Assembly of 913 microbial genomes from metagenomic

Nature Communications 9, 870 DOI: 10.1038/s41467-018-03317-6

Citation Report

#	Article	IF	CITATIONS
1	Prediction of functional metagenomic composition using archived 16S rDNA sequence data from the gut microbiota of livestock. Livestock Science, 2018, 213, 28-34.	0.6	6
2	Characterisation of the British honey bee metagenome. Nature Communications, 2018, 9, 4995.	5.8	51
3	Comparison of Mothur and QIIME for the Analysis of Rumen Microbiota Composition Based on 16S rRNA Amplicon Sequences. Frontiers in Microbiology, 2018, 9, 3010.	1.5	67
4	The human archaeome: methodological pitfalls and knowledge gaps. Emerging Topics in Life Sciences, 2018, 2, 469-482.	1.1	31
5	Understanding the microbial basis of body odor in pre-pubescent children and teenagers. Microbiome, 2018, 6, 213.	4.9	47
6	Characterization of novel glycosyl hydrolases discovered by cell wall glycan directed monoclonal antibody screening and metagenome analysis of maize aerial root mucilage. PLoS ONE, 2018, 13, e0204525.	1.1	34
7	Review: The application of omics to rumen microbiota function. Animal, 2018, 12, s233-s245.	1.3	31
8	Genomes from uncultivated prokaryotes: a comparison of metagenome-assembled and single-amplified genomes. Microbiome, 2018, 6, 173.	4.9	86
9	Interspecies cross-feeding orchestrates carbon degradation in the rumen ecosystem. Nature Microbiology, 2018, 3, 1274-1284.	5.9	144
10	The Planktonic Core Microbiome and Core Functions in the Cattle Rumen by Next Generation Sequencing. Frontiers in Microbiology, 2018, 9, 2285.	1.5	62
11	Effect of slow-release urea on the composition of ruminal bacteria and fungi communities in yak. Animal Feed Science and Technology, 2018, 244, 18-27.	1.1	20
12	A metagenomic analysis of the camel rumen's microbiome identifies the major microbes responsible for lignocellulose degradation and fermentation. Biotechnology for Biofuels, 2018, 11, 216.	6.2	96
13	Evaluating Established Methods for Rumen 16S rRNA Amplicon Sequencing With Mock Microbial Populations. Frontiers in Microbiology, 2018, 9, 1365.	1.5	44
14	The Present and Future of Whole Genome Sequencing (WGS) and Whole Metagenome Sequencing (WMS) for Surveillance of Antimicrobial Resistant Microorganisms and Antimicrobial Resistance Genes across the Food Chain. Genes, 2018, 9, 268.	1.0	99
15	Addressing Global Ruminant Agricultural Challenges Through Understanding the Rumen Microbiome: Past, Present, and Future. Frontiers in Microbiology, 2018, 9, 2161.	1.5	255
16	Analysis of sequencing strategies and tools for taxonomic annotation: Defining standards for progressive metagenomics. Scientific Reports, 2018, 8, 12034.	1.6	93
17	Functional metagenomics reveals abundant polysaccharide-degrading gene clusters and cellobiose utilization pathways within gut microbiota of a wood-feeding higher termite. ISME Journal, 2019, 13, 104-117.	4.4	93
18	MetaTOR: A Computational Pipeline to Recover High-Quality Metagenomic Bins From Mammalian Gut Proximity-Ligation (meta3C) Libraries. Frontiers in Genetics, 2019, 10, 753.	1.1	22

#	Article	IF	CITATIONS
19	Applications of the Soil, Plant and Rumen Microbiomes in Pastoral Agriculture. Frontiers in Nutrition, 2019, 6, 107.	1.6	30
20	Compendium of 4,941 rumen metagenome-assembled genomes for rumen microbiome biology and enzyme discovery. Nature Biotechnology, 2019, 37, 953-961.	9.4	353
21	Assignment of virus and antimicrobial resistance genes to microbial hosts in a complex microbial community by combined long-read assembly and proximity ligation. Genome Biology, 2019, 20, 153.	3.8	66
22	On the Role of Bioinformatics and Data Science in Industrial Microbiome Applications. Frontiers in Genetics, 2019, 10, 721.	1.1	11
23	Diverse hydrogen production and consumption pathways influence methane production in ruminants. ISME Journal, 2019, 13, 2617-2632.	4.4	132
24	BOARD INVITED REVIEW: The pig microbiota and the potential for harnessing the power of the microbiome to improve growth and health1. Journal of Animal Science, 2019, 97, 3741-3757.	0.2	39
25	Current Status and Potential Applications of Underexplored Prokaryotes. Microorganisms, 2019, 7, 468.	1.6	17
26	Metagenomic Analyses of Microbial and Carbohydrate-Active Enzymes in the Rumen of Holstein Cows Fed Different Forage-to-Concentrate Ratios. Frontiers in Microbiology, 2019, 10, 649.	1.5	90
27	Robust taxonomic classification of uncharted microbial sequences and bins with CAT and BAT. Genome Biology, 2019, 20, 217.	3.8	269
28	Identification of Rumen Microbial Genes Involved in Pathways Linked to Appetite, Growth, and Feed Conversion Efficiency in Cattle. Frontiers in Genetics, 2019, 10, 701.	1.1	43
29	Long-read metagenomic exploration of extrachromosomal mobile genetic elements in the human gut. Microbiome, 2019, 7, 119.	4.9	65
30	Current and Promising Approaches to Identify Horizontal Gene Transfer Events in Metagenomes. Genome Biology and Evolution, 2019, 11, 2750-2766.	1.1	70
31	Metagenomic deep sequencing reveals association of microbiome signature with functional biases in bovine mastitis. Scientific Reports, 2019, 9, 13536.	1.6	97
32	The fecal resistome of dairy cattle is associated with diet during nursing. Nature Communications, 2019, 10, 4406.	5.8	100
33	Meta-omics based analyses of microbiome involved in biomethanation of rice straw in a thermophilic anaerobic bioreactor under optimized conditions. Bioresource Technology, 2019, 279, 25-33.	4.8	17
34	Horizontal Gene Transfer as an Indispensable Driver for Evolution of Neocallimastigomycota into a Distinct Gut-Dwelling Fungal Lineage. Applied and Environmental Microbiology, 2019, 85, .	1.4	61
35	Metatranscriptomics of the Hu sheep rumen microbiome reveals novel cellulases. Biotechnology for Biofuels, 2019, 12, 153.	6.2	42
36	Long-read based de novo assembly of low-complexity metagenome samples results in finished genomes and reveals insights into strain diversity and an active phage system. BMC Microbiology, 2019, 19, 143.	1.3	104

#	Article	IF	CITATIONS
37	Carbohydrate Hydrolytic Potential and Redundancy of an Anaerobic Digestion Microbiome Exposed to Acidosis, as Uncovered by Metagenomics. Applied and Environmental Microbiology, 2019, 85, .	1.4	33
38	Fibre digestion by rumen microbiota — a review of recent metagenomic and metatranscriptomic studies. Canadian Journal of Animal Science, 2019, 99, 678-692.	0.7	38
39	Linking the resistome and plasmidome to the microbiome. ISME Journal, 2019, 13, 2437-2446.	4.4	183
40	Host genetics influence the rumen microbiota and heritable rumen microbial features associate with feed efficiency in cattle. Microbiome, 2019, 7, 92.	4.9	230
41	Invited review: Application of meta-omics to understand the dynamic nature of the rumen microbiome and how it responds to diet in ruminants. Animal, 2019, 13, 1843-1854.	1.3	63
42	A metagenomic analysis of the relationship between microorganisms and flavor development in Shaoxing mechanized huangjiu fermentation mashes. International Journal of Food Microbiology, 2019, 303, 9-18.	2.1	116
43	Metagenome to phenome approach enables isolation and genomics characterization of Kalamiella piersonii gen. nov., sp. nov. from the International Space Station. Applied Microbiology and Biotechnology, 2019, 103, 4483-4497.	1.7	44
44	Applying Genome-Resolved Metagenomics to Deconvolute the Halophilic Microbiome. Genes, 2019, 10, 220.	1.0	32
45	Sequencing-based methods and resources to study antimicrobial resistance. Nature Reviews Genetics, 2019, 20, 356-370.	7.7	263
46	A new genomic blueprint of the human gut microbiota. Nature, 2019, 568, 499-504.	13.7	901
47	Bioinformatics applied to biotechnology: A review towards bioenergy research. Biomass and Bioenergy, 2019, 123, 195-224.	2.9	17
48	De novo Assembly Vastly Expands the Known Microbial Universe. Trends in Microbiology, 2019, 27, 385-386.	3.5	0
49	New insights from uncultivated genomes of the global human gut microbiome. Nature, 2019, 568, 505-510.	13.7	505
50	Metagenomics of the Viral Community in Three Cattle Slurry Samples. Microbiology Resource Announcements, 2019, 8, .	0.3	2
51	Mining of camel rumen metagenome to identify novel alkali-thermostable xylanase capable of enhancing the recalcitrant lignocellulosic biomass conversion. Bioresource Technology, 2019, 281, 343-350.	4.8	42
52	Molecular Dating of the Emergence of Anaerobic Rumen Fungi and the Impact of Laterally Acquired Genes. MSystems, 2019, 4, .	1.7	28
53	A Cautionary Report for Pathogen Identification Using Shotgun Metagenomics; A Comparison to Aerobic Culture and Polymerase Chain Reaction for Salmonella enterica Identification. Frontiers in Microbiology, 2019, 10, 2499.	1.5	27
54	Whole genome sequencing and metagenomics for outbreak investigation, source attribution and risk assessment of foodâ€borne microorganisms. EFSA Journal, 2019, 17, e05898.	0.9	83

#	Article	IF	CITATIONS
55	Improved metagenomic analysis with Kraken 2. Genome Biology, 2019, 20, 257.	3.8	2,909
56	Occurrence and expression of genes encoding methyl-compound production in rumen bacteria. Animal Microbiome, 2019, 1, 15.	1.5	27
57	The rumen microbiome: a crucial consideration when optimising milk and meat production and nitrogen utilisation efficiency. Gut Microbes, 2019, 10, 115-132.	4.3	209
58	Assembling a genome for novel nitrogen-fixing bacteria with capabilities for utilization of aromatic hydrocarbons. Genomics, 2019, 111, 1824-1830.	1.3	22
59	Recovering microbial genomes from metagenomes in hypersaline environments: The Good, the Bad and the Ugly. Systematic and Applied Microbiology, 2019, 42, 30-40.	1.2	29
60	MAGpy: a reproducible pipeline for the downstream analysis of metagenome-assembled genomes (MAGs). Bioinformatics, 2019, 35, 2150-2152.	1.8	33
61	Comparative metagenomic and metatranscriptomic analyses reveal the breed effect on the rumen microbiome and its associations with feed efficiency in beef cattle. Microbiome, 2019, 7, 6.	4.9	150
62	Fecal pollution can explain antibiotic resistance gene abundances in anthropogenically impacted environments. Nature Communications, 2019, 10, 80.	5.8	378
63	The diverse and extensive plant polysaccharide degradative apparatuses of the rumen and hindgut Prevotella species: A factor in their ubiquity?. Systematic and Applied Microbiology, 2019, 42, 107-116.	1.2	43
64	New approaches for metagenome assembly with short reads. Briefings in Bioinformatics, 2020, 21, 584-594.	3.2	140
65	Nature's recyclers: anaerobic microbial communities drive crude biomass deconstruction. Current Opinion in Biotechnology, 2020, 62, 38-47.	3.3	35
66	Taxonomic and functional assessment using metatranscriptomics reveals the effect of Angus cattle on rumen microbial signatures. Animal, 2020, 14, 731-744.	1.3	9
67	Panel 3: Genomics, precision medicine and targeted therapies. International Journal of Pediatric Otorhinolaryngology, 2020, 130, 109835.	0.4	5
68	CAMITAX: Taxon labels for microbial genomes. GigaScience, 2020, 9, .	3.3	6
69	Genome reconstruction and haplotype phasing using chromosome conformation capture methodologies. Briefings in Functional Genomics, 2020, 19, 139-150.	1.3	10
70	Manipulating the rumen microbiome to address challenges facing Australasian dairy farming. Animal Production Science, 2020, 60, 36.	0.6	4
71	Microbiome Diagnostics. Clinical Chemistry, 2020, 66, 68-76.	1.5	27
72	Biotechnological utilization of animal gut microbiota for valorization of lignocellulosic biomass. Applied Microbiology and Biotechnology, 2020, 104, 489-508.	1.7	39

#	Article	IF	Citations
73	Population Genetics in the Human Microbiome. Trends in Genetics, 2020, 36, 53-67.	2.9	97
74	Discovery of an Abundance of Biosynthetic Gene Clusters in Shark Bay Microbial Mats. Frontiers in Microbiology, 2020, 11, 1950.	1.5	39
75	Metagenomic insights into the diversity of carbohydrate-degrading enzymes in the yak fecal microbial community. BMC Microbiology, 2020, 20, 302.	1.3	24
76	Experimental approaches to tracking mobile genetic elements in microbial communities. FEMS Microbiology Reviews, 2020, 44, 606-630.	3.9	23
77	Multi-omic Directed Discovery of Cellulosomes, Polysaccharide Utilization Loci, and Lignocellulases from an Enriched Rumen Anaerobic Consortium. Applied and Environmental Microbiology, 2020, 86, .	1.4	20
78	Thermogenic hydrocarbon biodegradation by diverse depth-stratified microbial populations at a Scotian Basin cold seep. Nature Communications, 2020, 11, 5825.	5.8	72
79	Lower methane emissions were associated with higher abundance of ruminal Prevotella in a cohort of Colombian buffalos. BMC Microbiology, 2020, 20, 364.	1.3	22
80	Altitude influences microbial diversity and herbage fermentation in the rumen of yaks. BMC Microbiology, 2020, 20, 370.	1.3	57
81	Inclusion of Oxford Nanopore long reads improves all microbial and viral metagenomeâ€assembled genomes from a complex aquifer system. Environmental Microbiology, 2020, 22, 4000-4013.	1.8	42
82	Widespread transfer of mobile antibiotic resistance genes within individual gut microbiomes revealed through bacterial Hi-C. Nature Communications, 2020, 11, 4379.	5.8	116
83	1200 high-quality metagenome-assembled genomes from the rumen of African cattle and their relevance in the context of sub-optimal feeding. Genome Biology, 2020, 21, 229.	3.8	38
84	Microbial dark matter filling the niche in hypersaline microbial mats. Microbiome, 2020, 8, 135.	4.9	35
85	Meta-analysis of cheese microbiomes highlights contributions to multiple aspects of quality. Nature Food, 2020, 1, 500-510.	6.2	60
86	Dietary Supplementation with Sugar Beet Fructooligosaccharides and Garlic Residues Promotes Growth of Beneficial Bacteria and Increases Weight Gain in Neonatal Lambs. Biomolecules, 2020, 10, 1179.	1.8	4
87	Characterization of Metagenome-Assembled Genomes and Carbohydrate-Degrading Genes in the Gut Microbiota of Tibetan Pig. Frontiers in Microbiology, 2020, 11, 595066.	1.5	34
88	A rather dry subject; investigating the study of arid-associated microbial communities. Environmental Microbiomes, 2020, 15, 20.	2.2	15
89	Large-Scale Metagenome Assembly Reveals Novel Animal-Associated Microbial Genomes, Biosynthetic Gene Clusters, and Other Genetic Diversity. MSystems, 2020, 5, .	1.7	47
90	High-quality bacterial genomes of a partial-nitritation/anammox system by an iterative hybrid assembly method. Microbiome, 2020, 8, 155.	4.9	29

#	Article	IF	CITATIONS
91	BIPEP: Sequence-based Prediction of Biofilm Inhibitory Peptides Using a Combination of NMR and Physicochemical Descriptors. ACS Omega, 2020, 5, 7290-7297.	1.6	33
92	In silico Prediction of Virus-Host Interactions for Marine Bacteroidetes With the Use of Metagenome-Assembled Genomes. Frontiers in Microbiology, 2020, 11, 738.	1.5	20
93	A catalog of microbial genes from the bovine rumen unveils a specialized and diverse biomass-degrading environment. GigaScience, 2020, 9, .	3.3	35
94	Metagenomic Analyses of Microbial and Carbohydrate-Active Enzymes in the Rumen of Dairy Goats Fed Different Rumen Degradable Starch. Frontiers in Microbiology, 2020, 11, 1003.	1.5	47
95	An Overview of the Elusive Passenger in the Gastrointestinal Tract of Cattle: The Shiga Toxin Producing Escherichia coli. Microorganisms, 2020, 8, 877.	1.6	31
96	ATLAS: a Snakemake workflow for assembly, annotation, and genomic binning of metagenome sequence data. BMC Bioinformatics, 2020, 21, 257.	1.2	91
97	Shotgun sequencing of honey DNA can describe honey bee derived environmental signatures and the honey bee hologenome complexity. Scientific Reports, 2020, 10, 9279.	1.6	41
98	The food-gut axis: lactic acid bacteria and their link to food, the gut microbiome and human health. FEMS Microbiology Reviews, 2020, 44, 454-489.	3.9	139
99	Design of an Epitope-Based Vaccine Ensemble for Animal Trypanosomiasis by Computational Methods. Vaccines, 2020, 8, 130.	2.1	14
100	A novel thermostable cellulase cocktail enhances lignocellulosic bioconversion and biorefining in a broad range of pH. International Journal of Biological Macromolecules, 2020, 154, 349-360.	3.6	47
101	Characteristics and Functions of the Rumen Microbial Community of Cattle-Yak at Different Ages. BioMed Research International, 2020, 2020, 1-9.	0.9	24
102	Shifts in microbial community, pathogenicityâ€related genes and antibiotic resistance genes during dairy manure piled up. Microbial Biotechnology, 2020, 13, 1039-1053.	2.0	11
103	Addressing Learning Needs on the Use of Metagenomics in Antimicrobial Resistance Surveillance. Frontiers in Public Health, 2020, 8, 38.	1.3	11
104	Genome Analysis of a Member of the Uncultured Phylum Riflebacteria Revealed Pathways of Organotrophic Metabolism and Dissimilatory Iron Reduction. Microbiology, 2020, 89, 328-336.	0.5	16
105	Effects of Exogenous Glucoamylase Enzymes Alone or in Combination with a Neutral Protease on Apparent Total Tract Digestibility and Feces D-Lactate in Crossbred Angus Bulls Fed a Ration Rich in Rolled Corn. Animals, 2020, 10, 1077.	1.0	3
106	Exploring neighborhoods in large metagenome assembly graphs using spacegraphcats reveals hidden sequence diversity. Genome Biology, 2020, 21, 164.	3.8	32
107	Identification of Microbial Genetic Capacities and Potential Mechanisms Within the Rumen Microbiome Explaining Differences in Beef Cattle Feed Efficiency. Frontiers in Microbiology, 2020, 11, 1229.	1.5	28
108	Review: Ruminal microbiome and microbial metabolome: effects of diet and ruminant host. Animal, 2020, 14, s78-s86.	1.3	93

#	Article	IF	CITATIONS
109	Recovery of the fibrolytic microorganisms from rumen fluid by flocculation for simultaneous treatment of lignocellulosic biomass and volatile fatty acid production. Journal of Cleaner Production, 2020, 257, 120626.	4.6	15
110	Metagenomic Insights of the Root Colonizing Microbiome Associated with Symptomatic and Non-Symptomatic Bananas in Fusarium Wilt Infected Fields. Plants, 2020, 9, 263.	1.6	30
111	Assembly of hundreds of novel bacterial genomes from the chicken caecum. Genome Biology, 2020, 21, 34.	3.8	112
112	Effects of oregano essential oil on in vitro ruminal fermentation, methane production, and ruminal microbial community. Journal of Dairy Science, 2020, 103, 2303-2314.	1.4	59
113	A Comparison between Hi-C and 10X Genomics Linked Read Sequencing for Whole Genome Phasing in Hanwoo Cattle. Genes, 2020, 11, 332.	1.0	2
114	Identification of Complex Rumen Microbiome Interaction Within Diverse Functional Niches as Mechanisms Affecting the Variation of Methane Emissions in Bovine. Frontiers in Microbiology, 2020, 11, 659.	1.5	51
115	Association between Rumen Microbiota and Marbling Score in Korean Native Beef Cattle. Animals, 2020, 10, 712.	1.0	16
116	A practical guide to amplicon and metagenomic analysis of microbiome data. Protein and Cell, 2021, 12, 315-330.	4.8	376
117	Probing the Mobilome: Discoveries in the Dynamic Microbiome. Trends in Microbiology, 2021, 29, 158-170.	3.5	41
118	Next Generation Sequencing Methods: Pushing the Boundaries. , 2021, , 19-46.		0
119	A genomic catalog of Earth's microbiomes. Nature Biotechnology, 2021, 39, 499-509.	9.4	457
120	Rumen metaproteomics: Closer to linking rumen microbial function to animal productivity traits. Methods, 2021, 186, 42-51.	1.9	21
121	Metagenomic analysis reveals a dynamic microbiome with diversified adaptive functions to utilize high lignocellulosic forages in the cattle rumen. ISME Journal, 2021, 15, 1108-1120.	4.4	87
122	Performance and microbial communities of a novel integrated industrial-scale pulp and paper wastewater treatment plant. Journal of Cleaner Production, 2021, 278, 123896.	4.6	40
123	Proteome specialization of anaerobic fungi during ruminal degradation of recalcitrant plant fiber. ISME Journal, 2021, 15, 421-434.	4.4	46
124	Metagenomic analysis of the cow, sheep, reindeer and red deer rumen. Scientific Reports, 2021, 11, 1990.	1.6	32
125	Unravelling the Role of Rumen Microbial Communities, Genes, and Activities on Milk Fatty Acid Profile Using a Combination of Omics Approaches. Frontiers in Microbiology, 2020, 11, 590441.	1.5	11
126	Quantifying fluorescent glycan uptake to elucidate strain-level variability in foraging behaviors of	4.9	16

#	Article	IF	CITATIONS
128	Potentilla anserina L. developmental changes affect the rhizosphere prokaryotic community. Scientific Reports, 2021, 11, 2838.	1.6	4
130	Tracking Reservoirs of Antimicrobial Resistance Genes in a Complex Microbial Community Using Metagenomic Hi-C: The Case of Bovine Digital Dermatitis. Antibiotics, 2021, 10, 221.	1.5	6
131	A homodimeric bacterial exo-β-1,3-glucanase derived from moose rumen microbiome shows a structural framework similar to yeast exo-β-1,3-glucanases. Enzyme and Microbial Technology, 2021, 143, 109723.	1.6	7
132	Approaches for characterizing and tracking hospital-associated multidrug-resistant bacteria. Cellular and Molecular Life Sciences, 2021, 78, 2585-2606.	2.4	21
133	Genomic and functional analyses of fungal and bacterial consortia that enable lignocellulose breakdown in goat gut microbiomes. Nature Microbiology, 2021, 6, 499-511.	5.9	116
134	Soil Biogeochemical Cycle Couplings Inferred from a Function-Taxon Network. Research, 2021, 2021, 7102769.	2.8	30
136	Estimating maximal microbial growth rates from cultures, metagenomes, and single cells via codon usage patterns. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	130
137	Recovery of complete genomes and non-chromosomal replicons from activated sludge enrichment microbial communities with long read metagenome sequencing. Npj Biofilms and Microbiomes, 2021, 7, 23.	2.9	29
138	Metagenomic Data Assembly – The Way of Decoding Unknown Microorganisms. Frontiers in Microbiology, 2021, 12, 613791.	1.5	67
139	Genome-resolved metagenomics using environmental and clinical samples. Briefings in Bioinformatics, 2021, 22, .	3.2	18
140	Recovering prokaryotic genomes from host-associated, short-read shotgun metagenomic sequencing data. Nature Protocols, 2021, 16, 2520-2541.	5.5	25
141	Characterizing rumen microbiota and CAZyme profile of Indian dromedary camel (Camelus) Tj ETQq1 1 0.784314	rgBT /Ove	rlock 10 TF
144	Extensive microbial diversity within the chicken gut microbiome revealed by metagenomics and culture. PeerJ, 2021, 9, e10941.	0.9	79
145	Early-Life Immune System Maturation in Chickens Using a Synthetic Community of Cultured Gut Bacteria. MSystems, 2021, 6, .	1.7	68
146	Metagenome and analysis of metabolic potential of the microbial community in pit mud used for Chinese strong-flavor liquor production. Food Research International, 2021, 143, 110294.	2.9	33
147	Automated analysis of genomic sequences facilitates high-throughput and comprehensive description of bacteria. ISME Communications, 2021, 1, .	1.7	228
149	Major genetic discontinuity and novel toxigenic species in Clostridioides difficile taxonomy. ELife, 2021, 10, .	2.8	50
150	Diversity and genomic determinants of the microbiomes associated with COVID-19 and non-COVID respiratory diseases. Gene Reports, 2021, 23, 101200.	0.4	25

#	Article	IF	CITATIONS
151	A Metagenomic Insight Into the Hindgut Microbiota and Their Metabolites for Dairy Goats Fed Different Rumen Degradable Starch. Frontiers in Microbiology, 2021, 12, 651631.	1.5	13
152	Insights into rumen microbial biosynthetic gene cluster diversity through genome-resolved metagenomics. Communications Biology, 2021, 4, 818.	2.0	20
153	An integrated gene catalog and over 10,000 metagenome-assembled genomes from the gastrointestinal microbiome of ruminants. Microbiome, 2021, 9, 137.	4.9	110
154	Recovery of human gut microbiota genomes with third-generation sequencing. Cell Death and Disease, 2021, 12, 569.	2.7	10
155	Disentangling the syntrophic electron transfer mechanisms of Candidatus geobacter eutrophica through electrochemical stimulation and machine learning. Scientific Reports, 2021, 11, 15140.	1.6	8
156	Hi-C deconvolution of a textile dye–related microbiome reveals novel taxonomic landscapes and links phenotypic potential to individual genomes. International Microbiology, 2022, 25, 99-110.	1.1	4
157	Accessing Dietary Effects on the Rumen Microbiome: Different Sequencing Methods Tell Different Stories. Veterinary Sciences, 2021, 8, 138.	0.6	3
158	Metagenome-Assembled Genomes Contribute to Unraveling of the Microbiome of Cocoa Fermentation. Applied and Environmental Microbiology, 2021, 87, e0058421.	1.4	11
160	Disproportionate microbial responses to decadal drainage on a Siberian floodplain. Global Change Biology, 2021, 27, 5124-5140.	4.2	8
161	Effects of rumen-protected methionine and lysine supplementation on milk yields and components, rumen fermentation, and the rumen microbiome in lactating yaks (Bos grunniens). Animal Feed Science and Technology, 2021, 277, 114972.	1.1	15
162	Horizontal Gene Transfer Is the Main Driver of Antimicrobial Resistance in Broiler Chicks Infected with Salmonella enterica Serovar Heidelberg. MSystems, 2021, 6, e0072921.	1.7	8
163	Effects of Age, Diet CP, NDF, EE, and Starch on the Rumen Bacteria Community and Function in Dairy Cattle. Microorganisms, 2021, 9, 1788.	1.6	9
164	Metagenomes Binning Using Proximity-Ligation Data. Methods in Molecular Biology, 2022, 2301, 163-181.	0.4	3
165	The potential for mitigation of methane emissions in ruminants through the application of metagenomics, metabolomics, and other -OMICS technologies. Journal of Animal Science, 2021, 99, .	0.2	8
166	MetaPlatanus: a metagenome assembler that combines long-range sequence links and species-specific features. Nucleic Acids Research, 2021, 49, e130-e130.	6.5	6
167	Adoption of Climate Smart Agriculture by Communal Livestock Farmers in South Africa. Sustainability, 2021, 13, 10468.	1.6	10
169	Prospects for multi-omics in the microbial ecology of water engineering. Water Research, 2021, 205, 117608.	5.3	26
170	Pd-promoting reduction of zinc salt to PdZn alloy catalyst for the hydrogenation of nitrothioanisole. Journal of Colloid and Interface Science, 2021, 602, 459-468.	5.0	13

#	Article	IF	Citations
171	Investigating the cow skin and teat canal microbiomes of the bovine udder using different sampling and sequencing approaches. Journal of Dairy Science, 2021, 104, 644-661.	1.4	20
172	Evolution of Holobionts: The Hologenome Concept. The Microbiomes of Humans, Animals, Plants, and the Environment, 2021, , 317-352.	0.2	1
173	Characterization of efficient xylanases from industrial-scale pulp and paper wastewater treatment microbiota. AMB Express, 2021, 11, 19.	1.4	16
174	A roadmap for metagenomic enzyme discovery. Natural Product Reports, 2021, 38, 1994-2023.	5.2	76
175	Species Identification in Plant-Associated Prokaryotes and Fungi Using DNA. Phytobiomes Journal, 2020, 4, 103-114.	1.4	7
176	Loss of microbial diversity and pathogen domination of the gut microbiota in critically ill patients. Microbial Genomics, 2019, 5, .	1.0	59
202	Genomic insights into ruminant evolution: from past to future prospects. Zoological Research, 2019, 40, 476-487.	0.9	11
203	Metage2Metabo, microbiota-scale metabolic complementarity for the identification of key species. ELife, 2020, 9, .	2.8	44
204	Yak rumen microbial diversity at different forage growth stages of an alpine meadow on the Qinghai-Tibet Plateau. PeerJ, 2019, 7, e7645.	0.9	37
205	Phylogenomic analysis of 589 metagenome-assembled genomes encompassing all major prokaryotic lineages from the gut of higher termites. Peerl, 2020, 8, e8614.	0.9	43
206	Enrofloxacin Alters Fecal Microbiota and Resistome Irrespective of Its Dose in Calves. Microorganisms, 2021, 9, 2162.	1.6	6
207	Functional Diversity within Gut Microbiomes: Implications for Conserving Biodiversity. Conservation, 2021, 1, 311-326.	0.8	1
209	Dynamics of the ruminal microbial ecosystem, and inhibition of methanogenesis and propiogenesis in response to nitrate feeding to Holstein calves. Animal Nutrition, 2021, 7, 1205-1218.	2.1	6
213	PCR and qPCR-based applications in rumen microbiology research: a review. Acta Agraria Kaposváriensis, 2019, 23, .	0.2	0
218	Nutrigenomics of lipid supplementation in ruminants and pigs. , 2020, , 93-131.		1
219	Mini-review: Advances of metagenomics research for lake microbiomes. Hupo Kexue/Journal of Lake Sciences, 2020, 32, 271-280.	0.3	0
220	Metagenomics and Drug-Discovery. , 2020, , 133-145.		1
222	How to Analyse Microbial Communities?. Fascinating Life Sciences, 2020, , 15-29.	0.5	0

#	Article	IF	CITATIONS
223	A Comprehensive Analysis of the Global Human Gut Archaeome from a Thousand Genome Catalogue. SSRN Electronic Journal, 0, , .	0.4	0
224	Metagenome Mining. , 2020, , 50-89.		Ο
227	Insights into the Ancient Adaptation to Intertidal Environments by Red Algae Based on a Genomic and Multiomics Investigation of <i>Neoporphyra haitanensis</i> . Molecular Biology and Evolution, 2022, 39, .	3.5	21
228	Effects of exogenous α-amylases, glucoamylases, and proteases on ruminal in vitro dry matter and starch digestibility, gas production, and volatile fatty acids of mature dent corn grain. Translational Animal Science, 2021, 5, txaa222.	0.4	6
229	Effect of amino acid supplementation and choline chloride for low protein diet on nitrogen efficiency and methane emission of dairy cows. Semina:Ciencias Agrarias, 2022, 43, 159-178.	0.1	0
230	Comparison of gastrointestinal microbiota in golden snub-nosed monkey (Rhinopithecus roxellanae), green monkey (Chlorocebus aethiops sabaeus), and ring-tailed lemur (Lemur catta) by high throughput sequencing. Global Ecology and Conservation, 2022, 33, e01946.	1.0	3
231	A review of the resistome within the digestive tract of livestock. Journal of Animal Science and Biotechnology, 2021, 12, 121.	2.1	17
232	Genome-centric metagenomics provides new insights into the microbial community and metabolic potential of landfill leachate microbiota. Science of the Total Environment, 2022, 816, 151635.	3.9	7
233	Metagenomic Analysis Reveals New Microbiota Related to Fiber Digestion in Pigs. Frontiers in Microbiology, 2021, 12, 746717.	1.5	7
234	Biotechnological potential of rumen microbiota for sustainable bioconversion of lignocellulosic waste to biofuels and value-added products. Science of the Total Environment, 2022, 814, 152773.	3.9	45
235	Investigation of fiber utilization in the rumen of dairy cows based on metagenome-assembled genomes and single-cell RNA sequencing. Microbiome, 2022, 10, 11.	4.9	24
237	Alternative pathways for hydrogen sink originated from the ruminal fermentation of carbohydrates: Which microorganisms are involved in lowering methane emission?. Animal Microbiome, 2022, 4, 5.	1.5	26
238	Concepts, Tools, and Methodologic Considerations for Lung Microbiome Research. Respiratory Medicine, 2022, , 21-33.	0.1	0
241	Assessment of Hydrocarbon Degradation Potential in Microbial Communities in Arctic Sea Ice. Microorganisms, 2022, 10, 328.	1.6	13
242	The microbiome of the buffalo digestive tract. Nature Communications, 2022, 13, 823.	5.8	30
243	Hi-C Metagenomics in the ICU: Exploring Clinically Relevant Features of Gut Microbiome in Chronically Critically III Patients. Frontiers in Microbiology, 2021, 12, 770323.	1.5	12
244	A catalogue of 1,167 genomes from the human gut archaeome. Nature Microbiology, 2022, 7, 48-61.	5.9	72
246	Concepts and Consequences of a Core Gut Microbiota for Animal Growth and Development. Annual Review of Animal Biosciences, 2022, 10, 177-201.	3.6	16

#	Article	IF	CITATIONS
247	Taxonomic distribution and evolutionary analysis of the equol biosynthesis gene cluster. BMC Genomics, 2022, 23, 182.	1.2	10
248	Translational multi-omics microbiome research for strategies to improve cattle production and health. Emerging Topics in Life Sciences, 2022, , .	1.1	3
249	Functional and Phylogenetic Characterization of Bacteria in Bovine Rumen Using Fractionation of Ruminal Fluid. Frontiers in Microbiology, 2022, 13, 813002.	1.5	8
250	Metaproteomics as a tool for studying the protein landscape of human-gut bacterial species. PLoS Computational Biology, 2022, 18, e1009397.	1.5	8
251	Characterization of the Microbial Communities along the Gastrointestinal Tract in Crossbred Cattle. Animals, 2022, 12, 825.	1.0	9
252	Comprehensive mouse microbiota genome catalog reveals major difference to its human counterpart. PLoS Computational Biology, 2022, 18, e1009947.	1.5	36
253	Metagenomics-enabled microbial surveillance. Nature Microbiology, 2022, 7, 486-496.	5.9	83
254	FI: The Fecobiome Initiative. Foodborne Pathogens and Disease, 2021, , .	0.8	2
255	Bovine host genome acts on rumen microbiome function linked to methane emissions. Communications Biology, 2022, 5, 350.	2.0	25
256	Differential Effects of Natural Grazing and Feedlot Feeding on Yak Fecal Microbiota. Frontiers in Veterinary Science, 2022, 9, 791245.	0.9	4
291	Metagenomic methylation patterns resolve bacterial genomes of unusual size and structural complexity. ISME Journal, 2022, 16, 1921-1931.	4.4	11
293	Current Progress in Optimising Sustainable Energy Recovery From Cattle Paunch Contents, a Slaughterhouse Waste Product. Frontiers in Sustainable Food Systems, 2022, 6, .	1.8	3
295	Metagenomic mining of Indian river confluence reveal functional microbial community with lignocelluloytic potential. 3 Biotech, 2022, 12, .	1.1	1
296	Metagenomic Analysis Revealed Differences in Composition and Function Between Liquid-Associated and Solid-Associated Microorganisms of Sheep Rumen. Frontiers in Microbiology, 2022, 13, .	1.5	8
297	Rumen multi-omics addressing diet–host–microbiome interplay in farm animals: a review. Animal Biotechnology, 2023, 34, 3187-3205.	0.7	3
298	Functional and phylogenetic analyses of camel rumen microbiota associated with different lignocellulosic substrates. Npj Biofilms and Microbiomes, 2022, 8, .	2.9	15
299	Unique pool of carbohydrate-degrading enzymes in novel bacteria assembled from cow and buffalo rumen metagenomes. Applied Microbiology and Biotechnology, 2022, 106, 4643-4654.	1.7	4
300	Oxford Nanopore R10.4 long-read sequencing enables the generation of near-finished bacterial genomes from pure cultures and metagenomes without short-read or reference polishing. Nature Methods, 2022, 19, 823-826.	9.0	152

#	Article	IF	CITATIONS
301	Comparative and functional analyses of fecal microbiome in Asian elephants. Antonie Van Leeuwenhoek, 2022, 115, 1187-1202.	0.7	5
302	Regulation of Dietary Protein Solubility Improves Ruminal Nitrogen Metabolism In Vitro: Role of Bacteria–Protozoa Interactions. Nutrients, 2022, 14, 2972.	1.7	6
303	Metagenomic insights into the microbe-mediated B and K2 vitamin biosynthesis in the gastrointestinal microbiome of ruminants. Microbiome, 2022, 10, .	4.9	18
304	An Age Effect of Rumen Microbiome in Dairy Buffaloes Revealed by Metagenomics. Microorganisms, 2022, 10, 1491.	1.6	2
305	Metabolism in the Niche: a Large-Scale Genome-Based Survey Reveals Inositol Utilization To Be Widespread among Soil, Commensal, and Pathogenic Bacteria. Microbiology Spectrum, 2022, 10, .	1.2	11
308	Yak rumen microbiome elevates fiber degradation ability and alters rumen fermentation pattern to increase feed efficiency. Animal Nutrition, 2022, 11, 201-214.	2.1	16
309	Intraintestinal Analysis of the Functional Activity of Microbiomes and Its Application to the Common Marmoset Intestine. MSystems, 0, , .	1.7	0
310	Genomic insights into the phylogeny and biomass-degrading enzymes of rumen ciliates. ISME Journal, 2022, 16, 2775-2787.	4.4	32
311	New approach of bioprocessing towards lignin biodegradation. Bioresource Technology, 2022, 361, 127730.	4.8	2
312	Metagenomic Approaches for the Discovery of Pollutant-Remediating Enzymes: Recent Trends and Challenges. , 2022, , 571-604.		0
313	Functional characterization of prokaryotic dark matter: the road so far and what lies ahead. Current Research in Microbial Sciences, 2022, 3, 100159.	1.4	2
314	Validation of the application of gel beads-based single-cell genome sequencing platform to soil and seawater. ISME Communications, 2022, 2, .	1.7	15
315	A global phylogenomic and metabolic reconstruction of the large intestine bacterial community of domesticated cattle. Microbiome, 2022, 10, .	4.9	6
316	Bioinformatics in bioscience and bioengineering: Recent advances, applications, and perspectives. Journal of Bioscience and Bioengineering, 2022, 134, 363-373.	1.1	14
317	Microbiome-driven breeding strategy potentially improves beef fatty acid profile benefiting human health and reduces methane emissions. Microbiome, 2022, 10, .	4.9	11
318	Rumen microbial genomics: from cells to genes (and back to cells). CAB Reviews: Perspectives in Agriculture, Veterinary Science, Nutrition and Natural Resources, 0, , .	0.6	3
319	Functional Interpretation of Cross-Talking Pathways with Emphasis on Amino Acid Metabolism in Rhizosphere Microbiome of the Wild Plant Moringa oleifera. Agriculture (Switzerland), 2022, 12, 1814.	1.4	3
320	Microbiota and Serum Metabolic Profile Changes in Korean Native Hanwoo Steer in Response to Diet Feeding Systems. International Journal of Molecular Sciences, 2022, 23, 12391.	1.8	1

#	Article	IF	CITATIONS
322	A Catalog of over 5,000 Metagenome-Assembled Microbial Genomes from the Caprinae Gut Microbiota. Microbiology Spectrum, 2022, 10, .	1.2	3
323	Microbiome analysis revealing microbial interactions and secondary bacterial infections in COVIDâ€19 patients comorbidly affected by Type 2 diabetes. Journal of Medical Virology, 2023, 95, .	2.5	11
324	Metagenome-assembled genome extraction and analysis from microbiomes using KBase. Nature Protocols, 2023, 18, 208-238.	5.5	7
327	Investigating the impact of database choice on the accuracy of metagenomic read classification for the rumen microbiome. Animal Microbiome, 2022, 4, .	1.5	9
328	Unravelling microbial drivers of the sulfate-reduction process inside landfill using metagenomics. Chemosphere, 2023, 313, 137537.	4.2	3
330	Novel Virus Identification through Metagenomics: A Systematic Review. Life, 2022, 12, 2048.	1.1	7
331	Discovery of novel carbohydrate degrading enzymes from soda lakes through functional metagenomics. Frontiers in Microbiology, 0, 13, .	1.5	2
332	Distribution of bacteria in different regions of the small intestine with Zanthoxylum bungeanum essential oil supplement in small-tailed Han sheep. Frontiers in Microbiology, 0, 13, .	1.5	6
333	Expanded catalogue of metagenome-assembled genomes reveals resistome characteristics and athletic performance-associated microbes in horse. Microbiome, 2023, 11, .	4.9	8
334	Effect of supplementation with ruminal probiotics on growth performance, carcass characteristics, plasma metabolites, methane emissions, and the associated rumen microbiome changes in beef cattle. Journal of Animal Science, 2023, 101, .	0.2	2
335	ViralCC retrieves complete viral genomes and virus-host pairs from metagenomic Hi-C data. Nature Communications, 2023, 14, .	5.8	4
336	Rumen and Fecal Microbiota Characteristics of Qinchuan Cattle with Divergent Residual Feed Intake. Microorganisms, 2023, 11, 358.	1.6	1
337	Deduplication Improves Cost-Efficiency and Yields of <i>De Novo</i> Assembly and Binning of Shotgun Metagenomes in Microbiome Research. Microbiology Spectrum, 2023, 11, .	1.2	1
338	Trait biases in microbial reference genomes. Scientific Data, 2023, 10, .	2.4	4
339	Effect of Dioscorea Opposite Waste Supplementation on Antioxidant Capacity, Immune Response and Rumen Microbiome in Weaned Lambs. Fermentation, 2023, 9, 256.	1.4	1
340	Integrated <i>de novo</i> gene prediction and peptide assembly of metagenomic sequencing data. NAR Genomics and Bioinformatics, 2023, 5, .	1.5	Ο
341	Rumen Biogeographical Regions and Microbiome Variation. Microorganisms, 2023, 11, 747.	1.6	3
342	Nutrient availability of roughages in isocaloric andÂisonitrogenous diets alters the bacterial networks in the whole gastrointestinal tract of Hu sheep. BMC Microbiology, 2023, 23, .	1.3	0

ARTICLE

Assembly of novel microbial genomes from gut metagenomes of rhesus macaque (<i>Macaca) Tj ETQq0 0 0 rgBT /Qyerlock 10 Tf 50 74

344	Recovery of metagenomic data from the Aedes aegypti microbiome using a reproducible snakemake pipeline: MINUUR. Wellcome Open Research, 0, 8, 131.	0.9	1
345	Strain-Level Dynamics Reveal Regulatory Roles in Atopic Eczema by Gut Bacterial Phages. Microbiology Spectrum, 2023, 11, .	1.2	4
348	Lignocellulose degradation by rumen bacterial communities: New insights from metagenome analyses. Environmental Research, 2023, 229, 115925.	3.7	17
383	System Biology and Livestock Gut Microbiome. , 2023, , 96-128.		0