Do sulphonylureas still have a place in clinical practice?

Lancet Diabetes and Endocrinology,the 6, 821-832 DOI: 10.1016/s2213-8587(18)30025-1

Citation Report

#	Article	IF	CITATIONS
1	ls Atorvastatin Associated with New Onset Diabetes or Deterioration of Glycemic Control? Systematic Review Using Data from 1.9 Million Patients. International Journal of Endocrinology, 2018, 2018, 1-17.	0.6	20
2	Management of hyperglycaemia in type 2 diabetes, 2018. A consensus report by the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD). Diabetologia, 2018, 61, 2461-2498.	2.9	1,002
3	Management of Hyperglycemia in Type 2 Diabetes, 2018. A Consensus Report by the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD). Diabetes Care, 2018, 41, 2669-2701.	4.3	2,190
4	Glucose lowering strategies and cardiovascular disease in type 2 diabetes – teachings from the TOSCA.IT study. Nutrition, Metabolism and Cardiovascular Diseases, 2018, 28, 722-726.	1.1	3
5	Cardiovascular safety of DPP-4 inhibitors compared with sulphonylureas: Results of randomized controlled trials and observational studies. Diabetes and Metabolism, 2018, 44, 386-392.	1.4	25
6	Sugar-Lowering Drugs for Type 2 Diabetes Mellitus and Metabolic Syndrome—Review of Classical and New Compounds: Part-I. Pharmaceuticals, 2019, 12, 152.	1.7	95
7	Treatment strategies against diabetes: Success so far and challenges ahead. European Journal of Pharmacology, 2019, 862, 172625.	1.7	106
8	The right place for Sulphonylureas today: Part of â€~Review the Series: Implications of recent CVOTs in Type 2 diabetes mellitus'. Diabetes Research and Clinical Practice, 2019, 157, 107836.	1.1	23
9	Management of diabetes mellitus in patients undergoing liver transplantation. Pharmacological Research, 2019, 141, 556-573.	3.1	23
10	A safety and tolerability profile comparison between dipeptidyl peptidase-4 inhibitors and sulfonylureas in diabetic patients: A systematic review and meta-analysis. Diabetes Research and Clinical Practice, 2019, 149, 47-63.	1.1	13
11	Ten things you should know about type 2 diabetes – Part 1. Independent Nurse, 2019, 2019, 23-25.	0.0	1
12	Triple therapy with lowâ€dose dapagliflozin plus saxagliptin versus dual therapy with each monocomponent, all added to metformin, in uncontrolled type 2 diabetes. Diabetes, Obesity and Metabolism, 2019, 21, 2152-2162.	2.2	15
13	Insulin resistance: Impact on therapeutic developments in diabetes. Diabetes and Vascular Disease Research, 2019, 16, 128-132.	0.9	7
14	Sodium glucose cotransporter (SGLT)â€2 inhibitors: Do we need them for glucoseâ€lowering, for cardiorenal protection or both?. Diabetes, Obesity and Metabolism, 2019, 21, 24-33.	2.2	17
15	Incidence and severity of hypoglycaemia in type 2 diabetes by treatment regimen: A UK multisite 12â€month prospective observational study. Diabetes, Obesity and Metabolism, 2019, 21, 1585-1595.	2.2	19
16	Coagulatory Defects in Type-1 and Type-2 Diabetes. International Journal of Molecular Sciences, 2019, 20, 6345.	1.8	48
17	Diabetes pharmacotherapy and effects on the musculoskeletal system. Diabetes/Metabolism Research and Reviews, 2019, 35, e3100.	1.7	58
18	Reflections on the sulphonylurea story: A drug class at risk of extinction or a drug class worth reviving?. Diabetes, Obesity and Metabolism, 2019, 21, 761-771.	2.2	11

#	Article	IF	CITATIONS
19	Comparative effect of saxagliptin and glimepiride with a composite endpoint of adequate glycaemic control without hypoglycaemia and without weight gain in patients uncontrolled with metformin therapy: Results from the SPECIFY study, a 48â€week, multiâ€centre, randomized, controlled trial. Diabetes, Obesity and Metabolism, 2019, 21, 939-948.	2.2	3
20	Management of Type 2 Diabetes in Developing Countries: Balancing Optimal Glycaemic Control and Outcomes with Affordability and Accessibility to Treatment. Diabetes Therapy, 2020, 11, 15-35.	1.2	39
21	Associations of fear of hypoglycemia with secondâ€line use of insulin secretagogues or insulin and subsequent glycemic control in patients with type 2 diabetes: An analysis using data from the DISCOVER study. International Journal of Clinical Practice, 2020, 74, e13485.	0.8	7
22	ZG02 Improved Hepatic Glucose Metabolism and Insulin Sensitivity via Activation of AMPK/Sirt1 Signaling Pathways in a High-fat Diet/Streptozotocin-induced Type 2 Diabetes Model. Diabetes, Metabolic Syndrome and Obesity: Targets and Therapy, 2020, Volume 13, 4333-4339.	1.1	3
23	Where Does Metformin Stand in Modern Day Management of Type 2 Diabetes?. Pharmaceuticals, 2020, 13, 427.	1.7	14
24	Comparative effectiveness of gliclazide modified release versus sitagliptin as secondâ€line treatment after metformin monotherapy in patients with uncontrolled type 2 diabetes. Diabetes, Obesity and Metabolism, 2020, 22, 2417-2426.	2.2	13
25	â€~Resistance is futile?' – paradoxical inhibitory effects of K ATP channel closure in glucagonâ€secreting αâ€cells. Journal of Physiology, 2020, 598, 4765-4780.	1.3	16
26	Prescription of Sulphonylureas among Patients with Type 2 Diabetes Mellitus in Italy: Results from the Retrospective, Observational Multicentre Cross-Sectional SUSCIPE (Sulphonyl_UreaS_Correct_Internal_Prescription_Evaluation) Study. Diabetes Therapy, 2020, 11, 2105-2119.	1.2	5
27	Ramadan and Diabetes: A Narrative Review and Practice Update. Diabetes Therapy, 2020, 11, 2477-2520.	1.2	31
28	Recommendations for management of diabetes during Ramadan: update 2020, applying the principles of the ADA/EASD consensus. BMJ Open Diabetes Research and Care, 2020, 8, e001248.	1.2	65
29	Positioning sulphonylureas in a modern treatment algorithm for patients with type 2 diabetes: Expert opinion from a European consensus panel. Diabetes, Obesity and Metabolism, 2020, 22, 1705-1713.	2.2	17
30	Cardiovascular outcome trials of glucose-lowering therapies. Expert Review of Pharmacoeconomics and Outcomes Research, 2020, 20, 237-249.	0.7	5
31	Clinical and genetic predictors of secondary sulfonylurea failure in Type 2 diabetes patients: the SUCLINGEN study. Pharmacogenomics, 2020, 21, 587-600.	0.6	6
32	Regulation of Glycemia in the Recovery Phase After Stroke Counteracts the Detrimental Effect of Obesity-Induced Type 2 Diabetes on Neurological Recovery. Diabetes, 2020, 69, 1961-1973.	0.3	16
33	Toxicity of Metformin and Hypoglycemic Therapies. Advances in Chronic Kidney Disease, 2020, 27, 18-30.	0.6	16
34	Dipeptidyl peptidase-4 inhibitors and sulfonylureas prevent the progressive impairment of the nigrostriatal dopaminergic system induced by diabetes during aging. Neurobiology of Aging, 2020, 89, 12-23.	1.5	13
35	Impact of preexisting type 2 diabetes mellitus and antidiabetic drugs on all-cause and cause-specific mortality among Medicaid-insured women diagnosed with breast cancer. Cancer Epidemiology, 2020, 66, 101710.	0.8	7
36	Existe-t-il encore une place pour les sulfamides hypoglycémiants dans le traitement du diabète de type 2Âen 2021Â?. Medecine Des Maladies Metaboliques, 2021, 15, 45-52.	0.1	0

CITATION REPORT

#	Article	IF	CITATIONS
37	Pharmacological management of South Asians with type 2 diabetes: Consensus recommendations from the South Asian Health Foundation. Diabetic Medicine, 2021, 38, e14497.	1.2	13
38	Essential diabetes medicines and health outcomes in 127 countries. Diabetes, Obesity and Metabolism, 2021, 23, 1121-1128.	2.2	2
39	Changing the approach to type 2 diabetes treatment: A comparison of glucagonâ€like peptideâ€1 receptor agonists and sulphonylureas across the continuum of care. Diabetes/Metabolism Research and Reviews, 2021, 37, e3434.	1.7	5
40	Hypoglycemia in Older People With Type 2 Diabetes: Prevention and Treatment Strategies for Outpatient and Long-Term Care Facility Settings. , 2021, 36, 112-123.		4
41	New-Onset Diabetes after Kidney Transplantation. Medicina (Lithuania), 2021, 57, 250.	0.8	32
42	A High-Fat Diet Increases Activation of the Glucagon-Like Peptide-1-Producing Neurons in the Nucleus Tractus Solitarii: an Effect that is Partially Reversed by Drugs Normalizing Glycemia. Cellular and Molecular Neurobiology, 2022, 42, 1995-2002.	1.7	2
43	Interaction between Omeprazole and Gliclazide in Relation to CYP2C19 Phenotype. Journal of Personalized Medicine, 2021, 11, 367.	1.1	6
44	Pharmacological treatment of type 2 diabetes in Saudi Arabia: A consensus statement from the Saudi Society of Endocrinology and Metabolism (SSEM). Diabetes and Metabolic Syndrome: Clinical Research and Reviews, 2021, 15, 891-899.	1.8	2
45	Sulfonylureas in the Current Practice of Type 2 Diabetes Management: Are They All the Same? Consensus from the Gulf Cooperation Council (GCC) Countries Advisory Board on Sulfonylureas. Diabetes Therapy, 2021, 12, 2115-2132.	1.2	4
46	Protocol for an observational cohort study investigating personalised medicine for intensification of treatment in people with type 2 diabetes mellitus: the PERMIT study. BMJ Open, 2021, 11, e046912.	0.8	1
47	Sulphonylureas in the management of type 2 diabetes: To be or not to be?. Diabetes Epidemiology and Management, 2021, 1, 100002.	0.4	5
48	Comparison of 3 Medicine Groups Used to Control Glycemic and Glycated Hemoglobin Levels in Newly Diagnosed Type 2 Diabetes Patients. Open Access Macedonian Journal of Medical Sciences, 2020, 9, 101-106.	0.1	1
49	Role of Gliclazide MR in the Management of Type 2 Diabetes: Report of a Symposium on Real-World Evidence and New Perspectives. Diabetes Therapy, 2020, 11, 33-48.	1.2	17
50	Sulfonylureas may be useful for glycemic management in patients with diabetes and liver cirrhosis. PLoS ONE, 2020, 15, e0243783.	1.1	10
51	Fighting Diabetes Mellitus: Pharmacological and Non-pharmacological Approaches. Current Pharmaceutical Design, 2020, 26, 4992-5001.	0.9	11
52	A Systematic Review on Synthetic Drugs and Phytopharmaceuticals Used to Manage Diabetes. Current Diabetes Reviews, 2020, 16, 340-356.	0.6	16
53	Pharmacogenetics of sulfonylurea-induced hypoglycemia in Type 2 diabetes patients: the SUCLINGEN study. Pharmacogenomics, 2021, 22, 1057-1068.	0.6	1
54	<i>CYP2C19</i> Lossâ€ofâ€function Polymorphisms are Associated with Reduced Risk of Sulfonylurea Treatment Failure in Chinese Patients with Type 2 Diabetes. Clinical Pharmacology and Therapeutics, 2022, 111, 461-469.	2.3	5

CITATION REPORT

CITATION REPORT

#	Article	IF	CITATIONS
55	Current data on the effectiveness of gliclazide and molecular mechanisms of action of the drug. Diabetes Mellitus, 2020, 23, 357-367.	0.5	2
56	Sulfonylurea derivatives and risk of hypoglycaemia in type 2 diabetic patients. Vnitrni Lekarstvi, 2020, 66, e35-e42.	0.1	1
57	The role of sulfonylureas in the treatment of type 2 diabetes. Expert Opinion on Pharmacotherapy, 2022, 23, 387-403.	0.9	14
58	Drug Therapies Affecting Renal Function: An Overview. Cureus, 2021, 13, e19924.	0.2	3
59	Novel Approaches to Restore Pancreatic Beta-Cell Mass and Function. Handbook of Experimental Pharmacology, 2021, , 439-465.	0.9	1
61	Association Between Specificity of Sulfonylureas to Cardiac Mitochondrial KATP Channels and the Risk of Major Adverse Cardiovascular Events in Type 2 Diabetes. Diabetes Care, 2022, 45, 1276-1287.	4.3	7
62	Type 2 diabetes mellitus-associated cognitive dysfunction: Advances in potential mechanisms and therapies. Neuroscience and Biobehavioral Reviews, 2022, 137, 104642.	2.9	27
63	The Determinants of Liver Fibrosis in Patients with Nonalcoholic Fatty Liver Disease and Type 2 Diabetes Mellitus. Biomedicines, 2022, 10, 1487.	1.4	9
65	Management of hyperglycaemia in type 2 diabetes, 2022. A consensus report by the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD). Diabetologia, 2022, 65, 1925-1966.	2.9	273
66	Management of Hyperglycemia in Type 2 Diabetes, 2022. A Consensus Report by the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD). Diabetes Care, 2022, 45, 2753-2786.	4.3	435
67	Evaluating gliclazide for the treatment of type 2 diabetes mellitus. Expert Opinion on Pharmacotherapy, 2022, 23, 1869-1877.	0.9	2
68	Sulfonylurea Use in Patients with Type 2 Diabetes and COPD: A Nationwide Population-Based Cohort Study. International Journal of Environmental Research and Public Health, 2022, 19, 15013.	1.2	2
69	Clinical pharmacology of antidiabetic drugs: What can be expected of their use?. Presse Medicale, 2023, 52, 104158.	0.8	6
70	Incident and recurrent hypoglycaemia with linagliptin and glimepiride over a median of 6 years in the <scp>CAROLINA</scp> cardiovascular outcome trial. Diabetes, Obesity and Metabolism, 0, , .	2.2	1
71	Cyb5r3-based mechanism and reversal of secondary failure to sulfonylurea in diabetes. Science Translational Medicine, 2023, 15, .	5.8	4
72	Venom Peptides, Polyphenols and Alkaloids: Are They the Next Antidiabetics That Will Preserve β-Cell Mass and Function in Type 2 Diabetes?. Cells, 2023, 12, 940.	1.8	2
73	Cardiovascular Safety in Type 2 Diabetes With Sulfonylureas as Second-line Drugs: A Nationwide Population-Based Comparative Safety Study. Diabetes Care, 2023, 46, 967-977.	4.3	6
74	Avoiding and managing the side effects of type 2 diabetes treatments. Journal of Prescribing Practice, 2023, 5, 158-165.	0.1	0

 #
 ARTICLE
 IF
 CITATIONS

 75
 The "Old―Oral Antidiabetics., 2023,, 551-563.
 o

79 Management of Type 2 DiabetesMellitus. , 0, , .