122, 8594-8757.	47.7	118

#	Article	IF	CITATIONS
1823	PO ₄ ^{3â^'} Coordinated Robust Singleâ€Atom Platinum Catalyst for Selective Polyol Oxidation**. Angewandte Chemie, 2022, 134, .	2.0	21
1824	Atomically Precise Single Metal Oxide Cluster Catalyst with Oxygenâ€Controlled Activity. Advanced Functional Materials, 2022, 32, .	14.9	13
1825	Alkali ion-promoted palladium subnanoclusters stabilized on porous alumina nanosheets with enhanced catalytic activity for benzene oxidation. Nano Research, 2022, 15, 5912-5921.	10.4	13
1826	A review on the development of supported non-noble metal catalysts for the endothermic high temperature sulfuric acid decomposition step in the Iodine–Sulfur cycle for hydrogen production. International Journal of Hydrogen Energy, 2022, 47, 14186-14210.	7.1	10
1827	2D π onjugated metal–organic frameworks for CO ₂ electroreduction. SmartMat, 2022, 3, 54-67.	10.7	31
1828	Sml ₂ â€mediated Câ€alkylation of Ketones with Alcohols under Microwave Conditions: A Novel Route to Alkylated Ketones. Chemistry - an Asian Journal, 2022, 17, .	3.3	3
1829	Gold nanoclusters supported on different materials as catalysts for the selective alkyne semihydrogenation. Catalysis Today, 2022, 394-396, 34-40.	4.4	3
1830	Computational Investigation of Hydriding and Strain Effects on the Binding Energies of Electrochemical CO2RR and HER Intermediates. Journal of Physical Chemistry C, 2022, 126, 5513-5520.	3.1	5
1831	Size-Dependent Pt Nanoparticle/Carbon-Catalyzed Hydrogenation of 6-Chloroquinoline. ACS Applied Nano Materials, 2022, 5, 4252-4259.	5.0	4
1832	PO ₄ ^{3â^'} Coordinated Robust Singleâ€Atom Platinum Catalyst for Selective Polyol Oxidation**. Angewandte Chemie - International Edition, 2022, 61, .	13.8	51
1833	A Magnetically Separable Pd Singleâ€Atom Catalyst for Efficient Selective Hydrogenation of Phenylacetylene. Advanced Materials, 2022, 34, e2110455.	21.0	44
1834	Dilute Alloys Based on Au, Ag, or Cu for Efficient Catalysis: From Synthesis to Active Sites. Chemical Reviews, 2022, 122, 8758-8808.	47.7	50
1835	Modulating the Electronic Metalâ€Support Interactions in Singleâ€Atom Pt ₁ â^'CuO Catalyst for Boosting Acetone Oxidation. Angewandte Chemie - International Edition, 2022, 61, .	13.8	46
1836	New insight into the design of highly dispersed Pt supported CeO2–TiO2 catalysts with superior activity for VOCs low-temperature removal. Green Energy and Environment, 2023, 8, 1654-1663.	8.7	13
1837	Highly selective hydrogenative ring-rearrangement of furfural to cyclopentanone over a bifunctional Ni3P/l³-Al2O3 catalyst. Molecular Catalysis, 2022, 522, 112239.	2.0	5
1838	Design strategies of supported metal-based catalysts for efficient oxidative desulfurization of fuel. Journal of Industrial and Engineering Chemistry, 2022, 108, 1-14.	5.8	20
1839	Mo2CS2-MXene supported single-atom catalysts for efficient and selective CO2 electrochemical reduction. Applied Surface Science, 2022, 592, 153339.	6.1	20
1840	Synthetic strategies in development of 3-aroylimidazo[1,2-a]pyridines and 2-aroylimidazo[1,2-a]pyridines: A decade update. Synthetic Communications, 2022, 52, 1209-1244.	2.1	4

#	Article	IF	CITATIONS
1841	Heterolytic Dissociation of H ₂ in Heterogeneous Catalysis. ACS Catalysis, 2022, 12, 4707-4723.	11.2	80
1842	Atomic Engineering Catalyzed Redox Kinetics of Ni _x Co _{1â€x} (OH) ₂ on Nanoporous Phosphide Electrode for Efficient Niâ€Zn Batteries. Small, 2022, 18, e2200452.	10.0	7
1843	Design strategies and structure-performance relationships of heterogeneous catalysts for selective hydrogenation of 1,3-butadiene. Chinese Journal of Catalysis, 2022, 43, 1017-1041.	14.0	13
1844	Coordination environment of active sites and their effect on catalytic performance of heterogeneous catalysts. Chinese Journal of Catalysis, 2022, 43, 928-955.	14.0	23
1845	Colloidal Polydopamine Beads: A Photothermally Active Support for Noble Metal Nanocatalysts. ACS Applied Materials & Interfaces, 2022, 14, 17560-17569.	8.0	23
1846	Wet-Chemical Synthesis of Porous Multifaceted Platinum Nanoparticles for Oxygen Reduction and Methanol Oxidation Reactions. ACS Applied Nano Materials, 0, , .	5.0	7
1847	Adatom and Nanoparticle Dynamics on Single-Atom Catalyst Substrates. ACS Catalysis, 2022, 12, 4859-4871.	11.2	19
1848	Versatile CMPs as platforms to support Ag nanocatalysts for nitrophenol hydrogenation in continuous flow-through process. Chemical Engineering Journal, 2022, 442, 136207.	12.7	20
1849	A Sulfurâ€Tolerant MOFâ€Based Singleâ€Atom Fe Catalyst for Efficient Oxidation of NO and Hg ⁰ . Advanced Materials, 2022, 34, e2110123.	21.0	40
1850	Rational design and precise manipulation of nano-catalysts. Chinese Journal of Catalysis, 2022, 43, 898-912.	14.0	7
1851	Selective semi-hydrogenation of internal alkynes catalyzed by Pd–CaCO3 clusters. Journal of Catalysis, 2022, 408, 43-55.	6.2	29
1852	CO oxidation by Pt ₂ /Fe ₃ O ₄ : Metastable dimer and support configurations facilitate lattice oxygen extraction. Science Advances, 2022, 8, eabn4580.	10.3	14
1853	An atomistic study on the structural and thermodynamic properties of Al–Fe bimetallic nanoparticles during melting and solidification: The role of size and composition. Materials Chemistry and Physics, 2022, 282, 125936.	4.0	5
1854	Effect of metal–acid balance and textual modifications on hydroisomerization catalysts for n-alkanes with different chain length: A mini-review. Fuel, 2022, 315, 122809.	6.4	27
1855	Synthesis of single-atom dispersed Co-NC catalytic materials in supercritical CO2 environment with inorganic salt precursor. Journal of CO2 Utilization, 2022, 59, 101948.	6.8	5
1856	Surface-functionalized gold and silver nanoparticles for colorimetric and fluorescent sensing of metal ions and biomolecules. Coordination Chemistry Reviews, 2022, 459, 214461.	18.8	73
1857	Atomic-scale understanding of oxidation mechanisms of materials by computational approaches: A review. Materials and Design, 2022, 217, 110605.	7.0	6
1858	Green synthesis of gold nanoparticles (Au NPs) using Rosa canina fruit extractand evaluation of its catalytic activity in the degradation of organic dye pollutants of water. Inorganic Chemistry	3.9	45

#	Article	IF	CITATIONS
1859	Coordination structure at work: Atomically dispersed heterogeneous catalysts. Coordination Chemistry Reviews, 2022, 460, 214469.	18.8	15
1860	Recent progress in improving the performance of inÂvivo electrochemical microsensor based on materials. Current Opinion in Electrochemistry, 2022, 33, 100957.	4.8	5
1861	Investigation of catalytic performance of Bis [hydrazinium (1+)] hexafluoridosilicate: (N2H5)2SiF6 in synthesis of 2,4,5-triaryl-1H-imidazoles and 2,3-dihydroquinazolin-4 (1H)-ones under Green conditions. Inorganica Chimica Acta, 2022, 536, 120915.	2.4	3
1862	A general strategy for overcoming the trade-off between ultrasmall size and high loading of MOF-derived metal nanoparticles by millisecond pyrolysis. Nano Energy, 2022, 97, 107125.	16.0	17
1863	Composition-controlled ultrathin holey TiO1â^'xNx nanosheets as powerful hybridization matrices for highly mass-efficient electrocatalysts. Chemical Engineering Journal, 2022, 437, 135415.	12.7	7
1864	Quantum materials made in microfluidics - critical review and perspective. Chemical Engineering Journal, 2022, 438, 135616.	12.7	13
1865	Ni-based electrocatalysts for unconventional CO2 reduction reaction to formic acid. Nano Energy, 2022, 97, 107191.	16.0	17
1866	The effect of coordination environment on the activity and selectivity of single-atom catalysts. Coordination Chemistry Reviews, 2022, 461, 214493.	18.8	91
1867	Ag/biochar nanocomposites demonstrate remarkable catalytic activity towards reduction of p-nitrophenol via restricted agglomeration and leaching characteristics. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 642, 128616.	4.7	14
1868	Carbon hollow matrix anchored by isolated transition metal atoms serving as a single atom cocatalyst to facilitate the water oxidation kinetics of bismuth vanadate. Journal of Colloid and Interface Science, 2022, 616, 631-640.	9.4	6
1869	Self-assembled Pt–CoFe layered double hydroxides for efficient alkaline water/seawater splitting by spontaneous redox synthesis. Journal of Power Sources, 2022, 532, 231353.	7.8	20
1870	Structural design for electrocatalytic water splitting to realize industrial-scale deployment: Strategies, advances, and perspectives. Journal of Energy Chemistry, 2022, 70, 129-153.	12.9	60
1871	Single (Ni, Fe) atoms and ultrasmall Core@shell Ni@Fe nanostructures Dual-implanted CNTs-Graphene nanonetworks for robust Zn- and Al-Air batteries. Chemical Engineering Journal, 2022, 440, 135781.	12.7	24
1872	Design of Co-NC as efficient electrocatalyst: The unique structure and active site for remarkable durability of proton exchange membrane fuel cells. Applied Catalysis B: Environmental, 2022, 308, 121220.	20.2	26
1873	Encapsulating atomic molybdenum into hierarchical nitrogen-doped carbon nanoboxes for efficient oxygen reduction. Journal of Colloid and Interface Science, 2022, 620, 67-76.	9.4	7
1874	New Heterogeneous Nanostructured Catalysts Based on Transition Metal Nanoparticles and Hexagonal Boron Nitride. Technical Physics Letters, 2021, 47, 792-795.	0.7	Ο
1875	Recent advances in highâ€loading catalysts for lowâ€ŧemperature fuel cells: From nanoparticle to single atom. SusMat, 2021, 1, 569-592.	14.9	35
1876	Progressions in cathodic catalysts for oxygen reduction and hydrogen evolution in bioelectrochemical systems: Molybdenum as the next-generation catalyst. Catalysis Reviews - Science and Engineering, 2023, 65, 986-1078.	12.9	3

#	Article	IF	CITATIONS
1877	Transition metal on topological chiral semimetal PdGa with tailored hydrogen adsorption and reduction. Npj Computational Materials, 2021, 7, .	8.7	12
1878	Mesoporous silica nanospheres supported atomically precise palladium nanocluster: Highly efficient and recyclable catalysts in the reduction of 4â€nitrophenol and Heck reactions. Applied Organometallic Chemistry, 2022, 36, .	3.5	4
1879	IrO _x Nanoclusters Modified by BaCO ₃ Enable ″Two Birds with One Stone″ in Solar-Driven Direct Unbuffered Seawater Electrolysis. ACS Applied Materials & Interfaces, 2021, 13, 61088-61097.	8.0	10
1880	Heterometallic Ce ^{IV} / V ^V Oxo Clusters with Adjustable Catalytic Reactivities. Journal of the American Chemical Society, 2021, 143, 21056-21065.	13.7	21
1881	Heterogeneous Cu catalyst in organic transformations. Nano Research, 2022, 15, 2810-2833.	10.4	29
1882	Recent Advances in Synthesis and Applications of Singleâ€Atom Catalysts for Rechargeable Batteries. Chemical Record, 2022, 22, .	5.8	14
1883	Recent Advances in the Marriage of Catalyst Nanoparticles and Mesoporous Supports. Advanced Materials Interfaces, 2022, 9, .	3.7	10
1884	Silica-supported Fe/Fe–O nanoparticles for the catalytic hydrogenation of nitriles to amines in the presence of aluminium additives. Nature Catalysis, 2022, 5, 20-29.	34.4	65
1885	A General Strategy to Immobilize Singleâ€Atom Catalysts in Metal–Organic Frameworks for Enhanced Photocatalysis. Advanced Materials, 2022, 34, e2109203.	21.0	80
1886	Design of mesoporous ZnCoSiOx hollow nanoreactors with specific spatial distribution of metal species for selective CO2 hydrogenation. Nano Research, 2023, 16, 5601-5609.	10.4	6
1887	Charge Separation in Photocatalysts: Mechanisms, Physical Parameters, and Design Principles. ACS Energy Letters, 2022, 7, 432-452.	17.4	41
1888	[Ni ₃₀ S ₁₆ (PEt ₃) ₁₁]: an open-shell nickel sulfide nanocluster with a "metal-like―core. Chemical Science, 0, , .	7.4	4
1889	Engineering single-atom catalysts toward biomedical applications. Chemical Society Reviews, 2022, 51, 3688-3734.	38.1	43
1890	Twin PdPtIr porous nanotubes as a dual-functional catalyst for oxygen reduction and evolution reactions. Journal of Materials Chemistry A, 2022, 10, 11354-11362.	10.3	11
1891	Thermal synthesis of Pt nanoparticles on carbon paper supports. International Journal of Hydrogen Energy, 2022, 47, 41223-41235.	7.1	4
1892	Triggering electronic coupling between neighboring hetero-diatomic metal sites promotes hydrogen evolution reaction kinetics. Nano Energy, 2022, 98, 107296.	16.0	30
1893	CO oxidation on MXene (Mo2CS2) supported single-atom catalyst: A termolecular Eley-Rideal mechanism. Chinese Chemical Letters, 2023, 34, 107412.	9.0	13
1894	Evolution of Surface Structure on Pd–Cl/Alumina Catalyst During CO Purification Process. Catalysis Letters, 2023, 153, 493-502.	2.6	0

#	Article	IF	CITATIONS
1895	Sulfonamide a Valid Scaffold for Antioxidant Drug Development. Mini-Reviews in Organic Chemistry, 2023, 20, 190-209.	1.3	8
1896	Sub-nanometric materials: Electron transfer, delocalization, and beyond. Chem Catalysis, 2022, 2, 1257-1266.	6.1	18
1897	Integrating Terminal CoBr _n Salts into a 2D Cobalt(II) Coordination Polymer to Promote the <i>β</i> â€(<i>E)â^'</i> Selective Hydroboration of Alkynes. Advanced Synthesis and Catalysis, 2022, 364, 1873-1878.	4.3	5
1898	Hemin loaded Znâ^'N–C single-atom nanozymes for assay of propyl gallate and formaldehyde in food samples. Food Chemistry, 2022, 389, 132985.	8.2	11
1899	The Factors Dictating Properties of Atomically Precise Metal Nanocluster Electrocatalysts. Small, 2022, 18, e2200812.	10.0	25
1900	Formic acid electro-oxidation: Mechanism and electrocatalysts design. Nano Research, 2023, 16, 3607-3621.	10.4	12
1901	Phosphated IrMo bimetallic cluster for efficient hydrogen evolution reaction. EScience, 2022, 2, 304-310.	41.6	171
1902	Tuning the surface states of TiO2 using Cu5 atomic clusters. Applied Surface Science, 2022, 594, 153455.	6.1	7
1903	Effective Inclusion of ZnMg in a Fe-Based/HZSM-5-Integrated Catalyst for the Direct Synthesis of Aromatics from Syngas. Energy & Fuels, 2022, 36, 4510-4523.	5.1	2
1904	Selective transfer hydrogenation coupling of nitroaromatics to azoxy/azo compounds by electron-enriched single Ni-N4 sites on mesoporous N-doped carbon. Chemical Engineering Journal, 2022, 443, 136416.	12.7	10
1905	Understanding the geometric structure, electronic and stability properties of anionic germanium-doped magnesium clusters: Gas-phase GeMgnâ^' (nA=À2–12) DFT study. Computational Materials Science, 2022, 210, 111444.	3.0	2
1906	Atomically Dispersed Platinum in Surface and Subsurface Sites on MgO Have Contrasting Catalytic Properties for CO Oxidation. Journal of Physical Chemistry Letters, 2022, 13, 3896-3903.	4.6	7
1907	Computational vibrational spectroscopy of molecule–surface interactions: what is still difficult and what can be done about it. Physical Chemistry Chemical Physics, 2022, 24, 15158-15172.	2.8	12
1908	Interfacing single-atom catalysis with continuous-flow organic electrosynthesis. Chemical Society Reviews, 2022, 51, 3898-3925.	38.1	50
1909	Recent Advances in the Catalytic N-Methylation and N-Trideuteromethylation Reactions Using Methanol and Deuterated Methanol. SSRN Electronic Journal, 0, , .	0.4	2
1910	Comparative Investigation of Ga- and In-Cha in the Non-Oxidative Ethane Dehydrogenation Reaction. SSRN Electronic Journal, 0, , .	0.4	Ο
1911	Catalytic limitations on alkane dehydrogenation under H ₂ deficient conditions relevant to membrane reactors. Energy and Environmental Science, 2022, 15, 2120-2129.	30.8	8
1912	Heterogeneous parahydrogen induced polarization on Rh-containing silicalite-1 zeolites: effect of the catalyst structure on signal enhancement. Catalysis Science and Technology, 2022, 12, 4442-4449.	4.1	2

#	Article	IF	CITATIONS
1913	Incorporating Au ₁₁ nanoclusters on MoS ₂ nanosheet edges for promoting the hydrogen evolution reaction at the interface. Nanoscale, 2022, 14, 7919-7926.	5.6	9
1914	Regulation of Sub-Nanometric Platinum on Bakl Zeolite for Boosting N-Heptane Aromatization. SSRN Electronic Journal, 0, , .	0.4	0
1915	Phase Transfer of AMIET-functionalized Gold Nanoparticles from Aqueous to Organic Solvents. Journal of Oleo Science, 2022, 71, 685-692.	1.4	3
1916	Yolk-Shell Co Catalysts with Controlled Nanoparticle/Single-Atom Ratio for Aqueous Levulinic Acid Hydrogenation to Γ-Valerolactone. SSRN Electronic Journal, 0, , .	0.4	0
1917	CeO ₂ Supported Gold Nanocluster Catalysts for CO Oxidation: Surface Evolution Influenced by the Ligand Shell. ChemCatChem, 2022, 14, .	3.7	6
1918	Performance descriptors of nanostructured metal catalysts for acetylene hydrochlorination. Nature Nanotechnology, 2022, 17, 606-612.	31.5	39
1919	Metal-metal interactions in correlated single-atom catalysts. Science Advances, 2022, 8, eabo0762.	10.3	142
1920	Nanopores of a Covalent Organic Framework: A Customizable Vessel for Organocatalysis. ACS Omega, 2022, 7, 15275-15295.	3.5	14
1921	Identification of Active Sites in HCHO Oxidation over TiO ₂ -Supported Pt Catalysts. ACS Catalysis, 2022, 12, 5565-5573.	11.2	24
1922	Coexistence of Fe Nanoclusters Boosting Fe Single Atoms to Generate Singlet Oxygen for Efficient Aerobic Oxidation of Primary Amines to Imines. ACS Catalysis, 2022, 12, 5595-5604.	11.2	58
1923	Structure of Polyhedral Nanoparticles with Cubic Lattice: Theoretical Analysis. International Journal of Nanoscience, 0, , .	0.7	1
1924	Tuning the mesopore-acid-metal balance in Pd/HY for efficient deep hydrogenation saturation of naphthalene. International Journal of Hydrogen Energy, 2022, 47, 20881-20893.	7.1	5
1925	Multi-functional ZnS quantum Dots/Graphene aerogel modified separator for high performance lithium-sulfur batteries. Electrochimica Acta, 2022, 422, 140496.	5.2	9
1926	Chemo- and regioselective benzylic C(sp3)–H oxidation bridging the gap between hetero- and homogeneous copper catalysis. IScience, 2022, 25, 104341.	4.1	4
1927	Recyclable magnetically retrievable nanocatalysts for C–heteroatom bond formation reactions. ChemistrySelect, 2022, .	1.5	0
1928	Support Morphology Effect on Selective Hydrogenation of 3â€Nitrostyrene to 3â€Vinylaniline over Pt/l±â€Fe ₂ O ₃ Catalysts. Chemistry - A European Journal, 2022, 28, e202200199.	3.3	5
1929	Transition Metal Atoms Anchored on CuPS3 Monolayer for Enhancing Catalytic Performance of Hydrogen Evolution Reactions. Electrocatalysis, 2022, 13, 494-501.	3.0	4
1930	Kinetic and Thermodynamic Factors Influencing Palladium Nanoparticle Redispersion into Mononuclear Pd(II) Cations in Zeolite Supports. Journal of Physical Chemistry C, 2022, 126, 8337-8353.	3.1	12

#	Article	IF	CITATIONS
1931	Nano-sized alumina supported palladium catalysts for methane combustion with excellent thermal stability. Journal of Environmental Sciences, 2023, 126, 333-347.	6.1	9
1932	Cobalt Single Atoms Anchored on Oxygenâ€Doped Tubular Carbon Nitride for Efficient Peroxymonosulfate Activation: Simultaneous Coordination Structure and Morphology Modulation. Angewandte Chemie - International Edition, 2022, 61, .	13.8	97
1933	Nucleation mechanisms of titanium oxide particles at high temperature based on cluster-assisted nucleation. Journal of Materials Research and Technology, 2022, 19, 578-590.	5.8	4
1934	Cobalt Single Atoms Anchored on Oxygenâ€Doped Tubular Carbon Nitride for Efficient Peroxymonosulfate Activation: Simultaneous Coordination Structure and Morphology Modulation. Angewandte Chemie, 2022, 134, .	2.0	25
1935	Transformation of reduced graphene aerogel-supported atomically dispersed iridium into stable clusters approximated as Ir6 during ethylene hydrogenation catalysis. Journal of Catalysis, 2022, 413, 603-613.	6.2	2
1936	Metal–Organic Frameworks-Mediated Assembly of Gold Nanoclusters for Sensing Applications. Journal of Analysis and Testing, 2022, 6, 163-177.	5.1	39
1937	Development of Visible Light-Driven Hybrid Catalysts Composed of Earth Abundant Metal Ion Modified TiO2 and B12 Complex. Bulletin of the Chemical Society of Japan, 2022, 95, 1016-1024.	3.2	4
1938	Strong dual-metal-support interactions induced by low-temperature plasma phenomenon. Materials Today Nano, 2022, 18, 100213.	4.6	12
1939	Hydrogenation of the pivotal biorefinery platform molecule levulinic acid into renewable fuel Î ³ -valerolactone catalyzed by unprecedented highly active and stable ruthenium nanoparticles in aqueous media. Renewable Energy, 2022, 192, 35-45.	8.9	4
1940	Sulfur-doped graphitic carbon nitride decorated with starch, Fe3O4, and Ag nanoparticles: As efficient and magnetic recoverable nanocatalyst for hydrogenation of nitroaromatics in aqueous media. Diamond and Related Materials, 2022, 126, 109078.	3.9	4
1941	Advances of atomically dispersed catalysts from single-atom to clusters in energy storage and conversion applications. Progress in Materials Science, 2022, 128, 100964.	32.8	40
1942	Synthesis of layered double hydroxide-supported platinum nanocatalyst for highly efficient and selective hydrogenation of nitroaromatics. Materials Chemistry and Physics, 2022, 287, 126241.	4.0	1
1943	A one-pot carbon-coating-ex-solution route to efficient Ru-MnO@C nanowire electrocatalysts with enhanced interfacial interactions. Chemical Engineering Journal, 2022, 446, 136816.	12.7	2
1944	Atomically dispersed lewis acid sites meet poly(ionic liquid)s networks for solvent-free and co-catalyst-free conversion of CO2 to cyclic carbonates. Applied Catalysis B: Environmental, 2022, 313, 121463.	20.2	31
1945	Atomic-level modulation of local coordination environment at Fe single-atom sites for enhanced oxygen reduction. Applied Catalysis B: Environmental, 2022, 313, 121429.	20.2	19
1946	Redispersion of Pt nanoparticles encapsulated within ZSM-5 in oxygen and catalytic properties in partial oxidation of methane. Journal of Porous Materials, 0, , 1.	2.6	0
1947	Isolating Single and Few Atoms for Enhanced Catalysis. Advanced Materials, 2022, 34, e2201796.	21.0	84
1948	Facile synthesis of polymer-based magnesium hydroxide nanocomposites for photocatalytic degradation for methylene blue dye and antibacterial application. Biomass Conversion and Biorefinery, 2023, 13, 13539-13552	4.6	4

#	Article	IF	CITATIONS
1949	Metal nanoparticle arrays via a water-based lift-off scheme using a block copolymer template. Nanotechnology, 2022, 33, 325302.	2.6	2
1950	Pd speciation on black phosphorene in a CO and C ₂ H ₄ atmosphere: a first-principles investigation. Physical Chemistry Chemical Physics, 2022, 24, 14284-14293.	2.8	1
1951	Synergetic and Cooperative Effects in Multimetallic Macrocyclic Complexes for Biological, Catalytic and Magnetic Activity. Asian Journal of Chemistry, 2022, 34, 1333-1346.	0.3	0
1952	Synergy between homogeneous and heterogeneous catalysis. Catalysis Science and Technology, 2022, 12, 6623-6649.	4.1	29
1953	Reverse water–gas shift reaction catalyzed by diatomic rhodium anions. Physical Chemistry Chemical Physics, 2022, 24, 14616-14622.	2.8	3
1954	Polymer-Mediated Particle Coarsening within Hollow Silica Shell Nanoreactors. Chemistry of Materials, 2022, 34, 5094-5102.	6.7	2
1955	Dynamic hetero-metallic bondings visualized by sequential atom imaging. Nature Communications, 2022, 13, .	12.8	4
1956	Nonmetal-to-Metal Transition of Magnesia Supported Au Clusters Affects the Ultrafast Dissociation Dynamics of Adsorbed CH ₃ Br Molecules. Journal of Physical Chemistry Letters, 2022, 13, 4747-4753.	4.6	1
1957	Recent Achievements in the Synthesis of Cyclic Carbonates from Olefins and CO2: The Rational Design of the Homogeneous and Heterogeneous Catalytic System. Catalysts, 2022, 12, 563.	3.5	2
1958	Determination of Adsorption of Methylene Blue Dye by Incense Stick Ash Waste and Its Toxicity on RTG-2 Cells. Adsorption Science and Technology, 2022, 2022, .	3.2	7
1959	Non-noble metal single-atom catalyst with MXene support: Fe1/Ti2CO2 for CO oxidation. Chinese Journal of Catalysis, 2022, 43, 1830-1841.	14.0	16
1960	Distributions of Ni in MCM-41 for the hydrogenation of N-ethylcarbazole. Fuel, 2022, 324, 124405.	6.4	12
1961	Mutual-modification effect in adjacent Pt nanoparticles and single atoms with sub-nanometer inter-site distances to boost photocatalytic hydrogen evolution. Chemical Engineering Journal, 2022, 446, 137127.	12.7	48
1962	High-Selective and Effective Carbon Nanotubes Supported Ultrasmall Ptpdrh Electrocatalysts for Ethanol Oxidation. SSRN Electronic Journal, 0, , .	0.4	0
1963	Surface-modified nanomaterials for synthesis of pharmaceuticals. , 2022, , 251-266.		0
1964	Introduction to surface-modified nanomaterials. , 2022, , xvii-xxix.		0
1965	Conversion of Syngas with Carbon Dioxide to Fuels. , 2022, , 1653-1688.		0
1966	Synergetic catalysis of p–d hybridized single-atom catalysts: first-principles investigations. Journal of Materials Chemistry A, 2022, 10, 13066-13073.	10.3	3

#	Article	IF	CITATIONS
1967	Future of SMNs catalysts for industry applications. , 2022, , 319-346.		0
1968	Analysis of CaCO3 Impregnation on HY Zeolite Surface Area, Pore Size, and Activity in the Catalytic Cracking of Palm Oil to Biofuels. Teknik, 2022, 43, 78-86.	0.1	0
1969	Polyol Synthesis of Pd Icosahedral Nanocrystals: Insights into the Growth Mechanism and Size Control. Chemistry of Materials, 2022, 34, 5065-5073.	6.7	12
1970	Synergistic Promotion of Single-Atom Co Surrounding a PtCo Alloy Based On a g-C ₃ N ₄ Nanosheet for Overall Water Splitting. ACS Catalysis, 2022, 12, 6958-6967.	11.2	59
1971	Nanoengineering of Catalysts for Enhanced Hydrogen Production. Hydrogen, 2022, 3, 218-254.	3.4	11
1972	"Hidden―Nanoscale Catalysis in Alkyne Hydrogenation with Well-Defined Molecular Pd/NHC Complexes. ACS Catalysis, 2022, 12, 6980-6996.	11.2	8
1973	Dynamic Structural Evolution of Ceria-Supported Pt Particles: A Thorough Spectroscopic Study. Journal of Physical Chemistry C, 2022, 126, 9051-9058.	3.1	6
1974	Design of electrocatalysts with reduced Pt content supported on mesoporous NiWO4 and NiWO4-graphene nanoplatelets composite for oxygen reduction and hydrogen oxidation in acidic medium. International Journal of Hydrogen Energy, 2023, 48, 6317-6335.	7.1	7
1975	Computational Study of Low-Energy Pt-Ion Implantation into Graphene for Single-Atom Catalysis. ACS Applied Nano Materials, 2022, 5, 8583-8593.	5.0	2
1976	Insights into the influence of functional groups on the properties of graphene from firstâ€principles calculations. Journal of Physical Organic Chemistry, 2022, 35, .	1.9	2
1977	Mass Production of Pt Single-Atom-Decorated Bismuth Sulfide for n-Type Environmentally Friendly Thermoelectrics. Nano Letters, 2022, 22, 4750-4757.	9.1	20
1978	Lignin Residue-Derived Carbon-Supported Nanoscale Iron Catalyst for the Selective Hydrogenation of Nitroarenes and Aromatic Aldehydes. ACS Omega, 2022, 7, 19804-19815.	3.5	11
1979	Kinetic Evidence of Most Abundant Surface Intermediates Variation over Pt _n and Pt _p : Few-Atom Pt Ensembles Enable Efficient Catalytic Cyclohexane Dehydrogenation for Hydrogen Production-II. ACS Catalysis, 2022, 12, 7248-7261.	11.2	3
1980	Recent Advances in Carbonâ€Supported Nobleâ€Metal Electrocatalysts for Hydrogen Evolution Reaction: Syntheses, Structures, and Properties. Advanced Energy Materials, 2022, 12, .	19.5	64
1981	A Career in Catalysis: Avelino Corma. ACS Catalysis, 2022, 12, 7054-7123.	11.2	14
1982	CO oxidation on graphene/Y <mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">display="inline" id="d1e612" altimg="si15.svg"><mml:msub><mml:mrow /><mml:mrow><mml:mn>2</mml:mn></mml:mrow></mml:mrow </mml:msub></mml:math> C electride heterojunction. Applied Surface Science. 2022, 599, 153833.	6.1	1
1983	Surface pits stabilized Au catalyst for low-temperature CO oxidation. Rare Metals, 2022, 41, 3060-3068.	7.1	7
1984	Emerging low-nuclearity supported metal catalysts with atomic level precision for efficient heterogeneous catalysis. Nano Research, 2022, 15, 7806-7839.	10.4	201

#	Article	IF	Citations
1985	Hydrogenation/Hydrodeoxygenation Selectivity Modulation by Cometal Addition to Palladium on Carbon-Coated Supports. ACS Sustainable Chemistry and Engineering, 2022, 10, 7759-7771.	6.7	4
1986	Singleâ€Atom Catalysts for Hydrogen Generation: Rational Design, Recent Advances, and Perspectives. Advanced Energy Materials, 2022, 12, .	19.5	42
1987	Enhanced Pt dispersion and catalytic properties of NaCl-promoted Pt/MFI zeolite catalysts for propane dehydrogenation. Microporous and Mesoporous Materials, 2022, 339, 112010.	4.4	9
1988	Ab initio random structure searching and catalytic properties of copper-based nanocluster with Earth-abundant metals for the electrocatalytic CO2-to-CO conversion. Molecular Catalysis, 2022, 527, 112406.	2.0	3
1989	Ag, Au, Pt, and Au-Pt nanoclusters in [N1114][C1SO3] ionic liquid: A molecular dynamics study. Journal of Molecular Liquids, 2022, 360, 119447.	4.9	11
1990	Electrocatalytic activity on single atoms catalysts: Synthesis strategies, characterization, classification, and energy conversion applications. Coordination Chemistry Reviews, 2022, 467, 214600.	18.8	16
1991	Hydrotalcite-derived Ni-LDO catalysts via new approach for enhanced performances in CO2 catalytic reduction. Fuel, 2022, 324, 124491.	6.4	5
1992	Atomically dispersed cobalt on carbon nitride for peroxymonosulfate activation: Switchable catalysis enabled by light irradiation. Chemical Engineering Journal, 2022, 446, 137277.	12.7	19
1993	Sum Frequency Generation in Ambient Environments: Vibrational Spectroscopy at Solid/Gas and Solid/Liquid Interfaces. ACS Symposium Series, 0, , 119-145.	0.5	0
1994	Isoprene selective hydrogenation using AgCu-promoted Pd nanoalloys. Faraday Discussions, 0, 242, 418-428.	3.2	1
1995	Insight into the effects of calcination temperature on the structure and performance of RuO ₂ /TiO ₂ in the Deacon process. Catalysis Science and Technology, 2022, 12, 5257-5264.	4.1	5
1996	Oxidation at the sub-nanoscale: oxygen adsorption on graphene-supported size-selected Ag clusters. Journal of Materials Chemistry A, O, , .	10.3	3
1997	Chapter 8. Nanocatalysis With Sustainability. RSC Nanoscience and Nanotechnology, 2022, , 220-254.	0.2	1
1998	Single-atom site catalysts based on high specific surface area supports. Physical Chemistry Chemical Physics, 2022, 24, 17417-17438.	2.8	11
1999	Machine learning for design principles for single atom catalysts towards electrochemical reactions. Journal of Materials Chemistry A, 2022, 10, 15309-15331.	10.3	28
2000	Restructuring of the gold-carbide interface for low-temperature water-gas shift. Chemical Communications, 2022, 58, 7313-7316.	4.1	4
2001	Boosting the catalytic performance of single-atom catalysts by tuning surface lattice expanding confinement. Chemical Communications, 0, , .	4.1	1
2002	Interface structure and strain controlled Pt nanocrystals grown at side facet of MoS2 with critical size. Nano Research, 2022, 15, 8493-8501.	10.4	7

#	Article	IF	CITATIONS
2003	A Site Distance Effect Induced by Reactant Molecule Matchup in Singleâ€Atom Catalysts for Fentonâ€Like Reactions. Angewandte Chemie, 2022, 134, .	2.0	24
2004	A Site Distance Effect Induced by Reactant Molecule Matchup in Singleâ€Atom Catalysts for Fentonâ€Like Reactions. Angewandte Chemie - International Edition, 2022, 61, .	13.8	105
2005	Axial coordination regulation of MOF-based single-atom Ni catalysts by halogen atoms for enhanced CO2 electroreduction. Nano Research, 2022, 15, 10063-10069.	10.4	52
2006	Striking Size and Doping Effects of Tiâ^'Siâ^'O Clusters on Methane Conversion Reactions. Chemistry - A European Journal, 2022, 28, .	3.3	2
2007	Single-Atom Ce-Modified α-Fe ₂ O ₃ for Selective Catalytic Reduction of NO with NH ₃ . Environmental Science & Technology, 2022, 56, 10442-10453.	10.0	52
2008	Chemical Control Over Optical Trapping Force at an Interface. Advanced Optical Materials, 2022, 10, .	7.3	7
2009	Facet-Induced Strong Metal Chlorideâ^'Support Interaction over CuCl ₂ /l³-Al ₂ O ₃ Catalyst to Enhance Ethylene Oxychlorination Performance. ACS Catalysis, 2022, 12, 8027-8037.	11.2	9
2011	Metal nanoparticles in cancer: from synthesis and metabolism to cellular interactions. Journal of Nanostructure in Chemistry, 2023, 13, 321-348.	9.1	18
2012	Decoupling the electronic and geometric effects of Pt catalysts in selective hydrogenation reaction. Nature Communications, 2022, 13, .	12.8	39
2013	Synthesis of (E)-2-(1H-tetrazole-5-yl)-3-phenylacrylenenitrile derivatives catalyzed by new ZnO nanoparticles embedded in a thermally stable magnetic periodic mesoporous organosilica under green conditions. Scientific Reports, 2022, 12, .	3.3	17
2014	A Universal Descriptor for Complicated Interfacial Effects on Electrochemical Reduction Reactions. Journal of the American Chemical Society, 2022, 144, 12874-12883.	13.7	49
2015	Equable Fine-tuning Techniques of Bimetallic Co-complexation in Dendrimer for Cluster Synthesis Covering a Wide Range of Composition. Chemistry Letters, 2022, 51, 848-850.	1.3	0
2016	The Impact of Support Material of Cobaltâ€Based Catalysts Prepared by Double Flame Spray Pyrolysis on CO ₂ Methanation Dynamics. ChemCatChem, 2022, 14, .	3.7	11
2017	Solid-State Reaction Synthesis of Nanoscale Materials: Strategies and Applications. Chemical Reviews, 2022, 122, 12748-12863.	47.7	35
2018	Structural Shrinking and Rotation Decrease Quasi Surface Tension for Polar CeO ₂ (100). Advanced Theory and Simulations, 0, , 2200081.	2.8	1
2019	Mediating CO ₂ Electroreduction Activity and Selectivity over Atomically Precise Copper Clusters. Angewandte Chemie - International Edition, 2022, 61, .	13.8	44
2020	Adsorption and Diffusion of Oxygen on Pure and Partially Oxidized Metal Surfaces in Ultrahigh Resolution. Nano Letters, 2022, 22, 5392-5400.	9.1	4
2021	Markovnikovâ€ S elective Hydroboration of Aryl Alkenes Enabled by A Simple Nickel Salt. Chinese Journal of Chemistry, 0, , .	4.9	3

#	Article	IF	CITATIONS
2022	Mediating CO ₂ Electroreduction Activity and Selectivity over Atomically Precise Copper Clusters. Angewandte Chemie, 2022, 134, .	2.0	8
2023	Enhancement of electrocatalytic oxygen evolution by chiral molecular functionalization of hybrid 2D electrodes. Nature Communications, 2022, 13, .	12.8	48
2024	DFT insights into the electronic structure of Rh single-atom catalysts stabilized on the CeO2(1 1 1) surface. Chemical Physics Letters, 2022, 803, 139810.	2.6	3
2025	Engineering functional mesoporous materials from plant polyphenol based coordination polymers. Coordination Chemistry Reviews, 2022, 468, 214649.	18.8	39
2026	Fundamentals and application of single-atom photocatalyst in sustainable energy and environmental applications. Renewable and Sustainable Energy Reviews, 2022, 167, 112693.	16.4	17
2027	Cobalt sandwich-stabilized rhodium nanocatalysts for ammonia borane and tetrahydroxydiboron hydrolysis. Inorganic Chemistry Frontiers, 2022, 9, 4651-4660.	6.0	7
2028	Thermal Studies of Aqueous Free-base Porphyrin and Metalloporphyrins of Trivalent and Tetravalent Metal Ions. Asian Journal of Chemistry, 2022, 34, 2049-2054.	0.3	0
2029	Understanding the effect of the exchange-correlation functionals on methane and ethane formation over ruthenium catalysts. Chinese Journal of Chemical Physics, 0, , .	1.3	1
2030	Acidic Zeolite HBeta Catalyzed Friedel-Crafts Alkenylation Reaction. Chinese Journal of Organic Chemistry, 2022, 42, 1792.	1.3	0
2031	Metal nanoclusters as photosensitizers. , 2022, , 569-587.		0
2032	Single-ion chelation strategy for synthesis of monodisperse Pd nanoparticles anchored in MOF-808 for highly efficient hydrogenation and cascade reactions. Nanoscale, 2022, 14, 10980-10991.	5.6	5
2033	Doped metal clusters as bimetallic AuCo nanocatalysts: insights into structural dynamics and		2
	correlation with catalytic activity by <i>in situ</i> spectroscopy. Faraday Discussions, 0, 242, 94-105.	3.2	
2034	correlation with catalytic activity by <i>in situ</i> spectroscopy. Faraday Discussions, 0, 242, 94-105. Recent development towards alkene hydroformylation catalysts integrating traditional homo- and heterogeneous catalysis. Catalysis Science and Technology, 2022, 12, 4962-4982.	3.2 4.1	8
2034 2035	Recent development towards alkene hydroformylation catalysts integrating traditional homo- and		8
	Recent development towards alkene hydroformylation catalysts integrating traditional homo- and heterogeneous catalysis. Catalysis Science and Technology, 2022, 12, 4962-4982. Self-Strained Platinum Clusters with Finite Size: High-Performance Catalysts with CO Tolerance for	4.1	
2035	 Recent development towards alkene hydroformylation catalysts integrating traditional homo- and heterogeneous catalysis. Catalysis Science and Technology, 2022, 12, 4962-4982. Self-Strained Platinum Clusters with Finite Size: High-Performance Catalysts with CO Tolerance for PEMFCs. ACS Applied Materials & amp; Interfaces, 2022, 14, 30692-30703. Visible-Light Copper Nanocluster Catalysis for the C–N Coupling of Aryl Chlorides at Room 	4.1 8.0	3
2035 2036	Recent development towards alkene hydroformylation catalysts integrating traditional homo- and heterogeneous catalysis. Catalysis Science and Technology, 2022, 12, 4962-4982. Self-Strained Platinum Clusters with Finite Size: High-Performance Catalysts with CO Tolerance for PEMFCs. ACS Applied Materials & amp; Interfaces, 2022, 14, 30692-30703. Visible-Light Copper Nanocluster Catalysis for the C–N Coupling of Aryl Chlorides at Room Temperature. Journal of the American Chemical Society, 2022, 144, 12052-12061. High-density atomically dispersed CoNx catalysts supported on nitrogen-doped mesoporous carbon	4.1 8.0 13.7	3 37

#	Article	IF	CITATIONS
2040	Interfacial Unit-Dependent Catalytic Activity for CO Oxidation over Cerium Oxysulfate Cluster Assemblies. ACS Applied Materials & Interfaces, 2022, 14, 33515-33524.	8.0	2
2041	Resolving the Effect of Oxygen Vacancies on Co Nanostructures Using Soft XAS/X-PEEM. ACS Catalysis, 2022, 12, 9125-9134.	11.2	9
2042	Particle Size Effects in the Selective Hydrogenation of Alkadienes over Supported Cu Nanoparticles. ChemCatChem, 2022, 14, .	3.7	4
2043	Maximizing noble metal utilization in solid catalysts by control of nanoparticle location. Science, 2022, 377, 204-208.	12.6	73
2044	Homogeneity of Supported Singleâ€Atom Active Sites Boosting the Selective Catalytic Transformations. Advanced Science, 2022, 9, .	11.2	47
2045	The Revitalization of â€~the Closer the Better' in Zeoliteâ€Tailored Bifunctional Catalysts for Biomass Valorization. ChemCatChem, 2022, 14, .	3.7	3
2046	Subnanometric Ru clusters with upshifted D band center improve performance for alkaline hydrogen evolution reaction. Nature Communications, 2022, 13, .	12.8	262
2047	High-Volume-Fraction Textured Carbon Nanotube–Bis(maleimide) and â^²Epoxy Matrix Polymer Nanocomposites: Implications for High-Performance Structural Composites. ACS Applied Nano Materials, 2022, 5, 9008-9023.	5.0	8
2048	Molecular structure models of amorphous bismuth and cerium carboxylate catalyst precursors. Catalysis Today, 2022, 402, 350-357.	4.4	1
2049	Suppressing Nonâ€Radiative Relaxation through Singleâ€Atom Metal Modification for Enhanced Fluorescence Efficiency in Molybdenum Disulfide Quantum Dots. Angewandte Chemie, 2022, 134, .	2.0	2
2050	Singleâ€atom catalysis for carbon neutrality. , 2022, 4, 1021-1079.		96
2051	Recent Advances in Aerobic Photo-Oxidation over Small-Sized IB Metal Nanoparticles. Photochem, 2022, 2, 528-538.	2.2	6
2052	Mechanistic Investigation of Enhanced Catalytic Selectivity toward Alcohol Oxidation with Ce Oxysulfate Clusters. Journal of the American Chemical Society, 2022, 144, 12092-12101.	13.7	6
2053	Design of Aerosol Nanoparticles for Interfacial Catalysis. Langmuir, 2022, 38, 9037-9042.	3.5	5
2054	Advanced Materials for Electrochemical Energy Conversion and Storage. Coatings, 2022, 12, 982.	2.6	0
2055	Suppressing Nonâ€Radiative Relaxation through Singleâ€Atom Metal Modification for Enhanced Fluorescence Efficiency in Molybdenum Disulfide Quantum Dots. Angewandte Chemie - International Edition, 2022, 61, .	13.8	6
2056	Efficient degradation of Health-threatening organic pollutants in water by atomically dispersed Cobalt-Activated peroxymonosulfate. Chemical Engineering Journal, 2022, 450, 138098.	12.7	24
2057	Infrared spectra and structures of C60Rhn+ complexes. Carbon, 2022, 197, 535-543.	10.3	7

#	Article	IF	CITATIONS
2058	Highly dispersed platinum clusters anchored on hollow ZSM-5 zeolite for deep hydrogenation of polycyclic aromatic hydrocarbons. Fuel, 2022, 326, 125021.	6.4	10
2059	Anchored Fe atoms for N O bond activation to boost electrocatalytic nitrate reduction at low concentrations. Applied Catalysis B: Environmental, 2022, 317, 121721.	20.2	27
2060	Yolk-shell Co catalysts with controlled nanoparticle/single-atom ratio for aqueous levulinic acid hydrogenation to I³-valerolactone. Chemical Engineering Journal, 2022, 450, 138153.	12.7	13
2061	Highly Efficient MOF-Driven Silver Subnanometer Clusters for the Catalytic Buchner Ring Expansion Reaction. Inorganic Chemistry, 2022, 61, 11796-11802.	4.0	8
2062	Ag5 nanoclusters with dual catalytic antiradical activities. Journal of Colloid and Interface Science, 2022, 628, 437-447.	9.4	2
2063	Fully Exposed Platinum Clusters on a Nanodiamond/Graphene Hybrid for Efficient Low-Temperature CO Oxidation. ACS Catalysis, 2022, 12, 9602-9610.	11.2	25
2064	Catalytic conversion of glucose and its biopolymers into renewable compounds by inducing C–C bond scission and formation. Biomass Conversion and Biorefinery, 0, , .	4.6	2
2065	Tracking Nanoparticle Degradation across Fuel Cell Electrodes by Automated Analytical Electron Microscopy. ACS Nano, 2022, 16, 12083-12094.	14.6	8
2066	Sub-nanometer Copper Clusters as Alternative Catalysts for the Selective Oxidation of Methane to Methanol with Molecular O ₂ . Journal of Physical Chemistry A, 2022, 126, 4941-4951.	2.5	6
2067	Investigation of the Stability and Hydrogen Evolution Activity of Dual-Atom Catalysts on Nitrogen-Doped Graphene. Nanomaterials, 2022, 12, 2557.	4.1	6
2068	Interconversion of Atomically Dispersed Platinum Cations and Platinum Clusters in Zeolite ZSM-5 and Formation of Platinum <i>gem</i> -Dicarbonyls. Journal of the American Chemical Society, 2022, 144, 13874-13887.	13.7	18
2069	Palladium Supported on Porous Organic Polymer as Heterogeneous and Recyclable Catalyst for Cross Coupling Reaction. Molecules, 2022, 27, 4777.	3.8	5
2070	Sub-Nanometer Ru Clusters on Ceria Nanorods as Efficient Catalysts for Ammonia Synthesis under Mild Conditions. ACS Sustainable Chemistry and Engineering, 2022, 10, 10181-10191.	6.7	9
2071	Catalytic CO Oxidation by Cu Single Atoms on the UiO-66 Metal–Organic Framework: The Role of the Oxidation State. Journal of Physical Chemistry C, 2022, 126, 12507-12518.	3.1	4
2072	Releasing the limited catalytic activity of CeO2-supported noble metal catalysts via UV-induced deep dechlorination. Journal of Catalysis, 2022, 413, 703-712.	6.2	2
2073	A metal-/additive-free system for oxygen-mediated hydroxylation of benzene over polyfuran-functionalized hydrothermal carbocatalyst. Molecular Catalysis, 2022, 528, 112517.	2.0	2
2074	Regulation of sub-nanometric platinum on BaKL zeolite for boosting n-heptane aromatization. Fuel, 2022, 328, 125281.	6.4	4
2075	Carboxylate-assisted ZIF-derived Co nanoclusters anchoring hierarchically porous carbon as high-efficient zinc-air batteries cathode catalysts. Journal of Alloys and Compounds, 2022, 923, 166393.	5.5	6

#	Article	IF	CITATIONS
2076	PtNi@ZIF-8 nanocatalyzed high efficiency and complete hydrogen generation from hydrazine borane: origin and mechanistic insight. Journal of Materials Chemistry A, 2022, 10, 17614-17623.	10.3	12
2077	Metal–organic framework (MOF)-, covalent-organic framework (COF)-, and porous-organic polymers (POP)-catalyzed selective C–H bond activation and functionalization reactions. Chemical Society Reviews, 2022, 51, 7810-7882.	38.1	80
2078	Hierarchical ZrO2@N-doped carbon nano-networks anchored ultrafine Pd nanoparticles for highly efficient catalytic hydrogenation. Science China Chemistry, 2022, 65, 1661-1669.	8.2	2
2079	Biowaste carbon supported manganese nanoparticles as an active catalyst for the selective hydrogenation of bio-based aldehydes. Catalysis Today, 2023, 408, 127-138.	4.4	3
2080	Catalytic hydration of terminal alkynes and nitriles without reducing reagents, acidic promoters, and organic solvent over Fe3O4@Starch–Au. Journal of the Iranian Chemical Society, 2022, 19, 4523-4534.	2.2	3
2081	High-Throughput Sizing, Counting, and Elemental Analysis of Anisotropic Multimetallic Nanoparticles with Single-Particle Inductively Coupled Plasma Mass Spectrometry. ACS Nano, 2022, 16, 11968-11978.	14.6	7
2082	Hybrid Graphene-Supported Aluminum Plasmonics. ACS Nano, 2022, 16, 11931-11943.	14.6	5
2083	Size Sensitivity of Supported Palladium Species on Layered Double Hydroxides for the Electro-oxidation Dehydrogenation of Hydrazine: From Nanoparticles to Nanoclusters and Single Atoms. ACS Catalysis, 2022, 12, 10711-10717.	11.2	22
2084	Dispersion and stability mechanism of Pt nanoparticles on transition-metal oxides. Scientific Reports, 2022, 12, .	3.3	3
2085	Inhibition of H ₂ and O ₂ Recombination: The Key to a Most Efficient Singleâ€Atom Coâ€Catalyst for Photocatalytic H ₂ Evolution from Plain Water. Advanced Functional Materials, 2022, 32, .	14.9	20
2086	Water–Gas Shift Catalyzed by Iridium–Vanadium Oxide Clusters IrVO ₂ [–] with Iridium in a Rare Oxidation State of â°'ll. Journal of Physical Chemistry A, 2022, 126, 5294-5301.	2.5	3
2087	Pt, Pd, and Rh Nanoparticles Supported on Polydopamine Nanospheres as Catalysts for Transfer Hydrogenolysis. ACS Applied Nano Materials, 2022, 5, 11797-11808.	5.0	4
2088	Surface oxygen vacancies promoted Pt nanoparticles on celery-like CeO2 nanofibers for enhanced sintering resistance and catalytic performance. Materials Today Nano, 2022, , 100249.	4.6	2
2089	Ultrahigh Stable Methanol Oxidation Enabled by a High Hydroxyl Concentration on Pt Clusters/MXene Interfaces. Journal of the American Chemical Society, 2022, 144, 15529-15538.	13.7	124
2090	Pyrolysis of mass-selected (V ₂ O ₅) _{<i>N</i>} O ^{â^'} (<i>N</i> = 1–6) clusters in a high-temperature linear ion trap reactor. Journal of Chemical Physics, 2022, 157, 114301.	3.0	5
2091	Greening the Synthesis of Biorenewable Fuels and Chemicals by Stoichiometric Reagentless Organic Transformations. Industrial & Engineering Chemistry Research, 2022, 61, 12884-12904.	3.7	6
2092	Ionic Liquid Sheath Stabilizes Atomically Dispersed Reduced Graphene Aerogelâ€5upported Iridium Complexes during Ethylene Hydrogenation Catalysis. ChemCatChem, 0, , .	3.7	1
2093	MOFâ€Based Chemiresistive Gas Sensors: Toward New Functionalities. Advanced Materials, 2023, 35, .	21.0	59

#	Article	IF	CITATIONS
2094	Multipotent Atomic Palladium Species Pd ¹⁺ , Pd ²⁺ –O ₂ [–] , and Pd ³⁺ Formed at the Interface of Pd/TiO ₂ Nanoparticles: Electron Paramagnetic Resonance Study. Journal of Physical Chemistry C, 2022, 126, 14125-14137.	3.1	2
2095	In-situ doping nickel single atoms in two-dimensional MXenes analogue support for room temperature NO2 sensing. Nano Research, 2022, 15, 9544-9553.	10.4	6
2096	Design Strategies for Hydroxyapatiteâ€Based Materials to Enhance Their Catalytic Performance and Applicability. Advanced Materials, 2023, 35, .	21.0	6
2098	Accelerated prediction of atomically precise cluster structures using on-the-fly machine learning. Npj Computational Materials, 2022, 8, .	8.7	4
2099	Direct Dry Synthesis of Supported Bimetallic Catalysts: A Study on Comminution and Alloying of Metal Nanoparticles. Angewandte Chemie - International Edition, 2022, 61, .	13.8	8
2100	Nitrogen Electroreduction on Boropheneâ€Supported Atomic and Diatomic Transition Metals: Stability, Activity and Selectivity Improvements via Defectâ€Engineering. ChemSusChem, 2022, 15, .	6.8	3
2101	Single-Atom-Based Catalysts for Photocatalytic Water Splitting on TiO2 Nanostructures. Catalysts, 2022, 12, 905.	3.5	10
2102	Direct Dry Synthesis of Supported Bimetallic Catalysts: A Study on Comminution and Alloying of Metal Nanoparticles. Angewandte Chemie, 0, , .	2.0	1
2103	Atomically dispersed 3d metal bimetallic dual-atom catalysts and classification of the structural descriptors. Chem Catalysis, 2022, 2, 2346-2363.	6.1	5
2104	Green-Routed Carbon Dot-Adorned Silver Nanoparticles for the Catalytic Degradation of Organic Dyes. Catalysts, 2022, 12, 937.	3.5	9
2105	Butterfly Effect of Electron Donor from Monoatomic Cobalt in Few-Atom Platinum Clusters: Boosting Electrocatalysis. ACS Applied Materials & Interfaces, 2022, 14, 37727-37737.	8.0	2
2106	"Carbon diffusion―engineered carbon nitride nanosheets for high-efficiency photocatalytic solar-to-fuels conversion. Renewable Energy, 2022, 197, 943-952.	8.9	4
2107	Comparative investigation of Ga- and In-CHA in the non-oxidative ethane dehydrogenation reaction. Journal of Catalysis, 2022, 413, 812-820.	6.2	6
2108	Reversible interconversion and functional division of highly dispersed Cu species during COÂ+ÂNO reaction. Molecular Catalysis, 2022, 530, 112636.	2.0	0
2109	Propane dehydrogenation to propylene over Co@N-doped carbon: Structure-activity-selectivity relationships. Catalysis Communications, 2022, 170, 106495.	3.3	5
2110	Atomically dispersed Ru3 site catalysts for electrochemical sensing of small molecules. Biosensors and Bioelectronics, 2022, 216, 114609.	10.1	10
2111	Mn-doped single atom nanozyme composited Au for enhancing enzymatic and photothermal therapy. Journal of Colloid and Interface Science, 2022, 628, 419-434.	9.4	7
2112	Synergistic Pt-CeO2 interface boosting low temperature dry reforming of methane. Applied Catalysis B: Environmental, 2022, 318, 121809.	20.2	46

# 2113	ARTICLE Unsymmetrically N, S-coordinated single-atom cobalt with electron redistribution for catalytic hydrogenation of quinolines. Journal of Catalysis, 2022, 414, 101-108.	IF 6.2	Citations
2114	Differentiating supported platinum single atoms, clusters and nanoparticles by styrene hydrogenation. Molecular Catalysis, 2022, 531, 112709.	2.0	4
2115	High entropy alloy nanoparticle - graphene (HEA:G) composite for non-enzymatic glucose oxidation : optimization for enhanced catalytic performance. Carbon Trends, 2022, 9, 100216.	3.0	4
2116	PBA functionalized single-atom Fe for efficient therapy of multidrug-resistant bacterial infections. Colloids and Surfaces B: Biointerfaces, 2022, 219, 112811.	5.0	6
2117	Metal–organic framework-derived heteroatom-doped nanoarchitectures for electrochemical energy storage: Recent advances and future perspectives. Energy Storage Materials, 2022, 52, 685-735.	18.0	38
2118	The synergistic effect Pt1-W dual sites as a highly active and durable catalyst for electrochemical methanol oxidation. Electrochimica Acta, 2022, 432, 141161.	5.2	5
2119	Two-dimensional metal-organic frameworks: From synthesis to biomedical, environmental, and energy conversion applications. Coordination Chemistry Reviews, 2022, 473, 214817.	18.8	22
2120	A facile strategy to convert low-activity commercial iron oxides and cobalt disulfide into high-activity Fenton-like catalysts: spontaneous generation of 1O2 for aqueous decontamination. Materials Today Chemistry, 2022, 26, 101106.	3.5	1
2121	Highly efficient conversion of phenol to cyclohexanone on Pd-based catalysts by cobalt doping. Fuel, 2023, 332, 126060.	6.4	6
2122	Understanding and application of metal–support interactions in catalysts for CO-PROX. Physical Chemistry Chemical Physics, 2022, 24, 18454-18468.	2.8	3
2123	Recent Process in the <i>in situ </i> Generated Metal Nanocluster Catalysis. Chinese Journal of Organic Chemistry, 2022, 42, 2331.	1.3	1
2124	Multi-atom cluster catalysts for efficient electrocatalysis. Chemical Society Reviews, 2022, 51, 8923-8956.	38.1	68
2125	Pd single-atom-site stabilized by supported phosphomolybdic acid: design, characterizations and tandem Suzuki–Miyaura cross coupling/nitro hydrogenation reaction. Nanoscale Advances, 2022, 4, 4321-4334.	4.6	1
2126	Single atom Fe-based catalyst derived from hierarchical (Fe,N)-ZIF-8/CNFs for high-efficient ORR activity. Materials Chemistry Frontiers, 2022, 6, 3213-3224.	5.9	8
2127	Enhancement of Photocatalytic Ammonia Production Via Photoreconstruction of AU Supported on Biobr Nanosheets. SSRN Electronic Journal, 0, , .	0.4	0
2128	Toward the fast and durable alkaline hydrogen oxidation reaction on ruthenium. Energy and Environmental Science, 2022, 15, 4511-4526.	30.8	27
2129	Unsymmetrically N, S-Coordinated Single-Atom Cobalt with Electron Redistribution for Catalytic Hydrogenation of Quinolines. SSRN Electronic Journal, 0, , .	0.4	1
2130	Heterogeneous N-coordinated single-atom photocatalysts and electrocatalysts. Chinese Journal of Catalysis, 2022, 43, 2453-2483.	14.0	33

		CITATION R	PORT	
#	Article		IF	Citations
2131	Recent advances utilized in artificial switchable catalysis. RSC Advances, 2022, 12, 23	595-23617.	3.6	11
2132	Phosphate anion-induced silver-chalcogenide cluster-based metal organic frameworks dual-functional catalysts for detoxifying chemical warfare agent simulants. Chemical Communications, 2022, 58, 9806-9809.	as	4.1	9
2133	Dimethylacetamide-stabilized ruthenium nanoparticles for catalysing α-alkylations of a alcohols. Chemical Communications, 2022, 58, 11851-11854.	amides with	4.1	2
2134	Synthesis of ultrasmall metal nanoparticles and continuous shells at the liquid/liquid ir Ouzo emulsions. Nanoscale, 2022, 14, 13514-13519.	iterface in	5.6	3
2135	Transition Metal Dual–Atom Ni2/Tio2 Catalysts for Photoelectrocatalytic Hydrogen Density Functional Theory Study. SSRN Electronic Journal, 0, , .	Evolution: A	0.4	0
2136	Self-assembled mononuclear complexes: open metal sites and inverse dimension-depe activity for the Knoevenagel condensation and CO ₂ cycloaddition. Nanos 15897-15907.	ndent catalytic scale, 2022, 14,	5.6	6
2137	Oxidative dehydrogenation of cyclohexene on atomically precise subnanometer Cu _{4â^'<i>n</i>} Pd _{<i>n</i>} (0 ≤i>n ≤4) tetramer o cluster composition and support on performance. Faraday Discussions, 0, 242, 70-93.	clusters: the effect of	3.2	4
2138	A Stabilization Synthesis Strategy for Atomically Dispersed Metal-N4 Electrocatalysts Confinement and Ammonia Pyrolyzing. SSRN Electronic Journal, 0, , .	Via Aerogel	0.4	0
2139	Composition control of alloy nanoparticles consisting of bulk-immiscible Au and Rh me an ionic liquid/metal sputtering technique for improving their electrocatalytic activity. Chemistry Chemical Physics, 0, , .		2.8	1
2140	Metal oxide composites in organic transformations. , 2022, , 601-632.			0
2141	Transition metal Dual–Atom Ni2/TiO2 catalysts for photoelectrocatalytic hydrogen density functional theory study. Applied Surface Science, 2023, 608, 155132.	Evolution: A	6.1	7
2142	Highly Active Isolated Single-Atom Pd Catalyst Supported on Layered MgO for Semihy Acetylene. ACS Applied Energy Materials, 2022, 5, 10385-10390.	drogenation of	5.1	3
2143	Cuâ€Oxide Nanoparticles Catalyzed Synthesis of Nitriles and Amides from Alcohols an Presence of Air. Advanced Sustainable Systems, 2022, 6, .	d Ammonia in	5.3	2
2144	Synergistic Hybrid Electrocatalysts of Platinum Alloy and Single-Atom Platinum for an I Durable Oxygen Reduction Reaction. ACS Nano, 2022, 16, 14121-14133.	Efficient and	14.6	55
2145	Green methodologies for the synthesis of 2-aminothiophene. Environmental Chemistry 21, 597-621.	y Letters, 2023,	16.2	4
2146	Immediate Oxidative Desulfurization via Fe-Containing Ti-Nanotube Triggered Combine Mechanism. Catalysis Letters, 2023, 153, 2169-2175.	ed-Radical	2.6	1
2147	Electronic structure and physicochemical properties of the metal and semimetal oxide Journal of Molecular Modeling, 2022, 28, .	nanoclusters.	1.8	1
2148	Ironâ€Based Nanocatalysts for Electrochemical Nitrate Reduction. Small Methods, 202	22, 6, .	8.6	48

#	Article	IF	CITATIONS
2149	Singleâ€Atom Catalysts on Covalent Triazine Frameworks: at the Crossroad between Homogenous and Heterogeneous Catalysis. Angewandte Chemie, 0, , .	2.0	0
2150	Full Metal Species Quantification of Metal Supported Catalysts Through Massive TEM Images Recognition. Chemical Research in Chinese Universities, 2022, 38, 1263-1267.	2.6	1
2151	A Review of CeO2 Supported Catalysts for CO2 Reduction to CO through the Reverse Water Gas Shift Reaction. Catalysts, 2022, 12, 1101.	3.5	30
2152	Promising approach for preparing metallic single-atom catalysts: electrochemical deposition. Frontiers in Energy, 2022, 16, 537-541.	2.3	1
2153	How do algae endosymbionts mediate for their coral host fitness under heat stress? A comprehensive mechanistic overview. Algal Research, 2022, 67, 102850.	4.6	1
2154	Facet Engineering of a Metalâ€Organic Framework Support Modulates the Microenvironment of Pd Nanoparticles for Selective Hydrogenation. Angewandte Chemie, 0, , .	2.0	0
2155	Metal Sites in Zeolites: Synthesis, Characterization, and Catalysis. Chemical Reviews, 2023, 123, 6039-6106.	47.7	95
2156	Bottom-Up De Novo Synthesis of Porous Organic Polymers with Enone Functionalities as Supports for Pd and Cu Nanoparticles for Catalytic Tandem Synthesis. ACS Applied Nano Materials, 2022, 5, 14296-14310.	5.0	5
2157	Achieving Synchronization of Electrochemical Production of Ammonia from Nitrate and Ammonia Capture by Constructing a "Twoâ€Inâ€Oneâ€IFlow Cell Electrolyzer. Advanced Energy Materials, 2022, 12, .	19.5	40
2158	Recent Advances in Non-Precious Metal–Nitrogen–Carbon Single-Site Catalysts for CO2 Electroreduction Reaction to CO. Electrochemical Energy Reviews, 2022, 5, .	25.5	18
2159	Facet Engineering of a Metal–Organic Framework Support Modulates the Microenvironment of Palladium Nanoparticles for Selective Hydrogenation. Angewandte Chemie - International Edition, 2022, 61, .	13.8	39
2160	Insights into Chlorobenzene Catalytic Oxidation over Noble Metal Loading {001}-TiO ₂ : The Role of NaBH ₄ and Subnanometer Ru Undergoing Stable Ru ⁰ ↔ Ru ⁴⁺ Circulation. Environmental Science & amp; Technology, 2022, 56, 16292-16302.	10.0	10
2161	Boosting wastewater bioelectricity recovery via solvent mediation and zinc fencing: Dual regulation for catalyst spatial structure and active sites. Chemical Engineering Journal, 2023, 453, 139276.	12.7	2
2162	Critical Role of Explicit Inclusion of Solvent and Electrode Potential in the Electrochemical Description of Nitrogen Reduction. ACS Catalysis, 2022, 12, 11530-11540.	11.2	22
2163	Persulfate activation by single-atom catalysts for the removal of organic pollutants: A review. , 2023, 2, 63-79.		0
2164	Singleâ€Atom Catalysts on Covalent Triazine Frameworks: at the Crossroad between Homogeneous and Heterogeneous Catalysis. Angewandte Chemie - International Edition, 2023, 62, .	13.8	23
2165	Recent Insight in Transition Metal Anchored on Nitrogen-Doped Carbon Catalysts: Preparation and Catalysis Application. Electrochem, 2022, 3, 520-537.	3.3	7
2166	Catalysis of Alloys: Classification, Principles, and Design for a Variety of Materials and Reactions. Chemical Reviews, 2023, 123, 5859-5947.	47.7	63

#	Article	IF	CITATIONS
2167	Rapid 3D roll-up of gas-phase planar gold clusters and affinity and alienation for Mg and Ge: A theoretical study of MgGeAun (n=1–12) clusters. IScience, 2022, 25, 105215.	4.1	5
2168	Environment Molecules Boost the Chemoselective Hydrogenation of Nitroarenes on Cobalt Single-Atom Catalysts. ACS Catalysis, 2022, 12, 11960-11973.	11.2	22
2170	CO Effect on the Dynamics of Platinum Nucleation/Growth Under the Liquid-Phase Synthesis of Pt/C Electrocatalysts. Journal of the Electrochemical Society, 2022, 169, 092501.	2.9	4
2171	Synthesis and Stability of Mixed-Diphosphine Ligated Gold Clusters. Journal of the American Society for Mass Spectrometry, 2022, 33, 2138-2146.	2.8	0
2172	Understanding the Photoelectrochemical Behavior of Metal Nanoclusters: A Perspective. Journal of Physical Chemistry C, 2022, 126, 16928-16942.	3.1	4
2173	From Atomic Physics to Superatomic Physics. Journal of Cluster Science, 2023, 34, 1691-1708.	3.3	4
2174	Mechanistic Diversity of Transfer Hydrogenolysis over Noble Metal Nanocatalysts: Pt- and Ru-Catalyzed Azo-Hydrogenolysis by Various Hydrogen Donors. Journal of Physical Chemistry C, 2022, 126, 17102-17113.tion of the effect of combination	3.1	1
2175	xmlns:mml="http://www.w3.org/1998/Math/Math/MathML"altimg="si129.svg" display="inline" id="d1e2003"> <mml:mrow><mml:mi mathvariant="normal">O</mml:mi><mml:mo <br="" linebreak="goodbreak">linebreakstyle="after">â<</mml:mo><mml:mi mathvariant="normal">M</mml:mi><mml:mo linebreak="goodbreak" linebreakstyle="after">=<mml:mrow><mml:mrow><mml:mo><mml:mi< td=""><td>2.4</td><td>4</td></mml:mi<></mml:mo></mml:mrow></mml:mrow></mml:mo </mml:mrow>	2.4	4
2176	Covalent Organic Frameworks Based Single-site Electrocatalysts for Oxygen Reduction Reaction. Chemical Research in Chinese Universities, 0, , .	2.6	1
2177	Insight into the transient inactivation effect on Au/TiO2 catalyst by in-situ DRIFT and UV–vis spectroscopy. Nature Communications, 2022, 13, .	12.8	6
2178	Achieving rhodium-like activity for olefin hydroformylation by electronic metal-support interaction of single atomic cobalt catalyst. Cell Reports Physical Science, 2022, 3, 101016.	5.6	4
2179	Non-Noble Metal Catalysts in Cathodic Oxygen Reduction Reaction of Proton Exchange Membrane Fuel Cells: Recent Advances. Nanomaterials, 2022, 12, 3331.	4.1	9
2180	A Review on the Different Aspects and Challenges of the Dry Reforming of Methane (DRM) Reaction. Nanomaterials, 2022, 12, 3400.	4.1	25
2181	Active sites in the right places. , 2022, 1, 757-758.		4
2182	Single-Atom Catalysis: Insights from Model Systems. Chemical Reviews, 2022, 122, 14911-14939.	47.7	26
2183	Metal–Support Interactions in Molecular Single-Site Cluster Catalysts. Journal of the American Chemical Society, 2022, 144, 18459-18469.	13.7	8
2184	Ensemble effect for single-atom, small cluster and nanoparticle catalysts. Nature Catalysis, 2022, 5, 766-776.	34.4	92
2185	Ultrasmall molybdenum-iron nitride nanoparticles confined carbon nanotubes hybrids for efficient overall water splitting. Functional Composites and Structures, 2022, 4, 035008.	3.4	7

#	Article	IF	CITATIONS
2186	Oxidase-like ZnCoFe Three-Atom Nanozyme as a Colorimetric Platform for Ascorbic Acid Sensing. Analytical Chemistry, 2022, 94, 14308-14316.	6.5	31
2187	Effect of Ligand Structures on Ligand-Protected Gold Clusters: [Au–(<i>p</i> -/ <i>m</i> -/ <i>o</i> -MBT)] _{1–8} Clusters. Journal of Physical Chemistry A, 2022, 126, 7193-7201.	2.5	0
2188	A stabilization synthesis strategy for atomically dispersed metal-N4 electrocatalysts via aerogel confinement and ammonia pyrolyzing. Nano Energy, 2022, 104, 107869.	16.0	9
2189	An ingenious strategy toward single-atom photocatalytic methane conversion. Matter, 2022, 5, 3099-3101.	10.0	3
2190	Recent Advances on Confining Noble Metal Nanoparticles Inside Metal-Organic Frameworks for Hydrogenation Reactions. Chemical Research in Chinese Universities, 2022, 38, 1309-1323.	2.6	9
2191	Rational design and synthesis of cerium dioxide-based nanocomposites. Nano Research, 2023, 16, 3622-3640.	10.4	3
2192	Fully Exposed Metal Clusters: Fabrication and Application in Alkane Dehydrogenation. ACS Catalysis, 2022, 12, 12720-12743.	11.2	32
2194	Direct dehydrogenation of propane over Pd nanoparticles encapsulated within IPC zeolites with tunable pore sizes. Applied Materials Today, 2022, 29, 101644.	4.3	5
2195	Bimetallic single atom promoted α-MnO ₂ for enhanced catalytic oxidation of 5-hydroxymethylfurfural. Green Chemistry, 2022, 24, 8424-8433.	9.0	12
2196	Crystalline Support. , 2022, , 197-218.		0
2197	Defined metal atom aggregates precisely incorporated into metal–organic frameworks. Chemical Society Reviews, 2022, 51, 9933-9959.	38.1	28
2198	Sub-nanometer Ru clusters on Sm ₂ O ₃ obtained from a room temperature ion adsorption method for ammonia synthesis. Catalysis Science and Technology, 2022, 12, 7501-7509.	4.1	1
2199	A 2D copper-imidazolate framework without thermal treatment as an efficient ORR electrocatalyst for Zn–air batteries. Journal of Materials Chemistry A, 2022, 10, 24590-24597.	10.3	8
2200	Theoretical prediction and design for chalcogenide-quantum-dot/TiO ₂ heterojunctions for solar cell applications. RSC Advances, 2022, 12, 29375-29384.	3.6	2
2201	Catalytic dehydrogenation of natural terpenes via CuPd alloy nanoparticles generated on mesoporous graphitic carbon nitride. Applied Organometallic Chemistry, 2023, 37, .	3.5	2
2202	Highly Luminescent NHC-Stabilized Au ₁₃ Clusters as Efficient Excited-State Electron Donors. Journal of Physical Chemistry C, 2022, 126, 18374-18382.	3.1	6
2203	Computational Insights into Ru, Pd and Pt fcc Nano-Catalysts from Density Functional Theory Calculations: The Influence of Long-Range Dispersion Corrections. Catalysts, 2022, 12, 1287.	3.5	2
2204	Optimizing the semiconductor–metal-single-atom interaction for photocatalytic reactivity. Nature Reviews Chemistry, 2022, 6, 823-838.	30.2	42

#	Article	IF	CITATIONS
2205	Transition metal atom adsorption on the titanium carbide MXene: Trends across the periodic table for the bare and O-terminated surfaces. Physical Review Materials, 2022, 6, .	2.4	2
2206	A retrospect on recent research works in the preparation of zeolites catalyst from kaolin for biodiesel production. Biofuels, 2023, 14, 315-332.	2.4	5
2207	Reduced graphene oxide-supported ruthenium nanocatalysts for highly efficient electrocatalytic hydrogen evolution reaction. International Journal of Hydrogen Energy, 2022, 47, 39853-39863.	7.1	11
2208	Ru Single Atoms on One-Dimensional CF@g-C3N4 Hierarchy as Highly Stable Catalysts for Aqueous Levulinic Acid Hydrogenation. Materials, 2022, 15, 7464.	2.9	1
2209	Recent Progress in Surface and Interface Engineering for Electrocatalytic CO ₂ Reduction. Chemistry - an Asian Journal, 2022, 17, .	3.3	7
2210	Modulation of IrO ₆ Chemical Environment for Highly Efficient Oxygen Evolution in Acid. Small, 2022, 18, .	10.0	14
2211	Recent Advances in Hybrid Materials of Metal Nanoparticles and Polyoxometalates. Angewandte Chemie, 2023, 135, .	2.0	1
2212	Engineering single atomic ruthenium on defective nickel vanadium layered double hydroxide for highly efficient hydrogen evolution. Nano Research, 2023, 16, 4612-4619.	10.4	4
2213	Graphene Bridge for Photocatalytic Hydrogen Evolution with Gold Nanocluster Co-Catalysts. Nanomaterials, 2022, 12, 3638.	4.1	4
2214	Tuning the Micro-coordination Environment of Al in Dealumination Y Zeolite to Enhance Electron Transfer at the Cu–Mn Oxides Interface for Highly Efficient Catalytic Ozonation of Toluene at Low Temperatures. Environmental Science & Technology, 2022, 56, 15449-15459.	10.0	20
2215	Growth Pattern of Large Morse Clusters with Medium-Range Potentials. Journal of Physical Chemistry Letters, 2022, 13, 9801-9808.	4.6	2
2216	Copper Nanoparticles Decorated Alginate/Cobalt-Doped Cerium Oxide Composite Beads for Catalytic Reduction and Photodegradation of Organic Dyes. Polymers, 2022, 14, 4458.	4.5	9
2217	The Dynamic Formation from Metalâ€Organic Frameworks of Highâ€Density Platinum Singleâ€Atom Catalysts with Metalâ€Metal Interactions. Angewandte Chemie - International Edition, 2022, 61, .	13.8	29
2218	Recent Advances in Hybrid Materials of Metal Nanoparticles and Polyoxometalates. Angewandte Chemie - International Edition, 2023, 62, .	13.8	25
2219	Electrocatalytic enhancement mechanism of cobalt single atoms anchored on different <scp>MXene</scp> substrates in oxygen and hydrogen evolution reactions. EcoMat, 2023, 5, .	11.9	22
2220	Frustrations of supported catalytic clusters under operando conditions predicted by a simple lattice model. Scientific Reports, 2022, 12, .	3.3	1
2221	Direct environmental TEM observation of silicon diffusion-induced strong metal-silica interaction for boosting CO2 hydrogenation. Nano Research, 2023, 16, 2209-2217.	10.4	11
2222	Emerging Metal Single-Atom Materials: From Fundamentals to Energy Applications. Accounts of Materials Research, 2022, 3, 1160-1172.	11.7	10

#	Article	IF	CITATIONS
2223	Counting charges per metal nanoparticle. Science, 2022, 378, 133-134.	12.6	0
2224	Direct identification of the charge state in a single platinum nanoparticle on titanium oxide. Science, 2022, 378, 202-206.	12.6	24
2225	Rhodium Singleâ€Atom Catalyst Design through Oxide Support Modulation for Selective Gasâ€Phase Ethylene Hydroformylation. Angewandte Chemie - International Edition, 2023, 62, .	13.8	14
2226	Hydrogen Interaction with Oxide Supports in the Presence and Absence of Platinum. Journal of Physical Chemistry C, 2022, 126, 17589-17597.	3.1	10
2227	The Role of Metal Adatoms in a Surfaceâ€Assisted Cyclodehydrogenation Reaction on a Gold Surface. Angewandte Chemie, 0, , .	2.0	2
2228	Unusual Scaffold Rearrangement in Polyaromatic Hydrocarbons Driven by Concerted Action of Single Gold Atoms on a Gold Surface. Angewandte Chemie - International Edition, 2022, 61, .	13.8	9
2229	Hydrodeoxygenation of lignin biophenolics to cyclohexanes over sub-nanometric Ru multifunctional catalyst. Renewable Energy, 2022, 201, 724-733.	8.9	5
2230	The Role of Metal Adatoms in a Surfaceâ€Assisted Cyclodehydrogenation Reaction on a Gold Surface. Angewandte Chemie - International Edition, 2022, 61, .	13.8	18
2231	Bridging the Gap between the X-ray Absorption Spectroscopy and the Computational Catalysis Communities in Heterogeneous Catalysis: A Perspective on the Current and Future Research Directions. ACS Catalysis, 2022, 12, 13813-13830.	11.2	11
2232	Efficient and Durable Single-Atom Fe Catalyst for Fenton-like Reaction via Mediated Electron-Transfer Mechanism. ACS ES&T Engineering, 2023, 3, 36-44.	7.6	9
2233	The catalytic activity of the Pr ₂ Zr _{2â^'} <i>_x</i> Fe <i>_x</i> O _{7±} <i>_{δsystem for the CO oxidation reaction. Journal of the American Ceramic Society, 2023, 106, 1369-1380.}</i>	ub‰a/i>	2
2234	Solid catalysts for the dehydrogenation of long-chain alkanes: lessons from the dehydrogenation of light alkanes and homogeneous molecular catalysis. Science China Chemistry, 2022, 65, 2163-2176.	8.2	7
2235	The Activity of Ultrafine Cu Clusters Encapsulated in Nano-Zeolite for Selective Hydrogenation of CO2 to Methanol. Catalysts, 2022, 12, 1296.	3.5	4
2236	Rhodium Singleâ€Atom Catalyst Design through Oxide Support Modulation for Selective Gasâ€Phase Ethylene Hydroformylation. Angewandte Chemie, 2023, 135, .	2.0	4
2237	Construction of αâ€Fe ₂ O ₃ /g ₃ N ₄ /COF Ternary Hybrid with Double Zâ€Scheme Heterojunctions for Photocatalysis**. ChemPhotoChem, 2023, 7, .	3.0	2
2238	Unusual Scaffold Rearrangement in Polyaromatic Hydrocarbons Driven by Concerted Action of Single Gold Atoms on a Gold Surface. Angewandte Chemie, 2022, 134, .	2.0	1
2239	The Dynamic Formation from Metalâ€Organic Frameworks of Highâ€Density Platinum Singleâ€Atom Catalysts with Metalâ€Metal Interactions. Angewandte Chemie, 2022, 134, .	2.0	8
2240	Hydrocarbon regulation and lower temperature pyrolysis of balikun oil shale kerogen. Energy and Environment, 0, , 0958305X2211332.	4.6	1

#	Article	IF	CITATIONS
2241	Heterogeneous consecutive reaction kinetics of direct oxidation of H2 to H2O2: Effect and regulation of confined mass transfer. Chemical Engineering Journal, 2023, 455, 140111.	12.7	4
2242	An Atomâ€Pair Design Strategy for Optimizing the Synergistic Electron Effects of Catalytic Sites in NO Selective Reduction. Angewandte Chemie - International Edition, 2022, 61, .	13.8	16
2243	A Nanomedicine Structure–Activity Framework for Research, Development, and Regulation of Future Cancer Therapies. ACS Nano, 2022, 16, 17497-17551.	14.6	10
2244	Metal Affinity of Support Dictates Sintering of Gold Catalysts. Journal of the American Chemical Society, 2022, 144, 20601-20609.	13.7	26
2245	An Atomâ€Pair Design Strategy for Optimizing the Synergistic Electron Effects of Catalytic Sites in NO Selective Reduction. Angewandte Chemie, 2022, 134, .	2.0	3
2246	Promote hydroxyl radical and key intermediates formation for deep toluene mineralization via unique electron transfer channel. Journal of Colloid and Interface Science, 2023, 630, 704-713.	9.4	9
2247	Recent advance in nanostructured materials innovation towards photocatalytic CO2 reduction. Applied Catalysis A: General, 2022, 648, 118927.	4.3	8
2248	Coupling Cu Single Atoms and Phase Junction for Photocatalytic CO ₂ Reduction with 100% CO Selectivity. ACS Catalysis, 2022, 12, 14096-14105.	11.2	28
2249	Palladium Nanoparticles Entrapped In a Hydrogen Bonded Crystalline Organic Salt Matrix as a Selective Heterogeneous Reduction Catalyst. ChemistrySelect, 2022, 7, .	1.5	0
2250	Construction of highly dispersed Pt single sites and high-efficiency-heterocatalysis silylation of alcohols with silanes. Nano Research, 0, , .	10.4	0
2251	Rational design of advanced oxygen electrocatalysts for high-performance zinc-air batteries. Chem Catalysis, 2022, 2, 3357-3394.	6.1	7
2252	Recent Advances in Niâ€Based Electrocatalysts for Hydrogen Evolution Reaction. Energy Technology, 2023, 11, .	3.8	11
2253	Facet-dependent electronic state of Pt single atoms anchoring on CeO2 nanocrystal for CO (preferential) oxidation. Journal of Catalysis, 2022, 415, 174-185.	6.2	24
2254	Synergy of Platinum Single Atoms and Platinum Atomic Clusters on Sulfurâ€Doped Titanium Nitride Nanotubes for Enhanced Hydrogen Evolution Reaction. Small, 2022, 18, .	10.0	13
2255	Efficient cascade C-N coupling reactions catalyzed by a recyclable MoOx/Nb2O5 nanomaterial for valuable N-heterocycles synthesis. Molecular Catalysis, 2022, 532, 112742.	2.0	5
2256	Induced fast charge transport and gas release using 3D ordered vertical carbon nanotubes for high-performance electrocatalysis. Materials and Design, 2022, 224, 111329.	7.0	3
2257	Recent advances in the catalytic N-methylation and N-trideuteromethylation reactions using methanol and deuterated methanol. Coordination Chemistry Reviews, 2023, 474, 214827.	18.8	21
2258	Other metal nanoclusters. , 2023, , 497-518.		0

#	Article	IF	CITATIONS
2259	Atom hybridization of metallic elements: Emergence of subnano metallurgy for the post-nanotechnology. Coordination Chemistry Reviews, 2023, 474, 214826.	18.8	3
2260	Thiols as ligands and structural control of nanoclusters. , 2023, , 519-550.		0
2261	Tuning Ag quantum clusters in glass as an efficient spectral converter: From fundamental to applicable. Journal of Non-Crystalline Solids, 2023, 599, 121910.	3.1	2
2262	Detection of heavy metal ions using laser-induced breakdown spectroscopy combined with filter paper modified with PtAg bimetallic nanoparticles. Journal of Hazardous Materials, 2023, 443, 130188.	12.4	10
2263	Pd single atom stabilized on multiscale porous hollow carbon fibers for phenylacetylene semi-hydrogenation reaction. Chemical Engineering Journal, 2023, 454, 140031.	12.7	2
2264	Single-Atom Photocatalysts for Energy and Environmental Sustainability. , 2022, , 2751-2787.		0
2265	Atomically dispersed Pt inside MOFs for highly efficient photocatalytic hydrogen evolution. Physical Chemistry Chemical Physics, 0, , .	2.8	0
2266	The reducibility and oxidation states of oxide-supported rhenium: Experimental and theoretical investigations. Physical Chemistry Chemical Physics, 0, , .	2.8	0
2267	Identifying the morphology of Pt nanoparticles for the optimal catalytic activity towards CO oxidation. Nanoscale, 2022, 14, 17754-17760.	5.6	5
2268	High-selective and effective carbon nanotubes supported ultrasmall PtPdRh electrocatalysts for ethanol oxidation. Electrochimica Acta, 2023, 437, 141531.	5.2	6
2269	Metal-nitrogen-carbon catalysts for peroxymonosulfate activation to degrade aquatic organic contaminants: Rational design, size-effect description, applications and mechanisms. Chemical Engineering Journal, 2023, 454, 140216.	12.7	26
2270	Laser irradiation induced platinum-based bimetallic alloy nanoparticles in liquids for electrocatalytic hydrogen production. Journal of Alloys and Compounds, 2023, 934, 167914.	5.5	4
2271	Transition metal nanoparticles as nanocatalysts for Suzuki, Heck and Sonogashira cross-coupling reactions. Coordination Chemistry Reviews, 2023, 476, 214928.	18.8	28
2272	Solid Singleâ€Atom Catalysts in Tandem Catalysis: Lookout, Opportunities and Challenges. ChemCatChem, 0, , .	3.7	4
2273	Tailoring of Active Sites from Single to Dual Atom Sites for Highly Efficient Electrocatalysis. ACS Nano, 2022, 16, 17572-17592.	14.6	59
2274	Encapsulating Metal Nanoparticles into a Layered Zeolite Precursor with Surface Silanol Nests Enhances Sintering Resistance. Angewandte Chemie, 0, , .	2.0	1
2275	Encapsulating Metal Nanoparticles into a Layered Zeolite Precursor with Surface Silanol Nests Enhances Sintering Resistance**. Angewandte Chemie - International Edition, 2023, 62, .	13.8	10
2276	Synergistic effect of Fe/Cu N C dual single-atom catalyst for C H bond oxidation. Journal of Colloid and Interface Science, 2023, 632, 237-248.	9.4	12

#	Article	IF	CITATIONS
2277	Structure, Stability, Electronic and Magnetic Properties of FemBin (m + n = 2–4) Clusters: A DFT Study. Russian Journal of Physical Chemistry A, 2022, 96, 2466-2475.	0.6	2
2278	Design of the Synergistic Rectifying Interfaces in Mott–Schottky Catalysts. Chemical Reviews, 2023, 123, 1-30.	47.7	69
2279	Isolated Electronâ€Rich Ruthenium Atoms in Intermetallic Compounds for Boosting Electrochemical Nitric Oxide Reduction to Ammonia. Angewandte Chemie - International Edition, 2023, 62, .	13.8	19
2280	A Review on Chemoselective Reduction of Nitroarenes for Wastewater Remediation Using Biochar Supported Metal Catalysts: Kinetic and Mechanistic Studies. Chemistry Africa, 2023, 6, 561-578.	2.4	5
2282	Dynamic Structural Evolution of [Rh(NO) ₂] ⁺ Complex/Rh Metal Cluster in Zeolite during de-NOx via <i>in Situ</i> Formed NH ₃ under Lean/Rich Periodic Conditions. Journal of Physical Chemistry C, 2022, 126, 19147-19158.	3.1	3
2283	Boosted Heterogeneous Catalysis by Surfaceâ€Accumulated Excess Electrons of Nonâ€Oxidized Bare Copper Nanoparticles on Electride Support. Advanced Science, 2023, 10, .	11.2	4
2284	Stabilization of Dinuclear Rhodium and Iridium Clusters on Layered Titanate and Niobate Supports. Inorganic Chemistry, 2023, 62, 1113-1121.	4.0	0
2285	Advances in Graphene-Supported Single-Atom Catalysts for Clean Energy Conversion. Electrochemical Energy Reviews, 2022, 5, .	25.5	17
2286	Fabrication of the Microenvironment and Active Structure of Single-Rh-Site Catalysts for Efficient Hydroformylation of Olefins. ACS Sustainable Chemistry and Engineering, 2022, 10, 15467-15479.	6.7	6
2287	Electronic Modification by Transitional Metal Dopants to Tune the Oxidation Activity of Pt-CeO ₂ -Based Catalysts. Environmental Science & Technology, 2022, 56, 17331-17340.	10.0	11
2288	Axial nitrogen-coordination engineering over Fe-Nx active species for enhancing Fenton-like reaction performance. Chemical Engineering Journal, 2023, 454, 140382.	12.7	5
2289	Isolated Electronâ€Rich Ruthenium Atoms in Intermetallic Compounds for Boosting Electrochemical Nitric Oxide Reduction to Ammonia. Angewandte Chemie, 0, , .	2.0	0
2290	Review on Catalytic Oxidation of VOCs at Ambient Temperature. International Journal of Molecular Sciences, 2022, 23, 13739.	4.1	5
2291	Structural Evolution of Anataseâ€Supported Platinum Nanoclusters into a Platinumâ€Titanium Intermetallic Containing Platinum Single Atoms for Enhanced Catalytic CO Oxidation. Angewandte Chemie - International Edition, 2023, 62, .	13.8	13
2292	Understanding the Reactivity of Supported Late Transition Metals on a Bare Anatase (101) Surface: A Periodic Conceptual DFT Investigation. ChemPhysChem, 2023, 24, .	2.1	4
2293	Fine-tuned local coordination environment of Pt single atoms on ceria controls catalytic reactivity. Nature Communications, 2022, 13, .	12.8	47
2294	Oxide nanoglues grasp metal atoms for catalysis. Science Bulletin, 2022, 67, 2387-2388.	9.0	1
2295	Structural Evolution of Anataseâ€5upported Platinum Nanoclusters into a Platinumâ€â€ītanium Intermetallic Containing Platinum Single Atoms for Enhanced Catalytic CO Oxidation. Angewandte Chemie, 0, , .	2.0	1

ARTICLE IF CITATIONS Breaking structure sensitivity in CO2 hydrogenation by tuning metalâ€"oxide interfaces in supported 2296 34.4 39 cobalt nanoparticles. Nature Catalysis, 2022, 5, 1051-1060. Modulating Electronic Environment of Ru Nanoclusters via Local Charge Transfer for Accelerating 2297 10.0 Alkaline Water Electrolysis. Small, 2023, 19, . Photoabsorbance of supported metal clusters: <i>ab initio</i> density matrix and model studies of 2298 2.8 1 large Ag clusters on Si surfaces. Physical Chemistry Chemical Physics, 2023, 25, 14757-14765. Influence of the zeolite support on the catalytic properties of confined metal clusters: a periodic DFT study of O₂ dissociation on Cu_{<i>n</i>} clusters in CHA. Physical Chemistry Chemical Physics, 2022, 24, 30044-30050. 2299 Fundamental, application and opportunities of single atom catalysts for Li-S batteries. Energy Storage 2300 18.0 36 Materials, 2023, 55, 322-355. Enhanced stability of sub-nanometric iridium decorated graphitic carbon nitride for H₂ production upon hydrous hydrazine decomposition. Physical Chemistry Chemical Physics, 2023, 25, 2.8 1081-1095. Gas-phase synthesis of nanoparticles: current application challenges and instrumentation 2302 2.8 2 development responses. Physical Chemistry Chemical Physics, 2023, 25, 897-912. Theoretical and experimental progress of metal electrocatalysts for the nitrogen reduction reaction. 2303 5.9 9 Materials Chemistry Frontiers, 2023, 7, 643-661. Metalâ€"organic framework-derived single atom catalysts for electrocatalytic reduction of carbon 2304 3.3 1 dioxide to C1 products. Energy Advances, 2023, 2, 252-267. Theoretical insight into the relevance between the oxidation states of CeO₂ supported 2.6 $Pt < sup > 4+/2+/1+/0/2a^{-1} < up > and their HER performance. CrystEngComm, 2022, 25, 40-47$ Enzyme-metal-single-atom hybrid catalysts for one-pot chemoenzymatic reactions. Chinese Journal of 2306 14.08 Catalysis, 2023, 44, 139-145. Fiber-glass supported catalysis: real-time, high-resolution visualization of active palladium catalytic centers during the reduction of nitro compounds. Catalysis Science and Technology, 2023, 13, 4.1 1021-1031. Molecule-electron-proton transfer in enzyme-photo-coupled catalytic system. Chinese Journal of 2308 14.0 6 Catalysis, 2023, 44, 96-110. Mechanistic understanding and the rational design of a SiO₂@CD catalyst for selective 2309 2.8 protection of <scp>l</scp>-lysine. Organic and Biomolecular Chemistry, 0, , . 2310 When nitrogen reduction meets single-atom catalysts. Progress in Materials Science, 2023, 132, 101044. 32.8 14 Strengthening the metal-support interaction over Pt/SiO2-TiO(OH)2 by defect engineering for efficient 6.4 dehydrogenation of dodecahydro-N-ethylcarbazole. Fuel, 2023, 334, 126733. The role of ionic and cluster active centers of Pt/CeO2 catalysts in CO oxidation. Experimental study 2312 3.8 2 and mathematical modeling. Chemical Engineering Science, 2023, 267, 118328. Configuration regulation of active sites by accurate doping inducing self-adapting defect for 18.8 28 enhanced photocatalytic applications: A review. Coordination Chemistry Reviews, 2023, 478, 214970.

		CITATION REPORT		
#	Article		IF	Citations
2314	Metal Nanocatalyst Sintering Interrogated at Complementary Length Scales. Small, 20	23, 19, .	10.0	3
2315	Atomic Magnetic Heating Effect Enhanced Hydrogen Evolution Reaction of Gd@MoS< Singleâ€Atom Catalysts. Small, 2023, 19, .	sub>2	10.0	12
2316	Towards "enzyme-like―zeolite designs to maximize the efficiency of catalysts by r recognition: Fine-tuning confinement and active site location. Microporous and Mesop Materials, 2022, , 112354.		4.4	1
2317	Efficient Single-Atom Fe-Catalyzed Fenton-like Reaction Involving Peroxymonosulfate f Degradation by High-Valent Fe(IV)=O. ACS ES&T Water, 2022, 2, 2698-2705.	or BPA	4.6	6
2318	A novel bimetallic RuFe nanocluster to enable highly efficient oxygen reduction in zinc- Progress in Natural Science: Materials International, 2022, 32, 769-775.	air batteries.	4.4	4
2319	Design of Single-Atom Catalysts and Tracking Their Fate Using <i>Operando</i> and A Spectroscopic Tools. Chemical Reviews, 2023, 123, 379-444.	dvanced X-ray	47.7	50
2320	Stepwise Polymetalation around an sp ³ Benzyl Carbon Atom. Organomet 3493-3498.	allics, 2022, 41,	2.3	0
2321	A durable and robust Fe–N–C electrocatalyst for oxygen reduction reactions by int Ti3C2–TiO2 as radical scavengers. International Journal of Hydrogen Energy, 2023, 4	croducing +8, 5323-5332.	7.1	4
2322	Advanced energy materials: Current trends and challenges in electro- and photo-cataly splitting. Journal of Industrial and Engineering Chemistry, 2023, 119, 90-111.	sts for H2O	5.8	8
2323	Graphdiyne anchoring to construct highly dense palladium trimer active sites for the se hydrogenation of acetylene. Nano Research, 2023, 16, 6167-6177.	elective	10.4	5
2324	More than One Century of History for Photocatalysis, from Past, Present and Future Pe Catalysts, 2022, 12, 1572.	rspectives.	3.5	3
2325	Each performs its own functions: Nickel oxide supported ruthenium single-atoms and r relay catalysis with multi-active sites for efficient alkaline hydrogen evolution reaction. Catalysis B: Environmental, 2023, 325, 122316.	ianoclusters Applied	20.2	23
2326	Reactivity and Recyclability of Ligandâ€Protected Metal Cluster Catalysts for CO _{ Transformation. Angewandte Chemie - International Edition, 2023, 62, .}	2	13.8	11
2327	Size Effects in Gasâ€phase Câ^'H Activation. ChemPhysChem, 0, , .		2.1	3
2328	Periodic Arrays of Metal Nanoclusters on Ultrathin Fe-Oxide Films Modulated by Metal- Interactions. Jacs Au, 2023, 3, 176-184.	Oxide	7.9	2
2329	Research Progress on Graphite-Derived Materials for Electrocatalysis in Energy Convers Storage. Molecules, 2022, 27, 8644.	sion and	3.8	3
2330	Selectivity of Laser-Induced versus IET-Induced Carbene Formation from Methoxydiazo Ag(111). Journal of Physical Chemistry C, 2023, 127, 562-567.	fluorene on	3.1	0
2331	Maneuvering the Peroxidase‣ike Activity of Palladiumâ€Based Nanozymes by Alloyir Bismuth for Biosensing. Small, 2023, 19, .	g with Oxophilic	10.0	11

#	Article	IF	CITATIONS
2332	Modeling CoCu Nanoparticles Using Neural Network-Accelerated Monte Carlo Simulations. Journal of Physical Chemistry A, 2022, 126, 9440-9446.	2.5	2
2333	Singleâ€ e tom electrocatalysts for lithium–sulfur chemistry: Design principle, mechanism, and outlook. , 2023, 5, .		18
2334	Mastering the D-Band Center of Iron-Series Metal-Based Electrocatalysts for Enhanced Electrocatalytic Water Splitting. International Journal of Molecular Sciences, 2022, 23, 15405.	4.1	5
2335	Understanding the thermal stability of a 3d, 4d, and 5d element doped aluminium nanocluster through BOMD simulations. Molecular Simulation, 0, , 1-6.	2.0	0
2336	Engineering the Electronic Structure of Singleâ€Atom Iron Sites with Boosted Oxygen Bifunctional Activity for Zinc–Air Batteries. Advanced Materials, 2023, 35, .	21.0	63
2337	Plasmonic imaging of the layer-dependent electrocatalytic activity of two-dimensional catalysts. Nature Communications, 2022, 13, .	12.8	10
2338	Reactivity and Recyclability of Ligandâ€Protected Metal Cluster Catalysts for CO ₂ Transformation. Angewandte Chemie, 2023, 135, .	2.0	1
2339	Enhancing Tungsten Oxide Gasochromism with Noble Metal Nanoparticles: The Importance of the Interface. Small, 2023, 19, .	10.0	8
2340	A Series of Low oordinate Iron Selenido Complexes: Reactivity of a Linear Iron(I) Silylamide towards Selenium. European Journal of Inorganic Chemistry, 2023, 26, .	2.0	1
2341	Hot carrier photochemistry on metal nanoparticles. Journal of Applied Physics, 2022, 132, .	2.5	5
2342	Atomic Replacement of PtNi Nanoalloys within Zn-ZIF-8 for the Fabrication of a Multisite CO ₂ Reduction Electrocatalyst. Journal of the American Chemical Society, 2022, 144, 23223-23229.	13.7	42
2343	Boosting Benzene Oxidation with a Spinâ€Stateâ€Controlled Nuclearity Effect on Iron Subâ€Nanocatalysts. Angewandte Chemie, 0, , .	2.0	Ο
2344	Influence of substrate composition on size and chemical state of ion beam synthesised Co nanoparticles – Towards fabrication of electrodes for energy devices. Materials Today Communications, 2023, 34, 105235.	1.9	0
2345	Creating Highly Active Iron Sites in Electrochemical N ₂ Reduction by Fabricating Stronglyâ€Coupled Interfaces. Small, 2023, 19, .	10.0	2
2346	Application of new multi-H-bond catalyst for the preparation of substituted pyridines via a cooperative vinylogous anomeric-based oxidation. Research on Chemical Intermediates, 2023, 49, 679-699.	2.7	2
2347	Aerosol Spray Drying Guided Synthesis of Ultrasmall Alloyed Bimetallic Nanoparticles Supported on Silica for Catalytic Semihydrogenation. Small, 2023, 19, .	10.0	6
2348	Boosting Benzene Oxidation with a Spinâ€Stateâ€Controlled Nuclearity Effect on Iron Subâ€Nanocatalysts. Angewandte Chemie - International Edition, 2023, 62, .	13.8	4
2349	Application of HTS in Material Preparation and New Devices. Nanostructure Science and Technology, 2023, , 145-192.	0.1	0

#	Article	IF	CITATIONS
2350	Partially Nitrided Ni Nanoclusters Achieve Energyâ€Efficient Electrocatalytic CO ₂ Reduction to CO at Ultralow Overpotential. Advanced Materials, 2023, 35, .	21.0	26
2351	Nitrogen and Phosphorus Dual-Coordinated Single-Atom Mn: MnN ₂ P Active Sites for Catalytic Transfer Hydrogenation of Nitroarenes. ACS Applied Materials & Interfaces, 2022, 14, 55568-55576.	8.0	7
2352	Controlled Growth of Platinum Nanoparticles on Amorphous Silica from Grafted Pt–Disilicate Complexes. ACS Omega, 2022, 7, 47120-47128.	3.5	1
2353	Integrating Interactive Noble Metal Single-Atom Catalysts into Transition Metal Oxide Lattices. Journal of the American Chemical Society, 2022, 144, 23214-23222.	13.7	55
2355	Gold Atomic Layers and Isolated Atoms on MoC for the Low-Temperature Water Gas Shift Reaction. ACS Catalysis, 2022, 12, 15648-15657.	11.2	3
2356	Observation of a robust and active catalyst for hydrogen evolution under high current densities. Nature Communications, 2022, 13, .	12.8	28
2357	Synergy of Ultrathin CoO <i>_x</i> Overlayer and Nickel Single Atoms on Hematite Nanorods for Efficient Photoâ€Electrochemical Water Splitting. Small, 2023, 19, .	10.0	16
2358	Ag@Pt Core–Shell Nanoparticles for Plasmonic Catalysis. ACS Applied Nano Materials, 2023, 6, 1193-1202.	5.0	8
2359	Pt Atomically Dispersed in Black TiO _{2â^' <i>x</i>} /Cu _{<i>x</i>} O with Chiralâ€Like Nanostructure for Visibleâ€Light H ₂ Generation. Solar Rrl, 0, , 2200929.	5.8	3
2360	Graphitic carbon nitride-based nanostructures as emergent catalysts for carbon monoxide (CO) oxidation. Green Chemistry, 2023, 25, 1276-1310.	9.0	34
2361	Tuning the CO ₂ Hydrogenation Selectivity of Rhodium Singleâ€Atom Catalysts on Zirconium Dioxide with Alkali Ions. Angewandte Chemie, 2023, 135, .	2.0	2
2362	Controlled-Release Mechanism Regulates Rhodium Migration and Size Redistribution Boosting Catalytic Methane Conversion. ACS Catalysis, 2023, 13, 1197-1206.	11.2	6
2363	Electrocatalysis Mechanism and Structure–Activity Relationship of Atomically Dispersed Metalâ€Nitrogenâ€Carbon Catalysts for Electrocatalytic Reactions. Small Methods, 2023, 7, .	8.6	7
2364	Co and Ni single sites on the (111) _{<i>n</i>} surface of γ-Al ₂ O ₃ – a periodic boundary DFT study. , 2023, 1, 117-128.		2
2365	Pseudopyrolysis of Metal–Organic Frameworks: A Synchronous Nucleation Mechanism to Synthesize Ultrafine Metal Compound Nanoparticles. Nano Letters, 2023, 23, 1600-1607.	9.1	4
2366	Highly dispersed Rh single atoms over graphitic carbon nitride as a robust catalyst for the hydroformylation reaction. Catalysis Science and Technology, 2023, 13, 1425-1436.	4.1	8
2367	Catalytic and Aerobic Oxidative C–H Annulation Reaction of Saturated Cyclic Amines for Synthesis of Dipyrroloquinolines. Advanced Synthesis and Catalysis, 0, , .	4.3	1
2368	Synergistic Mechanism of Subâ€Nanometric Ru Clusters Anchored on Tungsten Oxide Nanowires for Highâ€Efficient Bifunctional Hydrogen Electrocatalysis. Advanced Science, 2023, 10, .	11.2	35

		CITATION REPORT		
#	Article		IF	CITATIONS
2369	Co-based MOF derived metal catalysts: from nano-level to atom-level. Tungsten, 2023	, 5, 201-216.	4.8	18
2370	Research trends on minimizing the size of noble metal catalysts for Li-CO2 batteries: F nanoparticle to single atom. Korean Journal of Chemical Engineering, 2023, 40, 461-42	rom 72.	2.7	3
2371	Exploring the Potential Energy Surface of Pt6 Sub-Nano Clusters Deposited over Graph International Journal of Molecular Sciences, 2023, 24, 870.	iene.	4.1	1
2373	Tuning the CO ₂ Hydrogenation Selectivity of Rhodium Singleâ€Atom Car Dioxide with Alkali Ions. Angewandte Chemie - International Edition, 2023, 62, .	alysts on Zirconium	13.8	22
2374	Strong precious metal–metal oxide interaction for oxygen reduction reaction: A stra efficient catalyst design. SusMat, 2023, 3, 2-20.	tegy for	14.9	17
2375	Atomic {Pdn+-X} States at Nanointerfaces: Implications in Energy-Related Catalysis. En 913.	nergies, 2023, 16,	3.1	1
2376	Tunable Aryl Alkyl Ionic Liquid Supported Synthesis of Platinum Nanoparticles and The Activity in the Hydrogen Evolution Reaction and in Hydrosilylation. Molecules, 2023, 2		3.8	3
2377	The synthesis of single-atom catalysts for heterogeneous catalysis. Chemical Commur 59, 2854-2868.	ications, 2023,	4.1	13
2378	Non-directed C–H arylation of electron-deficient arenes by synergistic silver and Pd< cluster catalysis. Nanoscale, 2023, 15, 3560-3565.	sub>3	5.6	4
2379	Charge modulation over atomically precise metal nanoclusters <i>via</i> non-conjuga for photoelectrochemical water oxidation. Journal of Materials Chemistry A, 2023, 11,	ted polymers 2402-2411.	10.3	23
2380	Water-Soluble Pd Nanoparticles for the Anti-Markovnikov Oxidation of Allyl Benzene ir Nanomaterials, 2023, 13, 348.	1 Water.	4.1	0
2381	Ultrafine Ruthenium-Embedded P-Doped Carbon Materials as Bifunctional Catalysts fo Solar-Assistant Water Splitting. Energy & Fuels, 0, , .	r	5.1	1
2382	Design principle and synthetic approach of intermetallic Pt-M alloy oxygen reduction c fuel cells. Chinese Journal of Catalysis, 2023, 45, 17-26.	atalysts for	14.0	14
2383	Protein-supported transition metal catalysts: Preparation, catalytic applications, and p International Journal of Biological Macromolecules, 2023, 230, 123206.	rospects.	7.5	2
2384	Size effect of CoS2 cocatalyst on photocatalytic hydrogen evolution performance of g of Colloid and Interface Science, 2023, 635, 305-315.	;-C3N4. Journal	9.4	16
2385	Heterogeneous selective oxidation over supported metal catalysts: From nanoparticles atoms. Applied Catalysis B: Environmental, 2023, 325, 122384.	s to single	20.2	20
2386	Sulfur-poisoning on Rh NP but sulfur-promotion on single-Rh1-site for methanol carbo Applied Catalysis B: Environmental, 2023, 325, 122318.	nylation.	20.2	5
2387	Ag Decorated NiCo Catalyst on Ni Foam Electrodes for Electrocatalytic Oxidation of M Russian Journal of Physical Chemistry A, 2022, 96, 2868-2877.	ethanol.	0.6	3

ARTICLE

ç"µåŒ–å┤溶出æ3•庺å⁻,ðēæŽ§å•æ´é"œåŸºæ°§è¿ĩ原å应å,¬åŒ–å‰,; 从纳ç±3ç2'å尰原å团纇å'Œå•原å• Sœ&nce China Material 2388 Geometric and Electronic Effects in Hydrogenation Reactions. ACS Catalysis, 2023, 13, 974-1019. 2389 11.2 Heterogeneous photocatalysis: what is being overlooked?. Trends in Chemistry, 2023, 5, 121-132. 2390 8.5 8 From Single Crystal to Single Atom Catalysts: Structural Factors Influencing the Performance of 11.2 Metal Catalysts for CO₂ Electroreduction. ACS Catalysis, 2023, 13, 948-973. Surface and Interface Coordination Chemistry Learned from Model Heterogeneous Metal 2392 Nanocatalysts: From Atomically Dispersed Catalysts to Atomically Precise Clusters. Chemical Reviews, 47.7 50 2023, 123, 5948-6002. Synthesis of photocatalytic cysteine-capped Cu_{â‰^10} clusters using Cu₅ 2.8 clusters as catalysts. Physical Chemistry Chemical Physics, 2023, 25, 6025-6031. Oxidation of metals and formation of defects by theoretical modeling., 2023, 129-160. 2394 0 Advances in ambient selective electrohydrogenation of nitrogen to ammonia: strategies to strengthen 2395 10.3 nitrogen chemisorption. Journal of Materials Chemistry A, 2023, 11, 3871-3887. Imidazolium organometallic complex of palladium on Fe₃O₄ nanoparticles as 2396 selective and magnetically recoverable nanocatalyst for Câ€C crossâ€coupling reactions. Applied 3.5 1 Organometallic Chemistry, 2023, 37, . Quantum dots: catalysis applications., 2023,, 439-462. Understanding the Density-Dependent Activity of Cu Single-Atom Catalyst in the Benzene 2398 11.2 32 Hydroxylation Reaction. ACS Catalysis, 2023, 13, 1316-1325. Atomically Dispersed Znï£iN₅Sites Immobilized on gâ€C₃N₄Nanosheets for Ultrasensitive Selective Detection of Phenanthrene by 2399 21.0 Dual Ratiometric Fluorescence. Advanced Materials, 0, , 2211575. Study of the Kinetics of Reduction of IrO2 on TiO2 (Anatase) by Temperature-Programmed Reduction. 2400 2.7 0 Inorganics, 2023, 11, 66. The lattice strain dominated catalytic activity in single-metal nanosheets. Journal of Materials 2401 10.3 Chemistry A, 2023, 11, 4037-4044. Dramatic acceleration by visible light and mechanism of AuPd@ZIF-8-catalyzed ammonia borane 2402 10.3 17

2403	Recent advances in mixing-induced nanoprecipitation: from creating complex nanostructures to emerging applications beyond biomedicine. Nanoscale, 2023, 15, 3594-3609.	5.6	9
2404	Carbon Dioxide Conversion on Supported Metal Nanoparticles: A Brief Review. Catalysts, 2023, 13, 305.	3.5	9

methanolysis for efficient hydrogen production. Journal of Materials Chemistry A, 2023, 11, 5245-5256.

2405	Metal Nanoclusters Synthesized in Alkaline Ethylene Glycol: Mechanism and Application. Nanomaterials, 2023, 13, 565.	4.1	1

#	Article	IF	Citations
2406	Precise Assembly of Polyoxometalates at Singleâ€cluster Levels. Angewandte Chemie - International Edition, 2023, 62, .	13.8	20
2408	Optimization of Ni-Mo-Coated Stainless Steel as a High-Performance Cathode in Alkaline Water Electrolysis. Electrocatalysis, 2023, 14, 473-483.	3.0	1
2409	Cu-Based Materials as Photocatalysts for Solar Light Artificial Photosynthesis: Aspects of Engineering Performance, Stability, Selectivity. Solar, 2023, 3, 87-112.	1.8	3
2410	Noble-metal single atom with non-metal co-doped graphene: First-principles investigation of structures, electronic and magnetic properties. Journal of Magnetism and Magnetic Materials, 2023, 568, 170418.	2.3	1
2411	Recent advance in nanoparticle catalysts for C–C cross-coupling reaction. , 2023, , 41-73.		0
2412	ZnO/Pt/P3HT Hetero-Junction Configuration for High Performance Self-Biased UV Detection. IEEE Electron Device Letters, 2023, 44, 809-812.	3.9	1
2413	Electronic property-dependent activity and durability in Pd/C-catalysed hydrogenation of benzoic acid. Chemical Communications, 0, , .	4.1	0
2414	Cu–Co bimetallic nanocluster Mott–Schottky interaction increasing oxygen reduction reaction activity in rechargeable Zn-air batteries. Journal of Materials Chemistry A, 2023, 11, 4717-4728.	10.3	9
2415	Reconstructing atomic Fe coordination in the PMS activation process to realize efficient BPA degradation at low temperature. Environmental Science: Nano, 2023, 10, 1284-1296.	4.3	1
2416	Partially Thiolated Au ₂₅ Cluster Anchored on Carbon Support via Noncovalent Ligand–Support Interactions: Active and Robust Catalyst for Aerobic Oxidation of Alcohols. ACS Catalysis, 2023, 13, 3263-3271.	11.2	8
2417	Single atom Pd1/ZIF-8 catalyst via partial ligand exchange. Nano Research, 2023, 16, 8003-8011.	10.4	4
2419	Rapid microwave heating and fast quenching for the highly efficient production of long-term stable supported Ag nanoclusters. Catalysis Today, 2023, 420, 114081.	4.4	1
2420	Mercaptoamineâ€assisted Postâ€encapsulation of Metal Nanoparticles within Preformed Zeolites and their Analogues for Hydroisomerization and Methane Decomposition. Angewandte Chemie, 0, , .	2.0	0
2421	Structural Investigation of Small Nickelâ€Ethanol Clusters Using Vibrational Spectroscopy in a Molecular Beam. ChemPhysChem, 0, , .	2.1	1
2422	Mercaptoamineâ€assisted Postâ€encapsulation of Metal Nanoparticles within Preformed Zeolites and their Analogues for Hydroisomerization and Methane Decomposition. Angewandte Chemie - International Edition, 2023, 62, .	13.8	1
2423	Syntheses and applications of single-atom catalysts for electrochemical energy conversion reactions. Chinese Journal of Catalysis, 2023, 47, 32-66.	14.0	9
2424	Carbonâ€Anchored Molybdenum Oxide Nanoclusters as Efficient Catalysts for the Electrosynthesis of Ammonia and Urea. Angewandte Chemie - International Edition, 2023, 62, .	13.8	16
2425	The highest oxidation state observed in graphene-supported sub-nanometer iron oxide clusters. Communications Chemistry, 2023, 6, .	4.5	2

#	Article	IF	CITATIONS
2426	Electronic Modulation of Metalâ€Organic Frameworks Caused by Atomically Dispersed Ru for Efficient Hydrogen Evolution. Small, 2023, 19, .	10.0	8
2427	Reduction and valorization of dairy manure by organic chelating acid-assisted hydrothermal process: Dewatering performance, energy recovery, and effluent toxicity. Waste Management, 2023, 163, 134-143.	7.4	1
2428	Dynamics of palladium single-atoms on graphitic carbon nitride during ethylene hydrogenation. Journal of Catalysis, 2023, 421, 134-144.	6.2	0
2429	Carbon-supported single-atom metal materials for robust Li/Na/K batteries: A mini review. Materials Today Sustainability, 2023, 22, 100355.	4.1	1
2430	Cu nanoclusters activating ultrafine Fe3N nanoparticles via the Mott-Schottky effect for rechargeable zinc-air batteries. Applied Catalysis B: Environmental, 2023, 326, 122415.	20.2	14
2431	Novel lignin-supported copper complex as a highly efficient and recyclable nanocatalyst for Ullmann reaction. International Journal of Biological Macromolecules, 2023, 239, 124263.	7.5	3
2432	Instant micro-arc oxidation constructing the ultrafine nanoparticles as high-performance catalyst and mechanism study. Materials Chemistry and Physics, 2023, 301, 127654.	4.0	0
2433	Regulating spin state of Fe active sites by the P-doping strategy for enhancing peroxymonosulfate activation. Applied Catalysis B: Environmental, 2023, 330, 122618.	20.2	9
2434	Hierarchically ordered porous superstructure embedded with readily accessible atomic pair sites for enhanced CO2 electroreduction. Applied Catalysis B: Environmental, 2023, 330, 122638.	20.2	7
2435	Rational design of heterogenized molecular phthalocyanine hybrid single-atom electrocatalyst towards two-electron oxygen reduction. Nature Communications, 2023, 14, .	12.8	36
2436	Hydrogen Evolution upon Ammonia Borane Solvolysis: Comparison between the Hydrolysis and Methanolysis Reactions. Chemistry, 2023, 5, 886-899.	2.2	4
2437	Crowded supported metal atoms on catalytically active supports may compromise intrinsic activity: A case study of dual-site Pt/α-MoC catalysts. Applied Catalysis B: Environmental, 2023, 329, 122532.	20.2	6
2438	Precise Assembly of Polyoxometalates at Single•luster Levels. Angewandte Chemie, 2023, 135, .	2.0	0
2439	Design of confined catalysts and applications in environmental catalysis: Original perspectives and further prospects. Journal of Cleaner Production, 2023, 390, 136125.	9.3	6
2440	Recent advances of ferromagnetism in traditional antiferromagnetic transition metal oxides. Journal of Magnetism and Magnetic Materials, 2023, 569, 170428.	2.3	1
2441	Water-gas-shift reaction over Au single-atom catalysts with reversible oxide supports: A density functional theory study. International Journal of Hydrogen Energy, 2023, 48, 24951-24960.	7.1	1
2442	Ultrasonicationâ€Induced Strong Metalâ€Support Interaction Construction in Water Towards Enhanced Catalysis. Angewandte Chemie - International Edition, 2023, 62, .	13.8	3
2443	Enhancement of photocatalytic ammonia production over BiOBr nanosheets with photo-assembled Au cocatalysts. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2023, 662, 131055.	4.7	2

#	Article	IF	CITATIONS
2444	Molecularly defined approach for preparation of ultrasmall Pt-Sn species for efficient dehydrogenation of propane to propene. Journal of Catalysis, 2023, 418, 290-299.	6.2	6
2445	Ultrasonicationâ€Induced Strong Metalâ€Support Interaction Construction in Water Towards Enhanced Catalysis. Angewandte Chemie, 2023, 135, .	2.0	1
2446	Atomically precise electrocatalysts for oxygen reduction reaction. CheM, 2023, 9, 280-342.	11.7	36
2448	Review on the Catalytic Conversion of Naphtha to Aromatics: Advances and Outlook. Energy & Fuels, 2023, 37, 2586-2607.	5.1	5
2449	Upgrading biogas into syngas via bi-reforming of model biogas over ruthenium-based nano-catalysts synthesized via mechanochemical method. International Journal of Hydrogen Energy, 2023, 48, 16958-16970.	7.1	7
2450	Atomically precise gold and silver nanoclusters: Synthesis and applications. , 2023, , 137-164.		0
2451	Practical applications of metal nanoclusters. , 2023, , 289-372.		0
2452	Ni-doped MoS2 embedded in natural wood containing porous cellulose for piezo-catalytic degradation of tetracycline. International Journal of Biological Macromolecules, 2023, 233, 123589.	7.5	6
2453	A review on catalyst development for conventional thermal dry reforming of methane at low temperature. Canadian Journal of Chemical Engineering, 2023, 101, 3180-3212.	1.7	6
2454	A short review of the recent developments in functional separators for lithium-sulfur batteries. Korean Journal of Chemical Engineering, 2023, 40, 473-487.	2.7	8
2455	Insights into the electronic structure coupling effect of dual-metal atomic electrocatalytic platform for efficient clean energy conversion. Chemical Engineering Journal, 2023, 461, 141911.	12.7	11
2456	Recent advances in the use of nitrogen-doped carbon materials for the design of noble metal catalysts. Coordination Chemistry Reviews, 2023, 481, 215053.	18.8	23
2457	Challenges and Opportunities in Engineering the Electronic Structure of Single-Atom Catalysts. ACS Catalysis, 2023, 13, 2981-2997.	11.2	46
2458	Assembly of copper-clusters into a framework: enhancing the structural stability and photocatalytic HER performance. Chemical Communications, 2023, 59, 3067-3070.	4.1	1
2459	Photocatalytic cyclohexane oxidation and epoxidation using hedgehog particles. Nature Communications, 2023, 14, .	12.8	15
2460	Solid‣upported Catalysts for Organic Functional Group Transformations. Asian Journal of Organic Chemistry, 2023, 12, .	2.7	4
2461	Elucidation of single atom catalysts for energy and sustainable chemical production: Synthesis, characterization and frontier science. Progress in Energy and Combustion Science, 2023, 96, 101074.	31.2	13
2462	Green formulation of gold nanoparticles and their antioxidative assays, antimicrobial activity and photocatalytic colour decay. Bulletin of Materials Science, 2023, 46, .	1.7	16

#	Article	IF	CITATIONS
2463	Active Site Engineering on Plasmonic Nanostructures for Efficient Photocatalysis. ACS Nano, 2023, 17, 4193-4229.	14.6	38
2464	Titania Nanorod-Supported Mercaptoundecanoic Acid-Grafted Palladium Nanoparticles as a Highly Reusable Heterogeneous Catalyst for Substrate-Dependent Ullmann Coupling and Debromination of Aryl Bromides. Inorganic Chemistry, 2023, 62, 3993-4002.	4.0	0
2465	Research Progress of Local Coordination Microenvironment of Single-Atom Catalysts. Material Sciences, 2023, 13, 59-67.	0.0	0
2466	Stride Strategy to Enable a Quasi-ergodic Search of Reaction Pathways Demonstrated by Ring-opening Polymerization of Cyclic Esters. Chinese Journal of Polymer Science (English Edition), 2023, 41, 745-759.	3.8	4
2467	Metalâ€lon/Metal Nanoparticleâ€Anchored Porous Organic Polymers as Efficient Catalysts for Organic Transformations – A Recent Overview. Chemistry - an Asian Journal, 2023, 18, .	3.3	6
2468	Tetrahydroxydiboron (Bisâ€boric Acid): a Versatile Reagent for Borylation, Hydrogenation, Catalysis, Radical Reactions and H ₂ Generation. European Journal of Inorganic Chemistry, 2023, 26, .	2.0	4
2469	Regulating Pt-based noble metal catalysts for the catalytic oxidation of volatile organic compounds: a mini review. Reviews in Inorganic Chemistry, 2022, .	4.1	1
2470	Understanding Heterogeneous Catalytic Hydrogenation by Parahydrogen-Induced Polarization NMR Spectroscopy. ACS Catalysis, 2023, 13, 3501-3519.	11.2	3
2471	Transition Metal Single Atoms Constructed by Using Inherent Confined Space. ACS Nano, 2023, 17, 5025-5032.	14.6	9
2472	Design strategies of carbon-based single-atom catalysts for efficient electrochemical hydrogen peroxide production. Journal of Environmental Chemical Engineering, 2023, 11, 109572.	6.7	0
2473	Urethane functions can reduce metal salts under hydrothermal conditions: synthesis of noble metal nanoparticles on flexible sponges applied in semi-automated organic reduction. Journal of Materials Chemistry A, 0, , .	10.3	1
2474	Efficient Ni Ir alloy catalyst for selective hydrogenation of benzonitrile, crotonaldehyde and benzylideneacetone. Catalysis Communications, 2023, 176, 106630.	3.3	2
2475	Modulating the surface structure of nanodiamonds to enhance the electronic metal–support interaction of efficient ruthenium catalysts for levulinic acid hydrogenation. New Journal of Chemistry, 2023, 47, 6258-6265.	2.8	1
2476	Size and structure tuning of FePt nanoparticles on hollow mesoporous carbon spheres as efficient catalysts for oxygen reduction reaction. Rare Metals, 2023, 42, 1865-1876.	7.1	7
2477	A universal strategy for green synthesis of biomass-based transition metal single-atom catalysts by simple hydrothermal and compression treatment. Chemical Engineering Journal, 2023, 461, 142104.	12.7	2
2478	Preparation of ultrasmall Ni2P nanoparticles with low P/Ni ratios supported on SiO2 and an Al2O3-B2O3 mixed oxide for dibenzothiophene hydrodesulfurization. Journal of Catalysis, 2023, 420, 110-122.	6.2	7
2479	Clarifying the local microenvironment of metal–organic frameworks and their derivatives for electrochemical CO ₂ reduction: advances and perspectives. , 2023, 1, 179-229.		4
2480	Catalytic CO Oxidation by Single Atom Catalysts of Transition Metal-doped χ ₃ -Borophene: A First Principles Study. Chemistry Letters, 2023, 52, 249-253.	1.3	1

#	Article	IF	CITATIONS
2481	Catalysis of surface dispersed Cu ²⁺ species on t-ZrO ₂ : square-planar Cu catalyzed cross-coupling of arylboronic acid and imidazole. Catalysis Science and Technology, 2023, 13, 2247-2254.	4.1	4
2482	Recent advances in the regulation of the coordination structures and environment of single-atom catalysts for carbon dioxide reduction reaction. Journal of Materials Chemistry A, 2023, 11, 7949-7986.	10.3	6
2483	Spin-crossing in heterogeneous ethane dehydrogenation by atomically dispersed Co/SiO2. Chem Catalysis, 2023, 3, 100534.	6.1	1
2484	Research progress on single atom and particle synergistic catalysts for electrocatalytic reactions. Materials Chemistry Frontiers, 2023, 7, 1992-2013.	5.9	7
2485	Spinel-Anchored Iridium Single Atoms Enable Efficient Acidic Water Oxidation via Intermediate Stabilization Effect. ACS Catalysis, 2023, 13, 3757-3767.	11.2	21
2486	Temperature-driven phase transformation and element segregation in Pd-Ru immiscible alloy nanoparticles: Spatial resolving of elements and insights for electrocatalysis. Nano Research, 0, , .	10.4	1
2487	Advancements in Basic Zeolites for Biodiesel Production via Transesterification. Chemistry, 2023, 5, 438-451.	2.2	3
2488	Pyridyl-containing graphdiyne stabilizes sub-2 nm ultrasmall copper nanoclusters for the electrochemical reduction of CO ₂ . Inorganic Chemistry Frontiers, 2023, 10, 2189-2196.	6.0	3
2489	A Priori Design of Dual-Atom Alloy Sites and Experimental Demonstration of Ethanol Dehydrogenation and Dehydration on PtCrAg. Journal of the American Chemical Society, 0, , .	13.7	2
2490	Bringing Selectivity in H/D Exchange Reactions Catalyzed by Metal Nanoparticles through Modulation of the Metal and the Ligand Shell. Inorganic Chemistry, 2023, 62, 4570-4580.	4.0	2
2491	Bioinspired Hydrophobicity Coupled with Single Feâ€N ₄ Sites Promotes Oxygen Diffusion for Efficient Zincâ€Air Batteries. Small, 2023, 19, .	10.0	9
2492	Reaction Mechanisms in Platinumâ€Mediated Electrodynamic Therapy. Advanced Functional Materials, 2023, 33, .	14.9	4
2493	Unraveling the Detailed Interactions between the Surface Species and Nanoparticle Catalyst by a Temperature-Programed Desorption Spectrum at the Molecular Level via a Multi-Scale Simulation and Modeling Experiment. Journal of Physical Chemistry C, 2023, 127, 5299-5307.	3.1	0
2494	Direct Atomic-Level Insight into Oxygen Reduction Reaction on Size-Dependent Pt-based Electrocatalysts from Density Functional Theory Calculations. Chinese Journal of Chemical Engineering, 2023, , .	3.5	1
2495	Carbonâ€Anchored Molybdenum Oxide Nanoclusters as Efficient Catalysts for the Electrosynthesis of Ammonia and Urea. Angewandte Chemie, 2023, 135, .	2.0	0
2496	Hydrogen Evolution on Electrodeâ€5upported Pt _{<i>n</i>} Clusters: Ensemble of Hydride States Governs the Size Dependent Reactivity. Angewandte Chemie - International Edition, 2023, 62, .	13.8	0
2497	Regulating the Coordination Geometry and Oxidation State of Singleâ€Atom Fe Sites for Enhanced Oxygen Reduction Electrocatalysis. Small, 2023, 19, .	10.0	9
2498	Construction of a Novel Cascade Electrolysisâ€Heterocatalysis System by Using Zeoliteâ€Encaged Ultrasmall Palladium Catalysts for H ₂ O ₂ Generation. Small, 0, , 2300114.	10.0	0

#	Article	IF	Citations
2499	Hydrogen Evolution on Electrodeâ€ s upported Pt _{<i>n</i>} Clusters: Ensemble of Hydride States Governs the Size Dependent Reactivity. Angewandte Chemie, 2023, 135, .	2.0	4
2500	Atomically Dispersed Fe/N ₄ and Ni/N ₄ Sites on Separate‧ides of Porous Carbon Nanosheets with Janus Structure for Selective Oxygen Electrocatalysis. Small, 2023, 19, .	10.0	9
2501	Recent Progress of Singleâ€Atom Alloys in Heterogeneous Catalytic Reactions. European Journal of Inorganic Chemistry, 2023, 26, .	2.0	2
2502	Small-Molecule Modification Provides Pt Nucleation Sites for Enhanced Propane Dehydrogenation Performance. Journal of Physical Chemistry C, 2023, 127, 5754-5762.	3.1	2
2503	Synthesis of N-Substituted Pyrroles Catalyzed by Low-Cost and Commercially Available Aluminas. Catalysts, 2023, 13, 603.	3.5	0
2504	Theory of Anisotropic Metal Nanostructures. Chemical Reviews, 2023, 123, 4146-4183.	47.7	12
2505	Ligandâ€Assistant Iced Photocatalytic Reduction to Synthesize Atomically Dispersed Cu Implanted Metalâ€Organic Frameworks for Photoâ€Enhanced Uranium Extraction from Seawater. Small, 2023, 19, .	10.0	9
2506	Genesis of Active Pt/CeO ₂ Catalyst for Dry Reforming of Methane by Reduction and Aggregation of Isolated Platinum Atoms into Clusters. Small, 2023, 19, .	10.0	6
2507	Adsorption of Molecules on Defective CeO ₂ for Advanced Catalysis. ACS Catalysis, 2023, 13, 4629-4645.	11.2	15
2508	Structure–Activity Relationship of Continuous Transformed Palladium Nanoclusters and Single Atoms for Selective Phenylacetylene Hydrogenation. Journal of Physical Chemistry C, 2023, 127, 5911-5919.	3.1	1
2509	Plate-Like Colloidal Metal Nanoparticles. Chemical Reviews, 2023, 123, 3493-3542.	47.7	24
2510	Atomic-scale engineering of advanced catalytic and energy materials via atomic layer deposition for eco-friendly vehicles. International Journal of Extreme Manufacturing, 2023, 5, 022005.	12.7	1
2511	Pd-Nanoparticles-Catalyzed C(sp2)–H Arylation for the Synthesis of Functionalized Heterocycles: Recent Progress and Prospects. Synthesis, 2024, 56, 611-638.	2.3	2
2512	Catalytic Performance and Reaction Mechanisms of Ethyl Acetate Oxidation over the Au–Pd/TiO2 Catalysts. Catalysts, 2023, 13, 643.	3.5	2
2513	Graphene-confined ultrafast radiant heating for high-loading subnanometer metal cluster catalysts. National Science Review, 2023, 10, .	9.5	6
2514	Modulation of oxygen-etching for generating nickel single atoms for efficient electroreduction of CO2 to syngas (CO/H2). Journal of Catalysis, 2023, 421, 332-341.	6.2	4
2515	Graphitic carbon nitride (g-C ₃ N ₄) based heterogeneous single atom catalysts: synthesis, characterisation and catalytic applications. Journal of Materials Chemistry A, 2023, 11, 8599-8646.	10.3	18
2516	Anisotropic Circular Dichroism in Aligned Chiral Tellurium Nanorods. Advanced Optical Materials, 2023, 11, .	7.3	1

#	Article	IF	CITATIONS
2517	Series of Dual Functional Two-Dimensional RE-OFs for Nitrophenol Reduction and Dye Separation. Inorganic Chemistry, 2023, 62, 5757-5771.	4.0	3
2518	Smart Nanomaterials for Photo-Catalytic Applications. Advances in Chemical and Materials Engineering Book Series, 2023, , 112-154.	0.3	1
2519	Highly Efficient and Chemoselective Tandem Hydroformylationâ€Hydrogenation of Alkenes to Alcohols over g N Supported Bimetallic Rh and Co Nanoparticles Catalysts. ChemPhysChem, 2023, 24, .	2.1	1
2520	Bimetallic Sites for Catalysis: From Binuclear Metal Sites to Bimetallic Nanoclusters and Nanoparticles. Chemical Reviews, 2023, 123, 4855-4933.	47.7	62
2521	Reconciling experimental catalytic data stemming from structure sensitivity. Chemical Science, 2023, 14, 4337-4345.	7.4	2
2522	Surface functionalization of inorganic nanoparticles with ligands: a necessary step for their utility. Chemical Society Reviews, 2023, 52, 2573-2595.	38.1	14
2523	Atomic design of carbon-based dual-metal site catalysts for energy applications. Nano Research, 2023, 16, 6477-6506.	10.4	25
2524	Ultrafine Ru nanoparticles anchored on core–shell structured zeolite-carbon for efficient catalysis of hydrogen generation. Rare Metals, 2023, 42, 2324-2334.	7.1	3
2525	Nonâ€planar Nestâ€like [Fe ₂ S ₂] Cluster Sites for Efficient Oxygen Reduction Catalysis. Angewandte Chemie - International Edition, 2023, 62, .	13.8	4
2526	Nonâ€planar Nestâ€like [Fe ₂ S ₂] Cluster Sites for Efficient Oxygen Reduction Catalysis. Angewandte Chemie, 2023, 135, .	2.0	1
2527	Atomic Nickel on Graphitic Carbon Nitride as a Visible Light-Driven Hydrogen Production Photocatalyst Studied by X-ray Spectromicroscopy. ACS Sustainable Chemistry and Engineering, 2023, 11, 5390-5399.	6.7	8
2528	Synthesis, Characterization of Zirconia and Molybdenum Doped on Silica: Study their Catalytic Activity for Oxidation of Sulphides. Asian Journal of Chemistry, 2023, 35, 999-1008.	0.3	0
2529	Acceleration of Stepwise Carbon-Polygold Bonding Cleavage in Hypercoordinated Carbon-Centered Gold(I) Clusters. Inorganic Chemistry, 2023, 62, 6147-6154.	4.0	0
2530	Silica‣upported 1 st Row Transition Metal (Nano)Catalysts: Synthetic and Catalytic Insight. ChemCatChem, 2023, 15, .	3.7	1
2531	Recent progress of Cu-based electrocatalysts for upgrading biomass-derived furanic compounds. Catalysis Science and Technology, 2023, 13, 2899-2921.	4.1	4
2532	Atomically Structured Metalâ€Organic Frameworks: A Powerful Chemical Path for Noble Metalâ€Based Electrocatalysts. Advanced Functional Materials, 2023, 33, .	14.9	6
2533	Theory for Heterogeneous Electron Transfer Kinetics on Nanocorrugated Atomic Stepped Metal Electrodes. Journal of Physical Chemistry C, 2023, 127, 6884-6899.	3.1	1
2534	Medium-Entropy State Quinary Keplerate Clusters as Remarkable Electrocatalyst for Small Molecule Electrooxidation. Inorganic Chemistry Frontiers, 0, , .	6.0	0

#	Article	IF	CITATIONS
2535	Electrocatalytic reduction of CO ₂ on size-selected nanoclusters of first-row transition metal nanoclusters: a comprehensive mechanistic investigation. Physical Chemistry Chemical Physics, 2023, 25, 11630-11652.	2.8	6
2536	In-situ observation of structural evolution of single-atom catalysts: From synthesis to catalysis. ChemPhysMater, 2024, 3, 24-35.	2.8	1
2537	Recent Advances in Graphitic Carbon Nitride Based Electro-Catalysts for CO2 Reduction Reactions. Molecules, 2023, 28, 3292.	3.8	4
2538	Boron-Doped Activated Carbon Supports for Cobalt-Catalyzed Oxygen Evolution in Alkaline Electrolyte. ACS Applied Materials & Interfaces, 2023, 15, 18771-18780.	8.0	3
2539	Atom-Precise Low-Nuclearity Cluster Catalysis: Opportunities and Challenges. ACS Catalysis, 2023, 13, 5609-5634.	11.2	15
2540	Heterostructure-strengthened metal-support interaction of single-atom Pd catalysts enabling efficient oxygen activation for CO and VOC oxidation. Applied Catalysis B: Environmental, 2023, 332, 122753.	20.2	6
2541	Computational screening of two-dimensional metal-benzenehexathial for the oxygen reduction reaction. Catalysis Science and Technology, 0, , .	4.1	0
2542	In Situ High-Temperature Reaction-Induced Local Structural Dynamic Evolution of Single-Atom Pt on Oxide Support. , 2023, 1, 299-308.		1
2543	A Mechanistic Perspective on the Mechanochemical Method to Reduce Carbonyl Groups with Stainless Steel and Water. European Journal of Organic Chemistry, 0, , .	2.4	0
2544	Time-Resolved Formation and Operation Maps of Pd Catalysts Suggest a Key Role of Single Atom Centers in Cross-Coupling. Journal of the American Chemical Society, 2023, 145, 9092-9103.	13.7	13
2545	Recent Progress on Nonâ€Carbonâ€Supported Singleâ€Atom Catalysts for Electrochemical Conversion of Green Energy. Small Science, 2023, 3, .	9.9	3
2546	Porous Salts as Platforms for Heterogeneous Catalysis. Small, 2023, 19, .	10.0	2
2547	Recent Development of Single-Atom Catalysis for the Functionalization of Alkenes. Catalysts, 2023, 13, 730.	3.5	2
2548	Monomeric and dendritic organoiron (I) electron-reservoir complexes: Design, redox activity and applications in biomimetism, material science and nanocatalysis. Inorganica Chimica Acta, 2023, 553, 121528.	2.4	0
2549	Integration of Metal–Organic Frameworks and Metals: Synergy for Electrocatalysis. Small, 2023, 19, .	10.0	7
2550	Improving peroxymonosulfate activation mediated by oxygen vacancy-abundant BaTiO3/Co3O4 composites: The vital roles of BaTiO3. Journal of Solid State Chemistry, 2023, , 124049.	2.9	1
2551	Selective hydrogenation of levulinic acid over a highly dispersed and stable copper particles embedded into the ordered mesoporous carbon supported catalyst. Catalysis Communications, 2023, 178, 106673.	3.3	1
2552	General Method to Synthesize Highly Stable Nanoclusters via Pickering-Stabilized Microemulsions. Langmuir, 0, , .	3.5	0

	CITATION RE	CITATION REPORT	
#	Article	IF	CITATIONS
2553	Fabrication of highly oxidized Pt single-atom catalysts to suppress the deep hydrogenation of unsaturated aldehydes. Applied Catalysis B: Environmental, 2023, 333, 122783.	20.2	4
2554	<i>In Situ</i> Generation of Copper Nanoparticleâ€Graphitic Carbon Nitride Composite for Stereoselective Transfer Semihydrogenation of Alkynes: Evaluation of Catalytic Activity Using Fluorescenceâ€Based Highâ€Throughput Screening. Advanced Synthesis and Catalysis, 2023, 365, 1505-1513.	4.3	1
2555	Recent Advances in CO2 Reduction Reaction to Value-added C1 Products by Single-atom Catalysts. Chemical Research in Chinese Universities, 2023, 39, 527-544.	2.6	4
2556	Surface Rearrangement and Sublimation Kinetics of Supported Gold Nanoparticle Catalysts. ACS Nano, 2023, 17, 8098-8107.	14.6	4
2557	Encapsulation: Shell and core. , 2023, , 115-148.		0
2558	Transient and general synthesis of high-density and ultrasmall nanoparticles on two-dimensional porous carbon via coordinated carbothermal shock. Nature Communications, 2023, 14, .	12.8	23
2559	Photothermal catalysis in CO2 reduction reaction: Principles, materials and applications. New Carbon Materials, 2023, 38, 283-300.	6.1	3
2560	Concept and progress on the de(hydrogenation) and hydrogenation reactions using transition metal integrated layered double hydroxides (LDHs). Tetrahedron, 2023, 138, 133414.	1.9	1
2561	Single Atom and Metal Cluster Catalysts in Organic Reactions: From the Solvent to the Solid. ChemCatChem, 2023, 15, .	3.7	2
2562	Pt-Fe-Co Ternary Metal Single Atom Catalyst for toward High Efficiency Alkaline Oxygen Reduction Reaction. Energies, 2023, 16, 3684.	3.1	0
2563	Size-Dependent Structures and Catalytic Properties of Supported Bimetallic PtSn Catalysts for Propane Dehydrogenation Reaction. ACS Catalysis, 2023, 13, 7383-7394.	11.2	8
2564	Advanced dual-atom catalysts for efficient oxygen evolution reaction. , 2023, 1, 665-676.		2
2565	Selective Catalytic Behavior Induced by Crystalâ€Phase Transformation in Wellâ€Defined Bimetallic Ptâ€Sn Nanocrystals. Small, 2023, 19, .	10.0	1
2566	Diverse Alkyl–Silyl Cross-Coupling via Homolysis of Unactivated C(sp ³)–O Bonds with the Cooperation of Gold Nanoparticles and Amphoteric Zirconium Oxides. Journal of the American Chemical Society, 2023, 145, 4613-4625.	13.7	7
2567	Hydrothermal synthesis of layered perovskite Sr2Bi4Ti5O18 for efficient photocatalytic degradation of organic pollutants. Journal of Materials Science, 2023, 58, 7092-7105.	3.7	1
2568	Bifunctional photocatalyst with tailored interface scale for cooperative glycerol selective oxidation and <scp>H₂</scp> evolution. AICHE Journal, 2023, 69, .	3.6	1
2569	Machine learning screening of high-performance single-atom electrocatalysts for two-electron oxygen reduction reaction. Journal of Colloid and Interface Science, 2023, 645, 956-963.	9.4	6
2570	Immobilizing Metal Nanoparticles on Hierarchically Porous Organic Cages with Size Control for Enhanced Catalysis. ACS Applied Materials & amp; Interfaces, 2023, 15, 23671-23678.	8.0	3

#	Article	IF	CITATIONS
2571	Single tungsten atoms modified porous V2O5 nanoflowers with enhanced electrochromic performance. Cell Reports Physical Science, 2023, 4, 101408.	5.6	3
2572	Introduction of Zn ²⁺ promotes the catalytic performance of Pd-based catalyst for CO esterification reaction via electron transfer. Acta Chimica Sinica, 2023, , 1.	1.4	0
2573	Facile microwave-assisted synthesis of Pt single atom anchored on poly (ionic liquids) functionalized reduced graphene oxide for ultrasensitive detection of H2O2. Journal of Environmental Chemical Engineering, 2023, 11, 110238.	6.7	2
2574	Trace to the Source: Selfâ€Tuning of MOF Photocatalysts. Advanced Energy Materials, 2023, 13, .	19.5	30
2575	Degree-of-isolation shapes the catalytic performance of single-site alloy catalysts. Science China Chemistry, 0, , .	8.2	0
2576	CO ₂ electrolysis towards large scale operation: rational catalyst and electrolyte design for efficient flow-cell. Chemical Communications, 2023, 59, 6774-6795.	4.1	4
2577	An ultra-stable Cul12 cluster built from a Cul6 precursor sandwiched by two Cul3-thiacalixarene units for efficient photothermal conversion. Inorganic Chemistry Frontiers, 2023, 10, 3230-3236.	6.0	1
2578	Regulating the electronic structure through charge redistribution in dense single-atom catalysts for enhanced alkene epoxidation. Nature Communications, 2023, 14, .	12.8	16
2579	Limits of Detection for EXAFS Characterization of Heterogeneous Single-Atom Catalysts. ACS Catalysis, 2023, 13, 6462-6473.	11.2	32
2580	Au3Pd1 intermetallic compound as single atom catalyst for formic acid decomposition with highly hydrogen selectivity. International Journal of Hydrogen Energy, 2023, 48, 29542-29551.	7.1	2
2581	Dynamic evolution of the active center driven by hemilabile coordination in Cu/CeO2 single-atom catalyst. Nature Communications, 2023, 14, .	12.8	12
2582	Improved polyol synthesis of palladium nanorods: an efficient catalyst for the selective hydrogenation of maleic anhydride to succinic anhydride. Reaction Kinetics, Mechanisms and Catalysis, 2023, 136, 1317-1325.	1.7	1
2583	Dynamic In Situ Microscopy in Single-Atom Catalysis: Advancing the Frontiers of Chemical Research. Annual Review of Materials Research, 2023, 53, .	9.3	0
2584	From sandwich complexes to dendrimers: journey toward applications to sensing, molecular electronics, materials science, and biomedicine. Chemical Communications, 2023, 59, 7321-7345.	4.1	6
2585	Full Metal Species Quantification of Supported Catalysts: Beyond Metal Dispersion. ChemPlusChem, 2023, 88, .	2.8	0
2586	Fâ€Doped Coâ ''Nâ ''C Catalysts for Enhancing the Oxygen Reduction Reaction in Znâ€Air Batteries. ChemCatChem, 2023, 15, .	3.7	0
2587	Noble Metal Ionâ€Directed Assembly of 2D Materials for Heterostructured Catalysts and Metallic Microâ€Texturing. Advanced Functional Materials, 2023, 33, .	14.9	3
2588	Generalized Rapid Synthesis of Supported Nanocluster Catalyst for Mild Hydrogenation of Phenol toward KA Oil. Small, 0, , .	10.0	0

#	Article	IF	CITATIONS
2589	Engineering Oxygen Vacancies in IrO _{<i>x</i>} Clusters Supported on Metal–Organic Framework Derived Porous CeO ₂ for Enhanced Oxygen Evolution in Acidic Media. Chemistry of Materials, 2023, 35, 3892-3901.	6.7	5
2590	Dual-Atomic-Site-Integrated photocatalysts for green energy synthesis. Chemical Engineering Journal, 2023, 467, 143429.	12.7	2
2591	Understanding the Source of Error in First-Principles-Based Micro-Kinetic Modeling: Density Functional Theory Calculations Versus the Mean-Field Approximation. Journal of Physical Chemistry C, 2023, 127, 9631-9639.	3.1	1
2592	Deactivation of Pd/C catalysts by irreversible loss of hydrogen spillover ability of the carbon support. Journal of Catalysis, 2023, 424, 173-188.	6.2	2
2593	Nanocomposite Electrocatalysts for Hydrogen Evolution Reactions (HERs) for Sustainable and Efficient Hydrogen Energy—Future Prospects. Materials, 2023, 16, 3760.	2.9	3
2594	Coupling Single-Ni-Atom with Ni–Co Alloy Nanoparticle for Synergistically Enhanced Oxygen Reduction Reaction. Inorganic Chemistry, 2023, 62, 8200-8209.	4.0	2
2595	Synthesis and characterization of gold nanohybrid and its efficiency for benzaldehyde reduction. Journal of Molecular Structure, 2023, 1289, 135790.	3.6	1
2596	Stability and Reversible Oxidation of Subâ€Nanometric Cu ₅ Metal Clusters: Integrated Experimental Study and Theoretical Modeling**. Chemistry - A European Journal, 2023, 29, .	3.3	3
2597	Micropore-confined Ru nanoclusters catalyst for efficient pH-universal hydrogen evolution reaction. Nano Research, 2023, 16, 9073-9080.	10.4	12
2598	Copper-Based Electrocatalysts for Nitrate Reduction to Ammonia. Materials, 2023, 16, 4000.	2.9	6
2599	Metal-organic framework-based nanostructured catalysts: Applications in efficient organic transformations. Molecular Catalysis, 2023, 546, 113217.	2.0	4
2600	Analysis of nanoparticles and nanomaterials using X-ray photoelectron spectroscopy. Fine Chemical Technologies, 2023, 18, 135-167.	0.8	1
2601	State-of-the-art single-atom catalysts in electrocatalysis: From fundamentals to applications. Nano Energy, 2023, 113, 108570.	16.0	10
2602	Single Atom Bi Decorated Copper Alloy Enables Câ^'C Coupling for Electrocatalytic Reduction of CO ₂ into C ₂₊ Products**. Angewandte Chemie, 2023, 135, .	2.0	0
2603	Catalysis Synergism by Atomically Precise Bimetallic Nanoclusters Doped with Heteroatoms. Accounts of Chemical Research, 2023, 56, 1528-1538.	15.6	8
2605	Single Atom Bi Decorated Copper Alloy Enables Câ^'C Coupling for Electrocatalytic Reduction of CO ₂ into C ₂₊ Products**. Angewandte Chemie - International Edition, 2023, 62, .	13.8	14
2606	Rational 3D Structure of Monolithic Catalysts for Enhanced Hydrolytic Dehydrogenation of Ammonia Borane. ACS Sustainable Chemistry and Engineering, 2023, 11, 8462-8473.	6.7	1
2607	Atomically dispersed metal catalysts towards nitrogen reduction for Ammonia: From homogeneous to heterogeneous. Chemical Engineering Journal, 2023, 468, 143776.	12.7	3

#	Article	IF	CITATIONS
2608	Design strategies of electrocatalysts for acidic oxygen evolution reaction. EnergyChem, 2023, 5, 100104.	19.1	5
2609	Enabling Self-Induced Back-Action Trapping of Gold Nanoparticles in Metamaterial Plasmonic Tweezers. Nano Letters, 2023, 23, 4723-4731.	9.1	5
2610	Atomically Precise Water-Soluble Gold Nanoclusters: Synthesis and Biomedical Application. , 0, , .		0
2611	Equivariant Graph-Representation-Based Actor–Critic Reinforcement Learning for Nanoparticle Design. Journal of Chemical Information and Modeling, 2023, 63, 3731-3741.	5.4	1
2612	Au Single Metal Atom for Carbon Dioxide Reduction Reaction. Chemistry, 2023, 5, 1395-1406.	2.2	1
2613	Shape tunability of copper nanocrystals deposited on nanorods. Chemical Science, 2023, 14, 7512-7523.	7.4	2
2614	Direct Observation of Palladium Leaching from Pd/C by a Simple Method: X-ray Absorption Spectroscopy of Heterogeneous Mixtures. ACS Omega, 2023, 8, 21787-21792.	3.5	0
2615	The understanding, rational design, and application of high-entropy alloys as excellent electrocatalysts: A review. Science China Materials, 2023, 66, 2527-2544.	6.3	7
2616	Enhanced hydrogen desorption via charge transfer in Pt Nanoclusters/ReS2 hybrid electrocatalyst for efficient hydrogen evolution reaction. Journal of Power Sources, 2023, 579, 233287.	7.8	6
2617	Interzeolite Transformation of Borosilicate MWW to Metallosilicate BEA-Type Zeolites: Separated Kinetics of Structural Transformation and Metal Substitution. Chemistry of Materials, 2023, 35, 4717-4730.	6.7	1
2618	Recent advances in in-situ transmission electron microscopy techniques for heterogeneous catalysis. IScience, 2023, 26, 107072.	4.1	2
2619	Electronic Structure Manipulation <i>via</i> Site-Selective Atomically Dispersed Ni for Efficient Photocatalytic CO ₂ Reduction. ACS Catalysis, 2023, 13, 8362-8371.	11.2	10
2620	Effect of Pd crystal facet on the reaction of oxygen-promoted hydrogen evolution from formaldehyde driven by visible light. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2023, 673, 131820.	4.7	0
2621	Metal particle size effects over the Ni/SAPO-11 bifunctional catalyst. Applied Surface Science, 2023, 636, 157736.	6.1	5
2622	Room-Temperature Laser Planting of High-Loading Single-Atom Catalysts for High-Efficiency Electrocatalytic Hydrogen Evolution. Journal of the American Chemical Society, 2023, 145, 13788-13795.	13.7	26
2623	Porous Organic Polymersâ€Based Singleâ€Atom Catalysts for Sustainable Energyâ€Related Electrocatalysis. Advanced Energy Materials, 2023, 13, .	19.5	17
2624	Strategies for Designing the Catalytic Environment Beyond the Active site of Heterogeneous Supported Metal Catalysts. Topics in Catalysis, 0, , .	2.8	0
2625	Taming Pt 5d state occupancy via <scp>PtOMn</scp> electronic linkage for enhanced dehydrogenation activity. AICHE Journal, 2023, 69, .	3.6	1

#	Article	IF	CITATIONS
2626	Single atom catalysts for use in the selective production of hydrogen peroxide via two-electron oxygen reduction reaction: Mechanism, activity, and structure optimization. Applied Catalysis B: Environmental, 2023, 337, 122987.	20.2	11
2627	Palladium and Ruthenium Dualâ€Singleâ€Atom Sites on Porous Ionic Polymers for Acetylene Dialkoxycarbonylation: Synergetic Effects Stabilize the Active Site and Increase CO Adsorption. Angewandte Chemie, 0, , .	2.0	0
2628	Insights into boosting catalytic hydrogen evolution over Co doping Ru nanoparticles. Fuel, 2023, 351, 128950.	6.4	3
2629	Palladium and Ruthenium Dualâ€Singleâ€Atom Sites on Porous Ionic Polymers for Acetylene Dialkoxycarbonylation: Synergetic Effects Stabilize the Active Site and Increase CO Adsorption. Angewandte Chemie - International Edition, 2023, 62, .	13.8	2
2630	Transition metal anchored on red phosphorus to enable efficient photocatalytic H2 generation. Frontiers in Chemistry, 0, 11, .	3.6	2
2631	Size of cerium dioxide support nanocrystals dictates reactivity of highly dispersed palladium catalysts. Science, 2023, 380, 1174-1179.	12.6	39
2632	Room temperature removal of high-space-velocity formaldehyde boosted by fixing Pt nanoparticles into Beta zeolite framework. Journal of Hazardous Materials, 2023, 458, 131848.	12.4	3
2633	Recyclable Pd nanoparticles immobilized on amine functionalized LDH for the Suzuki–Miyaura cross-coupling reaction. Chemical Papers, 2023, 77, 5555-5569.	2.2	3
2635	Low-Temperature Water Gas Shift Reaction over Highly Dispersed Ir on TiO ₂ ─Influence of the Ir Dispersed State and the Metal–Support Interface. Journal of Physical Chemistry C, 2023, 127, 11986-11996.	3.1	1
2636	Recent Progress on Ligand-Protected Metal Nanoclusters in Photocatalysis. Nanomaterials, 2023, 13, 1874.	4.1	0
2637	Investigation of dual-functional carbon cathode catalysts from agricultural wastes in the heterogeneous electro-Fenton process. Applied Catalysis B: Environmental, 2023, 337, 123018.	20.2	2
2638	Polymeric cobalt phthalocyanine on nickel foam as an efficient electrocatalyst for oxygen evolution reaction. International Journal of Hydrogen Energy, 2023, , .	7.1	0
2639	Machine learning enabled rational design of atomic catalysts for electrochemical reactions. Materials Chemistry Frontiers, 2023, 7, 4445-4459.	5.9	3
2640	Non-noble metal single atom-based catalysts for electrochemical reduction of CO2: Synthesis approaches and performance evaluation. , 2023, 2, 100018.		16
2641	Recent Advances on Heterogeneous Non-noble Metal Catalysts toward Selective Hydrogenation Reactions. ACS Catalysis, 2023, 13, 8902-8924.	11.2	16
2642	Construction of a permeable metal-support interface for glycerol oxidation by the topological transformation of 2D precursor. Chemical Engineering Journal, 2023, 470, 144172.	12.7	0
2643	Unraveling the Influence of Oxygen Vacancies on the OER Performance of Co Single-Atom Catalysts Adsorbed on MXenes. Journal of Physical Chemistry C, 2023, 127, 12576-12585.	3.1	3
2644	Adaptive katalytische Systeme für die chemische Energiekonversion. Angewandte Chemie, 2023, 135, .	2.0	О

#	Article	IF	CITATIONS
2645	Adaptive Catalytic Systems for Chemical Energy Conversion. Angewandte Chemie - International Edition, 2023, 62, .	13.8	5
2646	Unveiling the in-situ formation mechanism of nano-fir tree-like architecture: Yolk-shell structure enables the development of an advanced multifunctional template. Chemical Engineering Journal, 2023, 470, 144355.	12.7	3
2647	Realizing Influence of Supports in Aqueousâ€₽hase Hydrogenation of Furfural over Nickel Catalysts. ChemNanoMat, 2023, 9, .	2.8	0
2648	Metal-support interactions alter the active species on IrO _{<i>x</i>} for electrocatalytic water oxidation. Journal of Materials Chemistry A, 2023, 11, 15204-15210.	10.3	2
2649	Boosting catalytic performance of graphene-supported Pt nanoparticles via decorating with ‑SnBun: an efficient approach for aqueous hydrogenation of biomass-derived compounds. Nanoscale, 0, , .	5.6	1
2650	Lowâ€dimension confinement effect in COFâ€based heteroâ€photocatalyst for energyâ€conversion application. SmartMat, 0, , .	10.7	2
2651	An Unusual Microdomain Factor Controls Interaction of Organic Halides with the Palladium Phase and Influences Catalytic Activity in the Mizorokiâ€Heck Reaction. Small, 2023, 19, .	10.0	2
2652	Radical Polymerization of Polydivinylbenzene inside the Pores of Activated Carbon and Structural Characterization. , 2023, , .		0
2653	Insights into the electronic modulation of bimetallic Pt–Sn cluster for the selective hydrogenation of 1,3-butadiene. Catalysis Science and Technology, 2023, 13, 3313-3320.	4.1	0
2654	Hydrogen Bond Network Induced by Surface Ligands Shifts the Semi-hydrogenation Selectivity over Palladium Catalysts. Journal of the American Chemical Society, 2023, 145, 10178-10186.	13.7	9
2655	Synthesis of Pd–AuAg trimetal nanohybrids with controlled heterostructures and their application in the continuous flow catalytic reduction of Cr(<scp>vi</scp>). Journal of Materials Chemistry A, 2023, 11, 11388-11400.	10.3	4
2656	X-ray Absorption Spectroscopy of Phosphine-Capped Au Clusters. Inorganics, 2023, 11, 191.	2.7	1
2657	MOF-Triggered Synthesis of Subnanometer Ag ⁰ ₂ Clusters and Fe ³⁺ Single Atoms: Heterogenization Led to Efficient and Synergetic One-Pot Catalytic Reactions. Journal of the American Chemical Society, 2023, 145, 10342-10354.	13.7	4
2658	Metal oxides confine single atoms toward efficient thermal catalysis. Coordination Chemistry Reviews, 2023, 488, 215189.	18.8	5
2659	The journey of iron-based electrocatalytic materials for nitrogen reduction reaction: from current status to future prospects. Journal of Materials Chemistry A, 2023, 11, 11048-11077.	10.3	3
2660	Strategies for local electronic structure engineering of two-dimensional electrocatalysts. Chinese Journal of Catalysis, 2023, 48, 1-14.	14.0	2
2661	Enhancing the chemoselective hydrogenation of nitroarenes: Designing a novel surface-strained carbon-based Pt nanocatalyst. Chinese Journal of Catalysis, 2023, 48, 195-204.	14.0	2
2662	Environmental applications of single-atom catalysts based on graphdiyne. Catalysis Science and Technology, 2023, 13, 5154-5174.	4.1	2

#	Article	IF	CITATIONS
2663	Hierarchically Porous Carbons with Highly Curved Surfaces for Hosting Single Metal FeN ₄ Sites as Outstanding Oxygen Reduction Catalysts. Advanced Materials, 2023, 35, .	21.0	31
2664	Theoretical Screening of Highly Efficient Single-Atom Catalysts Based on Covalent Triazine Frameworks for Oxygen Reduction. Langmuir, 2023, 39, 6905-6913.	3.5	5
2665	Single-Atom Catalysts in Environmental Engineering: Progress, Outlook and Challenges. Molecules, 2023, 28, 3865.	3.8	6
2666	Addressing complexity in catalyst design: From volcanos and scaling to more sophisticated design strategies. Surface Science Reports, 2023, 78, 100597.	7.2	5
2667	Atomic-level reactive sites for electrocatalytic nitrogen reduction to ammonia under ambient conditions. Coordination Chemistry Reviews, 2023, 489, 215196.	18.8	12
2668	Singleâ€Atom Rh on Highâ€Index CeO ₂ Facet for Highly Enhanced Catalytic CO Oxidation. Angewandte Chemie, 2023, 135, .	2.0	0
2669	Oneâ€dimensional carbon based nanoreactor fabrication by electrospinning for sustainable catalysis. Exploration, 2023, 3, .	11.0	2
2670	Edge-distributed iron single-atom moiety with efficient "trapping-conversion―for polysulfides driving high-performance of Li-S battery. Applied Catalysis B: Environmental, 2023, 334, 122876.	20.2	6
2671	Recent Advances in Ultralowâ€Pt‣oading Electrocatalysts for the Efficient Hydrogen Evolution. Advanced Science, 2023, 10, .	11.2	22
2672	Singleâ€Atom Rh on Highâ€Index CeO ₂ Facet for Highly Enhanced Catalytic CO Oxidation. Angewandte Chemie - International Edition, 2023, 62, .	13.8	11
2673	Structural water molecules dominated p band intermediate states as a unified model for the origin on the photoluminescence emission of noble metal nanoclusters: from monolayer protected clusters to cage confined nanoclusters. Science and Technology of Advanced Materials, 2023, 24, .	6.1	2
2674	Ion soft landing: A unique tool for understanding electrochemical processes. Current Opinion in Electrochemistry, 2023, 40, 101310.	4.8	2
2675	Size-modulated photo-thermal catalytic CO2 hydrogenation performances over Pd nanoparticles. Journal of Catalysis, 2023, 424, 22-28.	6.2	7
2676	The structure-dependent mechanism of single-atom cobalt on macroporous carbon nitride in (photo-)Fenton-like reactions. Journal of Materials Chemistry A, 2023, 11, 13653-13664.	10.3	9
2677	Fundamentals of New-Generation Cement-Based Nanocomposites. , 2023, , 1-71.		0
2679	Precise Synthesis at the Atomic Scale. , 2023, 1, 199-225.		2
2680	Sabatier Phenomenon in Hydrogenation Reactions Induced by Single-Atom Density. Journal of the American Chemical Society, 2023, 145, 12023-12032.	13.7	18
2681	Topical issue "Dynamics of systems on the nanoscale (2021)†European Physical Journal D, 2023, 77, .	1.3	0

CITATION	DEDODT
ULIATION	KEPURI
onnen	

#	Article	IF	CITATIONS
2682	Adsorption of multiple NO molecules on Au ₁₀ ^{â^'} and Au ₉ Zn ^{â^'} planar clusters. A comparative DFT study. Physical Chemistry Chemical Physics, 2023, 25, 17176-17185.	2.8	0
2683	Ni Anchored to Hydrogen-Substituted Graphdiyne for Lithium Sulfide Cathodes in Lithium–Sulfur Batteries. Nano Letters, 2023, 23, 5967-5974.	9.1	6
2684	Trapped by the germanium ring. Nature Catalysis, 2023, 6, 462-463.	34.4	0
2685	Silver Clusters with Adatoms as a Catalyst for the Oxygen Reduction Reaction. ACS Catalysis, 2023, 13, 9181-9189.	11.2	2
2686	Synergic Effect of Isolated Ce ³⁺ and Pt ^{Î′+} Species in UiO-66(Ce) for Heterogeneous Catalysis. ACS Catalysis, 2023, 13, 9171-9180.	11.2	1
2687	Pt ⁺ (C ₂ H ₂) _{<i>n</i>} Complexes Studied with Selected-Ion Infrared Spectroscopy. Journal of Physical Chemistry A, 2023, 127, 5704-5712.	2.5	0
2688	Ag2(0) dimers within a thioether-functionalized MOF catalyze the CO2 to CH4 hydrogenation reaction. Scientific Reports, 2023, 13, .	3.3	1
2689	Surface Programmable Polycationic Nanoclay Supports Yielding 100,000 per Hour Turnover Frequencies for a Nanocatalyzed Canonical Nitroarene Reduction. , 2023, 1, 1913-1923.		0
2690	N-Heterocyclic Carbenes Capped Metal Nanoparticles: An Overview of Their Catalytic Scope. ACS Catalysis, 2023, 13, 9313-9325.	11.2	2
2691	Molecular clusters. , 2024, , 694-701.		0
2692	Ligand Design in Atomically Precise Copper Nanoclusters and Their Application in Electrocatalytic Reactions. Advanced Functional Materials, 2023, 33, .	14.9	8
2693	Atomic Insights into Synergistic Nitroarene Hydrogenation over Nanodiamondâ€Supported Pt ₁ â^Fe ₁ Dualâ€Singleâ€Atom Catalyst. Angewandte Chemie - International Edition, 2023, 62, .	13.8	7
2694	Atomic Insights into Synergistic Nitroarene Hydrogenation over Nanodiamondâ€Supported Pt1â€Fe1 Dualâ€Singleâ€Atom Catalyst. Angewandte Chemie, 0, , .	2.0	0
2695	Probing the redox capacity of Pt–CeO ₂ model catalyst for low-temperature CO oxidation. Journal of Materials Chemistry A, 0, , .	10.3	0
2696	Dynamic evolution of metal nanoclusters revealed by in-situ electron microscopy. Journal Physics D: Applied Physics, 2023, 56, 413001.	2.8	1
2697	Carbon nitride based materials: more than just a support for single-atom catalysis. Chemical Society Reviews, 2023, 52, 4878-4932.	38.1	31
2698	Nanopalladium-Decorated Sn-Na MOF Catalyst for Upgrading Biosugars to 5-Hydroxymethylfurfural in an Aqueous Medium. ACS Applied Nano Materials, 2023, 6, 12063-12072.	5.0	4
2699	A new method for activation of multicomponent nickel catalysts for alkenes hydrogenation. Molecular Catalysis, 2023, 547, 113336.	2.0	0

#	Article	lF	CITATIONS
2700	Recent advances in interface engineering of thermoelectric nanomaterials. Materials Chemistry Frontiers, 2023, 7, 4707-4722.	5.9	2
2701	Structure optimization and support effect of metal-organic frameworks on Pd-Ir bimetallic nanoclusters. Molecular Catalysis, 2023, 547, 113351.	2.0	0
2702	Enhancing Performance of Electron Holography with Mathematical and Machine Learning-Based Denoising Techniques. Microscopy (Oxford, England), 0, , .	1.5	0
2703	Earth-Abundant Heterogeneous Cobalt Catalyst for Selective Ring Hydrogenation of (Hetero)arenes and Gram-Scale Synthesis of Pharmaceutical Intermediates. ACS Catalysis, 2023, 13, 9724-9744.	11.2	2
2704	Isolated iron single-atom sites for oxygen reduction derived from a porphyrin-based carbon sphere by a polymerization–coordination–pyrolysis strategy. Journal of Materials Chemistry A, O, , .	10.3	0
2705	Investigating Metal–Metal Bond Polarization in a Heteroleptic Tris-Ylide Diiron System. Inorganic Chemistry, 2023, 62, 11487-11499.	4.0	0
2706	Tailoring Asymmetric Cu-O-P Coupling Site by Carbothermal Shock Method for Efficient Vinyl Chloride Synthesis over Carbon Supported Cu Catalysts. ACS Catalysis, 2023, 13, 9777-9791.	11.2	5
2707	A review: Multi-hierarchy design strategy of electrocatalysts for energy molecule conversion. Journal of Energy Chemistry, 2023, 86, 54-68.	12.9	2
2708	HAuCl ₄ Catalyzed and Dibenzyl amine Centered A ³ coupling reaction: Synthesis, Spectroscopic Proofing and Antiâ€microbial Efficacy. ChemistrySelect, 2023, 8, .	1.5	0
2709	Recent advancements on designing transition metal-based carbon-supported single atom catalysts for oxygen electrocatalysis: Miles to go for sustainable Zn-air batteries. Energy Storage Materials, 2023, 61, 102890.	18.0	4
2710	Separated Active Site and Reaction Space for Multiâ€Pollutant Elimination Significantly Enhancing Low Toxic Product Selectivity. Advanced Functional Materials, 0, , .	14.9	1
2711	Solution Plasma for Surface Design of Advanced Photocatalysts. Catalysts, 2023, 13, 1124.	3.5	1
2712	Applications of nanostructures. , 2023, , 201-238.		0
2713	W Deposited PdGa Catalyst with Tailored Hydrogen Adsorption and Reduction. Microscopy and Microanalysis, 2023, 29, 1360-1361.	0.4	0
2714	Catalytic behavior of Pt single-atoms supported on CeO2. Catalysis Today, 2024, 425, 114298.	4.4	2
2715	Bimetallic clusters confined inside silicalite-1 for stable propane dehydrogenation. Nano Research, 2023, 16, 10881-10889.	10.4	5
2716	Silver Supported Nanoparticles on [Mg ₄ Al‣DH] as an Efficient Catalyst for the αâ€Alkylation of Nitriles, Oxindoles and Other Carboxylic Acid Derivatives with Alcohols. ChemSusChem, 2023, 16, .	6.8	1
2717	Ultrasound-Driven Defect Engineering in TiO _{2–<i>x</i>} Nanotubes─Toward Highly Efficient Platinum Single Atom-Enhanced Photocatalytic Water Splitting. ACS Applied Materials & Interfaces, 2023, 15, 37976-37985.	8.0	4

#	Article	IF	CITATIONS
2718	Size-Dependent Active Site and Its Catalytic Mechanism for CO ₂ Hydrogenation Reactivity and Selectivity over Re/TiO ₂ . ACS Catalysis, 2023, 13, 10364-10374.	11.2	3
2719	Co-generation of palladium nanoparticles and phosphate supported on metal–organic frameworks as hydrogenation catalysts. Dalton Transactions, 0, , .	3.3	0
2720	Solventâ€Free Aerobic Oxidative Cleavage of Methyl Oleate to Biobased Aldehydes over Mechanochemically Synthesized Supported AgAu Nanoparticles. ChemPlusChem, 2023, 88, .	2.8	1
2721	Metalâ€organic frameworkâ€based singleâ€atom electroâ€∤photocatalysts: Synthesis, energy applications, and opportunities. , 2024, 6, .		7
2722	Dual-MOFs-Derived Fe and Mn Species Anchored on Bamboo-like Carbon Nanotubes for Efficient Oxygen Reduction as Electrocatalysts. Catalysts, 2023, 13, 1161.	3.5	2
2723	Atom-precise silver–palladium bimetallic clusters on carbon supports as selective hydrogenation catalysts. Catalysis Science and Technology, 2023, 13, 5104-5112.	4.1	0
2724	Effect of noble metal nanoparticle size on C–N bond cleavage performance in hydrodenitrogenation: a study of active sites. Frontiers of Chemical Science and Engineering, 0, , .	4.4	0
2725	Recent advances in nickel-based catalysts for electrochemical reduction of carbon dioxide. , 2023, 2, 100073.		1
2726	Photocatalysis of Metallic Nanoparticles: Interband vs Intraband Induced Mechanisms. Journal of Physical Chemistry C, 2023, 127, 15685-15698.	3.1	5
2727	Molecular-Level Insights into Adsorption and Diffusion Properties of CO and CO ₂ on Pt-Supported Graphene. Journal of Physical Chemistry C, 2023, 127, 16117-16124.	3.1	0
2728	Enhancing selectivity for semi-hydrogenation of Ni by periodic isolation in the MM′X structure. Catalysis Science and Technology, 0, , .	4.1	0
2729	Coordinative Stabilization of Single Bismuth Sites in a Carbon–Nitrogen Matrix to Generate Atomâ€Efficient Catalysts for Electrochemical Nitrate Reduction to Ammonia. Advanced Science, 2023, 10, .	11.2	2
2730	Progress in single-atom methodology in modern catalysis. Russian Chemical Reviews, 2023, 92, .	6.5	4
2731	Hydrogarnet-Derived Porous Polyhedral Particles of SrFeO _{3-δ} Perovskite. Chemistry of Materials, 2023, 35, 6423-6436.	6.7	1
2732	Probing the catalytic activity of first-row transition metal doped C20 fullerene as remarkable HER electrocatalysts: A DFT study. Materials Science in Semiconductor Processing, 2023, 167, 107785.	4.0	3
2733	Spatially Resolved NMR Spectroscopy for Operando Studies of Heterogeneous Hydrogenation with Parahydrogen. Applied Magnetic Resonance, 0, , .	1.2	0
2735	Directional manipulation of electron transfer in copper/nitrogen doped carbon by Schottky barrier for efficient anodic hydrazine oxidation and cathodic oxygen reduction. Journal of Colloid and Interface Science, 2023, 652, 57-68.	9.4	0
2736	Selective Reduction of NO into N ₂ Catalyzed by Rh ₁ -Doped Cluster Anions RhCe ₂ O _{3–5} [–] . Journal of the American Chemical Society, 2023, 145, 18658-18667.	13.7	2

#	Article	IF	CITATIONS
2737	Azide-Assisted Growth of Copper Nanostructures and Their Application as a Carbon Supported Catalyst in Two-Step Three-Component Azide–Alkyne Cycloadditions. Langmuir, 0, , .	3.5	0
2739	Effect of dispersed species heterogeneity in carbon-based catalysts for near-infrared light-responsive synergistic antibacterial therapy. Chemical Engineering Journal, 2023, 473, 145517.	12.7	0
2740	Partial oxidation of methane to methyl oxygenates with enhanced selectivity using a single-atom copper catalyst on amorphous carbon support. Applied Surface Science, 2023, 639, 158289.	6.1	3
2741	Oyster shell powder-gold nanoparticle composites as a reactive, recyclable, and green catalyst. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2023, 676, 132304.	4.7	0
2742	Clay-based durable catalyst membranes of porous layered double hydroxide and gold nanoparticle nanocomposites for fast and continuous-flow reactions. Inorganic Chemistry Communication, 2023, 156, 111299.	3.9	0
2743	The electronic properties, stability and catalytic activity of metallofullerene (M@C60) for robust hydrogen evolution reaction: DFT insights. International Journal of Hydrogen Energy, 2024, 51, 206-221.	7.1	3
2744	Construction of High Accuracy Machine Learning Interatomic Potential for Surface/Interface of Nanomaterials—A Review. Advanced Materials, 0, , .	21.0	0
2745	A Graphene Oxide‣upported PdCu Catalyst for Enhanced Electrochemical Synthesis of Ammonia. ChemCatChem, 2023, 15, .	3.7	1
2746	Highly Active and Durable PdFe/Cu Nanocatalysts Prepared by Liquid Phase Synthesis for Ethanol Electrooxidation Reaction. , 2023, , 100075.		0
2747	Palladium cluster complex [Pd ₁₃ (μ4 ₄ -C ₇ H ₇) ₆] ²⁺ (C ₇ H ₇ = Tropylium) with fcc-close-packed cuboctahedral Pd ₁₃ core and isomers: Theoretical insight into ligand-control of Pd ₁₃ core structure. Physical Chemistry Chemical Physics, 0,	2.8	0
2748	Fully Exposed Iridium Clusters Enable Efficient Hydrogenation of N-Heteroarenes. ACS Catalysis, 2023, 13, 12153-12162.	11.2	2
2749	Selective Anthracene Photooxidation over Titaniaâ€supported Single Atom Catalysts. ChemCatChem, 2023, 15, .	3.7	0
2750	Facet-dependent electrocatalytic oxidation activity of Co ₃ O ₄ nanocrystals for 5-hydroxymethylfurfural. Green Chemistry, 2023, 25, 8196-8206.	9.0	3
2751	A post-sulfonated one-pot synthesized magnetic cellulose nanocomposite for Knoevenagel and Thorpe–Ziegler reactions. RSC Advances, 2023, 13, 28051-28062.	3.6	0
2752	Au@C/Pt core@shell/satellite supra-nanostructures: plasmonic antenna–reactor hybrid nanocatalysts. Nanoscale Advances, 2023, 5, 5435-5448.	4.6	0
2753	Progress and prospect of Pt-based catalysts for electrocatalytic hydrogen oxidation reactions. Nano Research, 2024, 17, 960-981.	10.4	1
2754	Copper(<scp>i</scp>) as a reducing agent for the synthesis of bimetallic PtCu catalytic nanoparticles. Nanoscale Advances, 2023, 5, 4415-4423.	4.6	0
2755	Advances in Cu nanocluster catalyst design: recent progress and promising applications. Nanoscale Horizons, 2023, 8, 1509-1522.	8.0	6

#	Article	IF	CITATIONS
2756	Unexpected higher corrosion in the gas phase region of metals caused by calcium and magnesium ions compared to sodium ions. Physical Chemistry Chemical Physics, 2023, 25, 21428-21435.	2.8	0
2757	Effects of metal size on supported catalysts for CO ₂ hydrogenation. Materials Chemistry Frontiers, 0, , .	5.9	0

2758 熱å^†è§£ã«èª~èµ·ã•ã,Œã,‹ç›,å^†é›¢ã,'å^©ç‴ã⊷ãŸåॐå²'質ã,»ãf©ãfŸãffã,¯ã,1åॐé¢ä½"ç²'åã®ä½œè£½. Funtai Oyob₂Fummatsu Yakin/J

2759	Enhanced Catalytic Selectivity in Hydrogenation of Substituted Nitroarenes through Hydrogen Spillover over Sodalite Zeolite Encapsulated Platinum Clusters. ChemCatChem, 0, , .	3.7	0
2760	Realistic Modeling of the Electrocatalytic Process at Complex Solid‣iquid Interface. Advanced Science, 2023, 10, .	11.2	2
2761	Nitrogenâ€containing Porous Organic Polymer Supported Rhodium Catalyst for Hydroformylation of Olefins. ChemistrySelect, 2023, 8, .	1.5	0
2762	Mesoporous Silica (MCMâ€41) Containing Dispersed Palladium Nanoparticles as Catalyst for Dehydrogenation, Methanolysis, and Reduction Reactions. ChemPlusChem, 2023, 88, .	2.8	0
2763	Reactive X (where X = O, N, S, C, Cl, Br, and I) species nanomedicine. Chemical Society Reviews, 2023, 52, 6957-7035.	38.1	3
2764	Cutting-edge technologies developing for removal of HgO and/or NOx – A critical review of graphene-assisted catalysts. Chemical Engineering Journal, 2023, 474, 145898.	12.7	1
2765	In the View of Electrons Transfer and Energy Conversion: The Antimicrobial Activity and Cytotoxicity of Metalâ€Based Nanomaterials and Their Applications. Small, 2024, 20, .	10.0	0
2766	Partial hydrogenation of anisole to cyclohexanone in water medium catalyzed by atomically dispersed Pd anchored in the micropores of zeolite. Applied Catalysis B: Environmental, 2024, 341, 123244.	20.2	2
2767	Fabrication and Mechanism Study of Clustered Au/CeO ₂ Catalyst for the CO Oxidation Reaction ^{â~} . Acta Chimica Sinica, 2023, 81, 874.	1.4	0
2768	Antimicrobial and Apoptotic Efficacy of Plant-Mediated Silver Nanoparticles. Molecules, 2023, 28, 5519.	3.8	2
2769	A Review on the Application of In-Situ Raman Spectroelectrochemistry to Understand the Mechanisms of Hydrogen Evolution Reaction. ACS Catalysis, 2023, 13, 10570-10601.	11.2	0
2770	Progress on Singleâ€Atom Photocatalysts for H ₂ Generation: Material Design, Catalytic Mechanism, and Perspectives. Small Methods, 2023, 7, .	8.6	2
2771	Layered double hydroxides-based metal nanocatalysts: Confinement engineering, microenvironment effect and applications in catalytic conversion of biomass. Coordination Chemistry Reviews, 2023, 497, 215437.	18.8	1
2772	A machine learning based approach to solve the aerosol dynamics coagulation model. Aerosol Science and Technology, 2023, 57, 1098-1116.	3.1	1
2773	Reversible Transformations of Palladium–Indium Intermetallic Nanoparticles upon Repetitive Redox Treatments in H2/O2. Crystals, 2023, 13, 1356.	2.2	0

#	Article	IF	CITATIONS
2774	Iron phosphide nanocrystals as an air-stable heterogeneous catalyst for liquid-phase nitrile hydrogenation. Nature Communications, 2023, 14, .	12.8	4
2775	Defects Healing of the ZnO Surface by Filling with Au Atom Catalysts for Efficient Photocatalytic H ₂ Production. Small, 2024, 20, .	10.0	2
2776	Aggregation of Size-Selected Oxide Clusters Deposited onto Au(111). Langmuir, 2023, 39, 13481-13492.	3.5	0
2777	Metal-support interactions in heterogeneous catalytic hydrogen production of formic acid. Chemical Engineering Journal, 2023, 474, 145612.	12.7	3
2778	Green approach for sustainable production of paraffin fuel from CO2 hydrogenation on Fe-MOF catalyst. Journal of Environmental Chemical Engineering, 2023, 11, 111071.	6.7	2
2779	Intermolecular hydrogen transfer reactions as key stages in the catalytic cracking: achievements and outlook. Russian Chemical Reviews, 2023, 92, .	6.5	1
2780	Advancement and State-of-art of heterogeneous catalysis for selective CO2 hydrogenation to methanol. Coordination Chemistry Reviews, 2023, 497, 215409.	18.8	2
2781	Controllably partial removal of thiolate ligands from unsupported Au25 nanoclusters by rapid thermal treatments for electrochemical CO2 reduction. Journal of Energy Chemistry, 2023, 86, 16-22.	12.9	3
2782	Atomically precise Au nanoclusters for electrochemical hydrogen evolution catalysis: Progress and perspectives. , 2023, 2, 9140031.		3
2783	Carbon-bridged atomically dispersed platinum on MOF-derived ZnO/C for selective photocatalytic oxidation of NO into Nitrates and Nitrites. Carbon, 2023, 214, 118299.	10.3	3
2784	Electrocatalytic Mechanism of Water Splitting by Ultralow Content of RuO ₂ -supported on Fluorine-Doped Graphene Using a Constant Potential Method. Journal of Physical Chemistry C, 2023, 127, 18350-18364.	3.1	1
2785	Revitalizing platinum: Alkali-promoted formation of active metallic nanoparticles from inert Pt entities for enhanced benzene combustion. Applied Surface Science, 2024, 642, 158640.	6.1	0
2786	Synthesis of bimetallic-nanocrystal-decorated rice bowl-shaped polymer particles for catalytic Cr(VI) remediation. Journal of Environmental Chemical Engineering, 2023, 11, 111174.	6.7	3
2787	Recent advances in tunable metal–support interactions for enhancing the photocatalytic nitrogen reduction reaction. , 0, , .		0
2788	Suzuki–Miyaura cross-couplings for alkyl boron reagent: recent developments—a review. Future Journal of Pharmaceutical Sciences, 2023, 9, .	2.8	2
2789	Soft-Template Syntheses and Morphological Control of Noble Metal Nanowires. Journal of the Adhesion Society of Japan, 2020, 56, 248-253.	0.0	0
2790	Light-assistance in nitrogen fixation to ammonia by highly dispersed Cs-promoted Ru clusters supported on ZrO2. Applied Catalysis B: Environmental, 2023, 339, 123143.	20.2	1
2791	Plasmonâ€Induced Radicalâ€Radical Heterocoupling Boosts Photodriven Oxidative Esterification of Benzyl Alcohol over Nitrogenâ€Doped Carbonâ€Encapsulated Cobalt Nanoparticles. Angewandte Chemie, 2023, 135, .	2.0	0

#	Article	IF	CITATIONS
2792	Plasmonâ€Induced Radicalâ€Radical Heterocoupling Boosts Photodriven Oxidative Esterification of Benzyl Alcohol over Nitrogenâ€Doped Carbonâ€Encapsulated Cobalt Nanoparticles. Angewandte Chemie - International Edition, 2023, 62, .	13.8	6
2793	Automated, Consistent, and Even-Handed Selection of Active Orbital Spaces for Quantum Embedding. Journal of Chemical Theory and Computation, 2023, 19, 6643-6655.	5.3	1
2794	How Heterogeneity Affects Cooperative Communications within Single Nanocatalysts. Journal of Physical Chemistry Letters, 2023, 14, 8227-8234.	4.6	0
2795	Ni(II)-Complex Anchored onto Magnetically Separable Oxidized Single-Walled Carbon Nanohorn: A DFT-Supported Mechanistic Approach for Hydrogen-Borrowing Quinoxaline Synthesis. ACS Sustainable Chemistry and Engineering, 2023, 11, 14734-14753.	6.7	0
2797	Tailoring of active metal sites on nanozymes for chemiluminescence assays: From nanoparticles to isolated atoms. TrAC - Trends in Analytical Chemistry, 2023, , 117382.	11.4	1
2798	Bimetallic Synergy from a Reaction-Driven Metal Oxide–Metal Interface of Pt–Co Bimetallic Nanoparticles. ACS Catalysis, 2023, 13, 13777-13785.	11.2	3
2799	Advances in heterogeneous single-cluster catalysis. Nature Reviews Chemistry, 2023, 7, 754-767.	30.2	10
2800	Construction of Marigold-like Poly(vinyl alcohol) Microspheres for Catalytic Microreactors. ACS Applied Materials & Interfaces, 2023, 15, 49774-49784.	8.0	0
2801	Confined tuning of the charge distribution of Pt electrocatalyst for reinforcing anti-poisoning ability: Toward efficient separation of hydrogen from gases containing ammonia. Chemical Engineering Journal, 2023, 475, 146139.	12.7	1
2802	Turning the coordination environment of atomic Fe-N4 center by peripheral nitrogen species for boosted catalytic performance. Chemical Engineering Journal, 2023, 473, 145181.	12.7	2
2803	Synergetic Interaction between Single-Atom Cu and Ga ₂ O ₃ Enhances CO ₂ Hydrogenation to Methanol over CuGaZrO _{<i>x</i>} . ACS Catalysis, 2023, 13, 13679-13690.	11.2	3
2805	Nitrogen-doped carbon confined cobalt nanoparticles as the steric acid-base multifunctional catalysts for Knoevenagel condensation. Molecular Catalysis, 2023, 550, 113521.	2.0	0
2806	Self-assembly, structure and catalytic activity of Ni3 on TiO2: A triple-atom catalyst for hydrogen evolution. Applied Surface Science, 2024, 643, 158719.	6.1	1
2807	Uncertainties in the reactivity of atomically dispersed catalytic metal: Can any single-atom catalyst work like a charm?. Chem Catalysis, 2023, 3, 100735.	6.1	0
2809	Minimum Free-Energy Shapes of Ag Nanocrystals: Vacuum vs Solution. ACS Nano, 2023, 17, 19288-19304.	14.6	1
2810	Generation and identification of 1O2 in catalysts/peroxymonosulfate systems for water purification. Water Research, 2023, 245, 120614.	11.3	16
2811	Study on the hydrogen evolution performance of RuNi/TiO2-oxMWCNT catalyst in alkaline media. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2023, 678, 132514.	4.7	3
2812	Design and synthesis of thermally stable single atom catalysts for thermochemical CO2 reduction. Journal of Energy Chemistry, 2023, 86, 246-262.	12.9	10

#	Article	IF	Citations
2813	Unveiling Static and Dynamic Structures of Pd Clusters Influenced by Al ₂ O ₃ Surfaces: DFT and AIMD Studies. Journal of Physical Chemistry C, 2023, 127, 20267-20275.	3.1	0
2814	Cu/Fe embedded N-doped carbon as a highly durable oxygen reduction electrocatalyst. Materials Advances, 0, , .	5.4	1
2815	Size-matched hierarchical porous carbon materials anchoring single-atom Fe-N4 sites for PMS activation: An in-depth study of key active species and catalytic mechanisms. Journal of Hazardous Materials, 2024, 461, 132647.	12.4	0
2816	Exploring the catalytic efficiency of copper-doped Magnetic Carbon Aerogel towards the coupling reaction of Isatin Oxime with Phenylboronic Acid derivatives. SynOpen, 0, , .	1.7	0
2817	Metal-based electrocatalysts with data-driven designed particle size for hydrogen evolution. Chemical Engineering Journal, 2023, 476, 146918.	12.7	0
2818	Spotlight on Pt∬³-Al2O3 with high catalytic performance induced by Barium: Synergistic effect of electron-rich Ptδ- single-atoms and available oxygen species. Chemical Engineering Journal, 2023, 474, 145574.	12.7	2
2819	Ultra-efficient electrooxidation of ethylene glycol enable by Pd-loaded Fe-doped Nb2O5 with abundant oxygen vacancies. Chemical Engineering Journal, 2023, 475, 146050.	12.7	0
2820	Trace Tungsten Microalloying PtCuCo Medium Entropy Alloys: Substructure Reconstructionâ€Triggered Highâ€Performance for PEMFC. Small, 0, , .	10.0	1
2821	Uniform one-dimensional hierarchical CoOx-N-C feather duster breaking the activity-stability trade-off for hydrogenation reactions. Materials Chemistry and Physics, 2023, 308, 128285.	4.0	0
2822	Silica-supported Schiff-based palladium nanocatalyzed cross-coupling reactions and its applications in the synthesis of antiplatelet and fungicidal. Arabian Journal of Chemistry, 2023, 16, 105203.	4.9	0
2823	CO oxidation under lean and stoichiometric conditions over ceria-zirconia with very low metal contents (Cu, Co, Ag and Pt). Journal of Rare Earths, 2023, , .	4.8	1
2825	Preparation of thiol-decorated Ag nanoparticles on N-doped carbon through resonant acoustic mixing for electrochemical CO2 reduction. Catalysis Today, 2024, 426, 114368.	4.4	0
2826	Engineering of Local Coordination Microenvironment in Singleâ€atom Catalysts Enabling Sustainable Conversion of Biomass into A Broad Range of Amines. Advanced Materials, 0, , .	21.0	2
2827	One-pot synthesized efficient molybdenum‑niobium-oxide nanocatalyst for selective C-O and C-N coupling reactions at mild conditions. Catalysis Communications, 2023, 183, 106766.	3.3	3
2828	Spectroscopic investigation of the structural transformation of Ru in the Ru/CeO ₂ catalyst. Catalysis Science and Technology, 0, , .	4.1	0
2829	Use of renewable feedstocks for chemical synthesis. , 2024, , 219-237.		0
2830	Platinum-adsorbed defective 2D monolayer boron nitride: a promising electrocatalyst for O ₂ reduction reaction. Journal of Materials Chemistry C, 0, , .	5.5	0
2831	Tuning Redistribution of CuO _{<i>x</i>} Nanoparticles on TiO ₂ Support. ACS Applied Materials & Interfaces, 2023, 15, 48168-48178.	8.0	0

ARTICLE IF CITATIONS Platinum–palladium-on-reduced graphene oxide as bifunctional electrocatalysts for highly active and 2832 5.6 1 stable hydrogen evolution and methanol oxidation reaction. Nanoscale, 0, , . Hybrid Two-Dimensional Porous Materials. Chemistry of Materials, 0, , . 6.7 Nanoparticles with Cubic Symmetry: Classification of Polyhedral Shapes. Journal of Physics 2834 0 1.8 Condensed Matter, 0, , . Synergistic engineering of heteronuclear Ni-Ag dual-atom catalysts for high-efficiency CO2 12.7 electroreduction with nearly 100% CO selectivity. Chemical Engineering Journal, 2023, 476, 146556. Black Phosphorus Modulated Ru Electrocatalyst for Highly Efficient and Durable Seawater Splitting. 2836 19.5 4 Advanced Energy Materials, 2023, 13, . Photo-/electrocatalytic approaches to CO2 conversion on Cu2O-based catalysts. Applied Catalysis A: General, 2023, 667, 119445. 4.3 Coherent x-ray diffraction of a semiregular Pt nanodot array. Physical Review B, 2023, 108, . 2838 3.2 0 Orthogonal Dual Photocatalysis of Single Atoms on Carbon Nitrides for One-Pot Relay Organic Transformation. ACS Nano, 2023, 17, 21470-21479. 2839 14.6 Spatial Structure Engineering of Interactive Single Platinum Sites toward Enhanced Electrocatalytic 2840 19.5 0 Hydrogen Evolution. Advanced Energy Materials, 2023, 13, . Electrochemical Polarization of Disparate Catalytic Sites Drives Thermochemical Rate Enhancement. 2841 11.2 ACS Catalysis, 2023, 13, 14189-14198. CO Oxidation over Platinum Nanoclusters: Unraveling the Role of the Cluster Size and the Supporting 2842 3.10 Surface. Journal of Physical Chemistry C, O, , . Heavy Metal Removal and Recovery: Sustainable and Efficient Approaches. Springer Water, 2023, , 2843 0.3 87-124. Boosted Câ€"C coupling with Cuâ€"Ag alloy sub-nanoclusters for CO ₂ -to-C ₂ H 2844 ₄ photosynthesis. Proceedings of the National Academy of Sciences of the United States 7.1 2 of America, 2023, 120, . Heck Migratory Insertion Catalyzed by a Single Pt Atom Site. Journal of the American Chemical Society, 2023, 145, 24126-24135. 2845 13.7 2846 High Spin and Reactive Fe13 Cluster with Exposed Metal Sites. Angewandte Chemie, 0, , . 2.00 High‧pin and Reactive Fe₁₃ Cluster with Exposed Metal Sites. Angewandte Chemie -2847 International Edition, 2023, 62, . Understanding of the structural evolution of catalysts and identification of active species during 2848 9.0 0 CO2 conversion. Chinese Chemical Letters, 2024, 35, 109240. CeO2 nanorods supported CuOx-RuOx bimetallic catalysts for low temperature CO oxidation. Journal 2849 9.4 of Colloid and Interface Science, 2024, 654, 1378-1392.

#	Article	IF	CITATIONS
2850	The role of metal accessibility on carbon dioxide electroreduction in atomically precise nanoclusters. Chemical Science, 0, , .	7.4	0
2851	Recent Progress and Opportunity of Metal Singleâ€Atom Catalysts for Biomass Conversion Reactions. Chemistry - an Asian Journal, 2023, 18, .	3.3	0
2853	Fumed Silica Support as a Catalytic Platform, Ni and Mn Oxide Reactive Species for the Selective Hydration of Aromatic Nitriles. Silicon, 0, , .	3.3	0
2854	Revitalizing osmium-based catalysts for energy conversion. , 2023, 2, 100053.		3
2855	Two-dimensional mesoporous metals: a new era for designing functional electrocatalysts. Chemical Science, 2023, 14, 13313-13324.	7.4	2
2856	Active sites of NO selective catalytic reduction over V ₂ O ₅ –WO ₃ /TiO ₂ . Journal of Materials Chemistry A, 2023, 11, 24644-24650.	10.3	2
2857	Coordination engineering of single-atom catalysis derived from metal-organic and inorganic frameworks for advanced batteries. Coordination Chemistry Reviews, 2024, 500, 215493.	18.8	3
2858	Atomically precise ultrasmall copper cluster for room-temperature highly regioselective dehydrogenative coupling. Nature Communications, 2023, 14, .	12.8	1
2859	Engineering the spin configuration of electrocatalysts for electrochemical renewable conversions. Materials Chemistry Frontiers, 2024, 8, 528-552.	5.9	3
2860	The Role of <i>In Situ</i> / <i>Operando</i> IR Spectroscopy in Unraveling Adsorbate-Induced Structural Changes in Heterogeneous Catalysis. Chemical Reviews, 2023, 123, 12135-12169.	47.7	1
2861	Two-dimensional noble metal-based intermetallics for electrocatalysis. , 2023, 1, 9370008.		3
2862	The potential of lignin-functionalized metal catalysts - A systematic review. Renewable and Sustainable Energy Reviews, 2024, 189, 113936.	16.4	4
2863	Recent Advances of Group 10 Transition Metal Hydrosilylation Catalysts. Topics in Organometallic Chemistry, 2023, , 13-93.	0.7	0
2864	High or Low Coordination: Insight into the Active Site of Pt Nanoparticles toward CO Oxidation. Journal of Physical Chemistry Letters, 2023, 14, 9848-9854.	4.6	0
2865	Impact of dopant X in zirconia on carbon deposition at the Nickel/X-stabilized zirconia(XSZ) surface in dry CH4 and CH4/H2O environments: First-principles density functional theory calculation and experimental study. International Journal of Hydrogen Energy, 2024, 50, 1155-1166.	7.1	0
2866	Highly dispersed Ag2O-CuO nanospheres supported on γ-ï‡-Al2O3 for methanol dehydration to dimethyl ether. Fuel, 2024, 358, 130268.	6.4	0
2867	Flowerlike Nanosheet-Based High-Entropy Oxides as Catalysts for Aerobic Oxidation of Benzyl Alcohol. ACS Applied Nano Materials, 2023, 6, 20310-20319.	5.0	3
2868	Photothermal Microscopy and Spectroscopy with Nanomechanical Resonators. Journal of Physical Chemistry C, 2023, 127, 21915-21929.	3.1	1

#	Article	IF	CITATIONS
2869	An Overview of Metal Density Effects in Single-Atom Catalysts for Thermal Catalysis. ACS Catalysis, 2023, 13, 15126-15142.	11.2	1
2870	High nuclearity heterometallic [Fe7Ln4] neutral coordination clusters with electrocatalytic activity for water oxidation. International Journal of Hydrogen Energy, 2024, 51, 383-394.	7.1	0
2871	Sulfate-radicals Advanced Oxidation Processes by Biochar-based Catalysts and Applications in the Degradation of Endocrine Disrupting Chemicals in Wastewater: A Review. , 2023, 19, 298-307.		0
2872	Nanoarchitectonics and catalytic performances of metal–organic frameworks supported metal nanoparticles. Applied Organometallic Chemistry, 2024, 38, .	3.5	1
2873	A critical review towards the causes of the iron-based catalysts deactivation mechanisms in the selective oxidation of hydrogen sulfide to elemental sulfur from biogas. Journal of Energy Chemistry, 2024, 90, 388-411.	12.9	0
2874	Identification of oxidized platinum single atoms on chlorinated γ–alumina support by density functional theory calculations and X-ray absorption spectroscopy. Journal of Catalysis, 2024, 429, 115212.	6.2	0
2875	Probing the structure–property relationships of supported copper oxide nanoclusters for methane activation. , 0, , .		0
2876	Investigation of dual atom doped single-layer MoS ₂ for electrochemical reduction of carbon dioxide by first-principle calculations and machine-learning. , 0, 3, .		0
2877	Atomically dispersed zeolite-supported rhodium complex: Selective and stable catalyst for acetylene semi-hydrogenation. Journal of Catalysis, 2024, 429, 115196.	6.2	0
2878	Local structural environment of single-atom catalysts. Inorganic Chemistry Frontiers, 0, , .	6.0	1
2879	Generation of Subnanometer Metal Clusters in Silicoaluminate Zeolites as Bifunctional Catalysts. Jacs Au, 2023, 3, 3213-3226.	7.9	0
2880	Deep Insight of Design, Mechanism, and Cancer Theranostic Strategy of Nanozymes. Nano-Micro Letters, 2024, 16, .	27.0	2
2881	Single Atom Catalysts for Environmental Remediation. , 2024, , 267-282.		0
2882	Recent advances in the molecular-level understanding of catalytic hydrogenation and oxidation reactions at metal-aqueous interfaces. Chinese Journal of Catalysis, 2023, 54, 1-55.	14.0	2
2883	Single thiolate replacement of metal nanoclusters. Science China Chemistry, 2024, 67, 523-528.	8.2	2
2884	A concise guide to chemical reactions of atomically precise noble metal nanoclusters. Nanoscale, 0, , .	5.6	0
2885	Nanoscale and ultrafast <i>in situ</i> techniques to probe plasmon photocatalysis. Chemical Physics Reviews, 2023, 4, .	5.7	1
2886	Theoretical investigation of the structural stability and electronic properties of Cu13-xMx and Cu55-xMx (M = Ni, In, Sn, Sb, x = 1–12) nanoparticles: a DFT approach. Structural Chemistry,	0 ^{2.0}	0

#	Article	IF	CITATIONS
2887	Synergistic effect of platinum single atoms and nanoclusters for preferential oxidation of carbon monoxide in hydrogen-rich stream. Journal of Power Sources, 2024, 591, 233873.	7.8	0
2888	Fabrication of a PdCu@SiO ₂ @Cu core–shell–satellite catalyst for the selective hydrogenation of acetylene. Dalton Transactions, 2023, 53, 206-214.	3.3	Ο
2889	Promoting Photocatalytic Activity of NH ₂ -MIL-125(Ti) for H ₂ Evolution Reaction through Creation of Ti ^{III} - and Co ^I -Based Proton Reduction Sites. ACS Applied Materials & Interfaces, 2023, 15, 54590-54601.	8.0	1
2890	Synthesis of Pd/Carbon Hollow Spheres by the Microwave Discharge Method for Catalytic Debenzylation. ACS Applied Materials & Interfaces, 0, , .	8.0	0
2891	Chiral Pseudohomogeneous Catalyst Based on Amphiphilic Carbon Quantum Dots for the Enantioselective Kharasch–Sosnovsky Reaction. ACS Applied Materials & Interfaces, 2023, 15, 54373-54385.	8.0	5
2892	Interplay between geometric and electronic structures of Pt entities over TiO2 for CO oxidation. Science China Chemistry, 2024, 67, 705-714.	8.2	1
2893	On the Structure Insensitivity of Propane Total Oxidation over Pt/CeO ₂ : A Comparison between Single Atoms, Clusters and Nanoparticles. ChemCatChem, 2023, 15, .	3.7	1
2894	Utilizing peptide-anchored DNA templates for novel programmable nanoparticle assemblies in biological macromolecules: A review. International Journal of Biological Macromolecules, 2024, 256, 128427.	7.5	Ο
2895	Constructing Gold Singleâ€Atom Catalysts on Hierarchical Nitrogenâ€Doped Carbon Nanocages for Carbon Dioxide Electroreduction to Syngas. Small, 0, , .	10.0	0
2897	Catalysts Prepared from Atomically Dispersed Ce(III) on MgO Rival Bulk Ceria for CO Oxidation. ACS Applied Materials & Interfaces, 2023, 15, 55885-55894.	8.0	0
2898	Solid-State NMR Probe Molecules for Catalysts and Adsorbents: Concepts, Quantification, Accessibility, and Spatial Distribution. Energy & amp; Fuels, 2023, 37, 18517-18559.	5.1	1
2899	Direct thioether metathesis enabled by <i>in situ</i> formed Pd nanocluster catalysts. Catalysis Science and Technology, 0, , .	4.1	0
2900	Strong Interfacial Chemical Bonding in Regulating Electron Transfer and Stabilizing Catalytic Sites in a Metalâ€Semiconductor Schottky Junction for Enhanced Photocatalysis. Small, 0, , .	10.0	1
2902	Experimental Evidence for the Relationship between Al Site Distribution and Catalytic Performance in Methanol-to-Olefins Reaction over ZSM-5 Zeolite. Crystal Growth and Design, 2023, 23, 8499-8508.	3.0	0
2903	Insight into the island-sea effect of Cuâ^'Nâ^'C for enhanced CO2 eletroreduction selectively towards C2H4. Applied Catalysis B: Environmental, 2024, 343, 123566.	20.2	3
2904	Highly dispersed Pd-based pseudo-single atoms in zeolites for hydrogen generation and pollutant disposal. Chemical Science, 2023, 15, 379-388.	7.4	0
2905	Selective hydrocarbon or oxygenate production in CO2 electroreduction over metallurgical alloy catalysts. , 0, , .		0
2906	Deposited PtGe Clusters as Active and Durable Catalysts for CO Oxidation**. ChemCatChem, 2024, 16, .	3.7	Ο

#	Article	IF	CITATIONS
2907	Towards structural optimization of gold nanoclusters with quantum Monte Carlo. Journal of Chemical Physics, 2023, 159, .	3.0	0
2908	Nanoscale Chemical Diversity of Coke Deposits on Nanoprinted Metal Catalysts Visualized by Tipâ€Enhanced Raman Spectroscopy. Advanced Materials, 0, , .	21.0	0
2910	Angstromâ€Scale Electrochemistry at Electrodes with Dimensions Commensurable and Smaller than Individual Reacting Species. Angewandte Chemie, 2023, 135, .	2.0	0
2911	Angstromâ€5cale Electrochemistry at Electrodes with Dimensions Commensurable and Smaller than Individual Reacting Species. Angewandte Chemie - International Edition, 2023, 62, .	13.8	0
2912	<i>Operando</i> Electron Microscopy of Catalysts: The Missing Cornerstone in Heterogeneous Catalysis Research?. Chemical Reviews, 2023, 123, 13374-13418.	47.7	2
2913	A highly durable AgO _{<i>x</i>} cluster/mesoporous TiO ₂ photocatalyst with synergistic effects induced superior H ₂ evolution and CO ₂ reduction. Journal of Materials Chemistry A, 2023, 11, 25910-25917.	10.3	0
2914	Heteropolyacids promoted MOF-derived high-performance Co(H4)@C-HPW0.25 catalysts for catalytic transfer hydrogenation of vanillin in mild condition. Chemical Engineering Journal, 2023, 478, 147456.	12.7	0
2915	Fe nanoclusters anchored in biomass waste-derived porous carbon nanosheets for high-performance supercapacitor. Chinese Chemical Letters, 2023, , 109301.	9.0	0
2916	Design and construction of size-controlled CoO/CS catalysts for Fischer–Tropsch synthesis. Nano Research, 0, , .	10.4	0
2917	Microwave-Driven Exsolution of Ni Nanoparticles in A-Site Deficient Perovskites. ACS Nano, 2023, 17, 23955-23964.	14.6	1
2918	Oxygen vacancy in CoO/reduced graphene oxide composite for enhancing long-term effectiveness of photocatalytic CO ₂ reduction via mediating exciton. 2D Materials, 2024, 11, 015014.	4.4	0
2919	Tuning the electronic structure of Pd by the surface configuration of Al ₂ O ₃ for hydrogenation reactions. Nanoscale, 2023, 16, 335-342.	5.6	1
2920	Structural exploration of low-energy Lennard–Jones–Gauss clusters with a genetic algorithm. European Physical Journal B, 2023, 96, .	1.5	0
2921	Modulating the Electronic Metalâ€Support Interactions to Antiâ€Leaching Pt Single Atoms for Efficient Hydrosilylation. Advanced Materials, 0, , .	21.0	0
2922	Linear-Structure Single-Atom Gold(I) Catalyst for Dehydrogenative Coupling of Organosilanes with Alcohols. ACS Catalysis, 2023, 13, 16067-16077.	11.2	1
2923	Atomic Layer Deposition of Pt Fine Clusters over the Structurally Defined SnO ₂ Facets for Efficient Formic Acid Decomposition and H ₂ Evolution. ACS Sustainable Chemistry and Engineering, 2023, 11, 17224-17237.	6.7	0
2924	Partially Thiolated Au _{<i>n</i>} (<i>n</i> = 25, 102) Clusters on Layered Double Hydroxides Anchored by Electrostatic Interactions: Size Effect on 5-Hydroxymethylfurfural Oxidation Catalysis. ACS Catalysis, 0, , 16179-16187.	11.2	0
2926	Suppressing Nanocrystal Growth with Cysteine: A Quenching Strategy for Monitoring the Evolution of Nanocrystals. Chemistry of Materials, 0, , .	6.7	0

#	Article	IF	CITATIONS
2927	Two active species from a single metal halide precursor: a case study of highly productive Mn-catalyzed dehydrogenation of amine-boranes <i>via</i> intermolecular bimetallic cooperation. Chemical Science, 2024, 15, 1409-1417.	7.4	1
2928	Photocatalytic production of ethylene and propionic acid from plastic waste by titania-supported atomically dispersed Pd species. Science Advances, 2023, 9, .	10.3	0
2930	Active Center Size-Dependent Fenton-Like Chemistry for Sustainable Water Decontamination. Environmental Science & Technology, 2023, 57, 21416-21427.	10.0	1
2932	Supported and Isolated Metal Atoms and Clusters as Models for Understanding the Hydrogen Economy. Fundamental Research, 2023, , .	3.3	0
2933	Synthesis of Carbon thin films using Aerosol-Assisted Chemical Vapour Deposition (AACVD). Journal of Zankoy Sulaimani - Part A, 2022, 24, 1-6.	0.1	0
2934	Contemporary advances in photocatalytic CO2 reduction using single-atom catalysts supported on carbon-based materials. Advances in Colloid and Interface Science, 2024, 323, 103068.	14.7	1
2935	Symmetry Breaking Enhancing the Activity of Electrocatalytic CO ₂ Reduction on an Icosahedronâ€Kernel Cluster by Cu Atoms Regulation. Angewandte Chemie - International Edition, 2024, 63, .	13.8	0
2936	High-Density Dispersion of Atomic Pt (Ru, Rh, Pd, Ir) Induced by Meso-Stable Penta-Coordinated Fe ^{III} in the Topological Transformation of Layered Double Hydroxides. ACS Catalysis, 0, , 56-66.	11.2	0
2937	Single-Atom Ru Catalyst-Decorated CNF(ZnO) Nanocages for Efficient H ₂ Evolution and CH ₃ OH Production. Journal of Physical Chemistry Letters, 0, , 11400-11411.	4.6	0
2938	Symmetry Breaking Enhancing the Activity of Electrocatalytic CO ₂ Reduction on an Icosahedronâ€Kernel Cluster by Cu Atoms Regulation. Angewandte Chemie, 2024, 136, .	2.0	0
2939	4D Catalysis Concept Enabled by Multilevel Data Collection and Machine Learning Analysis. ACS Catalysis, 0, , 161-175.	11.2	0
2940	In Situ Incorporation of Atomically Precise Au Nanoclusters within Zeolites for Ambient Temperature CO Oxidation. Nanomaterials, 2023, 13, 3120.	4.1	0
2941	Single Metal Atoms Anchored on Nâ€Đoped Holey Graphene as Efficient Dualâ€Activeâ€Component Catalysts for Nitroarene Reduction. Advanced Functional Materials, 0, , .	14.9	0
2942	"Click―Chemistry Assisted Synthesis of Magnetiteâ€CNT Nanohybrid Supported Gold Nanoparticles for Enhanced Catalytic Reduction of 4â€Nitrophenol. ChemistrySelect, 2023, 8, .	1.5	0
2943	Pyrolysis-free synthesis of a high-loading single-atom Cu catalyst for efficient electrocatalytic CO ₂ -to-CH ₄ conversion. Nanoscale, 2023, 16, 171-179.	5.6	0
2944	Stronglyâ€Interacted NiSe ₂ /NiFe ₂ O ₄ Architectures Built Through Selective Atomic Migration as Catalysts for the Oxygen Evolution Reaction. Small, 0, , .	10.0	0
2945	Electrochemical reduction of nitrate to ammonia using non-precious metal-based catalysts. Coordination Chemistry Reviews, 2024, 502, 215609.	18.8	2
2946	Metal clusters confined in porous nanostructures: Synthesis, properties and applications in energy catalysis. Coordination Chemistry Reviews, 2024, 502, 215603.	18.8	Ο

#	Article	IF	CITATIONS
2947	Green energy harvesting from CO2 and NOx by MXene materials: Detailed historical and future prospective. Applied Catalysis B: Environmental, 2024, 344, 123585.	20.2	1
2948	Synthesis and energy applications of copper-based single-atom electrocatalysts. Coordination Chemistry Reviews, 2024, 502, 215602.	18.8	0

2949 金@介å²'碳æ,壳å'Œç©ºè..."结æž"纳ç±³ææ–™å^¶å**¤**åŠå...¶å,¬åŒ–æ⁰§åŒ–性能ç"ç©¶. Chinese ScienceœBulletin, 2023, , .

2950	MXene-Based Single-Atom Catalysts for Electrochemical Reduction of CO ₂ to Hydrocarbon Fuels. Journal of Physical Chemistry C, 0, , .	3.1	0
2951	<i>In Situ</i> Visualization and Mechanistic Understandings on Facet-Dependent Atomic Redispersion of Platinum on CeO ₂ . Nano Letters, 0, , .	9.1	0
2952	Structure control and evolution of atomically precise gold clusters as heterogeneous precatalysts. Nanoscale, 2024, 16, 1526-1538.	5.6	0
2953	Advances in Atomically Dispersed Metal and Nitrogen Coâ€Doped Carbon Catalysts for Advanced Oxidation Technologies and Water Remediation: From Microenvironment Modulation to Nonâ€Radical Mechanisms. Small, 0, , .	10.0	0
2954	Advances in Metal 3D Printing Technology for Tailored Selfâ€Catalytic Reactor Design. ChemCatChem, 0, , .	3.7	0
2955	Computational design of spatially confined triatomic catalysts for nitrogen reduction reaction. , 0, 3, .		0
2956	Single–atom Cu catalysts for the oxidative coupling of styrenes with aryl sulfones: from salts and zeolites to MOFs. Molecular Catalysis, 2024, 553, 113786.	2.0	0
2957	Reactive Oxygen Species Scavenging Nanozymes: Emerging Therapeutics for Acute Liver Injury Alleviation. International Journal of Nanomedicine, 0, Volume 18, 7901-7922.	6.7	0
2958	$\hat{I}\pm$ -Alkylation of Ketones with Primary Alcohols by Active non-Noble Metal Cu/CuOx Catalyst. Organic and Biomolecular Chemistry, 0, , .	2.8	1
2959	Stability of Pd/C Catalysts in Solvents for Organic Synthesis. Doklady Chemistry, 2023, 512, 292-297.	0.9	0
2960	Insights into the differences in metal anchoring mechanisms and the impact on HCN catalytic oxidation performance. Fuel, 2024, 361, 130723.	6.4	0
2961	Progress and challenge of functional single-atom catalysts for the catalytic oxidation of volatile organic compounds. Chinese Chemical Letters, 2023, , 109400.	9.0	0
2962	Modification sub-nano Zn-Co Metal-Organic framework for electrochemical detection of neurotransmitter. Microchemical Journal, 2024, 197, 109852.	4.5	0
2963	Methanol steam reforming for hydrogen production driven by an atomically precise Cu catalyst. Green Energy and Environment, 2023, , .	8.7	0
2965	Microwave Quasiâ€Solid State to Construct Strong Metalâ€Support Interactions with Interfacial Electronâ€Enriched Ru for Anion Exchange Membrane Electrolysis. Advanced Energy Materials, 2024, 14,	19.5	0

#	Article	IF	CITATIONS
2966	Catalytic removal of gaseous pollutant NO using CO: Catalyst structure and reaction mechanism. Environmental Research, 2024, 246, 118037.	7.5	1
2968	Synthesis of atomically dispersed cationic nickel-confined mesoporous ZSM-48 (ANMZ-48) directed by metal complexes in amphiphilic molecules. Science China Chemistry, 0, , .	8.2	0
2970	Selective Imines Synthesis by Designing an Atomic-Level Cu–Pt Electron Transfer Channel over CdS Nanosheets. ACS Catalysis, 2024, 14, 657-669.	11.2	2
2971	Pt Single-Atom collaborate with Pt Atom-Clusters by an In-Situ confined strategy for accelerating electrocatalytic hydrogen evolution. Chemical Engineering Journal, 2024, 481, 148430.	12.7	0
2972	Singleâ€Atom Nanozymes for Catalytic Therapy: Recent Advances and Challenges. Advanced Functional Materials, 2024, 34, .	14.9	0
2973	Constructing sulfur and oxygen super-coordinated main-group electrocatalysts for selective and cumulative H2O2 production. Nature Communications, 2024, 15, .	12.8	1
2974	Porous Compositeâ€Mediated Bimetallic Cluster POMs/Zrâ€MOF for Catalytic Transfer Hydrogenation of Biomassâ€Derived Aldehydes and Ketones. Advanced Functional Materials, 2024, 34, .	14.9	0
2975	Optimizing the Activation Energy of Reactive Intermediates on Singleâ€Atom Electrocatalysts: Challenges and Opportunities. Small Methods, 0, , .	8.6	0
2976	BrÃ,nstedâ€Acidic Mesoporous Beta Zeolite Hâ€MBeta Catalyzes the Conversion of Benzhydrol into Diphenylmethane and Diphenyl Ketone. ChemistrySelect, 2024, 9, .	1.5	0
2977	Local reaction environment in electrocatalysis. Chemical Society Reviews, 2024, 53, 2022-2055.	38.1	2
2978	Ultralow-Pt-loading assisted by reconstruction of cobalt molybdate nanoarrays for enhanced hydrogen evolution reaction. International Journal of Hydrogen Energy, 2024, 56, 837-843.	7.1	0
2979	N and OH-Immobilized Cu ₃ Clusters In Situ Reconstructed from Single-Metal Sites for Efficient CO ₂ Electromethanation in Bicontinuous Mesochannels. Journal of the American Chemical Society, 2024, 146, 1423-1434.	13.7	0
2980	Heterolytic H ₂ Activation in Heterogeneous Hydrogenation/Hydroprocessing Catalysis. ChemCatChem, 2024, 16, .	3.7	0
2981	Atom-precise copper nanoclusters based on FCC, BCC, and HCP structures. Coordination Chemistry Reviews, 2024, 503, 215667.	18.8	0
2982	Co-immobilization of enzymes and chemocatalysts for one-pot chemoenzymatic cascades: Scaffold engineering toward more efficient catalysis. Chem Catalysis, 2024, 4, 100894.	6.1	0
2983	Theoretical Insights into H ₂ Activation over Anatase TiO ₂ Supported Metal Adatoms. ACS Catalysis, 2024, 14, 886-896.	11.2	1
2984	Direct α-Arylation of Benzo[<i>b</i>]furans Catalyzed by a Pd ₃ Cluster. Journal of Organic Chemistry, 2024, 89, 1719-1726.	3.2	0
2985	Designing efficient catalysts for electrocatalytic organic synthesis: From electronic structure to adsorption behavior. Matter, 2024, 7, 456-474.	10.0	0

#	Article	IF	Citations
2986	Stability prediction of gold nanoclusters with different ligands and doped metals: deep learning and experimental tests. Journal of Materials Chemistry A, 2024, 12, 4460-4472.	10.3	0
2987	Industrial solid wastes to environmental protection materials for removal of gaseous pollutants: A review. Green Energy and Environment, 2024, , .	8.7	0
2988	Electroreductive upgradation of biomass into high-value chemicals and energy-intensive biofuels. Green Chemistry, 2024, 26, 2454-2475.	9.0	0
2989	Singleâ€atom materials: The application in energy conversion. , 2024, 3, 74-86.		2
2990	Chargeâ€Programmable Photopolymers for 3D Electronics via Additive Manufacturing. Advanced Functional Materials, 2024, 34, .	14.9	0
2991	Applications of bio-resource based sustainable heterogeneous Pd-Nanocatalyst for Cross-Coupling and Michael addition reactions. Chemical Engineering Journal, 2024, 483, 149271.	12.7	0
2992	Recovery of valuable metals from spent lithium-ion batteries through an ecofriendly catalytic approach. Journal of Power Sources, 2024, 594, 234024.	7.8	0
2994	Arrayed Pt Single Atoms via Phosphotungstic Acids Intercalated in Silicate Nanochannels for Efficient Hydrogen Evolution Reactions. ACS Nano, 2024, 18, 1611-1620.	14.6	0
2995	Magnetic decorated 5-sulfosalicylic acid grafted to chitosan: A solid acid organocatalyst for green synthesis of quinazoline derivatives. Carbohydrate Polymer Technologies and Applications, 2024, 7, 100420.	2.6	0
2996	Nanostructured single-atom catalysts derived from natural building blocks. , 2024, 2, 475-506.		0
2997	Enhancing the Catalytic Oxidation of Carbon Monoxide Using K-OMS-2 by Surface Modification with Binary Oxides of Copper and Other Metals. Catalysis Letters, 0, , .	2.6	0
2998	Can amine ligands atomically disperse Cu atoms on TiO2(110)? Cu deposition on TiO2(110) premodified with <i>o</i> -anthranilic acid. Chemistry Letters, 2024, 53, .	1.3	0
2999	Disclosing Supportâ€Sizeâ€Dependent Effect on Ambient Lightâ€Driven Photothermal CO ₂ Hydrogenation over Nickel/Titanium Dioxide. Angewandte Chemie - International Edition, 2024, 63, .	13.8	0
3000	Disclosing Supportâ€5izeâ€Đependent Effect on Ambient Lightâ€Đriven Photothermal CO ₂ Hydrogenation over Nickel/Titanium Dioxide. Angewandte Chemie, 2024, 136, .	2.0	1
3001	A perspective on interface engineering of transition metal dichalcogenides for high-current-density hydrogen evolution. Chinese Journal of Catalysis, 2024, 56, 9-24.	14.0	0
3002	Atomically precise Au and Ag nanoclusters doped with a single atom as model alloy catalysts. Nanoscale, 2024, 16, 4514-4528.	5.6	0
3003	The Effect of Nâ€Defect and Axial Halogen Atom on Electrocatalytic Oxygen Reduction Reaction Activity of FeN ₄ Singleâ€Atom Catalysts: A Density Functional Theory Study. ChemistrySelect, 2024, 9, .	1.5	0
3004	Fe-nanocluster embedded biomass-derived carbon for efficient photo-Fenton-like activity in water purification. Separation and Purification Technology, 2024, 337, 126382.	7.9	1

#	Article	IF	CITATIONS
3006	Single atom sites as CO scavenger to allow for crude hydrogen usage in PEMFC. Science Bulletin, 2024, 69, 1061-1070.	9.0	0
3007	Single atom vacancy engineering with highly reversible N4 sites enable ultra-low overpotential for durable zinc-ion supercapacitors. Energy Storage Materials, 2024, 66, 103189.	18.0	0
3008	Structure Regulation of Singleâ€atom Catalysts for Electrocatalytic Sensing. ChemCatChem, 0, , .	3.7	0
3009	Atomically Dispersed Zn/Co–N–C as ORR Electrocatalysts for Alkaline Fuel Cells. Journal of the American Chemical Society, 2024, 146, 2593-2603.	13.7	1
3010	Renaissance of Strong Metal–Support Interactions. Journal of the American Chemical Society, 2024, 146, 2290-2307.	13.7	0
3011	Is electrospinning a suitable technique to develop heterogeneous catalysts?. Chemical Engineering Research and Design, 2024, 203, 43-50.	5.6	0
3012	Cooperative Co single atoms and Co2P nanoparticles as catalytic tandem for boosting redox kinetics in Li–S batteries. Materials Today Energy, 2024, 40, 101504.	4.7	0
3013	Recent advances in atomic-scale simulations for supported metal catalysts. Molecular Catalysis, 2024, 554, 113862.	2.0	0
3014	Review on Catalytic Depolymerization of Polyolefin Waste by Hydrogenolysis: State-of-the-Art and Outlook. Energy & Fuels, 2024, 38, 1676-1691.	5.1	0
3015	Deep Insight into Characterizing the Metal–Support Interface in Heterogeneous Catalysis. ACS Catalysis, 2024, 14, 1987-2002.	11.2	0
3016	通èį‡ä¸Žé'Œå•́金åŒ−æ¥è°ƒæŽ§é",的电å结构äįƒèį›ä»¥æ°´ä¸ºè΅åæºçš"å‰å,¬åŒ−é€‰æ‹©æ€§åŠæ°¢.	Sര്മ്പേce Cl	hi o a Materia
3017	Open Air Direct Oxidative Coupling of Alcohols and Amines to Imines Catalyzed by Ruthenium Nanoclusters Supported on a Mesoporous Carbon (CMK-8) in/on Water. ACS Applied Nano Materials, 2024, 7, 2650-2661.	5.0	0
3018	Transient co-tuning of atomic Fe and nanoparticle facets for self-relaying Fenton-like catalysis. Communications Materials, 2024, 5, .	6.9	0
3019	Reductionâ€5pecified Coupling Reactions of Nitroarenes by Heterogeneous Cobalt Catalysis. Chemistry - A European Journal, 2024, 30, .	3.3	0
3020	Coordination environment dominated catalytic selectivity of photocatalytic hydrogen and oxygen reduction over switchable gallium and nitrogen active sites. Journal of Materials Chemistry A, 2024, 12, 5711-5718.	10.3	0
3021	Swelling ability and Lewis acidity of layered octosilicate modified with isolated dialkyltin species. Chemistry Letters, 2024, 53, .	1.3	0
3022	Understanding the Dynamic Aggregation in Singleâ€Atom Catalysis. Advanced Science, 2024, 11, .	11.2	0
3023	An alternative catalytic cycle for selective methane oxidation to methanol with Cu clusters in zeolites. Physical Chemistry Chemical Physics, 2024, 26, 5914-5921.	2.8	0

#	Article	IF	CITATIONS
3024	Charge Analysis in a Catalytic Nanoparticle Using High Sensitivity Electron Holography. Materia Japan, 2024, 63, 95-102.	0.1	0
3025	Spatially isolated dual-active sites enabling selective hydrogenation. Cell Reports Physical Science, 2024, 5, 101793.	5.6	0
3026	Polydopamine-mediated in situ synthesis of gold nanoparticles uniformly distributed on silk fibers as reusable catalysts for efficient 4-nitrophenol reduction. Journal of Industrial Textiles, 2024, 54, .	2.4	0
3027	Rational Design of Janus Metal Atomicâ€Site Catalysts for Efficient Polysulfide Conversion and Alkali Metal Deposition: Advances and Prospects. Advanced Functional Materials, 0, , .	14.9	0
3028	Noble-Metal-Based Catalysts on a Scale from Nanoparticles to Subnanoclusters and Single Atoms for Formaldehyde Oxidation at Room Temperature: A Review. ACS Applied Nano Materials, 2024, 7, 3546-3563.	5.0	0
3029	PtSn/MFI catalysts for propane dehydrogenation prepared by an impregnation–calcination–washing method. Applied Catalysis A: General, 2024, 673, 119588.	4.3	0
3030	Nanomaterials in electrochemical nitrate reduction. , 2024, , 635-653.		0
3031	Single-atom catalysts for electrocatalytic oxygen reduction. , 2024, , 91-118.		0
3032	Catalysts for Li-S batteries. , 2024, , 215-231.		0
3033	Partial carbon encapsulation synthesis of separated Ni-Ag catalyst for efficient selective hydrogenation of acetylene: Synergizing hydrogen spillover and steric hindrance. Applied Catalysis A: General, 2024, 673, 119590.	4.3	0
3034	Significance of Epitaxial Growth of PtO ₂ on Rutile TiO ₂ for Pt/TiO ₂ Catalysts. Journal of the American Chemical Society, 2024, 146, 3764-3772.	13.7	0
3035	Selective Hydrogenation of Alkyne by Atomically Precise Pd ₆ Nanocluster Catalysts: Accurate Construction of the Coplanar and Specific Active Sites. ACS Catalysis, 2024, 14, 2463-2472.	11.2	0
3036	Enhanced catalytic activity through a unique cage structure of amorphous NiFe oxide via tri-doping P, B, N and introducing tungsten for the oxygen evolution reaction. Journal of Alloys and Compounds, 2024, 981, 173726.	5.5	0
3037	Pd Singleâ€Atom Loaded Ceâ€Zr Solid Solution Catalysts Prepared by Flame Spray Pyrolysis for Efficient CO Catalytic Oxidation. Small, 0, , .	10.0	0
3038	Comparative Study of Exsolved and Impregnated Ni Nanoparticles Supported on Nanoporous Perovskites for Low-Temperature CO Oxidation. ACS Applied Materials & Interfaces, 2024, 16, 7219-7231.	8.0	0
3039	From biomass to biocrude: Innovations in hydrothermal liquefaction and upgrading. Energy Conversion and Management, 2024, 302, 118093.	9.2	1
3040	Coordination of few-atomic Pt clusters with Mo to boost the hydrogenation reduction of bromate. Separation and Purification Technology, 2024, 339, 126693.	7.9	0
3041	A zero-valent palladium cluster-organic framework. Nature Communications, 2024, 15, .	12.8	0

#	ARTICLE Real-time tracking of electron transfer at catalytically active interfaces in lithium-ion batteries.	IF	CITATIONS
3042 3043	Proceedings of the National Academy of Sciences of the United States of America, 2024, 121, . Reactant-Induced Structural Evolution of Pt Catalysts Confined in Zeolite. Jacs Au, 2024, 4, 666-679.	7.1	0
3043	Electronic Regulation on Niâ€based Catalysts for Efficient CO ₂ Electroreduction.	3.4	0
3047	ChemElectroČhem, 2024, 11, . Single-atom cobalt encapsulated in carbon nanotubes as an effective catalyst for enhancing sulfur conversion in lithium–sulfur batteries. Molecular Systems Design and Engineering, 2024, 9, 464-476.	3.4	0
3048	Frontier Band Orbitals of Active Sites in Single-Atom Catalysis. Journal of Physical Chemistry C, 2024, 128, 2884-2893.	3.1	0
3049	Emergingâ€ ⁻ Strategies for the Synthesis of Correlated Single Atom Catalysts. Advanced Materials, 0, , .	21.0	0
3050	Co Implanted <mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">altimg="si14.svg"> <mml:mstyle mathvariant="normal"> <mml:mi> Î`</mml:mi> </mml:mstyle </mml:math> -graphene: A Non-Noble Metal Single-Atom Catalyst for Proficient CO Oxidation Reaction. Molecular Catalysis, 2024, 556, 113907.	2.0	0
3051	New Trend of Amperometric Gas Sensors Using Atomic Gold-Decorated Platinum/Polyaniline Composites. Chemosensors, 2024, 12, 27.	3.6	0
3052	Defect and interface engineering for promoting electrocatalytic N-integrated CO2 co-reduction. Chinese Journal of Catalysis, 2024, 57, 1-17.	14.0	0
3053	Self-adjusted reaction pathway enables efficient oxidation of aromatic C–H bonds over zeolite-encaged single-site cobalt catalyst. Chinese Journal of Catalysis, 2024, 57, 133-142.	14.0	0
3054	Recent advances of bimetallic nanoclusters with atomic precision for catalytic applications. Coordination Chemistry Reviews, 2024, 506, 215692.	18.8	0
3055	Revisiting the Role of Seed Size for the Synthesis of Highly Uniform Sub-10 nm Length Gold Nanorods. Chemistry of Materials, 2024, 36, 1982-1997.	6.7	0
3056	Nanoparticle proximity controls selectivity in benzaldehyde hydrogenation. Nature Catalysis, 2024, 7, 172-184.	34.4	0
3057	Lowâ€Temperature CO Oxidation by the Pt/CeO ₂ Based Catalysts. ChemCatChem, 0, , .	3.7	0
3058	Developing high-power Li S batteries via transition metal/carbon nanocomposite electrocatalyst engineering. Nature Nanotechnology, 0, , .	31.5	0
3059	Bifunctional metal–acid sites on nickel boride catalysts: Phenol hydrodeoxygenation and water-promoted CÂ=ÂC hydrogenation. Journal of Catalysis, 2024, 431, 115384.	6.2	0
3060	Understanding the hydrolysis mechanism of cyanogen chloride on copper and chromium surfaces. ChemistrySelect, 2024, 9, .	1.5	0
3061	Atomically Dispersed Palladium Driving Reductive Catalytic Fractionation of Lignocellulose into Alkene-Functionalized Phenols. ACS Catalysis, 2024, 14, 3565-3574.	11.2	0

#	Article	IF	Citations
3062	Spontaneous Deposition of Single Platinum Atoms on Anatase TiO ₂ for Photocatalytic H ₂ Evolution. Langmuir, 2024, 40, 4661-4668.	3.5	0
3063	Activation of peroxymonosulfate by sludge-derived magnetic biochar for pollutant removal: Performance, applicability, and synergetic mechanism of iron species and carboxylated biochar. Chemical Engineering Journal, 2024, 485, 149744.	12.7	0
3064	Materials Genes of CO ₂ Hydrogenation on Supported Cobalt Catalysts: An Artificial Intelligence Approach Integrating Theoretical and Experimental Data. Journal of the American Chemical Society, 2024, 146, 5433-5444.	13.7	0
3065	Unraveling the transformative pathways of Au-NHC and Au-alkynyl complexes and bridging the gap between molecular and nanoscale gold systems. Inorganic Chemistry Frontiers, 2024, 11, 1839-1851.	6.0	0
3066	Recent advances in Feâ€N singleâ€atom site coupled synergistic catalysts for boosting oxygen reduction reaction. , 2024, 2, .		0
3067	Temporally Programmed Access to Variously Structured Nanoelectrocatalysts by Unlocking "High Energy―Polymeric Composite Micelles. Macromolecules, 2024, 57, 2403-2412.	4.8	0
3068	Advanced dual-atom catalysts for rechargeable zinc-air batteries. , 2024, 3, 100076.		0
3069	Nanosized Catalytic Particles for the Decomposition of Green Propellants as Substitute for Hydrazine. Advances in Chemical and Materials Engineering Book Series, 2024, , 195-217.	0.3	0
3070	A stepwise thermal migration for inducing copper nanoparticles to boost oxygen reduction activity of single-atomic copper sites. , 2024, 3, 100162.		0
3071	Exploring the catalytic potential of AuxPt4-x clusters on TiC and ZrC (001) surfaces for hydrogen dissociation. Applied Surface Science, 2024, 657, 159815.	6.1	0
3072	Aerobic oxidative coupling of 2-naphthols catalyzed by flame-made VO /t-ZrO2: Effect of metal oxide support and VO content on catalytic activity. Applied Catalysis A: General, 2024, 676, 119638.	4.3	0
3073	An efficient four-component protocol for synthesis of poly-substituted pyridines with SiO ₂ as a robust recyclable catalyst. Synthetic Communications, 2024, 54, 526-535.	2.1	0
3074	Metadynamics simulations reveal alloying-dealloying processes for bimetallic PdGa nanoparticles under CO ₂ hydrogenation. Chemical Science, 2024, 15, 4871-4880.	7.4	0
3075	Utilizing Cs-TPA/Ce-KIT-6 solid-acid catalyst for enhanced biodiesel production from almond and amla oil feedstocks. Chemical Engineering Research and Design, 2024, 185, 256-266.	5.6	0
3076	In situ confinement of ultrasmall Cu nanoparticles within silicalite-1 zeolite for catalytic reforming of methanol to hydrogen. International Journal of Hydrogen Energy, 2024, 61, 113-124.	7.1	0
3077	Rise of atomically dispersed metal catalysts: Are they a new class of catalysts?. Bulletin of the Korean Chemical Society, 2024, 45, 350-358.	1.9	0
3078	Porous C3N4 nanosheet supported Au single atoms as an efficient catalyst for enhanced photoreduction of CO2 to CO. Journal of Catalysis, 2024, 432, 115405.	6.2	0
3079	A molecular view of single-atom catalysis toward carbon dioxide conversion. Chemical Science, 2024, 15, 4631-4708.	7.4	0

#	Article	IF	CITATIONS
3080	Graphdiyne/metal oxide hybrid materials for efficient energy and environmental catalysis. Chemical Science, 2024, 15, 5061-5081.	7.4	0
3081	Using the fermi level as a predictive indicator of the electrocatalytic activities displayed by single-atom catalysts in sulfur cathode reactions. Chemical Engineering Journal, 2024, 486, 150241.	12.7	0
3082	Downshift of the Ni d band center over Ni nanoparticles <i>in situ</i> confined within an amorphous silicon nitride matrix. Dalton Transactions, 2024, 53, 5686-5694.	3.3	0
3083	Mesoporous coordinated polymers with singleâ€metalâ€site iridium for efficient catalysis in propylene hydroformylation. AICHE Journal, 0, , .	3.6	0
3084	Structure Sensitivity of Metal Catalysts Revealed by Interpretable Machine Learning and First-Principles Calculations. Journal of the American Chemical Society, 2024, 146, 8737-8745.	13.7	0
3085	Recent advancements in microenvironmental regulation of Single-Atom catalysts for electrochemical conversion of CO2 to CO. Fuel, 2024, 367, 131416.	6.4	0
3086	Reconfiguration of the charge density difference of nitrogen-doped graphene by covalently bonded Cu-N4 active sites boosting thermodynamics and performance in aprotic Li-CO2 battery. Energy Storage Materials, 2024, 68, 103354.	18.0	0
3087	Metal-organic framework-derived nitrogen-coordinated cobalt single-atom catalysts for triiodide reduction reaction in solar cells. Solar Energy, 2024, 272, 112478.	6.1	0
3088	Accelerating water dissociation at hierarchical nanostructured electrocatalyst for efficient hydrogen evolution. Carbon, 2024, 224, 119061.	10.3	0
3089	Geometric edge effect on the interface of Au/CeO2 nanocatalysts for CO oxidation. Nano Research, 0, ,	10.4	0
3090	Emerging Atomically Precise Metal Nanoclusters and Ultrasmall Nanoparticles for Efficient Electrochemical Energy Catalysis: Synthesis Strategies and Surface/Interface Engineering. Electrochemical Energy Reviews, 2024, 7, .	25.5	0
3091	Comparative study and screening of Single-Atom and homonuclear Dual-Atom catalysts for NO reduction via electrocatalysis. Fuel, 2024, 366, 131432.	6.4	0
3092	Flow field-flow fractionation and single particle inductively coupled plasma mass spectrometry as a powerful tool for tracking and understanding the sensing mechanism of Ag–Au bimetallic nanoparticles toward cobalt ions. Analytica Chimica Acta, 2024, 1301, 342485.	5.4	0
3093	Ni active sites isolated by antimony toward enhanced propyne semiâ€hydrogenation. AICHE Journal, 0, , .	3.6	0
3094	Mechanistic Investigation into Single-Electron Oxidative Addition of Single-Atom Cu(I)-N ₄ Site: Revealing the Cu(I)–Cu(I)à€"Cu(I) Catalytic Cycle in Photochemical Hydrophosphinylation. Journal of the American Chemical Society, 2024, 146, 8668-8676.	13.7	0
3095	Top-down fabrication of active interface between TiO2 and Pt nanoclusters. Part 1: Redispersion process and mechanism. Chinese Journal of Catalysis, 2024, 58, 237-246.	14.0	0
3096	Advancements in Electrocatalytic Nitrogen Reduction: A Comprehensive Review of Singleâ€Atom Catalysts for Sustainable Ammonia Synthesis. Small, 0, , .	10.0	0
3097	Catalytic Hydrogenolysis by Atomically Dispersed Iron Sites Embedded in Chemically and Redox Non-innocent N-Doped Carbon. Journal of the American Chemical Society, 2024, 146, 8618-8629.	13.7	0

#	Article	IF	CITATIONS
3098	BSA nanoclusters-based sensor for detection of dopamine in schizophrenia from biofluids. Drug Development and Industrial Pharmacy, 2024, 50, 341-353.	2.0	0
3099	Single-atom Mo-tailored high-entropy-alloy ultrathin nanosheets with intrinsic tensile strain enhance electrocatalysis. Nature Communications, 2024, 15, .	12.8	0
3100	Marrying luminescent metal nanoclusters to C3N4 for efficient photocatalytic hydrogen peroxide production. Materials Reports Energy, 2024, , 100267.	3.2	0
3101	Structured Catalysts and Catalytic Processes: Transport and Reaction Perspectives. Chemical Reviews, 2024, 124, 2955-3012.	47.7	0
3102	Fine-tuning the electronic properties of Au toward two-dimensional clusters with higher activity for ethanol conversion. Journal of Catalysis, 2024, 432, 115441.	6.2	0
3103	A Self-Disperse Copper-Based Catalyst Synthesized via a Dry Mixing Method for Acetylene Hydrochlorination. Catalysts, 2024, 14, 207.	3.5	0