Matching material and cellular timescales maximizes ce substrates

Proceedings of the National Academy of Sciences of the Unite 115, E2686-E2695

DOI: 10.1073/pnas.1716620115

Citation Report

#	Article	IF	CITATIONS
1	Tissue engineering the cancer microenvironment—challenges and opportunities. Biophysical Reviews, 2018, 10, 1695-1711.	1.5	47
2	Viscoelastic Oxidized Alginates with Reversible Imine Type Crosslinks: Self-Healing, Injectable, and Bioprintable Hydrogels. Gels, 2018, 4, 85.	2.1	68
3	Vascular Endothelial Cell Behavior in Complex Mechanical Microenvironments. ACS Biomaterials Science and Engineering, 2018, 4, 3818-3842.	2.6	34
4	Recent Advances in Engineering the Stem Cell Microniche in 3D. Advanced Science, 2018, 5, 1800448.	5.6	83
5	3D Spatiotemporal Mechanical Microenvironment: A Hydrogelâ€Based Platform for Guiding Stem Cell Fate. Advanced Materials, 2018, 30, e1705911.	11.1	162
6	Design of synthetic extracellular matrices for probing breast cancer cell growth using robust cyctocompatible nucleophilic thiol-yne addition chemistry. Biomaterials, 2018, 178, 435-447.	5.7	25
7	Viscoelasticity in natural tissues and engineered scaffolds for tissue reconstruction. Acta Biomaterialia, 2019, 97, 74-92.	4.1	88
8	Subtle Regulation of Scaffold Stiffness for the Optimized Control of Cell Behavior. ACS Applied Bio Materials, 2019, 2, 3108-3119.	2.3	25
9	Mechanosensing tensile solid stresses. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 21960-21962.	3.3	7
10	Emerging technologies in mechanotransduction research. Current Opinion in Chemical Biology, 2019, 53, 125-130.	2.8	19
11	Spatiotemporal Control of Viscoelasticity in Phototunable Hyaluronic Acid Hydrogels. Biomacromolecules, 2019, 20, 4126-4134.	2.6	81
12	Modeling distributed forces within cell adhesions of varying size on continuous substrates. Cytoskeleton, 2019, 76, 571-585.	1.0	7
13	Building a microfluidic cell culture platform with stiffness control using Loctite 3525 glue. Lab on A Chip, 2019, 19, 3512-3525.	3.1	9
14	Stick-slip dynamics of migrating cells on viscoelastic substrates. Physical Review E, 2019, 100, 012409.	0.8	18
15	Dynamic freedom: substrate stress relaxation stimulates cell responses. Biomaterials Science, 2019, 7, 836-842.	2.6	49
16	Lost in mechanobiology, what's next?: Missing tools related to the physics of the system. Biology of the Cell, 2019, 111, 213-215.	0.7	1
17	Mechanobiology of Macrophages: How Physical Factors Coregulate Macrophage Plasticity and Phagocytosis. Annual Review of Biomedical Engineering, 2019, 21, 267-297.	5.7	148
18	Integrins as biomechanical sensors ofÂthe microenvironment. Nature Reviews Molecular Cell Biology, 2019, 20, 457-473.	16.1	768

#	Article	IF	CITATIONS
19	Dynamic Mechanicsâ€Modulated Hydrogels to Regulate the Differentiation of Stem ell Spheroids in Soft Microniches and Modeling of the Nonlinear Behavior. Small, 2019, 15, e1901920.	5.2	44
20	Mechanotransduction and Growth Factor Signaling in Hydrogel-Based Microenvironments. , 2019, , 87-87.		1
21	Dynamic fibroblast contractions attract remote macrophages in fibrillar collagen matrix. Nature Communications, 2019, 10, 1850.	5.8	167
22	Mechanical Model for Durotactic Cell Migration. ACS Biomaterials Science and Engineering, 2019, 5, 3954-3963.	2.6	10
23	From mechanical resilience to active material properties in biopolymer networks. Nature Reviews Physics, 2019, 1, 249-263.	11.9	111
24	Biphasic mechanosensitivity of T cell receptor-mediated spreading of lymphocytes. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 5908-5913.	3.3	55
25	Diffusive–stochastic–viscoelastic model for specific adhesion of viscoelastic solids via molecular bonds. Acta Mechanica Sinica/Lixue Xuebao, 2019, 35, 343-354.	1.5	4
26	Complex Salt Dependence of Polymer Diffusion in Polyelectrolyte Multilayers. Journal of Physical Chemistry Letters, 2019, 10, 987-992.	2.1	23
27	Distinct relaxation timescales of neurites revealed by rate-dependent indentation, relaxation and micro-rheology tests. Soft Matter, 2019, 15, 166-174.	1.2	10
28	Temperatureâ€dependent structure and compressive mechanical behavior of alginate/polyethylene oxide–poly(propylene oxide)–poly(ethylene oxide) hydrogels. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2020, 108, 834-844.	1.6	11
29	Opposite responses of normal hepatocytes and hepatocellular carcinoma cells to substrate viscoelasticity. Biomaterials Science, 2020, 8, 1316-1328.	2.6	44
30	The Plot Thickens: The Emerging Role of Matrix Viscosity in Cell Mechanotransduction. Advanced Healthcare Materials, 2020, 9, e1901259.	3.9	75
31	Stiffness Sensing by Cells. Physiological Reviews, 2020, 100, 695-724.	13.1	227
32	Engineering Biomaterials and Approaches for Mechanical Stretching of Cells in Three Dimensions. Frontiers in Bioengineering and Biotechnology, 2020, 8, 589590.	2.0	21
33	Progress in the mechanical modulation of cell functions in tissue engineering. Biomaterials Science, 2020, 8, 7033-7081.	2.6	36
34	Hydrogel Micropost Arrays with Single Post Tunability to Study Cell Volume and Mechanotransduction. Advanced Biology, 2020, 4, e2000012.	3.0	11
35	Extracellular matrix plasticity as a driver of cell spreading. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 25999-26007.	3.3	65
36	Biomaterials-Based Model Systems to Study Tumor–Microenvironment Interactions. , 2020, , 1217-1236.		4

	CITATION	Report	
# 37	ARTICLE Effects of extracellular matrix viscoelasticity on cellular behaviour. Nature, 2020, 584, 535-546.	IF 13.7	Citations
38	Calcium Signaling Regulates Valvular Interstitial Cell Alignment and Myofibroblast Activation in Fastâ€Relaxing Boronate Hydrogels. Macromolecular Bioscience, 2020, 20, e2000268.	2.1	19
39	Substrate Resistance to Traction Forces Controls Fibroblast Polarization. Biophysical Journal, 2020, 119, 2558-2572.	0.2	10
40	Forcing a growth factor response – tissue-stiffness modulation of integrin signaling and crosstalk with growth factor receptors. Journal of Cell Science, 2020, 133, .	1.2	20
41	Obesityâ€Associated Adipose Stromal Cells Promote Breast Cancer Invasion through Direct Cell Contact and ECM Remodeling. Advanced Functional Materials, 2020, 30, 1910650.	7.8	30
42	Ligand Diffusion Enables Forceâ€Independent Cell Adhesion via Activating α5β1 Integrin and Initiating Rac and RhoA Signaling. Advanced Materials, 2020, 32, e2002566.	11.1	50
43	Spatiotemporally Controlled Photoresponsive Hydrogels: Design and Predictive Modeling from Processing through Application. Advanced Functional Materials, 2020, 30, 2000639.	7.8	51
44	Substrate Dissipation Energy Regulates Cell Adhesion and Spreading. Advanced Functional Materials, 2020, 30, 2001977.	7.8	27
45	Engineered Biomaterial Platforms to Study Fibrosis. Advanced Healthcare Materials, 2020, 9, e1901682.	3.9	53
46	Tough Anisotropic Silk Nanofiber Hydrogels with Osteoinductive Capacity. ACS Biomaterials Science and Engineering, 2020, 6, 2357-2367.	2.6	31
47	Fundamental Characteristics of Neuron Adhesion Revealed by Forced Peeling and Time-Dependent Healing. Biophysical Journal, 2020, 118, 1811-1819.	0.2	10
48	Predicting Confined 1D Cell Migration from Parameters Calibrated to a 2D Motor-Clutch Model. Biophysical Journal, 2020, 118, 1709-1720.	0.2	20
49	Multi-scale cellular engineering: From molecules to organ-on-a-chip. APL Bioengineering, 2020, 4, 010906.	3.3	8
50	Fibrillar Collagen Type I Participates in the Survival and Aggregation of Primary Hepatocytes Cultured on Soft Hydrogels. Biomimetics, 2020, 5, 30.	1.5	8
51	Dynamic Bioinks to Advance Bioprinting. Advanced Healthcare Materials, 2020, 9, e1901798.	3.9	141
52	New perspectives on integrin-dependent adhesions. Current Opinion in Cell Biology, 2020, 63, 31-37.	2.6	67
53	Hierarchical and heterogeneous hydrogel system as a promising strategy for diversified interfacial tissue regeneration. Biomaterials Science, 2021, 9, 1547-1573.	2.6	17
54	Elasticity-dependent response of malignant cells to viscous dissipation. Biomechanics and Modeling in Mechanobiology, 2021, 20, 145-154.	1.4	14

#	Article	IF	CITATIONS
56	Modulation of hydrogel stiffness by external stimuli: soft materials for mechanotransduction studies. Journal of Materials Chemistry B, 2021, 9, 7578-7596.	2.9	22
57	Mechanotransduction, nanotechnology, and nanomedicine. Journal of Biomedical Research, 2021, 35, 284.	0.7	7
58	Microscopic local stiffening in a supramolecular hydrogel network expedites stem cell mechanosensing in 3D and bone regeneration. Materials Horizons, 2021, 8, 1722-1734.	6.4	62
59	A Novel Method to Make Polyacrylamide Gels with Mechanical Properties Resembling those of Biological Tissues. Bio-protocol, 2021, 11, e4131.	0.2	5
60	Viscoelasticity of 3D actin networks dictated by the mechanochemical characteristics of cross-linkers. Soft Matter, 2021, 17, 10177-10185.	1.2	3
61	Tailoring Cellular Function: The Contribution of the Nucleus in Mechanotransduction. Frontiers in Bioengineering and Biotechnology, 2020, 8, 596746.	2.0	16
62	The nuclear piston activates mechanosensitive ion channels to generate cell migration paths in confining microenvironments. Science Advances, 2021, 7, .	4.7	45
64	Determination by Relaxation Tests of the Mechanical Properties of Soft Polyacrylamide Gels Made for Mechanobiology Studies. Polymers, 2021, 13, 629.	2.0	8
65	The matrix in cancer. Nature Reviews Cancer, 2021, 21, 217-238.	12.8	441
66	Viscoelastic Cell Microenvironment: Hydrogelâ€Based Strategy for Recapitulating Dynamic ECM Mechanics. Advanced Functional Materials, 2021, 31, 2100848.	7.8	80
67	A dysfunctional TRPV4–GSK3β pathway prevents osteoarthritic chondrocytes from sensing changes in extracellular matrix viscoelasticity. Nature Biomedical Engineering, 2021, 5, 1472-1484.	11.6	42
70	Enhanced substrate stress relaxation promotes filopodia-mediated cell migration. Nature Materials, 2021, 20, 1290-1299.	13.3	111
72	Recursive feedback between matrix dissipation and chemo-mechanical signaling drives oscillatory growth of cancer cell invadopodia. Cell Reports, 2021, 35, 109047.	2.9	14
73	Mechanical characterization of soft silicone gels via spherical nanoindentation for applications in mechanobiology. Acta Mechanica Sinica/Lixue Xuebao, 2021, 37, 554-561.	1.5	9
74	Cytoskeletal prestress: The cellular hallmark in mechanobiology and mechanomedicine. Cytoskeleton, 2021, 78, 249-276.	1.0	28
75	Tuning Viscoelasticity in Alginate Hydrogels for 3D Cell Culture Studies. Current Protocols, 2021, 1, e124.	1.3	34
76	Modelling cellular spreading and emergence of motility in the presence of curved membrane proteins and active cytoskeleton forces. European Physical Journal Plus, 2021, 136, 1.	1.2	20
77	Enhancing Biopolymer Hydrogel Functionality through Interpenetrating Networks. Trends in Biotechnology, 2021, 39, 519-538.	4.9	138

#	Article	IF	CITATIONS
78	Multiwell Combinatorial Hydrogel Array for High-Throughput Analysis of Cell–ECM Interactions. ACS Biomaterials Science and Engineering, 2021, 7, 2453-2465.	2.6	6
79	Structurally Dynamic Hydrogels for Biomedical Applications: Pursuing a Fine Balance between Macroscopic Stability and Microscopic Dynamics. Chemical Reviews, 2021, 121, 11149-11193.	23.0	161
80	Enhanced mechanosensing of cells in synthetic 3D matrix with controlled biophysical dynamics. Nature Communications, 2021, 12, 3514.	5.8	92
81	Sex‣pecific Response to Combinations of Shear Stress and Substrate Stiffness by Endothelial Cells In Vitro. Advanced Healthcare Materials, 2021, 10, e2100735.	3.9	12
82	The Combined Influence of Viscoelastic and Adhesive Cues on Fibroblast Spreading and Focal Adhesion Organization. Cellular and Molecular Bioengineering, 2021, 14, 427-440.	1.0	21
83	Hydrogels with Tunable Physical Cues and Their Emerging Roles in Studies of Cellular Mechanotransduction. Advanced NanoBiomed Research, 2021, 1, 2100059.	1.7	9
84	Mechanical Regulation of Epithelial Tissue Homeostasis. Physical Review X, 2021, 11, .	2.8	6
85	Cancer cell migration in collagen-hyaluronan composite extracellular matrices. Acta Biomaterialia, 2021, 130, 183-198.	4.1	10
86	The Fibrillar Matrix: Novel Avenues for Breast Cancer Detection and Treatment. Engineering, 2021, 7, 1375-1380.	3.2	1
87	Soft overcomes the hard: Flexible materials adapt to cell adhesion to promote cell mechanotransduction. Bioactive Materials, 2022, 10, 397-404.	8.6	41
88	Transplantation of 3D bio-printed cardiac mesh improves cardiac function and vessel formation via ANGPT1/Tie2 pathway in rats with acute myocardial infarction. Biofabrication, 2021, 13, 045014.	3.7	12
89	Characterizing and Engineering Biomimetic Materials for Viscoelastic Mechanotransduction Studies. Tissue Engineering - Part B: Reviews, 2022, 28, 912-925.	2.5	19
90	Mechanics of 3D Cell–Hydrogel Interactions: Experiments, Models, and Mechanisms. Chemical Reviews, 2021, 121, 11085-11148.	23.0	62
91	Decoding mechanical cues by molecular mechanotransduction. Current Opinion in Cell Biology, 2021, 72, 72-80.	2.6	27
92	The extracellular matrix viscoelasticity as a regulator of cell and tissue dynamics. Current Opinion in Cell Biology, 2021, 72, 10-18.	2.6	79
93	Fibrin prestress due to platelet aggregation and contraction increases clot stiffness. Biophysical Reports, 2021, 1, 100022.	0.7	4
94	Click-functionalized hydrogel design for mechanobiology investigations. Molecular Systems Design and Engineering, 2021, 6, 670-707.	1.7	15
95	Biophysical origins of viscoelasticity during collective cell migration. , 2021, , 47-77.		1

#	Article	IF	CITATIONS
96	Substrate Viscoelasticity Amplifies Distinctions between Transient and Persistent LPS-Induced Signals. SSRN Electronic Journal, 0, , .	0.4	0
100	The Effects of Stiffness, Fluid Viscosity, and Geometry of Microenvironment in Homeostasis, Aging, and Diseases: A Brief Review. Journal of Biomechanical Engineering, 2020, 142, .	0.6	24
101	Surface-controlled spatially heterogeneous physical properties of a supramolecular gel with homogeneous chemical composition. Chemical Science, 2021, 12, 14260-14269.	3.7	7
102	Tuning Hydrogels by Mixing Dynamic Cross‣inkers: Enabling Cellâ€Instructive Hydrogels and Advanced Bioinks. Advanced Healthcare Materials, 2022, 11, e2101576.	3.9	34
106	Rheological characterization of poly-dimethyl siloxane formulations with tunable viscoelastic properties. RSC Advances, 2021, 11, 35910-35917.	1.7	4
107	Mechanistically Scoping Cellâ€Free and Cellâ€Dependent Artificial Scaffolds in Rebuilding Skeletal and Dental Hard Tissues. Advanced Materials, 2022, 34, e2107922.	11.1	5
108	Injectable, viscoelastic hydrogel precisely regulates developmental tissue regeneration. Chemical Engineering Journal, 2022, 434, 133860.	6.6	11
109	Mechanical communication in fibrosis progression. Trends in Cell Biology, 2022, 32, 70-90.	3.6	63
110	Lose the Stress: Viscoelastic Materials for Cell Engineering. SSRN Electronic Journal, 0, , .	0.4	2
111	Dynamic and reconfigurable materials from reversible network interactions. Nature Reviews Materials, 2022, 7, 541-556.	23.3	105
112	Vimentin Intermediate Filaments Mediate Cell Morphology on Viscoelastic Substrates. ACS Applied Bio Materials, 2022, 5, 552-561.	2.3	21
113	Multiscale mechanobiology: Coupling models of adhesion kinetics and nonlinear tissue mechanics. Biophysical Journal, 2022, 121, 525-539.	0.2	15
114	Cell–extracellular matrix dynamics. Physical Biology, 2022, 19, 021002.	0.8	37
115	Surface Viscosityâ€Dependent Neurite Initiation in Cortical Neurons. Advanced Biology, 2022, 6, e2101325.	1.4	2
116	Ligand Mobility-Mediated Cell Adhesion and Spreading. ACS Applied Materials & Interfaces, 2022, 14, 12976-12983.	4.0	12
117	Phase field model for cell spreading dynamics. Journal of Mathematical Biology, 2022, 84, 32.	0.8	2
118	Cell–3D matrix interactions: recent advances and opportunities. Trends in Cell Biology, 2022, 32, 883-895.	3.6	51
119	Smart biomaterial platforms: Controlling and being controlled by cells. Biomaterials, 2022, 283, 121450.	5.7	12

#	Article	IF	CITATIONS
120	Lose the stress: Viscoelastic materials for cell engineering. Acta Biomaterialia, 2023, 163, 146-157.	4.1	10
121	Tuning the viscoelastic response of hydrogel scaffolds with covalent and dynamic bonds. Journal of the Mechanical Behavior of Biomedical Materials, 2022, 130, 105179.	1.5	9
122	Substrate Viscoelasticity Amplifies Distinctions between Transient and Persistent LPSâ€Induced Signals. Advanced Healthcare Materials, 2022, 11, e2102271.	3.9	4
123	Viscoelasticity Acts as a Marker for Tumor Extracellular Matrix Characteristics. Frontiers in Cell and Developmental Biology, 2021, 9, 785138.	1.8	24
124	A Versatile, Incubatorâ€Compatible, Monolithic GaN Photonic Chipscope for Labelâ€Free Monitoring of Live Cell Activities. Advanced Science, 2022, 9, e2200910.	5.6	5
125	Viscoelastic Biomaterials for Tissue Regeneration. Tissue Engineering - Part C: Methods, 2022, 28, 289-300.	1.1	19
126	3D printing topographic cues for cell contact guidance: a review. Materials and Design, 2022, , 110663.	3.3	9
127	A brief overview on mechanosensing and stick-slip motion at the leading edge of migrating cells. Indian Journal of Physics, 2022, 96, 2629-2638.	0.9	2
128	Regulation of Substrate Dissipation via Tunable Linear Elasticity Controls Cell Activity. Advanced Functional Materials, 2022, 32, .	7.8	7
130	Modelling the Effect of Geometry and Loading on Mechanical Response of SARS-CoV-2. BioNanoScience, 2022, 12, 867-876.	1.5	1
131	Nucleoside-Derived Low-Molecular-Weight Gelators as a Synthetic Microenvironment for 3D Cell Culture. ACS Biomaterials Science and Engineering, 2022, 8, 3387-3398.	2.6	2
132	Mechanical checkpoint regulates monocyte differentiation in fibrotic niches. Nature Materials, 2022, 21, 939-950.	13.3	22
133	Optimization of Mechanosensitive Cross-Talk between Matrix Stiffness and Protein Density: Independent Matrix Properties Regulate Spreading Dynamics of Myocytes. Cells, 2022, 11, 2122.	1.8	1
134	Engineering Hydrogels for Modulation of Materialâ€Cell Interactions. Macromolecular Bioscience, 2022, 22, .	2.1	4
135	Unified multiscale theory of cellular mechanical adaptations to substrate stiffness. Biophysical Journal, 2022, 121, 3474-3485.	0.2	6
136	Engineering the viscoelasticity of gelatin methacryloyl (GelMA) hydrogels via small "dynamic bridges― to regulate BMSC behaviors for osteochondral regeneration. Bioactive Materials, 2023, 25, 445-459.	8.6	18
137	On modeling the multiscale mechanobiology of soft tissues: Challenges and progress. Biophysics Reviews, 2022, 3, .	1.0	3
138	Thermodynamically-motivated chemo-mechanical models and multicellular simulation to provide new insight into active cell and tumour remodelling. Experimental Cell Research, 2022, 419, 113317.	1.2	0

#	Article	IF	CITATIONS
139	Modular mixing of benzene-1,3,5-tricarboxamide supramolecular hydrogelators allows tunable biomimetic hydrogels for control of cell aggregation in 3D. Biomaterials Science, 2022, 10, 4740-4755.	2.6	9
140	Supracellular measurement of spatially varying mechanical heterogeneities in live monolayers. Biophysical Journal, 2022, 121, 3358-3369.	0.2	2
141	Extracellular matrix mechanobiology in cancer cell migration. Acta Biomaterialia, 2023, 163, 351-364.	4.1	12
142	Click chemistry functionalization of <scp>selfâ€assembling</scp> peptide hydrogels. Journal of Biomedical Materials Research - Part A, O, , .	2.1	3
143	Cell mechanical responses to subcellular perturbations generated by ultrasound and targeted microbubbles. Acta Biomaterialia, 2022, , .	4.1	0
145	On the significance of membrane unfolding in mechanosensitive cell spreading: Its individual and synergistic effects. Mathematical Biosciences and Engineering, 2022, 20, 2408-2438.	1.0	0
146	Predicting YAP/TAZ nuclear translocation in response to ECM mechanosensing. Biophysical Journal, 2023, 122, 43-53.	0.2	6
147	A multiscale whole-cell theory for mechanosensitive migration on viscoelastic substrates. Biophysical Journal, 2023, 122, 114-129.	0.2	2
149	Static and Dynamic: Evolving Biomaterial Mechanical Properties to Control Cellular Mechanotransduction. Advanced Science, 2023, 10, .	5.6	23
150	Actin based motility unveiled: How chemical energy is converted into motion. Journal of the Mechanics and Physics of Solids, 2023, 175, 105273.	2.3	1
151	Multifunctional tendon-mimetic hydrogels. Science Advances, 2023, 9, .	4.7	22
153	Cell–extracellular matrix mechanotransduction in 3D. Nature Reviews Molecular Cell Biology, 2023, 24, 495-516.	16.1	72
155	Substrate viscoelasticity affects human macrophage morphology and phagocytosis. Soft Matter, 2023, 19, 2438-2445.	1.2	2