Mechanisms of physiological and pathological cardiac h

Nature Reviews Cardiology 15, 387-407 DOI: 10.1038/s41569-018-0007-y

Citation Report

#	Article	IF	CITATIONS
1	Evaluating the Remote Control of Programmed Cell Death, with or without a Compensatory Cell Proliferation. International Journal of Biological Sciences, 2018, 14, 1800-1812.	6.4	8
2	Inhibition of cardiac hypertrophy by aromadendrin through down-regulating NFAT and MAPKs pathways. Biochemical and Biophysical Research Communications, 2018, 506, 805-811.	2.1	12
3	Association between Protein-Bound Uremic Toxins and Asymptomatic Cardiac Dysfunction in Patients with Chronic Kidney Disease. Toxins, 2018, 10, 520.	3.4	21
4	Four and a half LIM domain protein signaling and cardiomyopathy. Biophysical Reviews, 2018, 10, 1073-1085.	3.2	44
5	What May the Future Hold for Sports Cardiology?. Heart Lung and Circulation, 2018, 27, 1116-1120.	0.4	4
6	Mono- and multi-nucleated ventricular cardiomyocytes constitute a transcriptionally homogenous cell population. Basic Research in Cardiology, 2019, 114, 36.	5.9	59
7	Natural History of Cardiomyopathy in Adult Dogs With Golden Retriever Muscular Dystrophy. Journal of the American Heart Association, 2019, 8, e012443.	3.7	24
8	Limited synergy of obesity and hypertension, prevalent risk factors in onset and progression of heart failure with preserved ejection fraction. Journal of Cellular and Molecular Medicine, 2019, 23, 6666-6678.	3.6	19
9	Coupling to Gq Signaling Is Required for Cardioprotection by an Alpha-1A-Adrenergic Receptor Agonist. Circulation Research, 2019, 125, 699-706.	4.5	10
10	Imaging, Biomarker, and Clinical Predictors of Cardiac Remodeling inÂHeartÂFailure With ReducedÂEjectionÂFraction. JACC: Heart Failure, 2019, 7, 782-794.	4.1	113
11	Lymphocytic subsets play distinct roles in heart diseases. Theranostics, 2019, 9, 4030-4046.	10.0	17
12	Noncoding RNAs in exercise-induced cardio-protection for chronic heart failure. EBioMedicine, 2019, 46, 532-540.	6.1	11
13	Silencing of epidermal growth factor receptor reduces Na+/H+ exchanger 1 activity and hypertensive cardiac hypertrophy. Biochemical Pharmacology, 2019, 170, 113667.	4.4	3
14	Maf1 ameliorates cardiac hypertrophy by inhibiting RNA polymerase III through ERK1/2. Theranostics, 2019, 9, 7268-7281.	10.0	27
15	Alphaâ€calcitonin geneâ€related peptide prevents pressureâ€overload induced heart failure: role of apoptosis and oxidative stress. Physiological Reports, 2019, 7, e14269.	1.7	16
16	MiR-21, MiR-29a, GATA4, and MEF2c Expression Changes in Endothelin-1 and Angiotensin II Cardiac Hypertrophy Stimulated Isl-1+Sca-1+c-kit+ Porcine Cardiac Progenitor Cells In Vitro. Cells, 2019, 8, 1416.	4.1	9
17	Evaluation of cardiac hypertrophy in the setting of sudden cardiac death. Forensic Sciences Research, 2019, 4, 223-240.	1.6	28
18	HMGB1 enhances mechanical stress-induced cardiomyocyte hypertrophy in�vitro via the RAGE/ERK1/2 signaling pathway. International Journal of Molecular Medicine, 2019, 44, 885-892.	4.0	13

#	Article	IF	Citations
19	Chronic inhibition of chemokine receptor CXCR2 attenuates cardiac remodeling and dysfunction in spontaneously hypertensive rats. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2019, 1865, 165551.	3.8	27
20	Therapeutic potentials and mechanisms of the Chinese traditional medicine Danshensu. European Journal of Pharmacology, 2019, 864, 172710.	3.5	65
21	MicroRNAs in Cardiac Hypertrophy. International Journal of Molecular Sciences, 2019, 20, 4714.	4.1	69
22	Fibroblast growth factor 21 protects the heart from angiotensin II-induced cardiac hypertrophy and dysfunction via SIRT1. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2019, 1865, 1241-1252.	3.8	70
23	Cardiac Hypertrophy. , 2019, , 63-86.		1
24	Oridonin protects against cardiac hypertrophy by promoting P21-related autophagy. Cell Death and Disease, 2019, 10, 403.	6.3	57
25	miRâ€29a promotes pathological cardiac hypertrophy by targeting the PTEN/AKT/mTOR signalling pathway and suppressing autophagy. Acta Physiologica, 2019, 227, e13323.	3.8	33
26	Ketone body can be a fuel substrate for failing heart. Cardiovascular Research, 2019, 115, 1567-1569.	3.8	12
27	A high-throughput ratiometric method for imaging hypertrophic growth in cultured primary cardiac myocytes. Journal of Molecular and Cellular Cardiology, 2019, 130, 184-196.	1.9	6
28	A novel traditional Chinese medicine ameliorates fatigue-induced cardiac hypertrophy and dysfunction via regulation of energy metabolism. American Journal of Physiology - Heart and Circulatory Physiology, 2019, 316, H1378-H1388.	3.2	10
29	Transcriptomic Validation of the Protective Effects of Aqueous Bark Extract of Terminalia arjuna (Roxb.) on Isoproterenol-Induced Cardiac Hypertrophy in Rats. Frontiers in Pharmacology, 2019, 10, 1443.	3.5	12
30	Physical Exercise and Selective Autophagy: Benefit and Risk on Cardiovascular Health. Cells, 2019, 8, 1436.	4.1	71
31	Noncoding RNAs in cardiovascular diseases. Current Opinion in Cardiology, 2019, 34, 241-245.	1.8	25
33	Myricetin Alleviates Pathological Cardiac Hypertrophy via TRAF6/TAK1/MAPK and Nrf2 Signaling Pathway. Oxidative Medicine and Cellular Longevity, 2019, 2019, 1-14.	4.0	39
34	MiR-338-5p ameliorates pathological cardiac hypertrophy by targeting CAMKIIδ. Archives of Pharmacal Research, 2019, 42, 1071-1080.	6.3	6
35	Lycopene protects against pressure overload-induced cardiac hypertrophy by attenuating oxidative stress. Journal of Nutritional Biochemistry, 2019, 66, 70-78.	4.2	34
36	Yes-associated protein (YAP) mediates adaptive cardiac hypertrophy in response to pressure overload. Journal of Biological Chemistry, 2019, 294, 3603-3617.	3.4	63
37	Effect of Exercise Intervention on Cardiac Function in Type 2 Diabetes Mellitus: A Systematic Review. Sports Medicine, 2019, 49, 255-268.	6.5	24

#	Article	IF	CITATIONS
38	Coronary arterial vasculature in the pathophysiology of hypertrophic cardiomyopathy. Pflugers Archiv European Journal of Physiology, 2019, 471, 769-780.	2.8	14
39	Cardiac metabolic modulation upon lowâ€carbohydrate lowâ€protein ketogenic diet in diabetic rats studied in vivo using hyperpolarized13C pyruvate, butyrate and acetoacetate probes. Diabetes, Obesity and Metabolism, 2019, 21, 949-960.	4.4	13
40	Embryonic programming of heart disease in response to obesity during pregnancy. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2020, 1866, 165402.	3.8	6
41	Cardiac adaptation to exercise training in health and disease. Pflugers Archiv European Journal of Physiology, 2020, 472, 155-168.	2.8	26
42	Cardiomyopathy in obesity, insulin resistance and diabetes. Journal of Physiology, 2020, 598, 2977-2993.	2.9	154
43	Autophagy in cardiomyopathies. Biochimica Et Biophysica Acta - Molecular Cell Research, 2020, 1867, 118432.	4.1	29
44	Effect of resistance training with Spirulina platensis on PI3K/Akt/mTOR/p70S6k signaling pathway in cardiac muscle. Science and Sports, 2020, 35, 91-98.	0.5	2
45	Rock protein as cardiac hypertrophy modulator in obesity and physical exercise. Life Sciences, 2020, 254, 116955.	4.3	11
46	Gender Differences in Cardiac Hypertrophy. Journal of Cardiovascular Translational Research, 2020, 13, 73-84.	2.4	40
47	Maternal androgen excess induces cardiac hypertrophy and left ventricular dysfunction in female mice offspring. Cardiovascular Research, 2020, 116, 619-632.	3.8	29
48	Molecular Basis of Heart Failure. , 2020, , 1-27.e3.		0
49	Impacts of exercise interventions on different diseases and organ functions in mice. Journal of Sport and Health Science, 2020, 9, 53-73.	6.5	79
50	Early life undernutrition reduces maximum treadmill running capacity in adulthood in mice. Applied Physiology, Nutrition and Metabolism, 2020, 45, 240-250.	1.9	8
51	Concentric vs. eccentric remodelling in heart failure with reduced ejection fraction: clinical characteristics, pathophysiology and response to treatment. European Journal of Heart Failure, 2020, 22, 1147-1155.	7.1	50
52	Deficiency of Cardiac Natriuretic Peptide Signaling Promotes Peripartum Cardiomyopathy-Like Remodeling in the Mouse Heart. Circulation, 2020, 141, 571-588.	1.6	9
53	Missing Link Between Molecular Aspects of Ventricular Arrhythmias and QRS Complex Morphology in Left Ventricular Hypertrophy. International Journal of Molecular Sciences, 2020, 21, 48.	4.1	17
54	T3 Critically Affects the Mhrt/Brg1 Axis to Regulate the Cardiac MHC Switch: Role of an Epigenetic Cross-Talk. Cells, 2020, 9, 2155.	4.1	11
55	Phospholipase C families: Common themes and versatility in physiology and pathology. Progress in	11.6	48 _

#	Article	IF	CITATIONS
56	CSN6 aggravates Ang II-induced cardiomyocyte hypertrophy via inhibiting SIRT2. Experimental Cell Research, 2020, 396, 112245.	2.6	10
57	The role and molecular mechanism of FoxO1 in mediating cardiac hypertrophy. ESC Heart Failure, 2020, 7, 3497-3504.	3.1	21
58	Prdm16 Deficiency Leads to Age-Dependent Cardiac Hypertrophy, Adverse Remodeling, Mitochondrial Dysfunction, and Heart Failure. Cell Reports, 2020, 33, 108288.	6.4	36
59	Dietary carbohydrates restriction inhibits the development of cardiac hypertrophy and heart failure. Cardiovascular Research, 2021, 117, 2365-2376.	3.8	33
60	Sulfur Dioxide: An Endogenous Protector Against Myocardial Injury. Journal of Cardiovascular Pharmacology, 2020, 76, 389-396.	1.9	3
61	Clobal longitudinal strain in severe aortic stenosis. European Heart Journal Cardiovascular Imaging, 2020, 21, 1259-1261.	1.2	4
62	An α ₂ -adrenoceptor agonist: Dexmedetomidine induces protective cardiomyocyte hypertrophy through mitochondrial-AMPK pathway. International Journal of Medical Sciences, 2020, 17, 2454-2467.	2.5	5
63	Lactate Dehydrogenase A Governs Cardiac Hypertrophic Growth in Response to Hemodynamic Stress. Cell Reports, 2020, 32, 108087.	6.4	43
64	tRNA-Derived Small RNAs and Their Potential Roles in Cardiac Hypertrophy. Frontiers in Pharmacology, 2020, 11, 572941.	3.5	32
65	Ca ²⁺ -Dependent NOX5 (NADPH Oxidase 5) Exaggerates Cardiac Hypertrophy Through Reactive Oxygen Species Production. Hypertension, 2020, 76, 827-838.	2.7	42
66	Swietenine extracted from <i>Swietenia</i> relieves myocardial hypertrophy induced by isoprenaline in mice. Environmental Toxicology, 2020, 35, 1343-1351.	4.0	6
67	Assessment of Cardiac Remodeling—A Chance for Novel Cardiac Biomarkers?. Journal of Clinical Medicine, 2020, 9, 2087.	2.4	3
68	In vivo [U- ¹³ C]glucose labeling to assess heart metabolism in murine models of pressure and volume overload. American Journal of Physiology - Heart and Circulatory Physiology, 2020, 319, H422-H431.	3.2	22
69	Key Player in Cardiac Hypertrophy, Emphasizing the Role of Toll-Like Receptor 4. Frontiers in Cardiovascular Medicine, 2020, 7, 579036.	2.4	21
70	Sinapic Acid Inhibits Cardiac Hypertrophy via Activation of Mitochondrial Sirt3/SOD2 Signaling in Neonatal Rat Cardiomyocytes. Antioxidants, 2020, 9, 1163.	5.1	17
71	Identification of Potentially Relevant Genes for Excessive Exercise-Induced Pathological Cardiac Hypertrophy in Zebrafish. Frontiers in Physiology, 2020, 11, 565307.	2.8	7
72	The anti-microbial peptide LL-37/CRAMP levels are associated with acute heart failure and can attenuate cardiac dysfunction in multiple preclinical models of heart failure. Theranostics, 2020, 10, 6167-6181.	10.0	20
73	Enhancing calmodulin binding to cardiac ryanodine receptor completely inhibits pressure-overload induced hypertrophic signaling. Communications Biology, 2020, 3, 714.	4.4	17

#	Article	IF	CITATIONS
74	The Diagnostic and Therapeutic Value of Multimarker Analysis in Heart Failure. An Approach to Biomarker-Targeted Therapy. Frontiers in Cardiovascular Medicine, 2020, 7, 579567.	2.4	20
75	The Beta3 Adrenergic Receptor in Healthy and Pathological Cardiovascular Tissues. Cells, 2020, 9, 2584.	4.1	43
76	RAD-Deficient Human Cardiomyocytes Develop Hypertrophic Cardiomyopathy Phenotypes Due to Calcium Dysregulation. Frontiers in Cell and Developmental Biology, 2020, 8, 585879.	3.7	8
77	The endocrinological component and signaling pathways associated to cardiac hypertrophy. Molecular and Cellular Endocrinology, 2020, 518, 110972.	3.2	12
78	Long Non-Coding RNAs in Atrial Fibrillation: Pluripotent Stem Cell-Derived Cardiomyocytes as a Model System. International Journal of Molecular Sciences, 2020, 21, 5424.	4.1	10
79	Pregnancy-induced Cardiovascular Pathologies: Importance of Structural Components and Lipids. American Journal of the Medical Sciences, 2020, 360, 447-466.	1.1	7
80	High-protein diet associated with resistance training reduces cardiac TNF-α levels and up-regulates MMP-2 activity in rats. Archives of Physiology and Biochemistry, 2020, , 1-7.	2.1	3
81	Regulation of Long Non-coding RNAs and MicroRNAs in Heart Disease: Insight Into Mechanisms and Therapeutic Approaches. Frontiers in Physiology, 2020, 11, 798.	2.8	21
82	Targeting Protein Kinase G to Treat Cardiac Proteotoxicity. Frontiers in Physiology, 2020, 11, 858.	2.8	12
83	Stachydrine hydrochloride suppresses phenylephrine-induced pathological cardiac hypertrophy by inhibiting the calcineurin/nuclear factor of activated T-cell signalling pathway. European Journal of Pharmacology, 2020, 883, 173386.	3.5	10
84	β-adrenergic activation may promote myosin light chain kinase degradation through calpain in pressure overload-induced cardiac hypertrophy. Biomedicine and Pharmacotherapy, 2020, 129, 110438.	5.6	5
85	A Case for Adaptive Cardiac Hypertrophic Remodeling Is CITED. Circulation Research, 2020, 127, 647-650.	4.5	5
86	Therapeutic Implications for PDE2 and cGMP/cAMP Mediated Crosstalk in Cardiovascular Diseases. International Journal of Molecular Sciences, 2020, 21, 7462.	4.1	25
87	Cardiomyocyte Proliferation and Maturation: Two Sides of the Same Coin for Heart Regeneration. Frontiers in Cell and Developmental Biology, 2020, 8, 594226.	3.7	50
88	Role of FAK signaling in chagasic cardiac hypertrophy. Brazilian Journal of Infectious Diseases, 2020, 24, 386-397.	0.6	7
89	Cells, Materials, and Fabrication Processes for Cardiac Tissue Engineering. Frontiers in Bioengineering and Biotechnology, 2020, 8, 955.	4.1	32
90	An MRTF-A–Sp1–PDE5 Axis Mediates Angiotensin-II-Induced Cardiomyocyte Hypertrophy. Frontiers in Cell and Developmental Biology, 2020, 8, 839.	3.7	24
91	Targeting Ca2 + Handling Proteins for the Treatment of Heart Failure and Arrhythmias. Frontiers in Physiology, 2020, 11, 1068.	2.8	16

#	Article	IF	CITATIONS
92	Energy Metabolism in Exercise-Induced Physiologic Cardiac Hypertrophy. Frontiers in Pharmacology, 2020, 11, 1133.	3.5	11
93	<p>Astragaloside IV: An Effective Drug for the Treatment of Cardiovascular Diseases</p> . Drug Design, Development and Therapy, 2020, Volume 14, 3731-3746.	4.3	58
94	Signalosome-Regulated Serum Response Factor Phosphorylation Determining Myocyte Growth in Width Versus Length as a Therapeutic Target for Heart Failure. Circulation, 2020, 142, 2138-2154.	1.6	23
95	NAD+ Metabolism as an Emerging Therapeutic Target for Cardiovascular Diseases Associated With Sudden Cardiac Death. Frontiers in Physiology, 2020, 11, 901.	2.8	20
96	H19 in cardiac hypertrophy. Nature Reviews Cardiology, 2020, 17, 612-612.	13.7	3
97	Research Progress on the Interaction Between Autophagy and Energy Homeostasis in Cardiac Remodeling. Frontiers in Pharmacology, 2020, 11, 587438.	3.5	10
98	Hispidulin Attenuates Cardiac Hypertrophy by Improving Mitochondrial Dysfunction. Frontiers in Cardiovascular Medicine, 2020, 7, 582890.	2.4	7
99	MicroRNA-214 contributes to Ang II-induced cardiac hypertrophy by targeting SIRT3 to provoke mitochondrial malfunction. Acta Pharmacologica Sinica, 2021, 42, 1422-1436.	6.1	18
100	Dysbindin deficiency Alters Cardiac BLOC-1 Complex and Myozap Levels in Mice. Cells, 2020, 9, 2390.	4.1	2
101	Redox Regulation by Protein S-Glutathionylation: From Molecular Mechanisms to Implications in Health and Disease. International Journal of Molecular Sciences, 2020, 21, 8113.	4.1	57
102	Citri reticulatae Pericarpium attenuates Ang II-induced pathological cardiac hypertrophy via upregulating peroxisome proliferator-activated receptors gamma. Annals of Translational Medicine, 2020, 8, 1064-1064.	1.7	11
103	FBXW7 promotes pathological cardiac hypertrophy by targeting EZH2-SIX1 signaling. Experimental Cell Research, 2020, 393, 112059.	2.6	14
104	Intervention In Severe Aortic Stenosis. Journal of the American College of Cardiology, 2020, 75, 2459-2462.	2.8	3
105	Single-Cell Transcriptomics. Circulation, 2020, 141, 1720-1723.	1.6	6
106	JMJD1A Represses the Development of Cardiomyocyte Hypertrophy by Regulating the Expression of <i>Catalase</i> . BioMed Research International, 2020, 2020, 1-14.	1.9	9
107	HTR2A promotes the development of cardiac hypertrophy by activating PI3K-PDK1-AKT-mTOR signaling. Cell Stress and Chaperones, 2020, 25, 899-908.	2.9	14
108	Sophocarpine ameliorates cardiac hypertrophy through activation of autophagic responses. Bioscience, Biotechnology and Biochemistry, 2020, 84, 2054-2061.	1.3	4
109	Allylmethylsulfide, a Sulfur Compound Derived from Garlic, Attenuates Isoproterenol-Induced Cardiac Hypertrophy in Rats. Oxidative Medicine and Cellular Longevity, 2020, 2020, 1-15.	4.0	17

#	Article	IF	CITATIONS
110	Intermedin alleviates pathological cardiac remodeling by upregulating klotho. Pharmacological Research, 2020, 159, 104926.	7.1	7
111	Blockage of UCHL1 activity attenuates cardiac remodeling in spontaneously hypertensive rats. Hypertension Research, 2020, 43, 1089-1098.	2.7	8
112	The Histone Demethylase JMJD1C Regulates CAMKK2-AMPK Signaling to Participate in Cardiac Hypertrophy. Frontiers in Physiology, 2020, 11, 539.	2.8	18
113	cGMP via PKG activates 26S proteasomes and enhances degradation of proteins, including ones that cause neurodegenerative diseases. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 14220-14230.	7.1	57
114	An updated role of astragaloside IV in heart failure. Biomedicine and Pharmacotherapy, 2020, 126, 110012.	5.6	66
115	lncRNA MIRF Promotes Cardiac Apoptosis through the miR-26a-Bak1 Axis. Molecular Therapy - Nucleic Acids, 2020, 20, 841-850.	5.1	22
116	Phenylethanol Glycosides Protect Myocardial Hypertrophy Induced by Abdominal Aortic Constriction via ECE-1 Demethylation Inhibition and PI3K/PKB/eNOS Pathway Enhancement. Evidence-based Complementary and Alternative Medicine, 2020, 2020, 1-14.	1.2	1
117	Epigenetic regulation and mechanobiology. Biophysics Reports, 2020, 6, 33-48.	0.8	13
118	Sustained increased CaMKII phosphorylation is involved in the impaired regression of isoproterenol-induced cardiac hypertrophy in rats. Journal of Pharmacological Sciences, 2020, 144, 30-42.	2.5	7
119	Arginyltransferase knockdown attenuates cardiac hypertrophy and fibrosis through TAK1-JNK1/2 pathway. Scientific Reports, 2020, 10, 598.	3.3	8
120	A cathelicidin-related antimicrobial peptide suppresses cardiac hypertrophy induced by pressure overload by regulating IGFR1/PI3K/AKT and TLR9/AMPKα. Cell Death and Disease, 2020, 11, 96.	6.3	22
121	Maladaptive Contractility of 3D Human Cardiac Microtissues to Mechanical Nonuniformity. Advanced Healthcare Materials, 2020, 9, e1901373.	7.6	12
122	Single-Cell Reconstruction of Progression Trajectory Reveals Intervention Principles in Pathological Cardiac Hypertrophy. Circulation, 2020, 141, 1704-1719.	1.6	127
123	Downregulation of miR-26b-5p, miR-204-5p, and miR-497-3p Expression Facilitates Exercise-Induced Physiological Cardiac Hypertrophy by Augmenting Autophagy in Rats. Frontiers in Genetics, 2020, 11, 78.	2.3	27
124	Myotubularin-related protein 14 suppresses cardiac hypertrophy by inhibiting Akt. Cell Death and Disease, 2020, 11, 140.	6.3	10
125	Mechanisms of diabetic cardiomyopathy and potential therapeutic strategies: preclinical and clinical evidence. Nature Reviews Cardiology, 2020, 17, 585-607.	13.7	353
126	Heart failure in single right ventricle congenital heart disease: physiological and molecular considerations. American Journal of Physiology - Heart and Circulatory Physiology, 2020, 318, H947-H965.	3.2	31
127	Songling Xuemaikang Capsule inhibits isoproterenol-induced cardiac hypertrophy via CaMKIIδ and ERK1/2 pathways. Journal of Ethnopharmacology, 2020, 253, 112660.	4.1	13

#	Article	IF	CITATIONS
128	Sex-Specific Human Cardiomyocyte Gene Regulation in Left Ventricular Pressure Overload. Mayo Clinic Proceedings, 2020, 95, 688-697.	3.0	21
129	TASK-1 and TASK-3 channels modulate pressure overload-induced cardiac remodeling and dysfunction. American Journal of Physiology - Heart and Circulatory Physiology, 2020, 318, H566-H580.	3.2	7
130	Cardiomyocyte maturation: advances in knowledge and implications for regenerative medicine. Nature Reviews Cardiology, 2020, 17, 341-359.	13.7	417
131	Mitophagy in cardiovascular disease. Clinica Chimica Acta, 2020, 507, 210-218.	1.1	28
132	Expedition to the missing link: Long noncoding RNAs in cardiovascular diseases. Journal of Biomedical Science, 2020, 27, 48.	7.0	18
133	Diabetic Cardiomyopathy and Ischemic Heart Disease: Prevention and Therapy by Exercise and Conditioning. International Journal of Molecular Sciences, 2020, 21, 2896.	4.1	38
134	Role of the Epigenome in Heart Failure. Physiological Reviews, 2020, 100, 1753-1777.	28.8	57
135	Application of Zebrafish Model in the Suppression of Drug-Induced Cardiac Hypertrophy by Traditional Indian Medicine Yogendra Ras. Biomolecules, 2020, 10, 600.	4.0	9
136	The CaMKII phosphorylation site Thr1604 in the Ca _V 1.2 channel is involved in pathological myocardial hypertrophy in rats. Channels, 2020, 14, 151-162.	2.8	5
137	Binge Alcohol Exposure in Adolescence Impairs Normal Heart Growth. Journal of the American Heart Association, 2020, 9, e015611.	3.7	9
138	Cardiac Overexpression of PDE4B Blunts β-Adrenergic Response and Maladaptive Remodeling in Heart Failure. Circulation, 2020, 142, 161-174.	1.6	47
139	Critical roles of macrophages in pressure overload-induced cardiac remodeling. Journal of Molecular Medicine, 2021, 99, 33-46.	3.9	10
140	Cardioprotective role of GTS-21 by attenuating the TLR4/NF-κB pathway in streptozotocin-induced diabetic cardiomyopathy in rats. Naunyn-Schmiedeberg's Archives of Pharmacology, 2021, 394, 11-31.	3.0	26
141	Heal the heart through gut (hormone) ghrelin: a potential player to combat heart failure. Heart Failure Reviews, 2021, 26, 417-435.	3.9	6
142	Non-invasive cardiovascular assessment of pregnancy in healthy female cats. Journal of Veterinary Cardiology, 2021, 33, 25-33.	0.9	1
143	miR-133a-3p attenuates cardiomyocyte hypertrophy through inhibiting pyroptosis activation by targeting IKKε. Acta Histochemica, 2021, 123, 151653.	1.8	17
144	Wnt3a upregulation is involved in TGFβ1-induced cardiac hypertrophy. Cytokine, 2021, 138, 155376.	3.2	5
145	MBNL1 regulates isoproterenolâ€induced myocardial remodelling in vitro and in vivo. Journal of Cellular and Molecular Medicine, 2021, 25, 1100-1115.	3.6	9

#	Article	IF	CITATIONS
146	Electrical remodeling and cardiotoxicity precedes structural and functional remodeling of mouse hearts under hyperoxia treatment. Journal of Cellular Physiology, 2021, 236, 4482-4495.	4.1	4
147	A surgical mouse model of neonatal pressure overload by transverse aortic constriction. Nature Protocols, 2021, 16, 775-790.	12.0	5
148	Adeno-associated virus-mediated delivery of anti-miR-199a tough decoys attenuates cardiac hypertrophy by targeting PGC-1alpha. Molecular Therapy - Nucleic Acids, 2021, 23, 406-417.	5.1	17
149	Aerobic exercise training attenuates doxorubicin-induced ultrastructural changes in rat ventricular myocytes. Life Sciences, 2021, 264, 118698.	4.3	9
150	Baicalein attenuates cardiac hypertrophy in mice via suppressing oxidative stress and activating autophagy in cardiomyocytes. Acta Pharmacologica Sinica, 2021, 42, 701-714.	6.1	57
151	FBXW5 acts as a negative regulator of pathological cardiac hypertrophy by decreasing the TAK1 signaling to pro-hypertrophic members of the MAPK signaling pathway. Journal of Molecular and Cellular Cardiology, 2021, 151, 31-43.	1.9	5
152	Characteristics of Blood Metabolic Profile in Coronary Heart Disease, Dilated Cardiomyopathy and Valvular Heart Disease Induced Heart Failure. Frontiers in Cardiovascular Medicine, 2020, 7, 622236.	2.4	11
154	Targeting sirtuins to modulate energy metabolism in heart disease. , 2021, , 285-293.		1
155	Ablation of lncRNA <i>Miat</i> attenuates pathological hypertrophy and heart failure. Theranostics, 2021, 11, 7995-8007.	10.0	26
156	Trimetazidine in Heart Failure. Frontiers in Pharmacology, 2020, 11, 569132.	3.5	22
157	Reverse Cardiac Remodeling and ARNI Therapy. Current Heart Failure Reports, 2021, 18, 71-83.	3.3	19
158	Cellular and molecular pathobiology of heart failure with preserved ejection fraction. Nature Reviews Cardiology, 2021, 18, 400-423.	13.7	198
159	Rutaecarpine Ameliorates Pressure Overload Cardiac Hypertrophy by Suppression of Calcineurin and Angiotensin II. Evidence-based Complementary and Alternative Medicine, 2021, 2021, 1-8.	1.2	2
160	The protective effects of the miR-129-5p/keap-1/Nrf2 axis on Ang II-induced cardiomyocyte hypertrophy. Annals of Translational Medicine, 2021, 9, 154-154.	1.7	8
161	Lactoferrin ameliorates pathological cardiac hypertrophy related to mitochondrial quality control in aged mice. Food and Function, 2021, 12, 7514-7526.	4.6	11
162	Role of FoxO transcription factors in aging-associated cardiovascular diseases. Vitamins and Hormones, 2021, 115, 449-475.	1.7	4
163	Comparison of metabolic and functional parameters using cardiac 18F-FDG-PET in early to mid-adulthood male and female mice. EJNMMI Research, 2021, 11, 7.	2.5	3
164	Angiotensin II Increases HMGB1 Expression in the Myocardium Through AT1 and AT2 Receptors When Under Pressure Overload. International Heart Journal, 2021, 62, 162-170.	1.0	5

#	Article	IF	CITATIONS
165	A narrative review of the roles of the miR-15/107 family in heart disease: lessons and prospects for heart disease. Annals of Translational Medicine, 2021, 9, 66-66.	1.7	3
166	Multiscale Strategy to Resolve Stroma–Cardiac Fibroblast Interactions. Circulation Research, 2021, 128, 39-41.	4.5	Ο
167	Assessing the whole-body protein synthetic response to feeding <i>in vivo</i> in human subjects. Proceedings of the Nutrition Society, 2021, 80, 139-147.	1.0	8
168	Complexity in genetic cardiomyopathies and new approaches for mechanism-based precision medicine. Journal of General Physiology, 2021, 153, .	1.9	25
169	Supplemental Berberine in a High-Fat Diet Reduces Adiposity and Cardiac Dysfunction in Offspring of Mouse Dams with Gestational Diabetes Mellitus. Journal of Nutrition, 2021, 151, 892-901.	2.9	7
170	Cardiac Remodeling During Pregnancy With Metabolic Syndrome. Circulation, 2021, 143, 699-712.	1.6	11
171	Exosomes Derived From Hypertrophic Cardiomyocytes Induce Inflammation in Macrophages via miR-155 Mediated MAPK Pathway. Frontiers in Immunology, 2020, 11, 606045.	4.8	21
172	HFpEF: Should We Consider DiabeticÂPatients Separately?. Journal of the American College of Cardiology, 2021, 77, 420-422.	2.8	6
173	PHD Finger Protein 19 Promotes Cardiac Hypertrophy via Epigenetically Regulating SIRT2. Cardiovascular Toxicology, 2021, 21, 451-461.	2.7	9
174	Piperlongumine attenuates angiotensin-II-induced cardiac hypertrophy and fibrosis by inhibiting Akt-FoxO1 signalling. Phytomedicine, 2021, 82, 153461.	5.3	14
176	Immuno-metabolic interfaces in cardiac disease and failure. Cardiovascular Research, 2022, 118, 37-52.	3.8	6
177	EZH2 Dynamically Associates With Non-coding RNAs in Mouse Hearts After Acute Angiotensin II Treatment. Frontiers in Cardiovascular Medicine, 2021, 8, 585691.	2.4	6
178	Accelerometry of Seabream in a Sea-Cage: Is Acceleration a Good Proxy for Activity?. Frontiers in Marine Science, 2021, 8, .	2.5	6
179	Application of Animal Models in Diabetic Cardiomyopathy. Diabetes and Metabolism Journal, 2021, 45, 129-145.	4.7	12
180	LRRC8A contributes to angiotensin II-induced cardiac hypertrophy by interacting with NADPH oxidases via the C-terminal leucine-rich repeat domain. Free Radical Biology and Medicine, 2021, 165, 191-202.	2.9	15
181	Silencing of Sphingosine kinase 1 Affects Maturation Pathways in Mouse Neonatal Cardiomyocytes. International Journal of Molecular Sciences, 2021, 22, 3616.	4.1	2
182	Precision medicine for heart failure based on molecular mechanisms: The 2019 ISHR Research Achievement Award Lecture. Journal of Molecular and Cellular Cardiology, 2021, 152, 29-39.	1.9	3
183	Protein kinase D participates in cardiomyocyte hypertrophy by regulating extracellular signal-regulated and myocyte enhancer factor 2D. Revista Portuguesa De Cardiologia, 2021, 40, 191-200.	0.5	2

#	Article	IF	CITATIONS
184	Short-Chain Enoyl-CoA Hydratase Mediates Histone Crotonylation and Contributes to Cardiac Homeostasis. Circulation, 2021, 143, 1066-1069.	1.6	47
185	RNA expression profiles and regulatory networks in human right ventricular hypertrophy due to high pressure load. IScience, 2021, 24, 102232.	4.1	11
186	Advances in Aptamer-Based Biomarker Discovery. Frontiers in Cell and Developmental Biology, 2021, 9, 659760.	3.7	40
187	Protein kinase D participates in cardiomyocyte hypertrophy by regulating extracellular signal-regulated and myocyte enhancer factor 2D. Revista Portuguesa De Cardiologia (English) Tj ETQq1 1 0.784	31 4.2 gBT	/Overlock 10
188	Ndufs1 Deficiency Aggravates the Mitochondrial Membrane Potential Dysfunction in Pressure Overload-Induced Myocardial Hypertrophy. Oxidative Medicine and Cellular Longevity, 2021, 2021, 1-21.	4.0	18
189	Inhibition of SENP2-mediated Akt deSUMOylation promotes cardiac regeneration via activating Akt pathway. Clinical Science, 2021, 135, 811-828.	4.3	15
190	SIRT6 in Senescence and Aging-Related Cardiovascular Diseases. Frontiers in Cell and Developmental Biology, 2021, 9, 641315.	3.7	29
191	Caspase-1 Abrogates the Salutary Effects of Hypertrophic Preconditioning in Pressure Overload Hearts via IL-1Î ² and IL-18. Frontiers in Molecular Biosciences, 2021, 8, 641585.	3.5	5
192	GPR39 promotes cardiac hypertrophy by regulating the AMPK–mTOR pathway and protein synthesis. Cell Biology International, 2021, 45, 1211-1219.	3.0	8
194	Targeting MMP-Regulation of Inflammation to Increase Metabolic Tolerance to COVID-19 Pathologies: A Hypothesis. Biomolecules, 2021, 11, 390.	4.0	28
195	Bioengineering Clinically Relevant Cardiomyocytes and Cardiac Tissues from Pluripotent Stem Cells. International Journal of Molecular Sciences, 2021, 22, 3005.	4.1	11
196	Cardiac Oxidative Signaling and Physiological Hypertrophy in the Na/K-ATPase α1s/sα2s/s Mouse Model of High Affinity for Cardiotonic Steroids. International Journal of Molecular Sciences, 2021, 22, 3462.	4.1	8
197	Cardiac pathophysiology in sickle cell disease. Journal of Thrombosis and Thrombolysis, 2021, 52, 248-259.	2.1	1
198	Harnessing the Benefits of Endogenous Hydrogen Sulfide to Reduce Cardiovascular Disease. Antioxidants, 2021, 10, 383.	5.1	12
199	Myocardial Infarction: The Protective Role of MiRNAs in Myocardium Pathology. Frontiers in Cardiovascular Medicine, 2021, 8, 631817.	2.4	12
200	Microtubules orchestrate local translation to enable cardiac growth. Nature Communications, 2021, 12, 1547.	12.8	56
201	Celecoxib alleviates pathological cardiac hypertrophy and fibrosis via M1-like macrophage infiltration in neonatal mice. IScience, 2021, 24, 102233.	4.1	11
202	Relationship between oxidative stress and nuclear factor‑erythroid‑2‑related factorÂ2 signaling in diabetic cardiomyopathy (Review). Experimental and Therapeutic Medicine, 2021, 22, 678.	1.8	20

#	Article	IF	CITATIONS
203	The Impact of microRNAs in Renin–Angiotensin-System-Induced Cardiac Remodelling. International Journal of Molecular Sciences, 2021, 22, 4762.	4.1	19
204	Prostaglandin E ₂ induced cardiac hypertrophy through EP2 receptorâ€dependent activation of βâ€catenin in 5/6 nephrectomy rats. ESC Heart Failure, 2021, 8, 1979-1989.	3.1	8
205	miR-145-5p targets paxillin to attenuate angiotensin II-induced pathological cardiac hypertrophy via downregulation of Rac 1, pJNK, p-c-Jun, NFATc3, ANP and by Sirt-1 upregulation. Molecular and Cellular Biochemistry, 2021, 476, 3253-3260.	3.1	6
206	<i>Pygo1</i> regulates pathological cardiac hypertrophy via a β-catenin-dependent mechanism. American Journal of Physiology - Heart and Circulatory Physiology, 2021, 320, H1634-H1645.	3.2	6
207	Targets identified from exercised heart: killing multiple birds with one stone. Npj Regenerative Medicine, 2021, 6, 23.	5.2	21
208	Is heart failure with preserved ejection fraction a â€~dementia' of the heart?. Heart Failure Reviews, 2022, 27, 587-594.	3.9	7
209	Editorial: Cardiac Hypertrophy: From Compensation to Decompensation and Pharmacological Interventions. Frontiers in Pharmacology, 2021, 12, 665936.	3.5	4
210	Motor proteins at the mitochondria–cytoskeleton interface. Journal of Cell Science, 2021, 134, .	2.0	64
211	Molecular Mechanisms of Nigella sativa- and Nigella sativa Exercise-Induced Cardiac Hypertrophy in Rats. Evidence-based Complementary and Alternative Medicine, 2021, 2021, 1-7.	1.2	4
212	Ellagic Acid Prevents Ca2+ Dysregulation and Improves Functional Abnormalities of Ventricular Myocytes via Attenuation of Oxidative Stress in Pathological Cardiac Hypertrophy. Cardiovascular Toxicology, 2021, 21, 630-641.	2.7	3
213	LncRNAs as Therapeutic Targets for Autophagy-involved Cardiovascular Diseases: A Review of Molecular Mechanism and T herapy Strategy. Current Medicinal Chemistry, 2021, 28, 1796-1814.	2.4	4
214	RhoA: a dubious molecule in cardiac pathophysiology. Journal of Biomedical Science, 2021, 28, 33.	7.0	25
215	Small Molecule Compound Nerolidol attenuates Hypertension induced hypertrophy in spontaneously hypertensive rats through modulation of Mel-18-IGF-IIR signalling. Phytomedicine, 2021, 84, 153450.	5.3	8
216	MicroRNAs Regulating Mitochondrial Function in Cardiac Diseases. Frontiers in Pharmacology, 2021, 12, 663322.	3.5	11
217	Role of extracellular signal-regulated kinase 1/2 signaling underlying cardiac hypertrophy. Cardiology Journal, 2021, 28, 473-482.	1.2	12
218	Gender-specific characteristics of hypertrophic response in cardiomyocytes derived from human embryonic stem cells. Journal of Cardiovascular and Thoracic Research, 2021, 13, 146-155.	0.9	3
219	Inflammation as a Possible Trigger for Mitoxantrone-Induced Cardiotoxicity: An In Vivo Study in Adult and Infant Mice. Pharmaceuticals, 2021, 14, 510.	3.8	13
220	Maresin-1 induces cardiomyocyte hypertrophy through IGF-1 paracrine pathway. American Journal of Physiology - Cell Physiology, 2021, 321, C82-C93.	4.6	10

		CITATION RE	PORT	
#	Article		IF	CITATIONS
221	Zebrafish Heart Failure Models. Frontiers in Cell and Developmental Biology, 2021, 9, 6	562583.	3.7	35
222	MicroRNA-30 regulates left ventricular hypertrophy in chronic kidney disease. JCI Insigl	nt, 2021, 6, .	5.0	12
224	Small molecule QF84139 ameliorates cardiac hypertrophy via activating the AMPK sign Acta Pharmacologica Sinica, 2022, 43, 588-601.	naling pathway.	6.1	2
225	HDAC9 exacerbates myocardial infarction via inactivating Nrf2 pathways. Journal of Ph Pharmacology, 2021, , .	armacy and	2.4	4
226	KLK11 promotes the activation of mTOR and protein synthesis to facilitate cardiac hyp Cardiovascular Disorders, 2021, 21, 266.	ertrophy. BMC	1.7	1
227	Mechanoregulation of YAP and TAZ in Cellular Homeostasis and Disease Progression. F and Developmental Biology, 2021, 9, 673599.	Frontiers in Cell	3.7	108
228	Metabolism and Chronic Inflammation: The Links Between Chronic Heart Failure and C Frontiers in Cardiovascular Medicine, 2021, 8, 650278.	omorbidities.	2.4	27
229	Deciphering the effective combinatorial components from Si-Miao-Yong-An decoction intervention on myocardial hypertrophy. Journal of Ethnopharmacology, 2021, 271, 13	regarding the .3833.	4.1	11
230	Functional genomics meta-analysis to identify gene set enrichment networks in cardia Biological Chemistry, 2021, 402, 953-972.	c hypertrophy.	2.5	3
231	Integrated transcriptomics and epigenomics reveal chamber-specific and species-speci characteristics of human and mouse hearts. PLoS Biology, 2021, 19, e3001229.	fic	5.6	5
232	Cardiac 18F-FDG Positron Emission Tomography: An Accurate Tool to Monitor In vivo I Functional Alterations in Murine Myocardial Infarction. Frontiers in Cardiovascular Med 8, 656742.	Metabolic and dicine, 2021,	2.4	3
233	The role of SIRT2 in vascularâ€related and heartâ€related diseases: A review. Journal of Molecular Medicine, 2021, 25, 6470-6478.	Cellular and	3.6	18
235	The Potential Role of Flavonoids in Ameliorating Diabetic Cardiomyopathy via Alleviatic Oxidative Stress, Inflammation and Apoptosis. International Journal of Molecular Scien 5094.	on of Cardiac ces, 2021, 22,	4.1	50
236	Left ventricular hypertrophy and sudden cardiac death. Heart Failure Reviews, 2022, 2	7, 711-724.	3.9	19
238	Fetal Gene Reactivation in Pulmonary Arterial Hypertension: GOOD, BAD, or BOTH?. Co	ells, 2021, 10, 1473.	4.1	9
239	The insulin receptor family and protein kinase B (Akt) are activated in the heart by alka α1-adrenergic receptors. Biochemical Journal, 2021, 478, 2059-2079.	line pH and	3.7	13
240	Loganin Inhibits Angiotensin II–Induced Cardiac Hypertrophy Through the JAK2/STAT Signaling Pathways. Frontiers in Pharmacology, 2021, 12, 678886.	'3 and NF-Î⁰B	3.5	12
241	Pathological cardiac remodeling seen by the eyes of proteomics. Biochimica Et Biophys Proteins and Proteomics, 2021, 1869, 140622.	sica Acta -	2.3	10

#	Article	IF	CITATIONS
242	AAV-mediated expression of NFAT decoy oligonucleotides protects from cardiac hypertrophy and heart failure. Basic Research in Cardiology, 2021, 116, 38.	5.9	10
243	The Diverse Roles of TNNI3K in Cardiac Disease and Potential for Treatment. International Journal of Molecular Sciences, 2021, 22, 6422.	4.1	9
244	Differences in molecular phenotype in mouse and human hypertrophic cardiomyopathy. Scientific Reports, 2021, 11, 13163.	3.3	17
245	The Ca2+-activated cation channel TRPM4 is a positive regulator of pressure overload-induced cardiac hypertrophy. ELife, 2021, 10, .	6.0	19
246	MiR-100-5p regulates cardiac hypertrophy through activation of autophagy by targeting mTOR. Human Cell, 2021, 34, 1388-1397.	2.7	8
247	Casein Kinase-2 Interacting Protein-1 Regulates Physiological Cardiac Hypertrophy via Inhibition of Histone Deacetylase 4 Phosphorylation. Frontiers in Physiology, 2021, 12, 678863.	2.8	2
248	Implication of RAS in Postnatal Cardiac Remodeling, Fibrosis and Dysfunction Induced by Fetal Undernutrition. Pathophysiology, 2021, 28, 273-290.	2.2	4
249	The Role of HECT-Type E3 Ligase in the Development of Cardiac Disease. International Journal of Molecular Sciences, 2021, 22, 6065.	4.1	11
250	Circle the Cardiac Remodeling With circRNAs. Frontiers in Cardiovascular Medicine, 2021, 8, 702586.	2.4	7
251	Oxidative Stress as A Mechanism for Functional Alterations in Cardiac Hypertrophy and Heart Failure. Antioxidants, 2021, 10, 931.	5.1	67
252	Pyroptosis: A New Regulating Mechanism in Cardiovascular Disease. Journal of Inflammation Research, 2021, Volume 14, 2647-2666.	3.5	62
253	m6A modification promotes miR-133a repression during cardiac development and hypertrophy via IGF2BP2. Cell Death Discovery, 2021, 7, 157.	4.7	27
254	The erythropoietin receptor expressed in skeletal muscle is essential for mitochondrial biogenesis and physiological exercise. Pflugers Archiv European Journal of Physiology, 2021, 473, 1301-1313.	2.8	10
255	Runtâ€related transcription factor 1 (Runx1) aggravates pathological cardiac hypertrophy by promoting p53 expression. Journal of Cellular and Molecular Medicine, 2021, 25, 7867-7877.	3.6	12
256	Neuraminidase 1 is a driver of experimental cardiac hypertrophy. European Heart Journal, 2021, 42, 3770-3782.	2.2	29
257	Inhibition of HSP90 Sâ€nitrosylation alleviates cardiac fibrosis via TGFβ/SMAD3 signalling pathway. British Journal of Pharmacology, 2021, 178, 4608-4625.	5.4	13
258	The Expression of miR-365 in Serum of Hypertension Patients with Left Ventricular Hypertrophy Was Up-Regulated, Which Was Positively Correlated with Left Ventricular Mass Index. Pharmacogenomics and Personalized Medicine, 2021, Volume 14, 905-913.	0.7	2
259	LITAF acts as a novel regulator for pathological cardiac hypertrophy. Journal of Molecular and Cellular Cardiology, 2021, 156, 82-94.	1.9	3

#	Article	IF	CITATIONS
260	Recommendation for Cardiac Magnetic Resonance Imaging-Based Phenotypic Study: Imaging Part. Phenomics, 2021, 1, 151-170.	2.9	14
261	The role of the Hippo pathway in heart disease. FEBS Journal, 2022, 289, 5819-5833.	4.7	16
262	Catalase Mediates the Inhibitory Actions of PPARδagainst Angiotensin II-Triggered Hypertrophy in H9c2 Cardiomyocytes. Antioxidants, 2021, 10, 1223.	5.1	1
263	RhoA Signaling in Immune Cell Response and Cardiac Disease. Cells, 2021, 10, 1681.	4.1	4
264	Wogonin Inhibits Cardiac Hypertrophy by Activating Nrf-2-Mediated Antioxidant Responses. Cardiovascular Therapeutics, 2021, 2021, 1-13.	2.5	12
265	Zinc finger and BTB domain-containing protein 20 aggravates angiotensin II-induced cardiac remodeling via the EGFR-AKT pathway. Journal of Molecular Medicine, 2022, 100, 427-438.	3.9	2
266	Drug repurposing to prevent pressure overload-induced cardiac hypertrophy and heart failure. European Heart Journal, 2021, 42, 3783-3785.	2.2	5
267	Integration of transcriptomic data identifies key hallmark genes in hypertrophic cardiomyopathy. BMC Cardiovascular Disorders, 2021, 21, 330.	1.7	4
268	Integrins in cardiac hypertrophy: lessons learned from culture systems. ESC Heart Failure, 2021, 8, 3634-3642.	3.1	7
271	Long Noncoding RNA Cardiac Physiological Hypertrophy–Associated Regulator Induces Cardiac Physiological Hypertrophy and Promotes Functional Recovery After Myocardial Ischemia-Reperfusion Injury. Circulation, 2021, 144, 303-317.	1.6	67
272	Roles of MicroRNAs in Glucose and Lipid Metabolism in the Heart. Frontiers in Cardiovascular Medicine, 2021, 8, 716213.	2.4	8
273	Unveiling the role of exercise training in targeting the inflammatory paradigm of heart failure with preserved ejection fraction: a narrative review. Heart Failure Reviews, 2021, , 1.	3.9	3
274	A non-invasive left ventricular pressure-strain loop study on myocardial work in primary aldosteronism. Hypertension Research, 2021, 44, 1462-1470.	2.7	8
275	Glucagon-like peptide-1 attenuates cardiac hypertrophy via the AngII/AT1R/ACE2 and AMPK/mTOR/p70S6K pathways. Acta Biochimica Et Biophysica Sinica, 2021, 53, 1189-1197.	2.0	5
276	MicroRNA-27b-3p down-regulates <i>FGF1</i> and aggravates pathological cardiac remodelling. Cardiovascular Research, 2022, 118, 2139-2151.	3.8	26
277	ANTAGONIZING THE CX3CR1 RECEPTOR MARKEDLY REDUCES DEVELOPMENT OF CARDIAC HYPERTROPHY AFTER TRANSVERSE AORTIC CONSTRICTION IN MICE. Journal of Cardiovascular Pharmacology, 2021, Publish Ahead of Print, 792-801.	1.9	4
278	New insights into the roles of glucocorticoid signaling dysregulation in pathological cardiac hypertrophy. Heart Failure Reviews, 2022, 27, 1431-1441.	3.9	4
279	Multiscale simulations of left ventricular growth and remodeling. Biophysical Reviews, 2021, 13, 729-746.	3.2	13

#	Article	IF	CITATIONS
280	The function of LncRNA-H19 in cardiac hypertrophy. Cell and Bioscience, 2021, 11, 153.	4.8	17
281	PKM1 Exerts Critical Roles in Cardiac Remodeling Under Pressure Overload in the Heart. Circulation, 2021, 144, 712-727.	1.6	23
282	MiRâ€26aâ€5p alleviates cardiac hypertrophy and dysfunction via targeting ADAM17. Cell Biology International, 2021, 45, 2357-2367.	3.0	15
283	Lutein attenuates angiotensin II- induced cardiac remodeling by inhibiting AP-1/IL-11 signaling. Redox Biology, 2021, 44, 102020.	9.0	27
284	Anti-hypertensive and cardioprotective activities of traditional Chinese medicine-derived polysaccharides: A review. International Journal of Biological Macromolecules, 2021, 185, 917-934.	7.5	26
285	Abnormalities in lysine degradation are involved in early cardiomyocyte hypertrophy development in pressure-overloaded rats. BMC Cardiovascular Disorders, 2021, 21, 403.	1.7	4
286	Cardiomyocyte peroxisome proliferator-activated receptor α is essential for energy metabolism and extracellular matrix homeostasis during pressure overload-induced cardiac remodeling. Acta Pharmacologica Sinica, 2022, 43, 1231-1242.	6.1	11
287	Pharmacological Tuning of Adenosine Signal Nuances Underlying Heart Failure With Preserved Ejection Fraction. Frontiers in Pharmacology, 2021, 12, 724320.	3.5	2
288	Excessive Treadmill Training Produces different Cardiac-related MicroRNA Profiles in the Left and Right Ventricles in Mice. International Journal of Sports Medicine, 2022, 43, 219-229.	1.7	1
289	An Optimized Model of Hypertrophic Preconditioning Confers Cardioprotection in the Mouse. Journal of Surgical Research, 2021, 264, 544-552.	1.6	0
290	Role of PTEN-less in cardiac injury, hypertrophy and regeneration. Cell Regeneration, 2021, 10, 25.	2.6	15
291	Cardiac-specific loss of METTL14 ameliorates cardiac hypertrophy by suppressingTLR4-mediated inflammation and oxidative stress. Biochemical and Biophysical Research Communications, 2021, , .	2.1	0
292	FABP3 Deficiency Exacerbates Metabolic Derangement in Cardiac Hypertrophy and Heart Failure via PPARα Pathway. Frontiers in Cardiovascular Medicine, 2021, 8, 722908.	2.4	18
293	The Effects of Repetitive Use and Pathological Remodeling on Channelrhodopsin Function in Cardiomyocytes. Frontiers in Physiology, 2021, 12, 710020.	2.8	4
294	De-ubiquitination of p300 by USP12 Critically Enhances METTL3 Expression and Ang II-induced cardiac hypertrophy. Experimental Cell Research, 2021, 406, 112761.	2.6	15
295	Connecting different heart diseases through intercellular communication. Biology Open, 2021, 10, .	1.2	9
296	MicroRNAs and Calcium Signaling in Heart Disease. International Journal of Molecular Sciences, 2021, 22, 10582.	4.1	11
297	Clinical Assessment of Ventricular Wall Stress in Understanding Compensatory Hypertrophic Response and Maladaptive Ventricular Remodeling. Journal of Cardiovascular Development and Disease, 2021, 8, 122.	1.6	8

# 298	ARTICLE Striated muscle proteins are regulated both by mechanical deformation and by chemical post-translational modification. Biophysical Reviews, 2021, 13, 679-695.	IF 3.2	Citations
299	Myostatin/Activin Receptor Ligands in Muscle and the Development Status of Attenuating Drugs. Endocrine Reviews, 2022, 43, 329-365.	20.1	24
300	Cardiac geometry, function, and remodeling patterns in patients under maintenance hemodialysis and peritoneal dialysis treatment. Therapeutic Apheresis and Dialysis, 2022, 26, 601-612.	0.9	7
301	PEX5 prevents cardiomyocyte hypertrophy via suppressing the redox-sensitive signaling pathways MAPKs and STAT3. European Journal of Pharmacology, 2021, 906, 174283.	3.5	3
302	Resident cardiac macrophages mediate adaptive myocardial remodeling. Immunity, 2021, 54, 2072-2088.e7.	14.3	76
303	Piezo1-Mediated Mechanotransduction Promotes Cardiac Hypertrophy by Impairing Calcium Homeostasis to Activate Calpain/Calcineurin Signaling. Hypertension, 2021, 78, 647-660.	2.7	42
304	Samm50 Promotes Hypertrophy by Regulating Pink1-Dependent Mitophagy Signaling in Neonatal Cardiomyocytes. Frontiers in Cardiovascular Medicine, 2021, 8, 748156.	2.4	5
305	Links between autophagy and tissue mechanics. Journal of Cell Science, 2021, 134, .	2.0	8
306	TFEC contributes to cardiac hypertrophy by inhibiting AMPK/mTOR signaling. Experimental and Therapeutic Medicine, 2021, 22, 1271.	1.8	3
307	MicroRNA-34c-5p provokes isoprenaline-induced cardiac hypertrophy by modulating autophagy via targeting ATG4B. Acta Pharmaceutica Sinica B, 2022, 12, 2374-2390.	12.0	16
308	Capn4 aggravates angiotensin II-induced cardiac hypertrophy by activating the IGF-AKT signalling pathway. Journal of Biochemistry, 2022, 171, 53-61.	1.7	6
309	Nicotinamide Riboside Alleviates Cardiac Dysfunction and Remodeling in Pressure Overload Cardiac Hypertrophy. Oxidative Medicine and Cellular Longevity, 2021, 2021, 1-10.	4.0	15
310	Therapeutic potential and recent advances on targeting mitochondrial dynamics in cardiac hypertrophy: A concise review. Molecular Therapy - Nucleic Acids, 2021, 25, 416-443.	5.1	24
311	P300/CBP-Associated Factor Activates Cardiac Fibroblasts by SMAD2 Acetylation. International Journal of Molecular Sciences, 2021, 22, 9944.	4.1	10
312	CircHIPK3 Plays Vital Roles in Cardiovascular Disease. Frontiers in Cardiovascular Medicine, 2021, 8, 733248.	2.4	16
313	Sleep-disordered breathing is independently associated with reduced atrial connexin 43 expression. Heart Rhythm, 2021, 18, 2187-2194.	0.7	8
314	Relationship between HSPA1A-regulated gene expression and alternative splicing in mouse cardiomyocytes and cardiac hypertrophy. Journal of Thoracic Disease, 2021, 13, 5517-5533.	1.4	2
315	Atorvastatin treatment ameliorates cardiac function and remodeling induced by isoproterenol attack through mitigation of ferroptosis. Biochemical and Biophysical Research Communications, 2021, 574, 39-47.	2.1	26

#	Article	IF	CITATIONS
316	Prostaglandin E1 attenuates AngII-induced cardiac hypertrophy via EP3 receptor activation and Netrin-1upregulation. Journal of Molecular and Cellular Cardiology, 2021, 159, 91-104.	1.9	6
317	Function of histone methylation and acetylation modifiers in cardiac hypertrophy. Journal of Molecular and Cellular Cardiology, 2021, 159, 120-129.	1.9	22
318	Obesity cardiomyopathy: evidence, mechanisms, and therapeutic implications. Physiological Reviews, 2021, 101, 1745-1807.	28.8	150
319	Targeted Drug Delivery for Cardiovascular Disease: Modeling of Modulated Extracellular Vesicle Release Rates. IEEE Transactions on Nanobioscience, 2021, 20, 444-454.	3.3	8
320	Phosphoenolpyruvate carboxykinase in cell metabolism: Roles and mechanisms beyond gluconeogenesis. Molecular Metabolism, 2021, 53, 101257.	6.5	76
321	Potential molecular mechanism of cardiac hypertrophy in mice induced by exposure to ambient PM2.5. Ecotoxicology and Environmental Safety, 2021, 224, 112659.	6.0	12
322	Resolvin-D1 attenuation of angiotensin II-induced cardiac inflammation in mice is associated with prevention of cardiac remodeling and hypertension. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2021, 1867, 166241.	3.8	15
323	GRK5 is a regulator of fibroblast activation and cardiac fibrosis. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	30
324	SOCS3 Negatively Regulates Cardiac Hypertrophy via Targeting GRP78-Mediated ER Stress During Pressure Overload. Frontiers in Cell and Developmental Biology, 2021, 9, 629932.	3.7	8
325	Expression of cell adhesion molecule, Gicerin/CD146 during the formation of heart and in the cardiac hypertrophy. Molecular and Cellular Biochemistry, 2021, 476, 2021-2028.	3.1	2
326	miR-337-5p promotes the development of cardiac hypertrophy by targeting Ubiquilin-1 (UBQLN1). Bioengineered, 2021, 12, 6771-6781.	3.2	7
327	C-MORE: A High Content Single Cell Morphology Assay for Cardiovascular Medicine. SSRN Electronic Journal, 0, , .	0.4	1
328	Non-coding RNAs in Physiological Cardiac Hypertrophy. Advances in Experimental Medicine and Biology, 2020, 1229, 149-161.	1.6	19
329	Rare Earth Elements Lanthanum and Praseodymium Adversely Affect Neural and Cardiovascular Development in Zebrafish (Danio rerio). Environmental Science & Technology, 2021, 55, 1155-1166.	10.0	39
330	Single-cell analysis of murine fibroblasts identifies neonatal to adult switching that regulates cardiomyocyte maturation. Nature Communications, 2020, 11, 2585.	12.8	71
331	Carboxypeptidase A4 promotes cardiomyocyte hypertrophy through activating PI3K-AKT-mTOR signaling. Bioscience Reports, 2020, 40, .	2.4	14
332	Pharmacological Modulation of Cardiac Remodeling after Myocardial Infarction. Oxidative Medicine and Cellular Longevity, 2020, 2020, 1-11.	4.0	31
333	Context-specific network modeling identifies new crosstalk in β-adrenergic cardiac hypertrophy. PLoS Computational Biology, 2020, 16, e1008490.	3.2	12

CITATION	DEDODT
	KER()KI
Christian	

#	Article	IF	CITATIONS
334	Role of Exercise on Alleviating Pressure Overload-Induced Left Ventricular Dysfunction and Remodeling <i>via</i> AMPK-Dependent Autophagy Activation. International Heart Journal, 2020, 61, 1022-1033.	1.0	7
335	LncRNA AK045171 protects the heart from cardiac hypertrophy by regulating the SP1/MG53 signalling pathway. Aging, 2020, 12, 3126-3139.	3.1	14
336	Circular RNA expression in isoproterenol hydrochloride-induced cardiac hypertrophy. Aging, 2020, 12, 2530-2544.	3.1	16
337	SIRT3 inhibits cardiac hypertrophy by regulating PARP-1 activity. Aging, 2020, 12, 4178-4192.	3.1	22
338	Delphinidin attenuates pathological cardiac hypertrophy via the AMPK/NOX/MAPK signaling pathway. Aging, 2020, 12, 5362-5383.	3.1	30
339	Silencing of circHIPK3 Inhibits Pressure Overload-Induced Cardiac Hypertrophy and Dysfunction by Sponging miR-185-3p. Drug Design, Development and Therapy, 2020, Volume 14, 5699-5710.	4.3	22
340	New Insights and Current Approaches in Cardiac Hypertrophy Cell Culture, Tissue Engineering Models, and Novel Pathways Involving Non-Coding RNA. Frontiers in Pharmacology, 2020, 11, 1314.	3.5	5
341	Myogenic vasoconstriction requiresÂG12/G13 and LARG to maintain local and systemic vascular resistance. ELife, 2019, 8, .	6.0	20
342	Huoxue Qianyang Qutan recipe attenuates Ang Ilâ€ʻinduced cardiomyocyte hypertrophy by regulating reactive oxygen species production. Experimental and Therapeutic Medicine, 2021, 22, 1446.	1.8	0
343	Role of GALNT4 in protecting against cardiac hypertrophy through ASK1 signaling pathway. Cell Death and Disease, 2021, 12, 980.	6.3	4
344	Magnolol Attenuates Right Ventricular Hypertrophy and Fibrosis in Hypoxia-Induced Pulmonary Arterial Hypertensive Rats Through Inhibition of the JAK2/STAT3 Signaling Pathway. Frontiers in Pharmacology, 2021, 12, 755077.	3.5	10
345	Alterations in ACE and ACE2 Activities and Cardiomyocyte Signaling Underlie Improved Myocardial Function in a Rat Model of Repeated Remote Ischemic Conditioning. International Journal of Molecular Sciences, 2021, 22, 11064.	4.1	Ο
346	IgE and TGF-β Signaling: From Immune to Cardiac Remodeling. Journal of Inflammation Research, 2021, Volume 14, 5523-5526.	3.5	1
347	Nitric oxide — soluble guanylate cyclase — cyclic guanosine monophosphate signaling pathway in the pathogenesis of heart failure and search for novel therapeutic targets. Cardiovascular Therapy and Prevention (Russian Federation), 2021, 20, 3035.	1.4	2
348	Long Non-Coding RNAs in Cardiovascular Diseases: Potential Function as Biomarkers and Therapeutic Targets of Exercise Training. Non-coding RNA, 2021, 7, 65.	2.6	21
349	Between Inflammation and Autophagy: The Role of Leptin-Adiponectin Axis in Cardiac Remodeling. Journal of Inflammation Research, 2021, Volume 14, 5349-5365.	3.5	19
350	RNA-binding protein CELF1 promotes cardiac hypertrophy via interaction with PEBP1 in cardiomyocytes. Cell and Tissue Research, 2022, 387, 111-121.	2.9	8
352	The role of cellular senescence in cardiac disease: basic biology and clinical relevance. Nature Reviews Cardiology, 2022, 19, 250-264.	13.7	84

#	Article	IF	CITATIONS
353	Extracellular vesicles in cardiovascular disease: Biological functions and therapeutic implications. , 2022, 233, 108025.		50
354	Cardiac Resident Macrophages Prevent Fibrosis and Stimulate Angiogenesis. Circulation Research, 2021, 129, 1086-1101.	4.5	89
355	Cardiac myosin contraction and mechanotransduction in health and disease. Journal of Biological Chemistry, 2021, 297, 101297.	3.4	36
356	Emerging roles of circRNAs in the pathological process of myocardial infarction. Molecular Therapy - Nucleic Acids, 2021, 26, 828-848.	5.1	36
357	Hypertrophy, heart failure, brain and physical activity - the molecular basis of this connection. Journal of Cardiology & Current Research, 2018, 11, .	0.1	0
360	Cardiac Troponin T Response during High-Intensity Competition and its Correlation with the Corrected QT Interval among the Trained Athletes. Majallah-i DÄnishgÄh-i 'UlÅ«m-i PizishkÄ«-i ĪlÄm, 2020, 28	, 9 <u>.</u> 90.	0
362	Endocrine system dysfunction and chronic heart failure: a clinical perspective. Endocrine, 2021, , 1.	2.3	9
363	Maturation of Stem Cell-Derived Cardiomyocytes: Foe in Translation Medicine. International Journal of Stem Cells, 2021, 14, 366-385.	1.8	3
364	Catecholamine-induced cardiotoxicity: A critical element in the pathophysiology of stroke-induced heart injury. Life Sciences, 2021, 287, 120106.	4.3	23
365	Quercetin Attenuates Cardiac Hypertrophy by Inhibiting Mitochondrial Dysfunction Through SIRT3/PARP-1 Pathway. Frontiers in Pharmacology, 2021, 12, 739615.	3.5	15
366	Slc39a2-Mediated Zinc Homeostasis Modulates Innate Immune Signaling in Phenylephrine-Induced Cardiomyocyte Hypertrophy. Frontiers in Cardiovascular Medicine, 2021, 8, 736911.	2.4	3
368	ERBB2 Targeting Increases Cardiomyocyte \hat{l}^21 -Adrenergic Receptor Density. SSRN Electronic Journal, O, , .	0.4	0
369	Skeletal Muscles. , 2020, , 407-436.		0
370	Key Signaling Pathways in the Cardiovascular System. , 2020, , 337-368.		0
371	Interactions between noncoding RNAs as epigenetic regulatory mechanisms in cardiovascular diseases. Methods in Cell Biology, 2021, 166, 309-348.	1.1	3
372	Low-intensity pulsed ultrasound ameliorates angiotensin II-induced cardiac fibrosis by alleviating inflammation via a caveolin-1-dependent pathway. Journal of Zhejiang University: Science B, 2021, 22, 818-838.	2.8	13
373	Cardioprotective responses to aerobic exercise-induced physiological hypertrophy in zebrafish heart. Journal of Physiological Sciences, 2021, 71, 33.	2.1	9
374	LncRNA TINCR improves cardiac hypertrophy by regulating the miR-211-3p-VEGFB-SDF-1α-CXCR4 pathway. Laboratory Investigation, 2022, 102, 253-262.	3.7	2

ARTICLE IF CITATIONS # Loss of Endothelial Hypoxia Inducible Factorâ€Prolyl Hydroxylase 2 Induces Cardiac Hypertrophy and 375 3.7 8 Fibrosis. Journal of the American Heart Association, 2021, 10, e022077. Transplantation of Human Pluripotent Stem Cell-Derived Cardiomyocytes for Cardiac Regenerative 376 2.4 Therapy. Frontiers in Cardiovascular Medicine, 2021, 8, 707890. C-MORE: A high-content single-cell morphology recognition methodology for liquid biopsies toward 377 6.5 6 personalized cardiovascular medicine. Cell Reports Medicine, 2021, 2, 100436. The Changes of Heart miR-1 and miR-133 Expressions following Physiological Hypertrophy Due to 379 0.2 Endurance Training. Cell Journal, 2020, 22, 133-140. The RING-domain E3 ubiquitin ligase RNF146 promotes cardiac hypertrophy by suppressing the 381 2.6 5 LKB1/AMPK signaling pathway. Experimental Cell Research, 2022, 410, 112954. Prostaglandin E2 EP receptors in cardiovascular disease: An update. Biochemical Pharmacology, 2022, 195, 114858. 4.4 Recent advances on bioengineering approaches for fabrication of functional engineered cardiac 383 11.4 26 pumps: A review. Biomaterials, 2022, 280, 121298. Free fatty acid receptor 2 promotes cardiomyocyte hypertrophy by activating STAT3 and GATA4. Food 384 4.9 Science and Human Wellness, 2022, 11, 405-417. Endoplasmic Reticulum-Mitochondria Contacts: A Potential Therapy Target for Cardiovascular 385 3.7 15 Remodeling-Associated Diseases. Frontiers in Cell and Developmental Biology, 2021, 9, 774989. When one says yes and the other says no; does calcineurin participate in physiologic cardiac 1.6 hypertrophy?. American Journal of Physiology - Advances in Physiology Education, 2022, 46, 84-95. circRNA is a potential target for cardiovascular diseases treatment. Molecular and Cellular 388 19 3.1Biochemistry, 2022, 477, 417-430. Cardiac Effects of Treadmill Running at Different Intensities in a Rat Model. Frontiers in Physiology, 2.8 2021, 12, 774681. KLF2 regulates neutrophil activation and thrombosis in cardiac hypertrophy and heart failure 390 8.2 29 progression. Journal of Clinical Investigation, 2022, 132, . Discovery of Herbacetin as a Novel SGK1 Inhibitor to Alleviate Myocardial Hypertrophy. Advanced Science, 2022, 9, e2101485. 11.2 Cardiac expression of microRNA-7 is associated with adverse cardiac remodeling. Scientific Reports, 392 3.3 6 2021, 11, 22018. mTOR signaling-related microRNAs as cardiac hypertrophy modulators in high-volume endurance training. Journal of Applied Physiology, 2022, 132, 126-139. Electrocardiographic and histopathological characterizations of diabetic cardiomyopathy in rats. 394 5.319 Environmental Science and Pollution Research, 2022, 29, 25723-25732. Vasorin deficiency leads to cardiac hypertrophy by targeting MYL7 in young mice. Journal of Cellular 395 and Molecular Medicine, 2022, 26, 88-98.

#	Article	IF	CITATIONS
396	MiRNAâ€339â€5p promotes isoproterenolâ€induced cardiomyocyte hypertrophy by targeting VCP to activate the mTOR signaling. Cell Biology International, 2021, , .	3.0	6
397	Sex differences in the effects of whole-life, low-dose cadmium exposure on postweaning high-fat diet-induced cardiac pathogeneses. Science of the Total Environment, 2022, 809, 152176.	8.0	8
398	Biosensor-based profiling to track cellular signalling in patient-derived models of dilated cardiomyopathy. Cellular Signalling, 2022, 91, 110239.	3.6	2
399	Hallmarks of exercised heart. Journal of Molecular and Cellular Cardiology, 2022, 164, 126-135.	1.9	14
400	New Molecular and Organelle Alterations Linked to Down Syndrome Heart Disease. Frontiers in Genetics, 2021, 12, 792231.	2.3	6
401	Pharmacy and Exercise as Complimentary Partners for Successful Cardiovascular Ageing. Current Vascular Pharmacology, 2022, 20, 284-302.	1.7	1
402	Cryptochlorogenic acid and its metabolites ameliorate myocardial hypertrophy through a HIF1α-related pathway. Food and Function, 2022, 13, 2269-2282.	4.6	5
403	Peroxiredoxin-5 Knockdown Accelerates Pressure Overload-Induced Cardiac Hypertrophy in Mice. Oxidative Medicine and Cellular Longevity, 2022, 2022, 1-12.	4.0	3
404	Emerging therapeutic targets for cardiac hypertrophy. Expert Opinion on Therapeutic Targets, 2022, 26, 29-40.	3.4	14
405	PRMT7 ablation in cardiomyocytes causes cardiac hypertrophy and fibrosis through β-catenin dysregulation. Cellular and Molecular Life Sciences, 2022, 79, 99.	5.4	11
406	Dangshen Erling Decoction Ameliorates Myocardial Hypertrophy via Inhibiting Myocardial Inflammation. Frontiers in Pharmacology, 2021, 12, 725186.	3.5	6
407	Mitochondria in Pathological Cardiac Hypertrophy Research and Therapy. Frontiers in Cardiovascular Medicine, 2021, 8, 822969.	2.4	20
408	Exercise training worsens cardiac performance in males but does not change ejection fraction and improves hypertrophy in females in a mouse model of metabolic syndrome. Biology of Sex Differences, 2022, 13, 5.	4.1	5
409	Myocardin-related transcription factor A in macrophages mediates pathological hypertrophy. Cardiovascular Research, 2022, , .	3.8	1
410	Trans-cinnamaldehyde suppresses microtubule detyrosination and alleviates cardiac hypertrophy. European Journal of Pharmacology, 2022, 914, 174687.	3.5	5
411	Inhibiting STAT5 significantly attenuated Ang II-induced cardiac dysfunction and inflammation. European Journal of Pharmacology, 2022, 915, 174689.	3.5	7
412	A multi-omics approach to identify molecular alterations in a mouse model of heart failure. Theranostics, 2022, 12, 1607-1620.	10.0	2
413	Exercise: a molecular tool to boost muscle growth and mitochondrial performance in heart failure?. European Journal of Heart Failure, 2022, 24, 287-298.	7.1	16

#	Article	IF	Citations
414	Integrated omics analysis revealed the Tinospora cordifolia intervention modulated multiple signaling pathways in hypertriglyceridemia patients-a pilot clinical trial. Journal of Diabetes and Metabolic Disorders, 0, , 1.	1.9	2
415	Icariin inhibits isoproterenol-induced cardiomyocyte hypertropic injury through activating autophagy via the AMPK/mTOR signaling pathway. Biochemical and Biophysical Research Communications, 2022, 593, 65-72.	2.1	16
416	Targeting mAKAPβ expression as a therapeutic approach for ischemic cardiomyopathy. Gene Therapy, 2023, 30, 543-551.	4.5	4
417	Neutrophil extracellular traps in cardiac hypertrophy: a KLF2 perspective. Journal of Clinical Investigation, 2022, 132, .	8.2	4
418	Lingguizhugan decoction dynamically regulates MAPKs and AKT signaling pathways to retrogress the pathological progression of cardiac hypertrophy to heart failure. Phytomedicine, 2022, 98, 153951.	5.3	9
419	Oxygen sensors mediated HIF-11 \pm accumulation and translocation: A pivotal mechanism of fine particles-exacerbated myocardial hypoxia injury. Environmental Pollution, 2022, 300, 118937.	7.5	3
421	Lycopene in the Prevention of Cardiovascular Diseases. International Journal of Molecular Sciences, 2022, 23, 1957.	4.1	51
422	Gut Microbiome-Targeted Modulations Regulate Metabolic Profiles and Alleviate Altitude-Related Cardiac Hypertrophy in Rats. Microbiology Spectrum, 2022, 10, e0105321.	3.0	10
423	YAP mediates compensatory cardiac hypertrophy through aerobic glycolysis in response to pressure overload. Journal of Clinical Investigation, 2022, 132, .	8.2	43
424	Protein kinases in cardiovascular diseases. Chinese Medical Journal, 2022, 135, 557-570.	2.3	7
425	Downregulation of PTEN Promotes Autophagy via Concurrent Reduction in Apoptosis in Cardiac Hypertrophy in PPAR αâ^'/â^' Mice. Frontiers in Cardiovascular Medicine, 2022, 9, 798639.	2.4	4
426	Integrated Analysis of circRNA-miRNA-mRNA ceRNA Network in Cardiac Hypertrophy. Frontiers in Genetics, 2022, 13, 781676.	2.3	5
427	Spironolactone Inhibits Cardiomyocyte Hypertrophy by Regulating the Ca2+/Calcineurin/p-NFATc3 Pathway. Journal of Healthcare Engineering, 2021, 2021, 1-8.	1.9	2
428	Measuring hypertrophy in neonatal rat primary cardiomyocytes and human iPSC-derived cardiomyocytes. Methods, 2022, 203, 447-464.	3.8	5
429	Effects of Metformin in Heart Failure: From Pathophysiological Rationale to Clinical Evidence. Biomolecules, 2021, 11, 1834.	4.0	47
430	Store-Operated Calcium Entry in the Cardiovascular System. Advances in Experimental Medicine and Biology, 2021, 1349, 303-333.	1.6	2
431	Mechanisms for the development of heart failure and improvement of cardiac function by angiotensin-converting enzyme inhibitors. Scripta Medica, 2022, 53, 51-76.	0.1	3
432	Critical Evaluation of Current Hypotheses for the Pathogenesis of Hypertrophic Cardiomyopathy. International Journal of Molecular Sciences, 2022, 23, 2195.	4.1	11

#	ARTICLE	IF	CITATIONS
434	Noncoding RNAs in Cardiac Hypertrophy and Heart Failure. Cells, 2022, 11, 777.	4.1	18
435	Ketone body oxidation increases cardiac endothelial cell proliferation. EMBO Molecular Medicine, 2022, 14, e14753.	6.9	31
436	Evidence-based mechanistic role of chrysin towards protection of cardiac hypertrophy and fibrosis in rats. British Journal of Nutrition, 2023, 129, 1105-1118.	2.3	1
437	Adrenergic Receptor Regulation of Mitochondrial Function in Cardiomyocytes. Journal of Cardiovascular Pharmacology, 2022, 80, 364-377.	1.9	6
438	Angiotensin II Induces Cardiac Edema and Hypertrophic Remodeling through Lymphatic-Dependent Mechanisms. Oxidative Medicine and Cellular Longevity, 2022, 2022, 1-20.	4.0	9
439	Programmed Exercise Attenuates Familial Hypertrophic Cardiomyopathy in Transgenic E22K Mice via Inhibition of PKC-α/NFAT Pathway. Frontiers in Cardiovascular Medicine, 2022, 9, 808163.	2.4	4
440	Beta-blocker/ACE inhibitor therapy differentially impacts the steady state signaling landscape of failing and non-failing hearts. Scientific Reports, 2022, 12, 4760.	3.3	1
441	Different activation of <scp>MAPKs</scp> and <scp>Akt/GSK3β</scp> after preload vs. afterload elevation. ESC Heart Failure, 2022, 9, 1823-1831.	3.1	2
442	Silica nanoparticles induce pyroptosis and cardiac hypertrophy via ROS/NLRP3/Caspase-1 pathway. Free Radical Biology and Medicine, 2022, 182, 171-181.	2.9	37
443	Pediatric Hypertrophic Cardiomyopathy: Exploring the Genotypeâ€Phenotype Association. Journal of the American Heart Association, 2022, 11, e024220.	3.7	10
444	Beyond its Psychiatric Use: The Benefits of Low-dose Lithium Supplementation. Current Neuropharmacology, 2023, 21, 891-910.	2.9	11
445	Mutant CHCHD10 causes an extensive metabolic rewiring that precedes OXPHOS dysfunction in a murine model of mitochondrial cardiomyopathy. Cell Reports, 2022, 38, 110475.	6.4	11
446	Alterations in gut microbiota and metabolites associated with altitude-induced cardiac hypertrophy in rats during hypobaric hypoxia challenge. Science China Life Sciences, 2022, 65, 2093-2113.	4.9	19
447	Irisin pathways in hearts of Type 1 diabetic adult male rats following 6Âweeks of moderate and high-volume aerobic exercise on a treadmill. Sport Sciences for Health, 2023, 19, 597-605.	1.3	1
448	Fibroblast growth factor 20 attenuates pathological cardiac hypertrophy by activating the SIRT1 signaling pathway. Cell Death and Disease, 2022, 13, 276.	6.3	5
449	Dexmedetomidine attenuates hypoxiaâ€induced cardiomyocyte injury by promoting telomere/telomerase activity: Possible involvement of ERK1/2â€Nrf2 signaling pathway. Cell Biology International, 2022, 46, 1036-1046.	3.0	7
450	Nanoparticles Targeting the Molecular Pathways of Heart Remodeling and Regeneration. Pharmaceutics, 2022, 14, 711.	4.5	3
451	Early Protective Role of Inflammation in Cardiac Remodeling and Heart Failure: Focus on TNFα and Resident Macrophages. Cells, 2022, 11, 1249.	4.1	22

#	Article	IF	CITATIONS
452	Metabolomics analysis delineates the therapeutic effects of hydroethanolic extract of Cucumis sativus L. seeds on hypertension and isoproterenol-induced myocardial infarction. Biomedicine and Pharmacotherapy, 2022, 148, 112704.	5.6	18
453	Ketones regulate endothelial homeostasis. Cell Metabolism, 2022, 34, 513-515.	16.2	5
454	Role of puerarin in pathological cardiac remodeling: A review. Pharmacological Research, 2022, 178, 106152.	7.1	20
455	Calpains as Potential Therapeutic Targets for Myocardial Hypertrophy. International Journal of Molecular Sciences, 2022, 23, 4103.	4.1	1
456	FTZ protects against cardiac hypertrophy and oxidative injury via microRNA-214 / SIRT3 signaling pathway. Biomedicine and Pharmacotherapy, 2022, 148, 112696.	5.6	7
457	Endolysosomal calcium release and cardiac physiology. Cell Calcium, 2022, 104, 102565.	2.4	3
458	Therapeutic Potential of Emerging NAD+-Increasing Strategies for Cardiovascular Diseases. Antioxidants, 2021, 10, 1939.	5.1	11
459	NAP1L5 Promotes Nucleolar Hypertrophy and Is Required for Translation Activation During Cardiomyocyte Hypertrophy. Frontiers in Cardiovascular Medicine, 2021, 8, 791501.	2.4	3
460	Adipose tissue dysfunction, inflammation, and insulin resistance: alternative pathways to cardiac remodelling in schizophrenia. A multimodal, case–control study. Translational Psychiatry, 2021, 11, 614.	4.8	10
462	Lupeol protects against cardiac hypertrophy via TLR4-PI3K-Akt-NF-κB pathways. Acta Pharmacologica Sinica, 2022, 43, 1989-2002.	6.1	16
463	FUNDC1: A Promising Mitophagy Regulator at the Mitochondria-Associated Membrane for Cardiovascular Diseases. Frontiers in Cell and Developmental Biology, 2021, 9, 788634.	3.7	24
464	JNK signaling-dependent regulation of histone acetylation are involved in anacardic acid alleviates cardiomyocyte hypertrophy induced by phenylephrine. PLoS ONE, 2021, 16, e0261388.	2.5	3
465	Sinomenine ameliorates cardiac hypertrophy by activating Nrf2/ARE signaling pathway. Bioengineered, 2021, 12, 12778-12788.	3.2	18
466	Proteomic mapping of atrial and ventricular heart tissue in patients with aortic valve stenosis. Scientific Reports, 2021, 11, 24389.	3.3	3
467	Thymoquinone ameliorates pressure overloadâ€induced cardiac hypertrophy by activating the AMPK signalling pathway. Journal of Cellular and Molecular Medicine, 2022, 26, 855-867.	3.6	7
468	Resuscitating the Field of Cardiac Regeneration: Seeking Answers from Basic Biology. Advanced Biology, 2022, 6, 2101133.	2.5	0
469	RNA-Binding Profiles of CKAP4 as an RNA-Binding Protein in Myocardial Tissues. Frontiers in Cardiovascular Medicine, 2021, 8, 773573.	2.4	2
470	Guanylyl cyclaseâ€A phosphorylation decreases cardiac hypertrophy and improves systolic function in male, but not female, mice. FASEB Journal, 2022, 36, e22069.	0.5	6

#	Article	IF	CITATIONS
471	S-nitrosylation of Hsp90 promotes cardiac hypertrophy in mice through GSK3Î ² signaling. Acta Pharmacologica Sinica, 2022, 43, 1979-1988.	6.1	11
472	miR-208a in Cardiac Hypertrophy and Remodeling. Frontiers in Cardiovascular Medicine, 2021, 8, 773314.	2.4	19
473	MicroRNA miR-27a-3p accelerates cardiac hypertrophy by targeting neuro-oncological ventral antigen 1. Bioengineered, 2022, 13, 8982-8993.	3.2	3
474	Autophagy is Involved in Cardiac Remodeling in Response to Environmental Temperature Change. Frontiers in Physiology, 2022, 13, 864427.	2.8	6
475	Cardiac Remodeling in Heart Failure: Role of Pyroptosis and Its Therapeutic Implications. Frontiers in Cardiovascular Medicine, 2022, 9, 870924.	2.4	15
476	Translating the force—mechano-sensing GPCRs. American Journal of Physiology - Cell Physiology, 2022, 322, C1047-C1060.	4.6	27
477	RIP3 Contributes to Cardiac Hypertrophy by Influencing MLKL-Mediated Calcium Influx. Oxidative Medicine and Cellular Longevity, 2022, 2022, 1-15.	4.0	4
478	Research progress of Nedd4L in cardiovascular diseases. Cell Death Discovery, 2022, 8, 206.	4.7	14
479	The E3 Ligase TRIM16 Is a Key Suppressor of Pathological Cardiac Hypertrophy. Circulation Research, 2022, 130, 1586-1600.	4.5	21
480	Prioritization of Candidate Biomarkers for Degenerative Aortic Stenosis through a Systems Biology-Based In-Silico Approach. Journal of Personalized Medicine, 2022, 12, 642.	2.5	0
481	Salidroside Ameliorates Cardiomyocyte Hypertrophy by Upregulating Peroxisome Proliferator-Activated Receptor-α. Frontiers in Pharmacology, 2022, 13, 865434.	3.5	0
482	Spinacetin alleviates doxorubicin-induced cardiotoxicity by initiating protective autophagy through SIRT3/AMPK/mTOR pathways. Phytomedicine, 2022, 101, 154098.	5.3	15
510	Moderate Aerobic Training Inhibits Middle-Aged Induced Cardiac Calcineurin-NFAT Signaling by Improving TGF-ß, NPR-A, SERCA2, and TRPC6 in Wistar Rats Cell Journal, 2021, 23, 756-762.	0.2	0
511	Signaling Pathways Involved in Myocardial Ischemia–Reperfusion Injury and Cardioprotection: A Systematic Review of Transcriptomic Studies in Sus scrofa. Journal of Cardiovascular Development and Disease, 2022, 9, 132.	1.6	2
512	GCN5-mediated regulation of pathological cardiac hypertrophy via activation of the TAK1-JNK/p38 signaling pathway. Cell Death and Disease, 2022, 13, 421.	6.3	13
513	Antihypertrophic Effect of Menthol from Mentha x piperita - Cardiac Hypertrophy Review. Natural Products Journal, 2022, 12, .	0.3	1
514	Nicotinamide Mononucleotide Alleviates Cardiomyopathy Phenotypes Caused by Short-Chain Enoyl-Coa Hydratase 1 Deficiency. JACC Basic To Translational Science, 2022, 7, 348-362.	4.1	32
515	Plin5, a New Target in Diabetic Cardiomyopathy. Oxidative Medicine and Cellular Longevity, 2022, 2022, 1-20.	4.0	3

#	Δρτιςι ε	IF	CITATIONS
TT	Chinese Classical Music Lowers Blood Pressure and Improves Left Ventricular Hypertrophy in		1
516	Spontaneously Hypertensive Rats. Frontiers in Pharmacology, 2022, 13, 826669.	3.5	I
517	Heart failure with preserved ejection fraction (HFpEF) in type 2 diabetes mellitus: from pathophysiology to therapeutics. Journal of Molecular Cell Biology, 2022, 14, .	3.3	16
518	The role of mitochondrial fission in cardiovascular health and disease. Nature Reviews Cardiology, 2022, 19, 723-736.	13.7	62
519	Current methods for fabricating 3D cardiac engineered constructs. IScience, 2022, 25, 104330.	4.1	4
520	MCC950, a Selective NLRP3 Inhibitor, Attenuates Adverse Cardiac Remodeling Following Heart Failure Through Improving the Cardiometabolic Dysfunction in Obese Mice. Frontiers in Cardiovascular Medicine, 2022, 9, .	2.4	9
521	Liquiritin Attenuates Pathological Cardiac Hypertrophy by Activating the PKA/LKB1/AMPK Pathway. Frontiers in Pharmacology, 2022, 13, 870699.	3.5	9
522	SUMO2-mediated SUMOylation of SH3GLB1 promotes ionizing radiation-induced hypertrophic cardiomyopathy through mitophagy activation. European Journal of Pharmacology, 2022, 924, 174980.	3.5	4
523	Role of circular RNA in myocardial ischemia and ageing-related diseases. Cytokine and Growth Factor Reviews, 2022, 65, 1-11.	7.2	8
524	Phillyrin attenuates norepinephrine-induced cardiac hypertrophy and inflammatory response by suppressing p38/ERK1/2 MAPK and AKT/NF-kappaB pathways. European Journal of Pharmacology, 2022, 927, 175022.	3.5	9
525	The Regulatory Mechanism and Effect of RIPK3 on PE-induced Cardiomyocyte Hypertrophy. Journal of Cardiovascular Pharmacology, 2022, Publish Ahead of Print, .	1.9	1
526	Evidence of altered fatty acid metabolism in dogs with naturally occurring valvular heart disease and congestive heart failure. Metabolomics, 2022, 18, .	3.0	4
527	Non-Coding RNAs in the Therapeutic Landscape of Pathological Cardiac Hypertrophy. Cells, 2022, 11, 1805.	4.1	3
528	Cullin-associated and neddylation-dissociated 1 protein (CAND1) governs cardiac hypertrophy and heart failure partially through regulating calcineurin degradation. Pharmacological Research, 2022, , 106284.	7.1	3
529	Pyruvate Kinase M2 Protects Heart from Pressure Overloadâ€Induced Heart Failure by Phosphorylating RAC1. Journal of the American Heart Association, 2022, 11, .	3.7	7
530	DEC1 represses cardiomyocyte hypertrophy by recruiting PRP19 as an E3 ligase to promote ubiquitination-proteasome-mediated degradation of GATA4. Journal of Molecular and Cellular Cardiology, 2022, 169, 96-110.	1.9	2
531	Effects of Chronic Mild Stress on Cardiac Autonomic Activity, Cardiac Alterations and Renin Angiotensin Aldosterone System in Male Rats. SSRN Electronic Journal, 0, , .	0.4	0
532	Based on network pharmacology and in vitro experiments to prove the effective inhibition of myocardial fibrosis by Buyang Huanwu decoction. Bioengineered, 2022, 13, 13767-13783.	3.2	18
533	Proteomics Reveals Long-Term Alterations in Signaling and Metabolic Pathways Following Both Myocardial Infarction and Chemically Induced Denervation. Neurochemical Research, 0, , .	3.3	0

#	Article	IF	CITATIONS
534	The focal adhesion protein Î ² -parvin controls cardiomyocyte shape and sarcomere assembly in response to mechanical load. Current Biology, 2022, 32, 3033-3047.e9.	3.9	6
535	ECG in left ventricular hypertrophy: A change in paradigm from assessing left ventricular mass to its electrophysiological properties. Journal of Electrocardiology, 2022, 73, 153-156.	0.9	6
536	Identification of a long noncoding RNA Gm17501 as a novel negative regulator of cardiac hypertrophy. Experimental Cell Research, 2022, 418, 113262.	2.6	0
537	Limonin stabilises sirtuin 6 (SIRT6) by activating ubiquitin specific peptidase 10 (USP10) in cardiac hypertrophy. British Journal of Pharmacology, 2022, 179, 4516-4533.	5.4	8
538	Future scope and challenges for congestive heart failure: Moving towards development of pharmacotherapy. Canadian Journal of Physiology and Pharmacology, 0, , .	1.4	2
539	Can't handle the stress? Mechanobiology and disease. Trends in Molecular Medicine, 2022, 28, 710-725.	6.7	24
540	Piezo1 is the cardiac mechanosensor that initiates the cardiomyocyte hypertrophic response to pressure overload in adult mice. , 2022, 1, 577-591.		34
541	Cardiomyocyte Proliferation from Fetal- to Adult- and from Normal- to Hypertrophy and Failing Hearts. Biology, 2022, 11, 880.	2.8	10
542	New insight into the regression of cardiac fibrosis. American Journal of Physiology - Heart and Circulatory Physiology, 2022, 323, H201-H203.	3.2	2
544	Activation of transient receptor potential vanilloid 4 is involved in pressure overload-induced cardiac hypertrophy. ELife, 0, 11, .	6.0	9
545	Assessing Causal Associations of Atopic Dermatitis With Heart Failure and Other Cardiovascular Outcomes: A Mendelian Randomization Study. Frontiers in Cardiovascular Medicine, 0, 9, .	2.4	1
546	Targeting miR-30d reverses pathological cardiac hypertrophy. EBioMedicine, 2022, 81, 104108.	6.1	15
547	Epoxyeicosatrienoic acid: A potential therapeutic target of heart failure with preserved ejection fraction. Biomedicine and Pharmacotherapy, 2022, 153, 113326.	5.6	4
548	Metformin Attenuates Cardiac Hypertrophy Via the HIF-11±/PPAR-1³ Signaling Pathway in High-Fat Diet Rats. Frontiers in Pharmacology, 0, 13, .	3.5	3
549	Identification of a Hydrogen-Sulfide-Releasing Isochroman-4-One Hybrid as a Cardioprotective Candidate for the Treatment of Cardiac Hypertrophy. Molecules, 2022, 27, 4114.	3.8	1
550	Transient Receptor Potential Vanilloid Type 1 Protects Against Pressure Overload–Induced Cardiac Hypertrophy by Promoting Mitochondria-Associated Endoplasmic Reticulum Membranes. Journal of Cardiovascular Pharmacology, 2022, 80, 430-441.	1.9	8
551	Rhein attenuates angiotensin II-induced cardiac remodeling by modulating AMPK–FGF23 signaling. Journal of Translational Medicine, 2022, 20, .	4.4	9
552	Short-Chain Fatty Acids in the Metabolism of Heart Failure – Rethinking the Fat Stigma. Frontiers in Cardiovascular Medicine, 0, 9, .	2.4	18

O		D	
		REDUDI	
CITAI	TO N	KLFOK	

#	Article	IF	CITATIONS
553	Histone demethylase KDM3C regulates the lncRNA GAS5–miRâ€495â€3p–PHF8 axis in cardiac hypertrophy. Annals of the New York Academy of Sciences, 2022, 1516, 286-299.	3.8	1
554	A Bibliometric and Visualized Analysis of Uremic Cardiomyopathy From 1990 to 2021. Frontiers in Cardiovascular Medicine, 0, 9, .	2.4	5
555	Exercise-derived peptide protects against pathological cardiac remodeling. EBioMedicine, 2022, 82, 104164.	6.1	10
556	Global profiling of protein lysine malonylation in mouse cardiac hypertrophy. Journal of Proteomics, 2022, 266, 104667.	2.4	9
557	Multiomic analyses reveal enriched glycolytic processes in \hat{l}^2 -myosin heavy chain-expressed cardiomyocytes in early cardiac hypertrophy. , 2022, 1, 100011.		0
558	Emerging roles of the RNA modifications N6-methyladenosine and adenosine-to-inosine in cardiovascular diseases. Molecular Therapy - Nucleic Acids, 2022, 29, 426-461.	5.1	11
559	The overestimation of concentric hypertrophy in patients with HFpEF as determined by 2D- echocardiography. Global Cardiology Science & Practice, 2022, 2022, .	0.4	0
560	Mechanism of histone deacetylases in cardiac hypertrophy and its therapeutic inhibitors. Frontiers in Cardiovascular Medicine, 0, 9, .	2.4	9
561	CDC-like kinase 4 deficiency contributes to pathological cardiac hypertrophy by modulating NEXN phosphorylation. Nature Communications, 2022, 13, .	12.8	9
562	Dipeptide IF and Exercise Training Attenuate Hypertension in SHR Rats by Inhibiting Fibrosis and Hypertrophy and Activating AMPKα1, SIRT1, and PGC1α. International Journal of Molecular Sciences, 2022, 23, 8167.	4.1	3
563	Follistatin-like 1 and its paralogs in heart development and cardiovascular disease. Heart Failure Reviews, 2022, 27, 2251-2265.	3.9	6
564	Long non-coding RNAs in the pathogenesis of heart failure: A literature review. Frontiers in Cardiovascular Medicine, 0, 9, .	2.4	4
565	Serum complement C1q level is associated with left ventricular hypertrophy induced by coarctation of the aorta: A retrospective observational study. BMC Cardiovascular Disorders, 2022, 22, .	1.7	0
566	Hyperglycemia promotes myocardial dysfunction via the ERS-MAPK10 signaling pathway in db/db mice. Laboratory Investigation, 2022, 102, 1192-1202.	3.7	4
567	Hyperhomocysteinemia Promotes Cardiac Hypertrophy in Hypertension. Oxidative Medicine and Cellular Longevity, 2022, 2022, 1-16.	4.0	6
568	Myocardial work: The analytical methodology and clinical utilities. Hellenic Journal of Cardiology, 2022, 68, 46-59.	1.0	6
569	Neuraminidases—Key Players in the Inflammatory Response after Pathophysiological Cardiac Stress and Potential New Therapeutic Targets in Cardiac Disease. Biology, 2022, 11, 1229.	2.8	2
570	Clinical and Molecular Implications of Osteopontin in Heart Failure. Current Issues in Molecular Biology, 2022, 44, 3573-3597.	2.4	8

ARTICLE IF CITATIONS # Gq Signaling in Autophagy Control: Between Chemical and Mechanical Cues. Antioxidants, 2022, 11, 571 5.1 0 1599. Exploring Key Genes and Pathways of Cardiac Hypertrophy Based on Bioinformatics. Disease Markers, 572 1.3 2022, 2022, 1-8. Targeting Myocardial Mitochondria-STING-Polyamine Axis Prevents Cardiac Hypertrophy in Chronic 573 4.1 12 Kidney Disease. JACC Basic To Translational Science, 2022, 7, 820-840. The roles and mechanisms of epigenetic regulation in pathological myocardial remodeling. Frontiers 574 2.4 in Cardiovascular Medicine, 0, 9, . Upregulation of key genes Eln and Tgfb3 were associated with the severity of cardiac hypertrophy. 575 2.8 2 BMC Genomics, 2022, 23, . MKK6 deficiency promotes cardiac dysfunction through MKK3-p38 \hat{J} / \hat{J} -mTOR hyperactivation. ELife, 0, 11, . 6.0 Aurintricarboxylic Acid Protects Isoproterenol Induced Left Ventricular Hypertrophy by Modulating 577 1.6 0 TWEAK Signaling. Cardiovascular Pathology, 2022, , 107468. Identification of circular RNAs in cardiac hypertrophy and cardiac fibrosis. Frontiers in 3.5 Pharmacology, 0, 13, . Xin-Ji-Er-Kang Alleviates Isoproterenol-Induced Myocardial Hypertrophy in Mice through the Nrf2/HO-1 580 1.2 0 Signaling Pathway. Evidence-based Complementary and Alternative Medicine, 2022, 2022, 1-11. Molecular mechanisms of sacubitril/valsartan in cardiac remodeling. Frontiers in Pharmacology, 0, 13, 581 3.5 The Hippo-YAP pathway in various cardiovascular diseases: Focusing on the inflammatory response. 582 9 4.8 Frontiers in Immunology, 0, 13, . Self-limiting bidirectional positive feedback between P53 and P21 is involved in cardiac hypertrophy. 3.5 European Journal of Pharmacology, 2022, 932, 175239. Research Progress on the Correlation and Molecular Mechanism of GATA4 Gene Expression 584 0.0 0 Regulation and Heart Failure. Advances in Clinical Medicine, 2022, 12, 7546-7551. Hydroxytyrosol improves strenuous exercise-associated cardiac pathological changes <i>via</i>modulation of mitochondrial homeostasis. Food and Function, 2022, 13, 8676-8684. 4.6 Emerging roles of TRIM27 in cancer and other human diseases. Frontiers in Cell and Developmental 587 2 3.7 Biology, 0, 10, . Mechanistic analysis of resveratrol in cardiac hypertrophy by network pharmacology and animal 2.4 experiments. Molecular Medicine Reports, 2022, 26, . BRD4 Silencing Protects Angiotensin II-Induced Cardiac Hypertrophy by Inhibiting TLR4/NF-ήB and 589 1.1 3 Activating Nrf2-HO-1 Pathways. Cardiology Research and Practice, 2022, 2022, 1-11. Protective Effect of Natural Medicinal Plants on Cardiomyocyte Injury in Heart Failure: Targeting the 590 Dysregulation of Mitochondrial Homeostasis and Mitophagy. Oxidative Medicine and Cellular Longevity, 2022, 2022, 1-24.

#	Article	IF	CITATIONS
592	Exercise training maintains cardiovascular health: signaling pathways involved and potential therapeutics. Signal Transduction and Targeted Therapy, 2022, 7, .	17.1	34
593	SUMOylation targeting mitophagy in cardiovascular diseases. Journal of Molecular Medicine, 2022, 100, 1511-1538.	3.9	7
594	IRX2 activated by jumonji domain-containing protein 2A is crucial for cardiac hypertrophy and dysfunction in response to the hypertrophic stimuli. International Journal of Cardiology, 2023, 371, 332-344.	1.7	5
595	Activating transcription factor 3 inhibits angiotensinÂll‑induced cardiomyocyte viability and fibrosis by activating the transcription of cysteine‑rich angiogenic protein 61. Molecular Medicine Reports, 2022, 26, .	2.4	0
596	In situ diagnosis and simultaneous treatment of cardiac diseases using a single-device platform. Science Advances, 2022, 8, .	10.3	13
597	Effects of Chronic Mild Stress on Cardiac Autonomic Activity, Cardiac Structure and Renin–Angiotensin–Aldosterone System in Male Rats. Veterinary Sciences, 2022, 9, 539.	1.7	1
599	Treatment of myocardial interstitial fibrosis in pathological myocardial hypertrophy. Frontiers in Pharmacology, 0, 13, .	3.5	1
600	Molecular basis and clinical implications of HIFs in cardiovascular diseases. Trends in Molecular Medicine, 2022, 28, 916-938.	6.7	11
601	Nicotine and novel tobacco products drive adverse cardiac remodeling and dysfunction in preclinical studies. Frontiers in Cardiovascular Medicine, 0, 9, .	2.4	1
602	Irisin at the crossroads of inter-organ communications: Challenge and implications. Frontiers in Endocrinology, 0, 13, .	3.5	7
603	Development of non-bias phenotypic drug screening for cardiomyocyte hypertrophy by image segmentation using deep learning. Biochemical and Biophysical Research Communications, 2022, 632, 181-188.	2.1	1
604	Heart Failure Pathogenesis Elucidation and New Treatment Method Development. JMA Journal, 2022, 5, 399-406.	0.8	0
605	A Heart Failure Model Established by Pressure Overload Caused by Abdominal Aortic Contraction in Rat. Disease Markers, 2022, 2022, 1-7.	1.3	0
606	Adaptation of cardiomyogenesis to the generation and maturation of cardiomyocytes from human pluripotent stem cells. IUBMB Life, 0, , .	3.4	1
608	Exercise sustains the hallmarks of health. Journal of Sport and Health Science, 2023, 12, 8-35.	6.5	25
609	Benefits of SGLT2 inhibitors in arrhythmias. Frontiers in Cardiovascular Medicine, 0, 9, .	2.4	7
611	E3 ubiquitin ligase RNF5 attenuates pathological cardiac hypertrophy through STING. Cell Death and Disease, 2022, 13, .	6.3	7
612	Perilipin Isoforms and PGC-1α Are Regulated Differentially in Rat Heart during Pregnancy-Induced Physiological Cardiac Hypertrophy. Medicina (Lithuania), 2022, 58, 1433.	2.0	0

#	Article	IF	CITATIONS
613	GSDMD (Gasdermin D) Mediates Pathological Cardiac Hypertrophy and Generates a Feed-Forward Amplification Cascade via Mitochondria-STING (Stimulator of Interferon Genes) Axis. Hypertension, 2022, 79, 2505-2518.	2.7	19
614	Metformin Prevents Endothelial Dysfunction in Endometriosis through Downregulation of ET-1 and Upregulation of eNOS. Biomedicines, 2022, 10, 2782.	3.2	1
615	Advances in the study of nicotinamide adenine dinucleotide phosphate oxidase in myocardial remodeling. Frontiers in Cardiovascular Medicine, 0, 9, .	2.4	6
616	Intermittent exposure to chlorpyrifos results in cardiac hypertrophy and oxidative stress in rats. Toxicology, 2022, 482, 153357.	4.2	6
617	Leonurine attenuates angiotensin II-induced cardiac injury and dysfunction via inhibiting MAPK and NF-κB pathway. Phytomedicine, 2023, 108, 154519.	5.3	8
618	Actin-Binding Proteins in Cardiac Hypertrophy. Cells, 2022, 11, 3566.	4.1	2
619	SENP1 Protects Against Pressure Overloadâ€Induced Cardiac Remodeling and Dysfunction Via Inhibiting STAT3 Signaling. Journal of the American Heart Association, 2022, 11, .	3.7	6
620	Research progress on N ⁶ -adenosylate methylation RNA modification in heart failure remodeling. Journal of Translational Internal Medicine, 2023, 10, 340-348.	2.5	10
621	Pathophysiology, Diagnosis and Treatment of Spontaneous Coronary Artery Dissection in Peripartum Women. Journal of Clinical Medicine, 2022, 11, 6657.	2.4	2
622	Blocking VCAM-1 ameliorates hypertensive cardiac remodeling by impeding macrophage infiltration. Frontiers in Pharmacology, 0, 13, .	3.5	6
623	Involvement of circRNAs in the Development of Heart Failure. International Journal of Molecular Sciences, 2022, 23, 14129.	4.1	7
624	Loss of ADAM15 Exacerbates Transition to Decompensated Myocardial Hypertrophy and Dilation Through Activation of the Calcineurin Pathway. Hypertension, 2023, 80, 97-110.	2.7	1
625	A Glb1-2A-mCherry reporter monitors systemic aging and predicts lifespan in middle-aged mice. Nature Communications, 2022, 13, .	12.8	6
626	Extracellular vesicles DJ-1 derived from hypoxia-conditioned hMSCs alleviate cardiac hypertrophy by suppressing mitochondria dysfunction and preventing ATRAP degradation. Pharmacological Research, 2023, 187, 106607.	7.1	5
627	EFFECT OF AEROBIC AND ANAEROBIC TRAINING ON DIFFERENT ERGOMETERS IN RAT MUSCLE AND HEART TISSUES. Acta Ortopedica Brasileira, 2022, 30, .	0.5	0
628	Molecular Mechanisms of Mitochondrial Quality Control in Ischemic Cardiomyopathy. International Journal of Biological Sciences, 2023, 19, 426-448.	6.4	16
629	SIRT6 in Aging, Metabolism, Inflammation and Cardiovascular Diseases. , 2022, 13, 1787.		24
630	MiR-423-5p Inhibition Exerts Protective Effects on Angiotensin II-Induced Cardiomyocyte Hypertrophy. Tohoku Journal of Experimental Medicine, 2023, 259, 199-208.	1.2	1

#	Article	IF	CITATIONS
631	Detrimental Role of PDZ-RhoGEF in Pathological Cardiac Hypertrophy. Hypertension, 0, , .	2.7	0
632	Molecular mechanisms and promising role of dihydromyricetin in cardiovascular diseases. Physiological Research, 2022, 71, 749-762.	0.9	2
633	Sarcopenia and echocardiographic parameters for prediction of cardiovascular events and mortality in patients undergoing maintenance hemodialysis. PeerJ, 0, 10, e14429.	2.0	1
635	Developmental endothelial locus-1 in cardiovascular and metabolic diseases: A promising biomarker and therapeutic target. Frontiers in Immunology, 0, 13, .	4.8	5
636	The Potential of Exerkines in Women's COVID-19: A New Idea for a Better and More Accurate Understanding of the Mechanisms behind Physical Exercise. International Journal of Environmental Research and Public Health, 2022, 19, 15645.	2.6	3
637	Echocardiography phenotyping in murine genetic reference population of BXD strains reveals significant QTLs associated with cardiac function and morphology. Physiological Genomics, 2023, 55, 51-66.	2.3	3
638	Role of Adiponectin in Cardiovascular Diseases Related to Glucose and Lipid Metabolism Disorders. International Journal of Molecular Sciences, 2022, 23, 15627.	4.1	12
639	Systems Biology in Chronic Heart Failure—Identification of Potential miRNA Regulators. International Journal of Molecular Sciences, 2022, 23, 15226.	4.1	7
640	An overview of alamadine/MrgD signaling and its role in cardiomyocytes. American Journal of Physiology - Cell Physiology, 2023, 324, C606-C613.	4.6	1
641	Maslinic Acid: A New Compound for the Treatment of Multiple Organ Diseases. Molecules, 2022, 27, 8732.	3.8	7
642	A novel circ_0018553 protects against angiotensin-induced cardiac hypertrophy in cardiomyocytes by modulating the miR-4731/SIRT2 signaling pathway. Hypertension Research, 2023, 46, 421-436.	2.7	8
643	The Primary Alteration of Ventricular Myocardium Conduction: The Significant Determinant of Left Bundle Branch Block Pattern. Cardiology Research and Practice, 2022, 2022, 1-8.	1.1	2
644	Sigma-1 receptor is involved in modification of ER-mitochondria proximity and Ca2+ homeostasis in cardiomyocytes. Journal of Pharmacological Sciences, 2023, 151, 128-133.	2.5	6
645	Inappropriate Activation of TLR4/NF-κB is a Cause of Heart Failure. Cardiovascular Innovations and Applications, 2022, 7, .	0.3	1
646	FOXO3a-dependent PARKIN negatively regulates cardiac hypertrophy by restoring mitophagy. Cell and Bioscience, 2022, 12, .	4.8	3
647	Gene Therapy for Cardiomyocyte Renewal: Cell Cycle, a Potential Therapeutic Target. Molecular Diagnosis and Therapy, 0, , .	3.8	Ο
648	GPR30 Alleviates Pressure Overload-Induced Myocardial Hypertrophy in Ovariectomized Mice by Regulating Autophagy. International Journal of Molecular Sciences, 2023, 24, 904.	4.1	1
649	Regression of cardiac hypertrophy in health and disease: mechanisms and therapeutic potential. Nature Reviews Cardiology, 2023, 20, 347-363.	13.7	17

			_
#	ARTICLE	IF	CITATIONS
650	Momordicine I alleviates isoproterenol-induced cardiomyocyte hypertrophy through suppression of PLA2G6 and DGK-ζ. Korean Journal of Physiology and Pharmacology, 1993, 27, 75-84.	1.2	1
651	Effect of sodium-glucose cotransporter protein-2 inhibitors on left ventricular hypertrophy in patients with type 2 diabetes: A systematic review and meta-analysis. Frontiers in Endocrinology, 0, 13, .	3.5	0
652	Novel insights into the involvement of mitochondrial fission/fusion in heart failure: From molecular mechanisms to targeted therapies. Cell Stress and Chaperones, 2023, 28, 133-144.	2.9	5
653	Targeting integrin pathways: mechanisms and advances in therapy. Signal Transduction and Targeted Therapy, 2023, 8, .	17.1	95
655	Lineage-specific regulatory changes in hypertrophic cardiomyopathy unraveled by single-nucleus RNA-seq and spatial transcriptomics. Cell Discovery, 2023, 9, .	6.7	8
656	Editorial: Circadian biology, cardiovascular function and disease. Frontiers in Pharmacology, 0, 14, .	3.5	0
657	Association of lipoprotein(a) with left ventricular hypertrophy in patients with new-onset acute myocardial infarction: A large cross-sectional study. Clinica Chimica Acta, 2023, 540, 117226.	1.1	1
658	Effect of inflammation on cytochrome P450-mediated arachidonic acid metabolism and the consequences on cardiac hypertrophy. Drug Metabolism Reviews, 2023, 55, 50-74.	3.6	2
659	Phillyrin Inhibits Isoproterenol-Induced Cardiac Hypertrophy Via P38 and NF-κB Pathways. Natural Product Communications, 2023, 18, 1934578X2211445.	0.5	0
661	Profiling of Targeted miRNAs (8-nt) for the Genes Involved in Type 2 Diabetes Mellitus and Cardiac Hypertrophy. Molecular Biology, 0, , .	1.3	0
662	Cardiac Plin5 interacts with SERCA2 and promotes calcium handling and cardiomyocyte contractility. Life Science Alliance, 2023, 6, e202201690.	2.8	4
663	Efficacy of cardiometabolic drugs in reduction of epicardial adipose tissue: a systematic review and meta-analysis. Cardiovascular Diabetology, 2023, 22, .	6.8	15
665	CTRP1: A novel player in cardiovascular and metabolic diseases. Cytokine, 2023, 164, 156162.	3.2	2
666	Using Machine Learning Methods in Identifying Genes Associated with COVID-19 in Cardiomyocytes and Cardiac Vascular Endothelial Cells. Life, 2023, 13, 1011.	2.4	1
667	New insights into the molecular mechanisms of SGLT2 inhibitors on ventricular remodeling. International Immunopharmacology, 2023, 118, 110072.	3.8	2
668	Gramine protects against pressure overload-induced pathological cardiac hypertrophy through Runx1-TGFBR1 signaling. Phytomedicine, 2023, 114, 154779.	5.3	2
669	Exercising heart failure patients: cardiac protection through preservation of mitochondrial function and substrate utilization?. Current Opinion in Physiology, 2023, 33, 100656.	1.8	1
670	Noncoding RNAs: a new frontier in regulation of exercise-induced physiological cardiac hypertrophy. Current Opinion in Physiology, 2023, 33, 100653.	1.8	0

#	Article	IF	CITATIONS
671	Aloe-emodin ameliorated MI-induced cardiac remodeling in mice via inhibiting TGF-β/SMAD signaling via up-regulating SMAD7. Phytomedicine, 2023, 114, 154793.	5.3	2
672	Serum exosomes derived from spontaneously hypertensive rats induce cardiac hypertrophy in vitro and in vivo by increasing autocrine release of angiotensin II in cardiomyocytes. Biochemical Pharmacology, 2023, 210, 115462.	4.4	1
673	H2S regulates redox signaling downstream of cardiac β-adrenergic receptors in a G6PD-dependent manner. Cellular Signalling, 2023, 107, 110664.	3.6	0
674	Aerobic Exercise Ameliorates Myocardial Fibrosis via Affecting Vitamin D Receptor and Transforming Growth Factor-Î ² 1 Signaling in Vitamin D-Deficient Mice. Nutrients, 2023, 15, 741.	4.1	6
675	Therapeutic Use and Molecular Aspects of Ivabradine in Cardiac Remodeling: A Review. International Journal of Molecular Sciences, 2023, 24, 2801.	4.1	6
676	Increased angiotensin II coupled with decreased Adra1a expression enhances cardiac hypertrophy in pregnancy-associated hypertensive mice. Journal of Biological Chemistry, 2023, 299, 102964.	3.4	1
677	Dose-dependent Effects of PRC2 and HDAC Inhibitors on Cardiomyocyte Hypertrophy Induced by Phenylephrine. Current Drug Targets, 2023, 24, 371-378.	2.1	0
678	Notch1 Is Involved in Physiologic Cardiac Hypertrophy of Mice via the p38 Signaling Pathway after Voluntary Running. International Journal of Molecular Sciences, 2023, 24, 3212.	4.1	1
679	IGF-1 boosts mitochondrial function by a Ca2+ uptake-dependent mechanism in cultured human and rat cardiomyocytes. Frontiers in Physiology, 0, 14, .	2.8	1
681	Combining three independent pathological stressors induces a heart failure with preserved ejection fraction phenotype. American Journal of Physiology - Heart and Circulatory Physiology, 2023, 324, H443-H460.	3.2	6
682	Mitochondrial miRNA as epigenomic signatures: Visualizing aging-associated heart diseases through a new lens. Ageing Research Reviews, 2023, 86, 101882.	10.9	3
684	NT-proBNP trajectory after transcatheter aortic valve replacement and its association with 5-year clinical outcomes. Frontiers in Cardiovascular Medicine, 0, 10, .	2.4	0
685	Single cell and lineage tracing studies reveal the impact of CD34+ cells on myocardial fibrosis during heart failure. Stem Cell Research and Therapy, 2023, 14, .	5.5	3
686	Deficiency of GDF-11 Accelerates TAC-Induced HeartÂFailure by Impairing Cardiac Angiogenesis. JACC Basic To Translational Science, 2023, 8, 617-635.	4.1	1
687	Blocking Store-Operated Ca2+ Entry to Protect HL-1 Cardiomyocytes from Epirubicin-Induced Cardiotoxicity. Cells, 2023, 12, 723.	4.1	0
688	Identification of hypertrophy-modulating Cullin-RING ubiquitin ligases in primary cardiomyocytes. Frontiers in Physiology, 0, 14, .	2.8	0
689	A Kinase Interacting Protein 1 (AKIP1) promotes cardiomyocyte elongation and physiological cardiac remodelling. Scientific Reports, 2023, 13, .	3.3	2
690	The multifaceted biology of lncR-Meg3 in cardio-cerebrovascular diseases. Frontiers in Genetics, 0, 14,	2.3	0

#	Article	IF	CITATIONS
691	Naringenin Attenuates Isoprenaline-Induced Cardiac Hypertrophy by Suppressing Oxidative Stress through the AMPK/NOX2/MAPK Signaling Pathway. Nutrients, 2023, 15, 1340.	4.1	2
692	Proteomic Analysis in Valvular Cardiomyopathy: Aortic Regurgitation vs. Aortic Stenosis. Cells, 2023, 12, 878.	4.1	Ο
693	The multifaceted nature of endogenous cardiac regeneration. Frontiers in Cardiovascular Medicine, 0, 10, .	2.4	3
694	Silicate Ions Derived from Calcium Silicate Extract Decelerate Ang II-Induced Cardiac Remodeling. Tissue Engineering and Regenerative Medicine, 0, , .	3.7	1
695	Bcl-x short-isoform is essential for maintaining homeostasis of multiple tissues. IScience, 2023, 26, 106409.	4.1	2
696	Conventional and genetic associations between resting heart rate, cardiac morphology and function as assessed by magnetic resonance imaging: Insights from the UK biobank population study. Frontiers in Cardiovascular Medicine, 0, 10, .	2.4	0
697	The Drp1-Mediated Mitochondrial Fission Protein Interactome as an Emerging Core Player in Mitochondrial Dynamics and Cardiovascular Disease Therapy. International Journal of Molecular Sciences, 2023, 24, 5785.	4.1	18
698	VECF-B hypertrophy predisposes to transition from diastolic to systolic heart failure in hypertensive rats. Cardiovascular Research, 0, , .	3.8	0
699	Ganoderma lucidum polysaccharides attenuates pressure-overload-induced pathological cardiac hypertrophy. Frontiers in Pharmacology, 0, 14, .	3.5	3
700	Cardiac regeneration: Pre-existing cardiomyocyte as the hub of novel signaling pathway. Genes and Diseases, 2024, 11, 747-759.	3.4	1
701	Treatment Decision in Aortic Stenosis—Look at the Valve but Do Not Forget the Ventricle. SN Comprehensive Clinical Medicine, 2023, 5, .	0.6	0
702	Hypoxia-Inducible Factor 1-Alpha and Glucose Metabolism during Cardiac Remodeling Progression from Hypertrophy to Heart Failure. International Journal of Molecular Sciences, 2023, 24, 6201.	4.1	6
703	SWAP70 Overexpression Protects Against Pathological Cardiac Hypertrophy in a TAK1â€Dependent Manner. Journal of the American Heart Association, 2023, 12, .	3.7	3
704	Inflammation macrophages contribute to cardiac homeostasis. Cardiology Plus, 0, Publish Ahead of Print, .	0.7	1
705	TIMP3 induces gene expression partly through PI3K and their association with vascularization and heart rate. Frontiers in Cardiovascular Medicine, 0, 10, .	2.4	0
706	Dynamic mechanobiology of cardiac cells and tissues: Current status and future perspective. Biophysics Reviews, 2023, 4, .	2.7	6
707	Subclinical cardiac abnormalities in children with biliary atresia correlate with outcomes after liver transplantation. Frontiers in Pediatrics, 0, 11, .	1.9	0
708	STIM1 ablation impairs exercise-induced physiologic cardiac hypertrophy and dysregulates autophagy in mouse hearts . Journal of Applied Physiology, 0, , .	2.5	2

#	Article	IF	CITATIONS
709	Tropisetron restores normal expression of BAD, SIRT1, SIRT3, and SIRT7 in the rat pressure overloadâ€induced cardiac hypertrophy model. Journal of Biochemical and Molecular Toxicology, 0, , .	3.0	0
710	<scp>STAT5b</scp> is a key effector of <scp>NRG</scp> â€1/ <scp>ERBB4</scp> â€mediated myocardial growth. EMBO Reports, 2023, 24, .	4.5	4
711	Cdc2-like kinases: structure, biological function, and therapeutic targets for diseases. Signal Transduction and Targeted Therapy, 2023, 8, .	17.1	10
712	Noncoding RNAs as Key Regulators for Cardiac Development and Cardiovascular Diseases. Journal of Cardiovascular Development and Disease, 2023, 10, 166.	1.6	4
713	Metformin Collaborates with PINK1/Mfn2 Overexpression to Prevent Cardiac Injury by Improving Mitochondrial Function. Biology, 2023, 12, 582.	2.8	4
714	SLC26A4-AS1 Agrava a Hipertrofia CardÃaca Induzida por AngII Aumentando a Expressão de SLC26A4. Arquivos Brasileiros De Cardiologia, 2023, 120, .	0.8	1
715	Cardioprotective effect of ultrasoundâ€ŧargeted destruction of Sirt3â€loaded cationic microbubbles in a large animal model of pathological cardiac hypertrophy. Acta Biomaterialia, 2023, 164, 604-625.	8.3	2
716	Cardiac Mechanoperception and Mechanotransduction: Mechanisms of Stretch Sensing in Cardiomyocytes and Implications for Cardiomyopathy. Cardiac and Vascular Biology, 2023, , 1-35.	0.2	0
717	Strophioblachins A–K, Structurally Intriguing Diterpenoids from <i>Strophioblachia fimbricalyx</i> with Potential Anticardiac Hypertrophic Inhibitory Activity. Journal of Natural Products, 2023, 86, 1211-1221.	3.0	3
718	Age and Sex Determine Electrocardiogram Parameters in the Octodon degus. Biology, 2023, 12, 747.	2.8	0
719	Pristimerin protects against pathological cardiac hypertrophy through improvement of PPARα pathway. Toxicology and Applied Pharmacology, 2023, 473, 116572.	2.8	1
720	Sport-related differences in QT dispersion and echocardiographic parameters in male athletes. Scientific Reports, 2023, 13, .	3.3	2
721	Angiotensin II-induced calcium overload affects mitochondrial functions in cardiac hypertrophy by targeting the USP2/MFN2 axis. Molecular and Cellular Endocrinology, 2023, 571, 111938.	3.2	2
722	TRIM-containing 44 aggravates cardiac hypertrophy via TLR4/NOX4-induced ferroptosis. Journal of Molecular Medicine, 2023, 101, 685-697.	3.9	5
723	Redox-driven cardioprotective effects of sodium-glucose co-transporter-2 inhibitors: comparative review. Cardiovascular Diabetology, 2023, 22, .	6.8	2
724	FGF21-FGFR1 controls mitochondrial homeostasis in cardiomyocytes by modulating the degradation of OPA1. Cell Death and Disease, 2023, 14, .	6.3	3
725	Tissue Sodium Accumulation Induces Organ Inflammation and Injury in Chronic Kidney Disease. International Journal of Molecular Sciences, 2023, 24, 8329.	4.1	2
726	Mechanisms of mitochondrial microRNA regulation in cardiovascular diseases. Mechanisms of Ageing and Development, 2023, 212, 111822.	4.6	1

ARTICLE IF CITATIONS # Long noncoding RNA <i>Mhrt</i> alleviates angiotensin II-induced cardiac hypertrophy phenotypes by 727 1.3 0 mediating the miR-765/Wnt family member 7B pathway. Open Medicine (Poland), 2023, 18, . CMTM3 deficiency induces cardiac hypertrophy by regulating MAPK/ERK signaling. Biochemical and Biophysical Research Communications, 2023, 667, 162-169. 2.1 FUNDC1: An Emerging Mitochondrial and MAMs Protein for Mitochondrial Quality Control in Heart 729 2 4.1 Diseases. International Journal of Molecular Sciences, 2023, 24, 9151. Biocompatible cracked reduced graphene oxide strain sensors: enhancing implantable strain sensing 5.5 performance and durability. Journal of Materials Chemistry C, 2023, 11, 8405-8412. How Can We Survive the Heart Failure Pandemic Era? Basic Research for Understanding the 731 0 Pathophysiology of Heart Failure and Development of Novel Therapies., 0, 2, . Super-enhancer-driven lncRNA Snhg7 aggravates cardiac hypertrophy via Tbx5/GLS2/ferroptosis axis. European Journal of Pharmacology, 2023, 953, 175822. 3.5 Cardiac-specific BACH1 ablation attenuates pathological cardiac hypertrophy by inhibiting the Ang II 733 3.8 4 type 1 receptor expression and the Ca2+/CaMKII pathway. Cardiovascular Research, 2023, 119, 1842-1855. Semaphorin3A Exacerbates Cardiac Microvascular Rarefaction in Pressure Overloadâ€Induced Heart 734 11.2 Disease. Advanced Science, 2023, 10, . Exercise-induced myocardial hypertrophy preconditioning promotes fibroblast senescence and improves myocardial fibrosis through Nrf2 signaling pathway. Cell Cycle, 2023, 22, 1529-1543. 735 2.6 0 Global Profile of tRNA-Derived Small RNAs in Pathological Cardiac Hypertrophy Plasma and 2.6 Identification of tRF-21-NB8PLML3E as a New Hypertrophy Marker. Diagnostics, 2023, 13, 2065. Dual roles of demethylation in cancer treatment and cardio-function recovery. Redox Biology, 2023, 737 4 9.0 64, 102785. Riboflavin ameliorates pathological cardiac hypertrophy and fibrosis through the activation of 738 3.5 short-chain acyl-CoA dehydrogenase. European Journal of Pharmacology, 2023, 954, 175849. Gut Microbiome: An Effector of Dietary Nitrate That Inhibits Cardiometabolic Disease?. Diabetes, 2023, 739 0.6 0 72,835-837. Endoplasmic Reticulum Involvement in Heart Injury: An Overview. Biochemistry, 0, , . 740 1.2 Therapeutic effects on the development of heart failure with preserved ejection fraction by the sodium-glucose cotransporter 2 inhibitor dapagliflozin in type 2 diabetes. Diabetology and Metabolic 741 2.7 1 Syndrome, 2023, 15, . Unconventional myosin VI in the heart: Involvement in cardiac dysfunction progressing with age. 742 Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2023, 1869, 166748. Angiotensin-converting enzyme inhibitory peptide attenuates cardiac hypertrophy associated with 743 3.4 2 ACE2/Ang (1â€"7)/MasR axis and PKCl21 pathway. Journal of Functional Foods, 2023, 105, 105570. Regulatory T Cells in Pathological Cardiac Hypertrophy: Mechanisms and Therapeutic Potential. 744 Cardiovascular Drugs and Therapy, 0, , .

#	Article	IF	CITATIONS
745	Regulation of the JAK/STAT signaling pathway: The promising targets for cardiovascular disease. Biochemical Pharmacology, 2023, 213, 115587.	4.4	2
746	Progressive Cardiac Metabolic Defects Accompany Diastolic and Severe Systolic Dysfunction in Spontaneously Hypertensive Rat Hearts. Journal of the American Heart Association, 2023, 12, .	3.7	0
747	Left Atrial Function in Patients with Titin Cardiomyopathy. Journal of Cardiac Failure, 2024, 30, 51-60.	1.7	0
748	Impact of polyphenols on heart failure and cardiac hypertrophy: clinical effects and molecular mechanisms. Frontiers in Cardiovascular Medicine, 0, 10, .	2.4	3
749	Multi-omics approach for identification of molecular alterations of QiShenYiQi dripping pills in heart failure with preserved ejection fraction. Journal of Ethnopharmacology, 2023, 315, 116673.	4.1	3
750	Virtual drug screen reveals contextâ€dependent inhibition of cardiomyocyte hypertrophy. British Journal of Pharmacology, 0, , .	5.4	1
751	Integrin beta-like 1 mediates fibroblast–cardiomyocyte crosstalk to promote cardiac fibrosis and hypertrophy. Cardiovascular Research, 2023, 119, 1928-1941.	3.8	2
752	A rat model of metabolic syndrome-related heart failure with preserved ejection fraction phenotype: pathological alterations and possible molecular mechanisms. Frontiers in Cardiovascular Medicine, 0, 10, .	2.4	1
753	Effect of <scp><i>SH2B1</i></scp> on glucose metabolism during pressure overloadâ€induced cardiac hypertrophy and cardiac dysfunction. Clinical and Experimental Pharmacology and Physiology, 2023, 50, 815-825.	1.9	0
754	The Microenvironment of the Pathogenesis of Cardiac Hypertrophy. Cells, 2023, 12, 1780.	4.1	5
755	Atrial Cardiomyopathy in Valvular Heart Disease: From Molecular Biology to Clinical Perspectives. Cells, 2023, 12, 1796.	4.1	3
756	The role of mammalian Sirtuin 6 in cardiovascular diseases and diabetes mellitus. Frontiers in Physiology, 0, 14, .	2.8	2
757	Macrophage DCLK1 promotes obesity-induced cardiomyopathy via activating RIP2/TAK1 signaling pathway. Cell Death and Disease, 2023, 14, .	6.3	4
758	From Energy Metabolic Change to Precision Therapy: a Holistic View of Energy Metabolism in Heart Failure. Journal of Cardiovascular Translational Research, 2024, 17, 56-70.	2.4	1
759	Made in the Womb: Maternal Programming of Offspring Cardiovascular Function by an Obesogenic Womb. Metabolites, 2023, 13, 845.	2.9	4
760	The application of Aptamer in biomarker discovery. Biomarker Research, 2023, 11, .	6.8	4
761	Indoleamine 2,3-Dioxygenase 1 Deletion-Mediated Kynurenine Insufficiency Inhibits Pathological Cardiac Hypertrophy. Hypertension, 2023, 80, 2099-2111.	2.7	2
762	The sodium borate relieves the hypertrophic damage induced during pregnancy, it improves contractibility, reduces oxidative stress and stimulates cell proliferation. Journal of Trace Elements in Medicine and Biology, 2023, 80, 127269.	3.0	0

#	Article	IF	CITATIONS
763	The heterocellular heart: identities, interactions, and implications for cardiology. Basic Research in Cardiology, 2023, 118, .	5.9	13
764	Tripartite motif‑containing 14 may aggravate cardiac hypertrophy via the AKT signalling pathway in neonatal rat cardiomyocytes and transgenic mice. Molecular Medicine Reports, 2023, 28, .	2.4	0
765	RNA-Binding Proteins as Critical Post-Transcriptional Regulators of Cardiac Regeneration. International Journal of Molecular Sciences, 2023, 24, 12004.	4.1	3
766	DEF6(differentially exprehomolog) exacerbates pathological cardiac hypertrophy via RAC1. Cell Death and Disease, 2023, 14, .	6.3	Ο
767	Study on the mechanism of Lu'an GuaPian tea in treating heart failure based on network pharmacology and molecular docking. Food and Agricultural Immunology, 2023, 34, .	1.4	0
768	Fatty acid metabolism disorders and potential therapeutic traditional Chinese medicines in cardiovascular diseases. Phytotherapy Research, 2023, 37, 4976-4998.	5.8	1
770	Deubiquitinase JOSD2 improves calcium handling and attenuates cardiac hypertrophy and dysfunction by stabilizing SERCA2a in cardiomyocytes. , 2023, 2, 764-777.		2
771	Cardiomyocyte external mechanical unloading activatesÂmodifications of αâ€actinin differently fromÂsarcomereâ€originated unloading. FEBS Journal, 0, , .	4.7	1
772	Polymorphic variants at NDUFC2, encoding a mitochondrial complex I subunit, associate with cardiac hypertrophy in human hypertension. Molecular Medicine, 2023, 29, .	4.4	3
773	The novel peptide athycaltide-1 attenuates Ang II-induced pathological myocardial hypertrophy by reducing ROS and inhibiting the activation of CaMKII and ERK1/2. European Journal of Pharmacology, 2023, 957, 175969.	3.5	1
774	Coordinated Metabolic Responses Facilitate Cardiac Growth in Pregnancy and Exercise. Current Heart Failure Reports, 0, , .	3.3	0
775	Communications between macrophages and cardiomyocytes. Cell Communication and Signaling, 2023, 21, .	6.5	4
776	Dihydrokaempferol: Advances on Resources, Biosynthesis Pathway, Bioavailability, Bioactivity, and Pharmacology. , 2023, , 1-23.		0
777	The Role of Extracellular Signal-Regulated Kinase Pathways in Different Models of Cardiac Hypertrophy in Rats. Biomedicines, 2023, 11, 2337.	3.2	0
778	Upregulation of mitochondrial telomerase reverse transcriptase mediates the preventive effect of physical exercise on pathological cardiac hypertrophy via improving mitochondrial function and inhibiting oxidative stress. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2024, 1870, 166859.	3.8	0
779	TRAF Family Member 4 Promotes Cardiac Hypertrophy Through the Activation of the AKT Pathway. Journal of the American Heart Association, 2023, 12, .	3.7	1
780	The Long-Term Effect of Maternal Obesity on the Cardiovascular Health of the Offspring–Systematic Review. Current Problems in Cardiology, 2024, 49, 102062.	2.4	1
781	Exercise Training and Cardiovascular Health: Mechanisms, Benefits, and Therapeutic Implications in Cardiovascular Disease. Cardiometabolic Syndrome Journal, 2023, 3, 123.	0.6	0

#	Article	lF	Citations
782	UGCG modulates heart hypertrophy through B4GalT5-mediated mitochondrial oxidative stress and the ERK signaling pathway. Cellular and Molecular Biology Letters, 2023, 28, .	7.0	2
783	How does NFAT3 regulate the occurrence of cardiac hypertrophy?. IJC Heart and Vasculature, 2023, 48, 101271.	1.1	Ο
784	Epigenetic regulation of programmed cell death in hypoxia-induced pulmonary arterial hypertension. Frontiers in Immunology, 0, 14, .	4.8	4
785	Highlighting the idea of exerkines in the management of cancer patients with cachexia: novel insights and a critical review. BMC Cancer, 2023, 23, .	2.6	1
786	Effect of Danhong injection on heart failure in rats evaluated by metabolomics. Frontiers in Medicine, 0, 10, .	2.6	0
787	Reduced expression of transmembrane protein 43 during cardiac hypertrophy leads to worsening heart failure in mice. Experimental Biology and Medicine, 2023, 248, 1437-1445.	2.4	0
788	Bellidifolin ameliorates isoprenaline-induced cardiac hypertrophy by the Nox4/ROS signalling pathway through inhibiting BRD4. Cell Death Discovery, 2023, 9, .	4.7	0
789	SIRT2 counteracts primate cardiac aging via deacetylation of STAT3 that silences CDKN2B. Nature Aging, 2023, 3, 1269-1287.	11.6	10
790	Pediatric heart failure with preserved ejection fraction, a review. Frontiers in Pediatrics, 0, 11, .	1.9	1
791	Creatine and Resistance Training: A Combined Approach to Attenuate Doxorubicin-Induced Cardiotoxicity. Nutrients, 2023, 15, 4048.	4.1	0
792	Exercise Effects on Left Ventricular Remodeling in Patients with Cardiometabolic Risk Factors. Life, 2023, 13, 1742.	2.4	0
793	Ser14 phosphorylation of Bcl-xL mediates compensatory cardiac hypertrophy in male mice. Nature Communications, 2023, 14, .	12.8	1
794	Integrative analysis of DNA methylome and transcriptome reveals epigenetic regulation of bisphenols-induced cardiomyocyte hypertrophy. Ecotoxicology and Environmental Safety, 2023, 263, 115391.	6.0	0
795	Deep phenotyping of miRNAs in exercise-induced cardiac hypertrophy and fibrosis. Journal of Biosciences, 2023, 48, .	1.1	0
796	Development and validation of a rapid visual technique for left ventricular hypertrophy detection from the electrocardiogram. Frontiers in Cardiovascular Medicine, 0, 10, .	2.4	1
797	Aerobic Exercise Training Improves Calcium Handling and Cardiac Function in Rats with Heart Failure Resulting from Aortic Stenosis. International Journal of Molecular Sciences, 2023, 24, 12306.	4.1	1
798	ATF3 affects myocardial fibrosis remodeling after myocardial infarction by regulating autophagy and its mechanism of action. Gene, 2023, 885, 147705.	2.2	3
799	Extracellular Vesicles and Pathological Cardiac Hypertrophy. Advances in Experimental Medicine and Biology, 2023, , 17-31.	1.6	0

#	Article	IF	CITATIONS
800	Exploring Key Genes and Molecular Mechanisms Related to Myocardial Hypertrophy Based on Bioinformatics. Science of Advanced Materials, 2023, 15, 824-831.	0.7	0
802	Effects of early exercise on cardiac function and lipid metabolism pathway in heart failure. Journal of Cellular and Molecular Medicine, 2023, 27, 2956-2969.	3.6	1
803	HDAC5 inhibition attenuates ventricular remodeling and cardiac dysfunction. Orphanet Journal of Rare Diseases, 2023, 18, .	2.7	1
804	Targeting N-Myristoylation Through NMT2 Prevents Cardiac Hypertrophy andÂHeartÂFailure. JACC Basic To Translational Science, 2023, 8, 1263-1282.	4.1	0
805	Sodium-glucose Cotransporter 2 Inhibitors and Pathological Myocardial Hypertrophy. Current Drug Targets, 2023, 24, 1009-1022.	2.1	0
806	Deletion of Endothelial TRPV4 Protects Heart From Pressure Overload–Induced Hypertrophy. Hypertension, 2023, 80, 2345-2356.	2.7	4
807	Guanxinning tablets improve myocardial hypertrophy by inhibiting the activation of MEK-ERK1/2 signaling pathway. Journal of Applied Biomedicine, 2023, 21, 137-149.	1.7	0
808	SOX4 as a potential therapeutic target for pathological cardiac hypertrophy. European Journal of Pharmacology, 2023, 958, 176071.	3.5	1
809	Adaptive and maladaptive roles of different angiotensin receptors in the development of cardiac hypertrophy and heart failure . Canadian Journal of Physiology and Pharmacology, 0, , .	1.4	2
811	CD9 exacerbates pathological cardiac hypertrophy through regulating CP130/STAT3 signaling pathway. IScience, 2023, 26, 108070.	4.1	0
812	The potential of leptin to alleviate chronic heart failure through miR-27a/b-3p: A preclinical study. Asian Journal of Surgery, 2023, , .	0.4	0
813	Fucoxanthin alleviated myocardial ischemia and reperfusion injury through inhibition of ferroptosis <i>via</i> the NRF2 signaling pathway. Food and Function, 2023, 14, 10052-10068.	4.6	2
814	Leucine zipper protein 1 attenuates pressure overload-induced cardiac hypertrophy through inhibiting Stat3 signaling. Journal of Advanced Research, 2023, , .	9.5	0
815	Exosomes derived from cardiac fibroblasts with angiotensin II stimulation provoke hypertrophy and autophagy inhibition in cardiomyocytes. Biochemical and Biophysical Research Communications, 2023, 682, 199-206.	2.1	0
816	Mechanism of heart failure after myocardial infarction. Journal of International Medical Research, 2023, 51, .	1.0	0
817	The Anti-Inflammatory Mediator 17(R)-Resolvin D1 Attenuates Pressure Overload-Induced Cardiac Hypertrophy and Fibrosis. Drug Design, Development and Therapy, 0, Volume 17, 3073-3083.	4.3	0
818	SLIT3-mediated fibroblast signaling: a promising target for antifibrotic therapies. American Journal of Physiology - Heart and Circulatory Physiology, 2023, 325, H1400-H1411.	3.2	1
819	RNF13 protects against pathological cardiac hypertrophy through p62-NRF2 pathway. Free Radical Biology and Medicine, 2023, 209, 252-264.	2.9	0

#	Article	IF	CITATIONS
820	ESCRT-III Component CHMP4C Attenuates Cardiac Hypertrophy by Targeting the Endo-Lysosomal Degradation of EGFR. Hypertension, 0, , .	2.7	0
821	Intrinsic and Extrinsic Contributors to the Cardiac Benefits of Exercise. JACC Basic To Translational Science, 2023, , .	4.1	1
822	Astragaloside IV derivative HHQ16 ameliorates infarction-induced hypertrophy and heart failure through degradation of lncRNA4012/9456. Signal Transduction and Targeted Therapy, 2023, 8, .	17.1	1
823	<i>N</i> -Acetylcysteine Alleviates Phenylephrine-Induced Cardiomyocyte Dysfunction via Engaging PI3K/AKT Signaling Pathway. American Journal of Hypertension, 2024, 37, 230-238.	2.0	0
824	Cellular Senescence in Cardiovascular Diseases: From Pathogenesis to Therapeutic Challenges. Journal of Cardiovascular Development and Disease, 2023, 10, 439.	1.6	1
826	Ferroptosis in cardiac hypertrophy and heart failure. Biomedicine and Pharmacotherapy, 2023, 168, 115765.	5.6	2
827	RNA modification in cardiovascular disease: implications for therapeutic interventions. Signal Transduction and Targeted Therapy, 2023, 8, .	17.1	0
828	LOC102549726/miR-760-3p network is involved in the progression of ISO-induced pathological cardiomyocyte hypertrophy via endoplasmic reticulum stress. Journal of Molecular Histology, 2023, 54, 675-687.	2.2	0
829	Mitochondrial quality control in health and cardiovascular diseases. Frontiers in Cell and Developmental Biology, 0, 11, .	3.7	1
830	Exercise-induced circular RNA circUtrn is required for cardiac physiological hypertrophy and prevents myocardial ischaemia–reperfusion injury. Cardiovascular Research, 2023, 119, 2638-2652.	3.8	1
831	A Kinase Interacting Protein 1 regulates mitochondrial protein levels in energy metabolism and promotes mitochondrial turnover after exercise. Scientific Reports, 2023, 13, .	3.3	1
832	miR-455-5p promotes pathological cardiac remodeling via suppression of PRMT1-mediated Notch signaling pathway. Cellular and Molecular Life Sciences, 2023, 80, .	5.4	0
833	PKD knockdown mitigates Ang II-induced cardiac hypertrophy and ferroptosis via the JNK/P53 signaling pathway. Cellular Signalling, 2024, 113, 110974.	3.6	0
834	CD36 as a gatekeeper of myocardial lipid metabolism and therapeutic target for metabolic disease. Physiological Reviews, 2024, 104, 727-764.	28.8	2
835	Palmitoylation-dependent regulation of cardiomyocyte Rac1 signaling activity and minor effects on cardiac hypertrophy. Journal of Biological Chemistry, 2023, 299, 105426.	3.4	1
836	Decellularized extracellular matrix materials for treatment of ischemic cardiomyopathy. Bioactive Materials, 2024, 33, 460-482.	15.6	0
837	<scp>miR</scp> â€93 and synaptotagminâ€7: two novel players in the regulation of autophagy during cardiac hypertrophy. FEBS Journal, 2024, 291, 441-444.	4.7	0
838	Screening UFMylation-associated genes in heart tissues of Ufm1-transgenic mice. BMC Cardiovascular Disorders, 2023, 23, .	1.7	0

#	Article	IF	CITATIONS
839	Novel Pan-ERR Agonists Ameliorate Heart Failure Through Enhancing Cardiac Fatty Acid Metabolism and Mitochondrial Function. Circulation, 0, , .	1.6	1
840	Changes in glutamic oxaloacetic transaminase 2 during rat physiological and pathological cardiomyocyte hypertrophy. BMC Cardiovascular Disorders, 2023, 23, .	1.7	1
841	A review for the correlation between optic atrophy 1-dependent mitochondrial fusion and cardiovascular disorders. International Journal of Biological Macromolecules, 2024, 254, 127910.	7.5	1
842	Sacubitril/valsartan attenuates myocardial inflammation, hypertrophy, and fibrosis in rats with heart failure with preserved ejection fraction. European Journal of Pharmacology, 2023, 961, 176170.	3.5	1
843	Ovarian Tumor Domain ontaining 7B Attenuates Pathological Cardiac Hypertrophy by Inhibiting Ubiquitination and Degradation of Krüppel‣ike Factor 4. Journal of the American Heart Association, 0, , .	3.7	0
844	Rapid Regulation of Cardiomyocytes Adhesion on Substrates with Varied Modulus via Mechanical Cues. Biomacromolecules, 2023, 24, 5847-5858.	5.4	0
845	Cardiac remodeling on echocardiogram is related to contrast-associated acute kidney injury after coronary angiography: a cross-section study. Frontiers in Cardiovascular Medicine, 0, 10, .	2.4	0
847	Unraveling the role of Xist RNA in cardiovascular pathogenesis. Pathology Research and Practice, 2024, 253, 154944.	2.3	0
848	DEL-1 deficiency aggravates pressure overload-induced heart failure by promoting neutrophil infiltration and neutrophil extracellular traps formation. Biochemical Pharmacology, 2023, 218, 115912.	4.4	3
849	Profiling cardiomyocytes at single cell resolution reveals COX7B could be a potential target for attenuating heart failure in cardiac hypertrophy. Journal of Molecular and Cellular Cardiology, 2024, 186, 45-56.	1.9	0
850	Cardiac complications caused by biliary diseases: A review of clinical manifestations, pathogenesis and treatment strategies of cholecardia syndrome. Pharmacological Research, 2024, 199, 107006.	7.1	0
851	A bibliometric analysis of cardiomyocyte apoptosis from 2014 to 2023: A review. Medicine (United) Tj ETQq1 1 (0.784314 r 1.0	gBT /Overloc
852	Effects of Long-Term Administration of Bovine Bone Gelatin Peptides on Myocardial Hypertrophy in Spontaneously Hypertensive Rats. Nutrients, 2023, 15, 5021.	4.1	0
854	Prenatal hormone stress triggers embryonic cardiac hypertrophy outcome by ubiquitin-dependent degradation of mitochondrial mitofusin 2. IScience, 2024, 27, 108690.	4.1	0
855	To squeeze or not: Regulation of cell size by mechanical forces in development and human diseases. Biology of the Cell, 2024, 116, .	2.0	1
856	Astragaloside IV alleviates LPS-induced cardiomyocyte hypertrophy and collagen expression associated with CCL2-mediated activation of NF-ήB signaling pathway. Biochemical and Biophysical Research Communications, 2024, 693, 149367.	2.1	0
857	COX6A2 deficiency leads to cardiac remodeling in human pluripotent stem cell-derived cardiomyocytes. Stem Cell Research and Therapy, 2023, 14, .	5.5	0
858	Macromolecular Complex Including MLL3, Carabin and Calcineurin Regulates Cardiac Remodeling. Circulation Research, 2024, 134, 100-113.	4.5	0

#	Article	IF	CITATIONS
859	Mechanisms and therapeutic strategies of extracellular vesicles in cardiovascular diseases. MedComm, 2023, 4, .	7.2	0
860	Metabolic Messengers: ketone bodies. Nature Metabolism, 2023, 5, 2062-2074.	11.9	0
861	Lifestyle and Cardiac Structure and Function in Healthy Midlife Population. American Journal of Cardiology, 2024, 211, 291-298.	1.6	1
862	Dapagliflozin Suppresses Isoprenaline-Induced Cardiac Hypertrophy Through Inhibition of Mitochondrial Fission. Journal of Cardiovascular Pharmacology, 2024, 83, 193-204.	1.9	0
863	STING activation in cardiomyocytes drives hypertrophy-associated heart failure via NF-κB-mediated inflammatory response. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2024, 1870, 166997.	3.8	0
864	Resistin Induces Cardiomyocyte Hypertrophy in H9c2 Embryonic Rat Myocardial Cells via Inhibition of MiR-489-3p. Trends in Medical Research, 2023, 18, 92-101.	0.2	0
865	Omaveloxolone ameliorates isoproterenol-induced pathological cardiac hypertrophy in mice. Free Radical Research, 2024, 58, 57-68.	3.3	0
866	A Hierarchical Mechanotransduction System: From Macro to Micro. Advanced Science, 0, , .	11.2	0
867	Beta Blockade Prevents Cardiac Morphological and Molecular Remodelling in Experimental Uremia. International Journal of Molecular Sciences, 2024, 25, 373.	4.1	0
868	The role of mitochondrial dynamics in disease. MedComm, 2023, 4, .	7.2	0
869	A Powerful Tool in the Treatment of Myocardial Ischemia-Reperfusion Injury: Natural and Nanoscale Modified Small Extracellular Vesicles Derived from Mesenchymal Stem Cells. International Journal of Nanomedicine, 0, Volume 18, 8099-8112.	6.7	0
870	Overexpressing Mitogen-activated Protein Kinase Kinase 7 (MKK7) Alleviates Endoplasmic Reticulum Stress-induced Cardiac Dysfunction during Pressure Overload induced Heart Failure. , 0, , .		0
871	Muscone inhibits angiotensin Il–induced cardiac hypertrophy through the STAT3, MAPK and TGF-β/SMAD signaling pathways. Molecular Biology Reports, 2024, 51, .	2.3	0
872	Knockdown of circSlc8a1 inhibited the ferroptosis in the angiotensin II treated H9c2 cells via miR-673-5p/TFRC axis. Journal of Bioenergetics and Biomembranes, 0, , .	2.3	0
873	Metabolic remodeling in cardiac hypertrophy and heart failure with reduced ejection fraction occurs independent of transcription factor EB in mice. Frontiers in Cardiovascular Medicine, 0, 10, .	2.4	0
874	Circular RNA-circPan3 attenuates cardiac hypertrophy via miR-320-3p/HSP20 axis. Cellular and Molecular Biology Letters, 2024, 29, .	7.0	0
875	Effects of time-restricted exercise on activity rhythms and exercise-induced adaptations in the heart. Scientific Reports, 2024, 14, .	3.3	0
876	Hypertrophic cardiomyopathy in <i>MYBPC3</i> carriers in aging. , 0, 4, .		0

#	Article	IF	Citations
877	The molecular mechanism of MiR-26a-5p regulates autophagy and activates NLRP3 inflammasome to mediate cardiomyocyte hypertrophy. BMC Cardiovascular Disorders, 2024, 24, .	1.7	0
878	lschemia-reperfusion injury: molecular mechanisms and therapeutic targets. Signal Transduction and Targeted Therapy, 2024, 9, .	17.1	0
879	SUMOylation of TEAD1 Modulates the Mechanism of Pathological Cardiac Hypertrophy. Advanced Science, 2024, 11, .	11.2	0
880	Choline induced cardiac dysfunction by inhibiting the production of endogenous hydrogen sulfide in spontaneously hypertensive rats. Physiological Research, 2023, , 719-730.	0.9	0
881	Reduced DNMT1 levels induce cell apoptosis via upregulation of METTL3 in cardiac hypertrophy. Heliyon, 2024, 10, e24572.	3.2	0
882	Beyond the silence: A comprehensive exploration of long non-coding RNAs as genetic whispers and their essential regulatory functions in cardiovascular disorders. Current Problems in Cardiology, 2024, 49, 102390.	2.4	0
883	Regulatory mechanism and therapeutic potentials of naringin against inflammatory disorders. Heliyon, 2024, 10, e24619.	3.2	0
884	Research hotspots and trends regarding microRNAs in hypertension: a bibliometric analysis. Clinical and Experimental Hypertension, 2024, 46, .	1.3	0
886	Deficiency of Transcription Factor Sp1 Contributes to Hypertrophic Cardiomyopathy. Circulation Research, 2024, 134, 290-306.	4.5	0
887	JOSD2 mediates isoprenaline-induced heart failure by deubiquitinating CaMKIIδ in cardiomyocytes. Cellular and Molecular Life Sciences, 2024, 81, .	5.4	0
888	Prognostic Implications of Septal Hypertrophy in Patients with Heart Failure with Mildly Reduced Ejection Fraction. Journal of Clinical Medicine, 2024, 13, 523.	2.4	0
889	Protective effects of METRNL overexpression against pathological cardiac remodeling. Gene, 2024, 901, 148171.	2.2	0
890	The JMJD family of histone demethylase and their intimate links to cardiovascular disease. Cellular Signalling, 2024, 116, 111046.	3.6	0
891	Regulation of myocardial glucose metabolism by YAP/TAZ signaling. Journal of Cardiology, 2024, 83, 323-329.	1.9	0
892	Myocardial Remodeling. , 2023, , 89-104.		0
893	Effect of Zoapatle (Montanoa tomentosa) on Inflammatory Markers in a Murine Model of Ventricular Hypertrophy. Scientia Pharmaceutica, 2024, 92, 9.	2.0	0
894	Larixyl acetate, a TRPC6 inhibitor, attenuates pressure overload‑induced heart failure in mice. Molecular Medicine Reports, 2024, 29, .	2.4	0
895	TRPV4 Channels Promote Pathological, but Not Physiological, Cardiac Remodeling through the Activation of Calcineurin/NFAT and TRPC6. International Journal of Molecular Sciences, 2024, 25, 1541.	4.1	0

#	Article	IF	CITATIONS
896	Protein Kinase A Is a Master Regulator of Physiological and Pathological Cardiac Hypertrophy. Circulation Research, 2024, 134, 393-410.	4.5	1
897	CTRP3 alleviates mitochondrial dysfunction and oxidative stress injury in pathological cardiac hypertrophy by activating UPRmt via the SIRT1/ATF5 axis. Cell Death Discovery, 2024, 10, .	4.7	0
899	Astaxanthin Alleviates the Process of Cardiac Hypertrophy by Targeting the METTL3/Circ_0078450/MiR-338-3p/GATA4 Pathway. International Heart Journal, 2024, 65, 119-127.	1.0	0
900	Mycn ameliorates cardiac hypertrophy-induced heart failure in mice by mediating the USP2/JUP/Akt/β-catenin cascade. BMC Cardiovascular Disorders, 2024, 24, .	1.7	0
901	Myocardial proteome changes in aortic stenosis rats subjected to longâ€ŧerm aerobic exercise. Journal of Cellular Physiology, 2024, 239, .	4.1	0
902	Moderate-Intensity and High-Intensity Interval Exercise Training Offer Equal Cardioprotection, with Different Mechanisms, during the Development of Type 2 Diabetes in Rats. Nutrients, 2024, 16, 431.	4.1	0
903	Novel insights into transfer RNA-derived small RNA (tsRNA) in cardio-metabolic diseases. Life Sciences, 2024, 341, 122475.	4.3	0
904	The genetics of cardiomyocyte polyploidy. Current Topics in Developmental Biology, 2024, , 245-295.	2.2	0
905	The water extract of Amydrium sinense (Engl.) H. Li ameliorates Isoproterenol-induced cardiac hypertrophy through inhibiting the NF-κB signaling pathway. Biomedicine and Pharmacotherapy, 2024, 172, 116241.	5.6	0
906	Chlorogenic Acid Attenuates Isoproterenol Hydrochloride-Induced Cardiac Hypertrophy in AC16 Cells by Inhibiting the Wnt/β-Catenin Signaling Pathway. Molecules, 2024, 29, 760.	3.8	0
907	Deubiquitinase OTUD6a drives cardiac inflammation and hypertrophy by deubiquitination of STING. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2024, 1870, 167061.	3.8	0
908	Palmatine alleviates cardiac fibrosis by inhibiting fibroblast activation through the STAT3 pathway. European Journal of Pharmacology, 2024, 967, 176395.	3.5	0
909	HNF4α ubiquitination mediated by Peli1 impairs FAO and accelerates pressure overload-induced myocardial hypertrophy. Cell Death and Disease, 2024, 15, .	6.3	0
910	Fragmented QRS, a strong predictor of mortality and major arrhythmic events in patients with nonischemic cardiomyopathy: A systematic review and metaâ€analysis. Health Science Reports, 2024, 7, .	1.5	0
911	Valerenic acid attenuates pathological myocardial hypertrophy by promoting the utilization of multiple substrates in the mitochondrial energy metabolism. Journal of Advanced Research, 2024, , .	9.5	0
912	Optimized New Shengmai Powder modulation of cAMP/Rap1A signaling pathway attenuates myocardial fibrosis in heart failure. Chinese Medicine, 2024, 19, .	4.0	0
913	Mechanotransduction-induced interplay between phospholamban and yes-activated protein induces smooth muscle cell hypertrophy. Mucosal Immunology, 2024, , .	6.0	0
915	Physical exercise is essential for increasing ventricular contractility in hypertensive rats treated with losartan. Hypertension Research, 2024, 47, 1350-1361.	2.7	0

	CITATION	CITATION REPORT	
#	Article	IF	Citations
917	Structure-based design of non-hypertrophic apelin receptor modulator. Cell, 2024, 187, 1460-1475.e20.	28.9	0
918	PIEZO Ion Channels in Cardiovascular Functions and Diseases. Circulation Research, 2024, 134, 572-591.	4.5	0
919	Atrial Fibrillation, Hypertension, and Heart Failure. Updates in Hypertension and Cardiovascular Protection, 2023, , 315-324.	0.1	0
920	Deletion of Interleukin-1Î ² Converting Enzyme Alters Mouse Cardiac Structure and Function. Biology, 2024, 13, 172.	2.8	0
921	The dual effects of miR-222 in cardiac hypertrophy: bridging pathological and physiological paradigms. Cardiovascular Research, 2024, 120, 217-219.	3.8	0
923	Peroxisome proliferator-activated receptor gamma coactivator-1 (PGC-1) family in physiological and pathophysiological process and diseases. Signal Transduction and Targeted Therapy, 2024, 9, .	17.1	0
924	(Myocardium Remodelling: From Adaptation Mechanisms to Heart Failure Development). Cor Et Vasa, 2024, 66, 53-64.	0.1	0
925	The role of deubiquitinases in cardiac disease. Expert Reviews in Molecular Medicine, 2024, 26, .	3.9	0