Algorithm on age partitioning for estimation of reference laboratory database exemplified with plasma creatining

Clinical Chemistry and Laboratory Medicine 56, 1514-1523 DOI: 10.1515/cclm-2017-1095

Citation Report

#	Article	IF	CITATIONS
1	Pediatric reference intervals in China (PRINCE): design and rationale for a large, multicenter collaborative cross-sectional study. Science Bulletin, 2018, 63, 1626-1634.	4.3	17
2	Establishing thresholds and effects of gender, age, and season for thyroglobulin and thyroid peroxidase antibodies by mining real-world big data. Clinical Biochemistry, 2019, 74, 36-41.	0.8	14
3	Reference intervals for gastrointestinal tumor markers (AFP, CEA, CA199 and CA724) in healthy adults of Han nationality in Chongqing by Roche ECLIA system. Scandinavian Journal of Clinical and Laboratory Investigation, 2019, 79, 484-490.	0.6	10
4	Age-dependent changes of total and differential white blood cell counts in children. Chinese Medical Journal, 2020, 133, 1900-1907.	0.9	29
5	Comparison of four algorithms on establishing continuous reference intervals for pediatric analytes with age-dependent trend. BMC Medical Research Methodology, 2020, 20, 136.	1.4	15
6	Establishment of age―and sexâ€specific reference intervals for serum liver function tests in pediatric population aged 1–<18 years: A prospective study. Journal of Clinical Laboratory Analysis, 2021, 35, e23708.	0.9	3
7	Big data and reference intervals: rationale, current practices, harmonization and standardization prerequisites and future perspectives of indirect determination of reference intervals using routine data. Advances in Laboratory Medicine / Avances En Medicina De Laboratorio, 2021, 2, 9-16.	0.1	12
8	<i>Big data</i> e intervalos de referencia: motivación, prácticas actuales, prerrequisitos de armonización y estandarización y futuras perspectivas en el cálculo de intervalos de referencia mediante métodos indirectos. Advances in Laboratory Medicine / Avances En Medicina De Laboratorio, 2021. 2. 17-25.	0.1	0
9	Continuous reference intervals for 21 biochemical and hematological analytes in healthy Chinese children and adolescents: The PRINCE study. Clinical Biochemistry, 2022, 102, 9-18.	0.8	8
10	Comparison of reference distributions acquired by direct and indirect sampling techniques: exemplified with the Pediatric Reference Interval in China (PRINCE) study. BMC Medical Research Methodology, 2022, 22, 106.	1.4	3
11	Age and sex specific reference intervals of 13 hematological analytes in Chinese children and adolescents aged from 28Âdays up to 20Âyears: the PRINCE study. Clinical Chemistry and Laboratory Medicine, 2022, 60, 1250-1260.	1.4	7
12	Reference intervals of 14 biochemical markers for children and adolescence in China: the PRINCE study. Clinical Chemistry and Laboratory Medicine, 2022, 60, 1627-1639.	1.4	5