Common Patterns in Chaperone Interactions with a Nat

Angewandte Chemie - International Edition 57, 5921-5924 DOI: 10.1002/anie.201713064

Citation Report

#	Article	IF	CITATIONS
1	Extensive Sampling of the Cavity of the GroEL Nanomachine by Protein Substrates Probed by Paramagnetic Relaxation Enhancement. Journal of Physical Chemistry Letters, 2018, 9, 3368-3371.	4.6	11
2	Ligand Binding Site Structure Shapes Folding, Assembly and Degradation of Homomeric Protein Complexes. Journal of Molecular Biology, 2019, 431, 3871-3888.	4.2	5
3	Protein folding while chaperone bound is dependent on weak interactions. Nature Communications, 2019, 10, 4833.	12.8	28
4	Frustrated Interfaces Facilitate Dynamic Interactions between Native Client Proteins and Holdase Chaperones. ChemBioChem, 2019, 20, 2803-2806.	2.6	17
5	Chaperone-Bound Clients: The Importance of Being Dynamic. Trends in Biochemical Sciences, 2019, 44, 517-527.	7.5	39
6	Mechanisms of Chaperones as Active Assistant/Protector for Proteins: Insights from NMR Studies. Chinese Journal of Chemistry, 2020, 38, 406-413.	4.9	0
7	Molecular chaperones and their denaturing effect on client proteins. Journal of Biomolecular NMR, 2021, 75, 1-8.	2.8	8
8	Redefining Molecular Chaperones as Chaotropes. Frontiers in Molecular Biosciences, 2021, 8, 683132.	3.5	12
10	How do Chaperones Bind (Partly) Unfolded Client Proteins?. Frontiers in Molecular Biosciences, 2021, 8, 762005.	3.5	17
12	Identifying dynamic, partially occupied residues using anomalous scattering. Acta Crystallographica Section D: Structural Biology, 2019, 75, 1084-1095.	2.3	5
13	Preproteins couple the intrinsic dynamics of SecA to its ATPase cycle to translocate via a catch and release mechanism. Cell Reports, 2022, 38, 110346.	6.4	5
15	Assembly mechanism of early Hsp90-Cdc37-kinase complexes. Science Advances, 2022, 8, eabm9294.	10.3	14
16	Molecular Insight into the Extracellular Chaperone Serum Albumin in Modifying the Folding Free Energy Landscape of Client Proteins. Journal of Physical Chemistry Letters, 2022, 13, 2711-2717.	4.6	2
17	Trigger factor both holds and folds its client proteins. Nature Communications, 2022, 13, .	12.8	8
18	Describing Dynamic Chaperone–Client Complexes by Solution NMR Spectroscopy. New Developments in NMR, 2022, , 277-302.	0.1	0
19	The periplasmic chaperone Skp prevents misfolding of the secretory lipase A from Pseudomonas aeruginosa. Frontiers in Molecular Biosciences, 0, 9, .	3.5	4
20	Solution NMR Approaches for Studying Molecular Chaperones. , 2023, , 55-85.		0
21	Preparing Chaperone–Client Protein Complexes for Biophysical and Structural Studies. , 2023, , 136-161.		0

#	Article	IF	CITATIONS
22	A tale of dual functions of SERF family proteins in regulating amyloid formation. ChemBioChem, 2024, 25, .	2.6	0