Using Machine Learning to Improve the Prediction of Fundaments

IEEE/ACM Transactions on Computational Biology and Bioinfo 15, 1953-1959

DOI: 10.1109/tcbb.2018.2811471

Citation Report

#	Article	IF	CITATIONS
1	Multiscale and Multimodal Analysis for Computational Biology. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2018, 15, 1951-1952.	1.9	2
2	Automated approach for detection of ischemic stroke using Delaunay Triangulation in brain MRI images. Computers in Biology and Medicine, 2018, 103, 116-129.	3.9	33
3	Comparing the Performance of Regression Models, Random Forests and Neural Networks for Stroke Patients $\hat{a} \in \mathbb{T}^M$ outcome Prediction. , 2019, , .		2
4	Artificial Intelligence Techniques for Automated Diagnosis of Neurological Disorders. European Neurology, 2019, 82, 41-64.	0.6	95
5	Artificial Intelligence Integration for Neurodegenerative Disorders. , 2019, , 77-89.		8
6	Predicting Poor Outcome Before Endovascular Treatment in Patients With Acute Ischemic Stroke. Frontiers in Neurology, 2020, 11, 580957.	1.1	25
7	Using machine learning to predict strokeâ€associated pneumonia in Chinese acute ischaemic stroke patients. European Journal of Neurology, 2020, 27, 1656-1663.	1.7	29
8	A systematic review of machine learning models for predicting outcomes of stroke with structured data. PLoS ONE, 2020, 15, e0234722.	1.1	102
9	A Survey of Voice Pathology Surveillance Systems Based on Internet of Things and Machine Learning Algorithms. IEEE Access, 2020, 8, 64514-64533.	2.6	88
10	Predicting in vitro human mesenchymal stromal cell expansion based on individual donor characteristics using machine learning. Cytotherapy, 2020, 22, 82-90.	0.3	17
11	Machineâ€learningâ€based outcome prediction in stroke patients with middle cerebral arteryâ€M1 occlusions and early thrombectomy. European Journal of Neurology, 2021, 28, 1234-1243.	1.7	23
13	Artificial Intelligence Applications in Stroke. , 2021, , 261-273.		O
14	Mortality Prediction in Cerebral Hemorrhage Patients Using Machine Learning Algorithms in Intensive Care Units. Frontiers in Neurology, 2020, 11, 610531.	1.1	10
15	Stroke Risk Prediction With Hybrid Deep Transfer Learning Framework. IEEE Journal of Biomedical and Health Informatics, 2022, 26, 411-422.	3.9	15
16	Identification of lesion using an efficient hybrid algorithm for MRI brain image segmentation. Journal of Ambient Intelligence and Humanized Computing, 0 , 1 .	3.3	2
17	Leveraging artificial intelligence in ischemic stroke imaging. Journal of Neuroradiology, 2022, 49, 343-351.	0.6	17
18	Random forest-based prediction of stroke outcome. Scientific Reports, 2021, 11, 10071.	1.6	38
19	Predicting short and long-term mortality after acute ischemic stroke using EHR. Journal of the Neurological Sciences, 2021, 427, 117560.	0.3	18

#	Article	IF	CITATIONS
20	Artificial Bee Colony Optimized Deep Neural Network Model for Handling Imbalanced Stroke Data. International Journal of E-Health and Medical Communications, 2021, 12, 67-83.	1.4	6
21	Using a Multiclass Machine Learning Model to Predict the Outcome of Acute Ischemic Stroke Requiring Reperfusion Therapy. Diagnostics, 2021, 11, 80.	1.3	9
22	Optimization of Quantum Key Distribution Parameters Based on Random Forest., 2021,,.		1
23	Towards development of IoT-ML driven healthcare systems: A survey. Journal of Network and Computer Applications, 2021, 196, 103244.	5.8	35
24	Comparison of multispectral modeling of physiochemical attributes of greengage: Brix and pH values. Food Science and Technology, 2021, 41, 611-618.	0.8	7
25	Using multiclass machine learning model to improve outcome prediction of acute ischemic stroke patients after reperfusion therapy. , 2020, , .		1
26	Various Approaches for Predicting Stroke Prognosis using Magnetic Resonance Imaging Text Records. , 2020, , .		1
27	2D-CNN Based Segmentation of Ischemic Stroke Lesions in MRI Scans. Communications in Computer and Information Science, 2020, , 276-286.	0.4	3
28	Investigation on the capabilities of ANFIS for the detection of Ischemic Stroke. , 2021, , .		0
30	Using machine learning to predict atrial fibrillation diagnosed after ischemic stroke. International Journal of Cardiology, 2022, 347, 21-27.	0.8	19
31	Natural Language Processing Enhances Prediction of Functional Outcome After Acute Ischemic Stroke. Journal of the American Heart Association, 2021, 10, e023486.	1.6	12
32	Stroke Disease Detection and Prediction Using Robust Learning Approaches. Journal of Healthcare Engineering, 2021, 2021, 1-12.	1.1	53
33	Performance Analysis of Machine Learning Approaches in Stroke Prediction. , 2020, , .		76
34	Machine Learning Models for Predicting Influential Factors of Early Outcomes in Acute Ischemic Stroke: Registry-Based Study. JMIR Medical Informatics, 2022, 10, e32508.	1.3	9
35	Using Machine Learning to Predict Patient's Admission Trends in Hospital. , 2021, , .		0
36	An Extensive Approach Towards Heart Stroke Prediction Using Machine Learning with Ensemble Classifier. Algorithms for Intelligent Systems, 2022, , 767-777.	0.5	7
37	Enriching the Study Population for Ischemic Stroke Therapeutic Trials Using a Machine Learning Algorithm. Frontiers in Neurology, 2021, 12, 784250.	1.1	2
39	Prediction of Stroke Disease Using Different Types of Gradient Boosting Classifiers. Lecture Notes on Data Engineering and Communications Technologies, 2022, , 337-346.	0.5	1

3

#	ARTICLE	IF	CITATIONS
40	Early Prediction of Functional Outcomes After Acute Ischemic Stroke Using Unstructured Clinical Text: Retrospective Cohort Study. JMIR Medical Informatics, 2022, 10, e29806.	1.3	6
42	Recurrent Stroke Prediction using Machine Learning Algorithms with Clinical Public Datasets: An Empirical Performance Evaluation. Baghdad Science Journal, 2021, 18, 1406.	0.4	1
43	Machine Learning in Action: Stroke Diagnosis and Outcome Prediction. Frontiers in Neurology, 2021, 12, 734345.	1.1	50
45	Using Natural Language Processing and Machine Learning to Preoperatively Predict Lymph Node Metastasis for Non–Small Cell Lung Cancer With Electronic Medical Records: Development and Validation Study. JMIR Medical Informatics, 2022, 10, e35475.	1.3	6
48	Dynamic Prediction of Mechanical Thrombectomy Outcome for Acute Ischemic Stroke Patients Using Machine Learning. Brain Sciences, 2022, 12, 938.	1.1	12
49	Detection of Ischemic Stroke Tissue Fate from the MRI Images Using a Deep Learning Approach. Mobile Information Systems, 2022, 2022, 1-11.	0.4	0
50	eXplainable AI Allows Predicting Upper Limb Rehabilitation Outcomes in Sub-Acute Stroke Patients. IEEE Journal of Biomedical and Health Informatics, 2023, 27, 263-273.	3.9	10
51	ML_SPS: Stroke Prediction System Employing Machine Learning Approach. Communications in Computer and Information Science, 2022, , 215-226.	0.4	1
52	Brain Stroke Prediction Using ANN. , 2022, , .		0
53	Brain Stroke Classification using One Dimensional Convolutional Neural Network. , 2022, , .		2
54	Prediction of Functional Outcome in Stroke Patients with Proximal Middle Cerebral Artery Occlusions Using Machine Learning Models. Journal of Clinical Medicine, 2023, 12, 839.	1.0	5
55	Machine learning-based prediction of clinical outcomes after first-ever ischemic stroke. Frontiers in Neurology, 0, 14 , .	1.1	5
56	Five layered Ensembled Deep Fully Connected Neural Network based Brain Stroke Prediction., 2022,,.		1
57	Explainable machine learning for long-term outcome prediction in two-center stroke patients after intravenous thrombolysis. Frontiers in Neuroscience, $0,17,.$	1.4	3
58	Performance Analysis of Machine Learning Algorithms for Prediction of Cerebral Attack (Stroke). Lecture Notes in Networks and Systems, 2023, , 215-228.	0.5	0
60	A Comparative Analysis of Prediction of Brain Stroke Using AIML. Lecture Notes in Networks and Systems, 2023, , 533-544.	0.5	0
63	Artificial Intelligence based Model for Brain Stroke Prediction. , 2022, , .		0
65	Predicting the occurrence of Ischemic stroke by Gradient Boost Approaches. , 2023, , .		0

#	Article	IF	CITATIONS
66	Stroke Prediction Model Using Machine Learning Method., 2022,,.		0
67	Stroke Disease Prediction Using Adaboost Ensemble Learning Technique. Lecture Notes in Networks and Systems, 2023, , 247-260.	0.5	0
70	Brain Stroke Detection and Prediction Using Machine Learning Approach: A Cloud Deployment Perspective. , 2023, , .		0
71	An enhanced stroke prediction model based on data class balance and machine learning., 2023,,.		O
75	Systematic Review of Machine Learning Applied to the Secondary Prevention of Ischemic Stroke. Journal of Medical Systems, 2024, 48, .	2.2	0