Effect of CYP2C19, UGT1A8, and UGT2B7 on valproic acial a population pharmacokinetic model

European Journal of Clinical Pharmacology 74, 1029-1036 DOI: 10.1007/s00228-018-2440-6

Citation Report

#	Article	IF	CITATIONS
1	Lack of association between valproic acid response and polymorphisms of its metabolism, transport, and receptor genes in children with focal seizures. Neurological Sciences, 2019, 40, 523-528.	0.9	3
2	Impact of gender, albumin, and CYP2C19 polymorphisms on valproic acid in Chinese patients: a population pharmacokinetic model. Journal of International Medical Research, 2020, 48, 030006052095228.	0.4	10
3	Pharmacogenetics of Carbamazepine and Valproate: Focus on Polymorphisms of Drug Metabolizing Enzymes and Transporters. Pharmaceuticals, 2021, 14, 204.	1.7	19
4	Influence of <i>UGT2B7</i> and <i>UGT1A6</i> polymorphisms on plasma concentration to dose ratio of valproic acid in Chinese epileptic children. Xenobiotica, 2021, 51, 859-864.	0.5	5
5	Modulation of the transport of valproic acid through the blood-brain barrier in rats by the Gastrodia elata extracts. Journal of Ethnopharmacology, 2021, 278, 114276.	2.0	6
6	CYP2C19 & UGT1A6 genetic polymorphisms and the impact on Valproic acid-induced weight gain in people with epilepsy: Prospective genetic association study. Epilepsy Research, 2021, 177, 106786.	0.8	6
7	Factors Influencing Sodium Valproate Serum Concentrations in Patients with Epilepsy Based on Logistic Regression Analysis. Medical Science Monitor, 2021, 27, e934275.	0.5	1
8	Effect of CYP2C19 polymorphisms on serum valproic level acid in Chinese Han patients with schizophrenia. Scientific Reports, 2021, 11, 23150.	1.6	6
9	Population pharmacokinetics of valproic acid in adult Chinese patients with bipolar disorder. European Journal of Clinical Pharmacology, 2022, 78, 405-418.	0.8	6
10	Published population pharmacokinetic models of valproic acid in adult patients: a systematic review and external validation in a Chinese sample of inpatients with bipolar disorder. Expert Review of Clinical Pharmacology, 2022, 15, 621-635.	1.3	3
11	Pharmacogenetics-based population pharmacokinetic analysis and dose optimization of valproic acid in Chinese southern children with epilepsy: Effect of ABCB1 gene polymorphism. Frontiers in Pharmacology, 0, 13, .	1.6	3
12	Pharmacogenetic Aspects of Drug Metabolizing Enzymes and Transporters in Pediatric Medicine: Study Progress, Clinical Practice and Future Perspectives. Paediatric Drugs, 0, , .	1.3	0
13	Effects of <i>UGT1A</i> , <i>CYP2C9/19</i> and <i>ABAT</i> polymorphisms on plasma concentration of valproic acid in Chinese epilepsy patients. Pharmacogenomics, 2023, 24, 153-162.	0.6	1