An absorption profile centred at 78 megahertz in the sky

Nature 555, 67-70 DOI: 10.1038/nature25792

Citation Report

#	Article	IF	CITATIONS
1	Possible interaction between baryons and dark-matter particles revealed by the first stars. Nature, 2018, 555, 71-74.	13.7	418
2	The Radio Sky at Meter Wavelengths: m-mode Analysis Imaging with the OVRO-LWA. Astronomical Journal, 2018, 156, 32.	1.9	62
3	The Global 21 cm Absorption from Cosmic Dawn with Inhomogeneous Gas Distribution. Astrophysical Journal, 2018, 869, 42.	1.6	6
4	A fresh look into the interacting dark matter scenario. Journal of Cosmology and Astroparticle Physics, 2018, 2018, 007-007.	1.9	45
5	M3: a new muon missing momentum experiment to probe (g â^ 2)μ and dark matter at Fermilab. Journal of High Energy Physics, 2018, 2018, 1.	1.6	82
6	Self-interacting dark matter with a stable vector mediator. Journal of Cosmology and Astroparticle Physics, 2018, 2018, 033-033.	1.9	18
7	N-body simulations of structure formation in thermal inflation cosmologies. Journal of Cosmology and Astroparticle Physics, 2018, 2018, 010-010.	1.9	2
8	Astrophysical radio background cannot explain the EDGES 21-cm signal: constraints from cooling of non-thermal electrons. Monthly Notices of the Royal Astronomical Society: Letters, 2018, 481, L6-L10.	1.2	29
9	Kinetic mixing, dark photons and extra dimensions. Part II: fermionic dark matter. Journal of High Energy Physics, 2018, 2018, 1.	1.6	19
10	Tighter limits on dark matter explanations of the anomalous EDGES 21Âcm signal. Physical Review D, 2018, 98, .	1.6	102
11	Coscattering/coannihilation dark matter in a fraternal twin Higgs model. Journal of High Energy Physics, 2018, 2018, 1.	1.6	33
12	A novel probe of ionized bubble shape and size statistics of the epoch of reionization using the contour Minkowski Tensor. Journal of Cosmology and Astroparticle Physics, 2018, 2018, 011-011.	1.9	25
13	A new goodness-of-fit statistic and its application to 21-cm cosmology. Journal of Cosmology and Astroparticle Physics, 2018, 2018, 015-015.	1.9	11
14	Probing the Secrets of Dark Matter [Turnstile]. IEEE Antennas and Propagation Magazine, 2018, 60, 100-149.	1.2	0
15	On the Prospects of Measuring the Cosmic Dawn 21-cm Power Spectrum using the Upgraded Giant Meterwave Radio Telescope (uGMRT). Monthly Notices of the Royal Astronomical Society, 0, , .	1.6	7
16	From Identity to Uniqueness: The Emergence of Increasingly Higher Levels of Hierarchy in the Process of the Matter Evolution. Entropy, 2018, 20, 533.	1.1	8
17	Black hole high mass X-ray binary microquasars at cosmic dawn. Proceedings of the International Astronomical Union, 2018, 14, 365-379.	0.0	1
18	HÂ <scp>I</scp> 21 m Cosmology and the Bispectrum: Closure Diagnostics in Massively Redundant Interferometric Arrays. Radio Science, 2018, 53, 845-865.	0.8	43

\sim	T A T I	Repo	DT
		REDU	
	/	ILLI U	- C - L

#	Article	IF	CITATIONS
19	Remembering Erik Folke Bolinder [In Memoriam]. IEEE Antennas and Propagation Magazine, 2018, 60, 148-149.	1.2	0
20	Stellar mass dependence of the 21-cm signal around the first star and its impact on the global signal. Monthly Notices of the Royal Astronomical Society, 2018, 480, 1925-1937.	1.6	9
21	Minimum star-forming halo mass in axion cosmology. Monthly Notices of the Royal Astronomical Society: Letters, 2018, 481, L69-L73.	1.2	9
22	Higgs portal dark matter in non-standard cosmological histories. Journal of High Energy Physics, 2018, 2018, 1.	1.6	39
23	The First Stars May Shed Light on Dark Matter. Physics Magazine, 0, 11, .	0.1	3
24	Imprints of quasar duty cycle on the 21-cm signal from the Epochof Reionization. Monthly Notices of the Royal Astronomical Society, 2018, 478, 5564-5578.	1.6	17
25	Strong constraints on light dark matter interpretation of the EDGES signal. Physical Review D, 2018, 98, .	1.6	141
26	Constraints on Dark Matter with a moderately large and velocity-dependent DM-nucleon cross-section. Journal of Cosmology and Astroparticle Physics, 2018, 2018, 007-007.	1.9	55
27	Constraints on MeV dark matter using neutrino detectors and their implication for the 21-cm results. Physical Review D, 2018, 98, .	1.6	15
28	Constraining noncold dark matter models with the global 21-cm signal. Physical Review D, 2018, 98, .	1.6	66
29	Modeling the Radio Background from the First Black Holes at Cosmic Dawn: Implications for the 21 cm Absorption Amplitude. Astrophysical Journal, 2018, 868, 63.	1.6	149
30	Could the 21-cm absorption be explained by the dark matter suggested by \$\$^8\$\$ 8 Be transitions?. European Physical Journal C, 2018, 78, 1.	1.4	7
31	Heating of the intergalactic medium by the cosmic microwave background during cosmic dawn. Physical Review D, 2018, 98, .	1.6	50
32	Parkes Pulsar Timing Array constraints on ultralight scalar-field dark matter. Physical Review D, 2018, 98, .	1.6	72
33	Contributions of dark matter annihilation to the global 21Âcm spectrum observed by the EDGES experiment. Physical Review D, 2018, 98, .	1.6	21
34	Assessment of Ionospheric Activity Tolerances for Epoch of Reionization Science with the Murchison Widefield Array. Astrophysical Journal, 2018, 867, 15.	1.6	17
35	Cosmological Evolution of Average Continuum Spectra of Radio Sources at Z >2 Redshifts. Astrophysical Bulletin, 2018, 73, 393-400.	0.3	4
36	Interacting dark energy: possible explanation for 21-cm absorption at cosmic dawn. European Physical Journal C, 2018, 78, 1.	1.4	43

#	Article	IF	Citations
37	Concerns about modelling of the EDGES data. Nature, 2018, 564, E32-E34.	13.7	183
38	Metal pollution of low-mass Population III stars through accretion of interstellar objects like †Oumuamua. Publication of the Astronomical Society of Japan, 2018, 70, .	1.0	12
39	Constraining the Dark Matter Vacuum Energy Interaction Using the EDGES 21 cm Absorption Signal. Astrophysical Journal, 2018, 869, 26.	1.6	22
40	Freeze-in production of decaying dark matter in five steps. Journal of Cosmology and Astroparticle Physics, 2018, 2018, 048-048.	1.9	46
41	Characterizing Signal Loss in the 21 cm Reionization Power Spectrum: A Revised Study of PAPER-64. Astrophysical Journal, 2018, 868, 26.	1.6	51
42	Critical assessment of CMB limits on dark matter-baryon scattering: New treatment of the relative bulk velocity. Physical Review D, 2018, 98, .	1.6	86
43	Dipole Anisotropy as an Essential Qualifier for the Monopole Component of the Cosmic-dawn Spectral Signature, and the Potential of Diurnal Pattern for Foreground Estimation. Astrophysical Journal Letters, 2018, 866, L7.	3.0	9
44	Implications of a prereionization 21-cm absorption signal for fuzzy dark matter. Physical Review D, 2018, 98, .	1.6	42
45	Supernova 1987A constraints on sub-GeV dark sectors, millicharged particles, the QCD axion, and an axion-like particle. Journal of High Energy Physics, 2018, 2018, 1.	1.6	302
46	Perspectives for Cosmological Reionization From Future CMB and Radio Projects. Frontiers in Astronomy and Space Sciences, 2018, 5, .	1.1	0
47	21-cm Fluctuations from Charged Dark Matter. Physical Review Letters, 2018, 121, 121301.	2.9	67
48	Constraining primordial black holes with the EDGES 21-cm absorption signal. Physical Review D, 2018, 98, .	1.6	79
49	Observing the Influence of Growing Black Holes on the Pre-reionization IGM. Astrophysical Journal, 2018, 865, 130.	1.6	2
50	Calorimetric Dark Matter Detection with Galactic Center Gas Clouds. Physical Review Letters, 2018, 121, 131101.	2.9	40
51	Impact of EDGES 21-cm global signal on the primordial power spectrum. Physical Review D, 2018, 98, .	1.6	16
52	Neutron to dark matter decay in neutron stars. International Journal of Modern Physics A, 2018, 33, 1844020.	0.5	11
53	Implications of a 21-cm signal for dark matter annihilation and decay. Physical Review D, 2018, 98, .	1.6	76
54	Shadow of a black hole at cosmological distances. Physical Review D, 2018, 98, .	1.6	65

	CHAN	JN REPORT	
#	Article	IF	CITATIONS
55	Cosmological implications of ultralight axionlike fields. Physical Review D, 2018, 98, .	1.6	171
56	Black hole spin constraints on the mass spectrum and number of axionlike fields. Physical Review D, 2018, 98, .	1.6	66
57	Dark Matter that Interacts with Baryons: Density Distribution within the Earth and New Constraints on the Interaction Cross-section. Astrophysical Journal, 2018, 866, 111.	1.6	26
58	Unique signatures of Population III stars in the global 21-cm signal. Monthly Notices of the Royal Astronomical Society, 2018, 478, 5591-5606.	1.6	46
59	Measuring the global 21-cm signal with the MWA-I: improved measurements of the Galactic synchrotron background using lunar occultation. Monthly Notices of the Royal Astronomical Society, 2018, 481, 5034-5045.	1.6	20
60	Cosmological dynamics of brane gravity: A global dynamical system perspective. Physical Review D, 2018, 98, .	1.6	18
61	SENSEI: First Direct-Detection Constraints on Sub-GeV Dark Matter from a Surface Run. Physical Review Letters, 2018, 121, 061803.	2.9	145
62	Natural Explanation for 21Âcm Absorption Signals via Axion-Induced Cooling. Physical Review Letters, 2018, 121, 111301.	2.9	23
63	The EDGES 21 cm anomaly and properties of dark matter. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2018, 785, 159-164.	1.5	109
64	Constraints on ALPs and excited dark matter from the EDGES 21 cm absorption signal. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2018, 785, 429-433.	1.5	15
65	Charge quantization and neutrino mass from Planck-scale SUSY. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2018, 785, 585-590.	1.5	6
66	Exploring circular polarization in the CMB due to conventional sources of cosmic birefringence. Journal of Cosmology and Astroparticle Physics, 2018, 2018, 040-040.	1.9	22
67	Baryon-dark matter scattering and first star formation. Monthly Notices of the Royal Astronomical Society: Letters, 2018, 480, L85-L89.	1.2	15
68	Observational signatures of massive black hole formation in the early Universe. Nature Astronomy, 2018, 2, 987-994.	4.2	24
69	New mechanism producing axions in the AQN model and how the CAST can discover them. Physical Review D, 2018, 98, .	1.6	21
70	Results from EDGES High-band. II. Constraints on Parameters of Early Galaxies. Astrophysical Journal, 2018, 863, 11.	1.6	44
71	Implication of the Shape of the EDGES Signal for the 21 cm Power Spectrum. Astrophysical Journal Letters, 2018, 864, L15.	3.0	21
72	Absorption by Spinning Dust: A Contaminant for High-redshift 21 cm Observations. Astrophysical Journal Letters, 2018, 858, L10.	3.0	24

#	Article	IF	CITATIONS
73	A small amount of mini-charged dark matter could cool the baryons in the early Universe. Nature, 2018, 557, 684-686.	13.7	203
74	Constraining Baryon–Dark-Matter Scattering with the Cosmic Dawn 21-cm Signal. Physical Review Letters, 2018, 121, 011101.	2.9	128
75	Severely Constraining Dark-Matter Interpretations of the 21-cm Anomaly. Physical Review Letters, 2018, 121, 011102.	2.9	168
76	Bounds on Dark-Matter Annihilations from 21-cm Data. Physical Review Letters, 2018, 121, 011103.	2.9	63
77	Bounds on Dark Matter decay from 21 cm line. Journal of Cosmology and Astroparticle Physics, 2018, 2018, 069-069.	1.9	45
78	A Limit on the Warm Dark Matter Particle Mass from the Redshifted 21 cm Absorption Line. Astrophysical Journal Letters, 2018, 859, L18.	3.0	44
79	Science with e-ASTROGAM. Journal of High Energy Astrophysics, 2018, 19, 1-106.	2.4	177
80	Physicists in Earth's remotest corners race to reproduce â€~cosmic dawn' signal. Nature, 2018, 557, 15-1	.6.13.7	0
81	A surprising chill before the cosmic dawn. Nature, 2018, 555, 38-39.	13.7	5
82	Probing the Secrets of Dark Matter [Microwave Surfing]. IEEE Microwave Magazine, 2018, 19, 12-14.	0.7	0
83	The Radio Background below 100 MHz. Astrophysical Journal Letters, 2018, 858, L9.	3.0	77
84	Constraints on early star formation from the 21-cm global signal. Monthly Notices of the Royal Astronomical Society: Letters, 2018, 480, L43-L47.	1.2	26
85	Numerical Modeling of Phased Array Antennas. , 0, , 253-299.		0
86	Magnetic heating across the cosmological recombination era: results from 3D MHD simulations. Monthly Notices of the Royal Astronomical Society, 2018, 481, 3401-3422.	1.6	12
87	Scientists downsize bold plan to make human genome from scratch. Nature, 2018, 557, 16-17.	13.7	5
88	Early-Universe constraints on dark matter-baryon scattering and their implications for a global 21Âcm signal. Physical Review D, 2018, 98, .	1.6	135
89	Room for New Physics in the Rayleigh-Jeans Tail of the Cosmic Microwave Background. Physical Review Letters, 2018, 121, 031103.	2.9	106
90	Al mimics brain codes for navigation. Nature, 2018, 557, 313-314.	13.7	8

#	Article	IF	CITATIONS
91	Enhanced Global Signal of Neutral Hydrogen Due to Excess Radiation at Cosmic Dawn. Astrophysical Journal Letters, 2018, 858, L17.	3.0	176
92	Distant galaxy formed stars only 250 million years after the Big Bang. Nature, 2018, 557, 312-313.	13.7	Ο
93	EDGES result versus CMB and low-redshift constraints on ionization histories. Physical Review D, 2018, 97, .	1.6	12
94	Solar flares and the axion quark nugget dark matter model. Physics of the Dark Universe, 2018, 22, 1-15.	1.8	22
95	Can early dark energy explain EDGES?. Journal of Cosmology and Astroparticle Physics, 2018, 2018, 037-037.	1.9	42
96	21Âcm limits on decaying dark matter and primordial black holes. Physical Review D, 2018, 98, .	1.6	89
97	Axion-photon conversion and effects on 21 cm observation. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2018, 783, 301-305.	1.5	41
98	The EDGES signal: An imprint from the mirror world?. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2018, 784, 130-136.	1.5	12
99	Ultimate frontier of 21-cm cosmology. Physical Review D, 2018, 98, .	1.6	3
100	Predictions for the Sky-Averaged Depth of the 21Âcm Absorption Signal at High Redshift in Cosmologies with and without Nonbaryonic Cold Dark Matter. Physical Review Letters, 2018, 121, 081305.	2.9	9
101	Re-evaluating old stellar populations. Monthly Notices of the Royal Astronomical Society, 2018, 479, 75-93.	1.6	298
102	Origin of the Local Group satellite planes. Monthly Notices of the Royal Astronomical Society, 2018, 477, 4768-4791.	1.6	30
103	On the possible enhancement of the global 21-cm signal at reionization from the decay of cosmic string cusps. Journal of Cosmology and Astroparticle Physics, 2019, 2019, 020-020.	1.9	11
104	Fuzzy dark matter at cosmic dawn: new 21-cm constraints. Journal of Cosmology and Astroparticle Physics, 2019, 2019, 051-051.	1.9	30
105	Probing primordial non-Gaussianity with 21 cm fluctuations from minihalos. Journal of Cosmology and Astroparticle Physics, 2019, 2019, 033-033.	1.9	14
107	Novel astrophysical probes of light millicharged fermions through Schwinger pair production. Journal of High Energy Physics, 2019, 2019, 1.	1.6	7
108	Probing dark matter particles at CEPC. Journal of High Energy Physics, 2019, 2019, 1.	1.6	18
109	CHAMP cosmic rays. Journal of Cosmology and Astroparticle Physics, 2019, 2019, 015-015.	1.9	32

#	Article	IF	CITATIONS
110	Proton fixed-target scintillation experiment to search for millicharged dark matter. Physical Review D, 2019, 100, .	1.6	32
111	Possible <mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">display="inline"><mml:mi>s</mml:mi></mml:math> -wave annihilation for MeV dark matter with the 21-cm absorption. Physical Review D, 2019, 100, .	1.6	5
112	Recent results and perspectives on cosmic backgrounds from radio to far-infrared. International Journal of Modern Physics D, 2019, 28, 1930021.	0.9	0
114	The Role of Radio Observations in Astronomy. , 2019, , 3-14.		0
115	Emission and General Properties of Radio Waves. , 2019, , 15-40.		0
117	Radio Wave Propagation. , 2019, , 58-68.		0
118	The Nature of the Received Radio Signal. , 2019, , 69-81.		0
119	Radiometers. , 2019, , 82-107.		0
120	Spectrometers and Polarimeters. , 2019, , 108-128.		0
121	Single-Aperture Radio Telescopes. , 2019, , 131-176.		0
122	The Basics of Interferometry. , 2019, , 177-219.		0
123	Aperture Synthesis. , 2019, , 220-265.		0
124	Further Interferometric Techniques. , 2019, , 266-298.		0
125	The Sun and the Planets. , 2019, , 301-308.		0
126	Stars and Nebulae. , 2019, , 309-337.		0
127	The Milky Way Galaxy. , 2019, , 338-366.		0
128	Pulsars. , 2019, , 367-396.		0
129	Active Galaxies. , 2019, , 397-440.		0

ARTICLE IF CITATIONS The Radio Contributions to Cosmology., 2019, , 441-466. 130 0 Titans of the early Universe: The Prato statement on the origin of the first supermassive black holes. 1.3 114 Publications of the Astronomical Society of Australia, 2019, 36, . Constraining the reionization history with CMB and spectroscopic observations. Physical Review D, 137 9 1.6 2019, 99, . Dark matter, millicharges, axion and scalar particles, gauge bosons, and other new physics with 129 LDMX. Physical Review D, 2019, 99, . Indirect detection of the partial <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mi>p</mml:mi></mml:math> wave via the <mml:math 139 1.6 2 xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mi>s</mml:mi></mml:math> wave in the annihilation cross section of dark matter. Physical Review D, 2019, 99, Ruling out 3ÅkeV warm dark matter using 21Åcm EDGES data. Monthly Notices of the Royal Astronomical 1.6 Society, 2019, 487, 3560-3567. Cosmological implications of the composite spectra of galactic X-ray binaries constructed using MAXI 141 1.6 11 data. Monthly Notices of the Royal Astronomical Society, 2019, 487, 2785-2796. Constraining the non-gravitational scattering of baryons and dark matter with early cosmic 1.6 structure formation. Monthly Notices of the Royal Ástronomical Society, 2019, 487, 4711-4720. Violation of universal lower bound for the shear viscosity to entropy density ratio in dark energy 143 1.4 4 dominated accretion. European Physical Journal C, 2019, 79, 1. 144 Cosmic reionisation. Contemporary Physics, 2019, 60, 145-163. 0.8 The Redshifted 21 cm Signal in the EDGES Low-band Spectrum. Astrophysical Journal, 2019, 880, 26. 145 95 1.6 Spectral Distortions in CMB by the Bulk Comptonization Due to Zeldovich Pancakes. Astronomy Reports, 2019, 63, 527-533. Insight into primordial magnetic fields from 21-cm line observation with EDGES experiment. Monthly 147 1.6 23 Notices of the Royal Astronomical Society, 2019, 488, 2001-2005. Primordial gravastar from inflation. Physics Letters, Section B: Nuclear, Elementary Particle and 148 1.5 High-Energy Physics, 2019, 795, 314-318. Axion quark nugget dark matter model: Size distribution and survival pattern. Physical Review D, 2019, 149 1.6 41 99,. Lyman $\langle i \rangle \hat{l} \pm \langle i \rangle$ -emitting galaxies in the epoch of reionization. Astronomy and Astrophysics, 2019, 627, Á84. Dark halos around neutron stars and gravitational waves. Journal of Cosmology and Astroparticle 151 1.9 59 Physics, 2019, 2019, 012-012. Morphology of 21cm brightness temperature during the Epoch of Reionization using Contour Minkowski Tensor. Journal of Cosmology and Astroparticle Physics, 2019, 2019, 053-053.

#	Article	IF	Citations
153	Testing a quintessence model with Yukawa interaction from cosmological observations and N-body simulations. Monthly Notices of the Royal Astronomical Society, 2019, 489, 297-309.	1.6	13
154	Cosmological constraints on the velocity-dependent baryon-dark matter coupling. Journal of Cosmology and Astroparticle Physics, 2019, 2019, 020-020.	1.9	4
155	A universal 21Âcm signature of growing massive black holes in the early Universe. Monthly Notices of the Royal Astronomical Society, 2019, , .	1.6	1
156	The 21 cm Power Spectrum from the Cosmic Dawn: First Results from the OVRO-LWA. Astronomical Journal, 2019, 158, 84.	1.9	72
157	Green Peas in X-Rays ^{â^—} . Astrophysical Journal, 2019, 880, 144.	1.6	11
158	Evolution of neutral oxygen during the epoch of reionization and its use in estimating the neutral hydrogen fraction. Monthly Notices of the Royal Astronomical Society, 2019, 489, 2755-2768.	1.6	13
159	On the contamination of the global 21Âcm signal from polarized foregrounds. Monthly Notices of the Royal Astronomical Society, 0, , .	1.6	29
160	REACH: Radio Experiment for the Analysis of Cosmic Hydrogen. , 2019, , .		32
161	Extracting the 21cm Global Signal using Artificial Neural Networks. Monthly Notices of the Royal Astronomical Society, 0, , .	1.6	6
162	Improving the Epoch of Reionization Power Spectrum Results from Murchison Widefield Array Season 1 Observations. Astrophysical Journal, 2019, 884, 1.	1.6	92
163	Accretion-induced Collapse of Dark Matter Admixed White Dwarfs. II. Rotation and Gravitational-wave Signals. Astrophysical Journal, 2019, 883, 13.	1.6	7
164	Cross-correlation between the 21-cm signal and [O iii] emitters during early cosmic reionization. Monthly Notices of the Royal Astronomical Society, 2019, 489, 2471-2477.	1.6	12
165	Improved supervised learning methods for EoR parameters reconstruction. Monthly Notices of the Royal Astronomical Society, 2019, 490, 371-384.	1.6	15
166	Mitigating Internal Instrument Coupling for 21 cm Cosmology. I. Temporal and Spectral Modeling in Simulations. Astrophysical Journal, 2019, 884, 105.	1.6	42
167	Dynamical spatial curvature as a fit to Type Ia supernovae. International Journal of Modern Physics D, 2019, 28, 1950143.	0.9	7
168	A full treatment of peculiar velocities on the reionization light cone. Monthly Notices of the Royal Astronomical Society, 2019, 490, 1255-1269.	1.6	6
169	Constraints on superconducting cosmic strings from the global 21-cm signal before reionization. Journal of Cosmology and Astroparticle Physics, 2019, 2019, 009-009.	1.9	27
170	Cross-correlation between 21-cm radiation and CMB <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mi>B</mml:mi> modes from the cosmic birefringence in the presence of a light scalar field. Physical Review D, 2019, 100</mml:math 	1.6	5

#	Article	IF	CITATIONS
171	Bounds on ultralight hidden-photon dark matter from observation of the 21Âcm signal at cosmic dawn. Physical Review D, 2019, 99, .	1.6	26
172	Ultralight dark matter in disk galaxies. Physical Review D, 2019, 99, .	1.6	51
173	21 cm cosmology and spin temperature reduction via spin-dependent dark matter interactions. Journal of Cosmology and Astroparticle Physics, 2019, 2019, 014-014.	1.9	5
174	Legacy of star formation in the pre-reionization universe. Monthly Notices of the Royal Astronomical Society, 2019, 488, 2202-2221.	1.6	39
175	Joint estimation of the Epoch of Reionization power spectrum and foregrounds. Monthly Notices of the Royal Astronomical Society, 2019, 488, 2904-2916.	1.6	17
176	The first power spectrum limit on the 21-cm signal of neutral hydrogen during the Cosmic Dawn at zÂ= 20–25 from LOFAR. Monthly Notices of the Royal Astronomical Society, 2019, 488, 4271-4287.	1.6	77
177	The quest to unlock the secrets of the baby Universe. Nature, 2019, 572, 298-301.	13.7	4
178	Probing Radio Intensity at High-Z from Marion: 2017 Instrument. Journal of Astronomical Instrumentation, 2019, 08, .	0.8	82
179	Neutral island statistics during reionization from 21-cm tomography. Monthly Notices of the Royal Astronomical Society, 2019, 489, 1590-1605.	1.6	25
180	Axion detection with precision frequency metrology. Physics of the Dark Universe, 2019, 26, 100345.	1.8	26
181	The impact of EDGES 21-cm data on dark matter interactions. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2019, 789, 137-144.	1.5	32
182	Signature of the interaction between dark sectors in the reionization process. Journal of Cosmology and Astroparticle Physics, 2019, 2019, 034-034.	1.9	1
183	Dark photon portal dark matter with the 21-cm anomaly. European Physical Journal C, 2019, 79, 1.	1.4	15
184	Dark Matter Interactions, Helium, and the Cosmic Microwave Background. Physical Review Letters, 2019, 122, 041301.	2.9	18
185	Boltzmann-Fokker-Planck formalism for dark matter-baryon scattering. Physical Review D, 2019, 99, .	1.6	15
186	Axion absorption and the spin temperature of primordial hydrogen. Physical Review D, 2019, 99, .	1.6	9
187	Effects of dark matter in star formation. Astrophysics and Space Science, 2019, 364, 1.	0.5	10
188	Weighing Cosmological Models with SNe Ia and Gamma Ray Burst Redshift Data. Universe, 2019, 5, 102.	0.9	4

#	Article	IF	CITATIONS
189	Signature of excess radio background in the 21-cm global signal and power spectrum. Monthly Notices of the Royal Astronomical Society, 2019, 486, 1763-1773.	1.6	118
190	Evaluating the QSO contribution to the 21-cm signal from the Cosmic Dawn. Monthly Notices of the Royal Astronomical Society, 2019, 487, 1101-1119.	1.6	31
191	Bayesian model selection with future 21cm observations of the epoch of reionization. Monthly Notices of the Royal Astronomical Society, 2019, 487, 1160-1177.	1.6	16
192	Mitigating the effects of antenna-to-antenna variation on redundant-baseline calibration for 21 cm cosmology. Monthly Notices of the Royal Astronomical Society, 2019, 487, 537-549.	1.6	38
193	Supermassive black holes in the early universe. Contemporary Physics, 2019, 60, 111-126.	0.8	27
194	Early Dark Energy can Resolve the Hubble Tension. Physical Review Letters, 2019, 122, 221301.	2.9	566
195	The 21Âcm absorption line and the axion quark nugget dark matter model. Physics of the Dark Universe, 2019, 24, 100295.	1.8	31
196	Decays of long-lived relics and their signatures at IceCube. Journal of High Energy Physics, 2019, 2019, 1.	1.6	5
197	Making dark matter out of light: Freeze-in from plasma effects. Physical Review D, 2019, 99, .	1.6	91
198	Using kinetic theory to examine a self-gravitating system composed of baryons and cold dark matter. European Physical Journal C, 2019, 79, 1.	1.4	13
199	Global radiation signature from early structure formation. Monthly Notices of the Royal Astronomical Society, 2019, 486, 3617-3635.	1.6	10
200	Angular clustering of point sources at 150ÂMHz in the TGSS survey. Monthly Notices of the Royal Astronomical Society, 2019, 485, 5891-5896.	1.6	12
201	Results from EDGES High-Band. III. New Constraints on Parameters of the Early Universe. Astrophysical Journal, 2019, 875, 67.	1.6	49
202	A Ground Plane Artifact that Induces an Absorption Profile in Averaged Spectra from Global 21 cm Measurements, with Possible Application to EDGES. Astrophysical Journal, 2019, 874, 153.	1.6	101
203	Constraining First Star Formation with 21 cm Cosmology. Astrophysical Journal Letters, 2019, 877, L5.	3.0	44
204	How bright was the Big Bang?. American Journal of Physics, 2019, 87, 395-400.	0.3	1
205	Spectral index of the diffuse radio background between 50 and 100 MHz. Monthly Notices of the Royal Astronomical Society, 2019, 483, 4411-4423.	1.6	36
206	Tracing Primordial Magnetic Fields with 21 cm Line Observations. Galaxies, 2019, 7, 37.	1.1	3

#	Article	IF	CITATIONS
207	Extreme spheres: counts-in-cells for 21cm intensity mapping. Monthly Notices of the Royal Astronomical Society, 2019, 484, 269-281.	1.6	10
208	The influence of streaming velocities on the formation of the first stars. Monthly Notices of the Royal Astronomical Society, 2019, 484, 3510-3521.	1.6	64
209	Inferring the astrophysics of reionization and cosmic dawn from galaxy luminosity functions and the 21-cm signal. Monthly Notices of the Royal Astronomical Society, 2019, 484, 933-949.	1.6	152
210	Analytic Formulation of 21 cm Signal from Cosmic Dawn: Lyα Fluctuations. Astrophysical Journal, 2019, 876, 56.	1.6	3
211	The physics of LymanÂα escape from high-redshift galaxies. Monthly Notices of the Royal Astronomical Society, 2019, 484, 39-59.	1.6	76
212	Integral representation of the cosmic microwave background spectrum. Physical Review D, 2019, 99, .	1.6	0
213	A universal constant for dark matter-baryon interplay. Scientific Reports, 2019, 9, 3570.	1.6	11
214	Radio background and IGM heating due to Pop III supernova explosions. Monthly Notices of the Royal Astronomical Society, 2019, 483, 5329-5333.	1.6	41
215	Extension of the electrodynamics in the presence of the axion and dark photon. International Journal of Modern Physics A, 2019, 34, 1950012.	0.5	5
216	What does the first highly redshifted 21-cm detection tell us about early galaxies?. Monthly Notices of the Royal Astronomical Society, 2019, 483, 1980-1992.	1.6	121
217	Enhanced n-body annihilation of dark matter and its indirect signatures. Journal of High Energy Physics, 2019, 2019, 1.	1.6	11
218	Redshift space distortion of 21 cm line at 1 < \$z\$ < 5 with cosmological hydrodynamic simulations. Monthly Notices of the Royal Astronomical Society, 2019, 484, 5389-5399.	1.6	13
219	Formation and evolution of primordial black hole binaries in the early universe. Journal of Cosmology and Astroparticle Physics, 2019, 2019, 018-018.	1.9	207
220	Clusters of Primordial Black Holes. European Physical Journal C, 2019, 79, 1.	1.4	126
221	Homeopathic Dark Matter, or how diluted heavy substances produce high energy cosmic rays. Journal of Cosmology and Astroparticle Physics, 2019, 2019, 014-014.	1.9	50
222	Fast radio bursts and the axion quark nugget dark matter model. Physical Review D, 2019, 99, .	1.6	10
223	Tuning in to the cosmic dawn. Nature Astronomy, 2019, 3, 298-299.	4.2	0
224	Probing cosmic dawn: modelling the assembly history, SEDs, and dust content of selected <i>z</i> â^¼ 9 galaxies. Monthly Notices of the Royal Astronomical Society. 2019, 484, 4054-4068.	1.6	24

	Сітат	ion Report	
#	Article	IF	Citations
225	Axion dark matter and the 21-cm signal. Physics of the Dark Universe, 2019, 24, 100289.	1.8	14
226	Millicharged Particles in Neutrino Experiments. Physical Review Letters, 2019, 122, 071801.	2.9	69
227	Formation of the first generation of stars and blackholes in the Universe. Proceedings of the Japan Academy Series B: Physical and Biological Sciences, 2019, 95, 17-28.	1.6	3
228	Constraining D-foam via the 21-cm line. Physical Review D, 2019, 99, .	1.6	0
229	Light dark states with electromagnetic form factors. Physical Review D, 2019, 99, .	1.6	38
230	Cosmological abundance of colored relics. Physical Review D, 2019, 99, .	1.6	22
231	Primordial lithium puzzle and the axion quark nugget dark matter model. Physical Review D, 2019, 99, .	1.6	24
232	Cosmic reionization history and dark matter scenarios. Physical Review D, 2019, 99, .	1.6	12
233	Dark matter microphysics and 21Âcm observations. Physical Review D, 2019, 99, .	1.6	28
234	Can conformal and disformal couplings between dark sectors explain the EDGES 21-cm anomaly?. Physical Review D, 2019, 99, .	1.6	18
235	Probing relic neutrino radiative decays with 21 cm cosmology. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2019, 790, 64-70.	1,5	23
236	Reionisation & Cosmic Dawn Astrophysics from the Square Kilometre Array: Impact of Observing Strategies. Monthly Notices of the Royal Astronomical Society, 0, , .	1.6	13
237	Detecting the 21 cm Signal from the Epoch of Reionization Using Drift Scans: Correlation of Time-ordered Visibilities. Astrophysical Journal, 2019, 887, 52.	1.6	3
238	Conditions for Reionizing the Universe with a Low Galaxy Ionizing Photon Escape Fraction. Astrophysical Journal, 2019, 879, 36.	1.6	201
239	Predictions for the diffuse cosmic dipole at radio frequencies from reionization imprints. Astronomy and Astrophysics, 2019, 631, A61.	2.1	1
240	Constraining FIMP from the structure formation of the Universe: analytic mapping from <i>m</i> _{WDM} . Journal of Cosmology and Astroparticle Physics, 2019, 2019, 029-029.	1.9	31
241	Fast simulation technique for antenna installed on a finite ground plane. , 2019, , .		3
242	Dawn of the dark: unified dark sectors and the EDGES Cosmic Dawn 21-cm signal. Journal of Cosmology and Astroparticle Physics, 2019, 2019, 044-044.	1.9	36

#	Article	IF	CITATIONS
243	Extracting the Global Signal from 21-cm Fluctuations: the Multi-Tracer Approach. Monthly Notices of the Royal Astronomical Society, 0, , .	1.6	5
244	Constraining the primordial black hole abundance with 21-cm cosmology. Physical Review D, 2019, 100,	1.6	63
245	Reviving millicharged dark matter for 21-cm cosmology. Physical Review D, 2019, 100, .	1.6	75
246	Viscous dark matter and 21Âcm cosmology. Physical Review D, 2019, 100, .	1.6	20
247	New limits on charged dark matter from large-scale coherent magnetic fields. Journal of Cosmology and Astroparticle Physics, 2019, 2019, 003-003.	1.9	26
248	The Role of Gas Fragmentation During the Formation of Supermassive Black Holes. Astrophysical Journal, 2019, 885, 127.	1.6	18
249	21-cm observations and warm dark matter models. Physical Review D, 2019, 100, .	1.6	17
250	First Season MWA Phase II Epoch of Reionization Power Spectrum Results at Redshift 7. Astrophysical Journal, 2019, 887, 141.	1.6	69
251	Anomalous EDGES 21-cm signal and a moduli dominated era. Physical Review D, 2019, 100, .	1.6	1
252	Astrophysical stochastic gravitational wave background. Astronomische Nachrichten, 2019, 340, 945-951.	0.6	2
253	Connecting early and late epochs by <i>f</i> (<i>z</i>)CDM cosmography. Journal of Cosmology and Astroparticle Physics, 2019, 2019, 008-008.	1.9	39
254	Mixing of atomic levels by blackbody radiation and its consequences in an astrophysical context. Physical Review A, 2019, 99, .	1.0	3
255	The 21-cm bispectrum as a probe of non-Gaussianities due to X-ray heating. Monthly Notices of the Royal Astronomical Society, 2019, 482, 2653-2669.	1.6	44
256	Decaying axinolike dark matter: Discriminative solution to small-scale issues. Physical Review D, 2019, 99, .	1.6	5
257	Searching for the dark force with 21-cm spectrum in light of EDGES. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2019, 788, 70-75.	1.5	16
258	Probing millicharge at BESIII via monophoton searches. Physical Review D, 2019, 99, .	1.6	20
259	The Giant Radio Array for Neutrino Detection (GRAND): Science and design. Science China: Physics, Mechanics and Astronomy, 2020, 63, 1.	2.0	130
260	Redshifted 21-cm emission signal from the halos in Dark Ages. Physics of the Dark Universe, 2020, 27, 100422.	1.8	3

#	Article	IF	CITATIONS
261	Implications of the possible 21-cm line excess at cosmic dawn on dynamics of interacting dark energy. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2020, 801, 135141.	1.5	30
262	The spin–temperature dependence of the 21-cm–LAE cross-correlation. Monthly Notices of the Royal Astronomical Society, 2020, 496, 581-589.	1.6	14
263	A minimum dilution scenario for supernovae and consequences for extremely metal-poor stars. Monthly Notices of the Royal Astronomical Society, 2020, 498, 3703-3712.	1.6	25
264	Constraints on the electron-to-proton mass ratio variation at the epoch of reionization. Monthly Notices of the Royal Astronomical Society, 2020, 498, 3624-3632.	1.6	7
265	A hint on the metal-free star formation rate density from 21-cm-EDGES data. Monthly Notices of the Royal Astronomical Society, 2020, 496, 1445-1452.	1.6	20
266	Ly α forest power spectrum as an emerging window into the epoch of reionization and cosmic dawn. Monthly Notices of the Royal Astronomical Society, 2020, 499, 1640-1651.	1.6	9
267	Emulating the global 21-cm signal from Cosmic Dawn and Reionization. Monthly Notices of the Royal Astronomical Society, 2020, 495, 4845-4859.	1.6	39
268	Constraints and cosmography of \$\$Lambda \$\$CDM in presence of viscosity. European Physical Journal C, 2020, 80, 1.	1.4	22
269	The Assembly of the First Massive Black Holes. Annual Review of Astronomy and Astrophysics, 2020, 58, 27-97.	8.1	264
270	Impact of dark matter models on the EoR 21-cm signal bispectrum. Monthly Notices of the Royal Astronomical Society, 2020, 497, 2941-2953.	1.6	11
271	Dark Matter as Cold Atomic Hydrogen in Its Lower Ground State. , 0, , .		3
272	Cosmic recombination history in light of EDGES measurements of the cosmic dawn 21-cm signal. Physical Review D, 2020, 102, .	1.6	2
273	Using the Long Wavelength Array to Search for Cosmic Dawn. Journal of Astronomical Instrumentation, 2020, 09, .	0.8	10
274	Constraining the nature of ultra light dark matter particles with the 21Åcm forest. Physical Review D, 2020, 101, .	1.6	15
275	Pre-selection of the candidate fields for deep imaging of the epoch of reionization with SKA1-low. Monthly Notices of the Royal Astronomical Society, 2020, 499, 3434-3444.	1.6	2
276	Constraining the intergalactic medium at z â‰^ 9.1 using LOFAR Epoch of Reionization observations. Monthly Notices of the Royal Astronomical Society, 2020, 493, 4728-4747.	1.6	69
277	CMB and BBN constraints on evaporating primordial black holes revisited. Journal of Cosmology and Astroparticle Physics, 2020, 2020, 018-018.	1.9	44
278	Cosmic Dawn II (CoDa II): a new radiation-hydrodynamics simulation of the self-consistent coupling of galaxy formation and reionization. Monthly Notices of the Royal Astronomical Society, 2020, 496, 4087-4107.	1.6	89

#	Article	IF	CITATIONS
279	On dark atoms, massive dark photons and millicharged sub-components. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2020, 807, 135601.	1.5	6
280	Characterizing the radio quiet region behind the lunar farside for low radio frequency experiments. Advances in Space Research, 2020, 66, 1265-1275.	1.2	15
281	Baryon-Interacting Dark Matter: heating dark matter and the emergence of galaxy scaling relations. Journal of Cosmology and Astroparticle Physics, 2020, 2020, 025-025.	1.9	9
282	Interpreting the Spitzer/IRAC colours of 7Â≤Â≤ galaxies: distinguishing between line emission and starlight using ALMA. Monthly Notices of the Royal Astronomical Society, 2020, 497, 3440-3450.	1.6	52
283	Effects of self-consistent rest-ultraviolet colours in semi-empirical galaxy formation models. Monthly Notices of the Royal Astronomical Society, 2020, 498, 2645-2661.	1.6	14
284	Detectability of 21-cm signal during the epoch of reionization with 21-cm-Lyman-α emitter cross-correlation – III. Model dependence. Monthly Notices of the Royal Astronomical Society, 2020, 494, 3131-3140.	1.6	6
285	Cosmological evolution of light dark photon dark matter. Physical Review D, 2020, 101, .	1.6	59
286	Maximum amplitude of the high-redshift 21-cm absorption feature. Physical Review D, 2020, 101, .	1.6	8
287	Status, Challenges and Directions in Indirect Dark Matter Searches. Symmetry, 2020, 12, 1648.	1.1	37
288	Primordial magnetic fields during the cosmic dawn in light of EDGES 21-cm signal. Monthly Notices of the Royal Astronomical Society, 2020, 498, 918-925.	1.6	10
289	Tight constraints on the excess radio background at zÂ= 9.1 from LOFAR. Monthly Notices of the Royal Astronomical Society, 2020, 498, 4178-4191.	1.6	55
290	The All-Sky SignAl Short-Spacing INterferometer (ASSASSIN) – I. Global-sky measurements with the Engineering Development Array-2. Monthly Notices of the Royal Astronomical Society, 2020, 499, 52-67.	1.6	12
291	A tale of two sites – I. Inferring the properties of minihalo-hosted galaxies from current observations. Monthly Notices of the Royal Astronomical Society, 2020, 495, 123-140.	1.6	42
292	Illuminating the dark ages: cosmic backgrounds from accretion onto primordial black hole dark matter. Journal of Cosmology and Astroparticle Physics, 2020, 2020, 022-022.	1.9	38
293	Millicharged particles at electron colliders. Physical Review D, 2020, 102, .	1.6	15
294	<i>Planck</i> 2018 results. Astronomy and Astrophysics, 2020, 641, A6.	2.1	6,722
295	Constraining galactic structures of mirror dark matter. Physical Review D, 2020, 102, .	1.6	13
296	The abundance of primordial black holes from the global 21cm signal and extragalactic gamma-ray background. European Physical Journal Plus, 2020, 135, 1.	1.2	12

#	Article	IF	Citations
297	Cosmological consequences of a scalar field with oscillating equation of state. II. Oscillating scaling and chaotic accelerating solutions. Physical Review D, 2020, 102, .	1.6	7
298	SARAS CD/EoR Radiometer: Design and Performance of the Digital Correlation Spectrometer. Journal of Astronomical Instrumentation, 2020, 09, .	0.8	10
299	Generalized emergent dark energy: observational Hubble data constraints and stability analysis. Monthly Notices of the Royal Astronomical Society, 2020, 497, 1590-1602.	1.6	32
300	Code package for calculating modified cosmic ionization and thermal histories with dark matter and other exotic energy injections. Physical Review D, 2020, 101, .	1.6	36
301	Detection of cosmic structures using the bispectrum phase. II. First results from application to cosmic reionization using the Hydrogen Epoch of Reionization Array. Physical Review D, 2020, 102, .	1.6	17
302	Constraints on primordial black holes and curvature perturbations from the global 21-cm signal. Physical Review D, 2020, 102, .	1.6	14
303	Lessons on early structure formation from a mature galaxy cluster observed at cosmic noon. Monthly Notices of the Royal Astronomical Society, 2020, 495, 1700-1705.	1.6	2
304	Can EDGES observation favour any dark matter model?. Monthly Notices of the Royal Astronomical Society, 2020, 497, 3393-3399.	1.6	4
305	Analysing the Epoch of Reionization with three-point correlation functions and machine learning techniques. Monthly Notices of the Royal Astronomical Society, 2020, 498, 4518-4532.	1.6	4
306	EDGES signal in the presence of magnetic fields. Monthly Notices of the Royal Astronomical Society: Letters, 2020, 497, L35-L39.	1.2	9
307	Unification for darkly charged dark matter. Physical Review D, 2020, 102, .	1.6	5
308	Exploring the robustness of stellar cooling constraints on light particles. Physical Review D, 2020, 102, .	1.6	48
309	Axion-photon-dark photon oscillation and its implication for 21-cm observation. Physical Review D, 2020, 102, .	1.6	13
310	An evolutionary system of mineralogy. Part I: Stellar mineralogy (>13 to 4.6 Ga). American Mineralogist, 2020, 105, 627-651.	0.9	53
311	Constraints on the Velocity Dispersion of Dark Matter from Cosmology and New Bounds on Scattering from the Cosmic Dawn. Astrophysical Journal, 2020, 894, 40.	1.6	0
312	Probing the small-scale matter power spectrum with large-scale 21-cm data. Physical Review D, 2020, 101, .	1.6	57
313	Constraining dark photons and their connection to 21 cm cosmology with CMB data. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2020, 805, 135420.	1.5	15
314	Outside the Lyman-break box: detecting Lyman continuum emitters at 3.5 < <i>z</i> < 5.1 with CLAUDS. Monthly Notices of the Royal Astronomical Society, 2020, 494, 4986-5007.	1.6	15

#	Article	IF	CITATIONS
315	Velocity-dependent self-interacting dark matter from thermal freeze-out and tests in direct detections. European Physical Journal C, 2020, 80, 1.	1.4	1
316	Constraining coupled quintessence with the 21 cm signal. Journal of Cosmology and Astroparticle Physics, 2020, 2020, 038-038.	1.9	10
317	Constraining structure formation using EDGES. Journal of Cosmology and Astroparticle Physics, 2020, 2020, 004-004.	1.9	9
318	Balmer Break Galaxy Candidates at z â^1⁄4 6: A Potential View on the Star Formation Activity at zÂ≳Â14. Astrophysical Journal, 2020, 889, 137.	1.6	27
319	Foreground modelling via Gaussian process regression: an application to HERA data. Monthly Notices of the Royal Astronomical Society, 2020, 495, 2813-2826.	1.6	19
320	A bound on the 12C/13C ratio in near-pristine gas with ESPRESSO. Monthly Notices of the Royal Astronomical Society, 2020, 494, 1411-1423.	1.6	16
321	Calibration requirements for epoch of reionization 21-cm signal observations – I. Effect of time-correlated gains. Monthly Notices of the Royal Astronomical Society, 2020, 495, 3683-3694.	1.6	10
322	Early structure formation constraints on the ultralight axion in the postinflation scenario. Physical Review D, 2020, 101, .	1.6	23
323	Deep multiredshift limits on Epoch of Reionization 21Âcm power spectra from four seasons of Murchison Widefield Array observations. Monthly Notices of the Royal Astronomical Society, 2020, 493, 4711-4727.	1.6	129
324	Cosmological implications of electromagnetically interacting dark matter: milli-charged particles and atoms with singly and doubly charged dark matter. Journal of Cosmology and Astroparticle Physics, 2020, 2020, 039-039.	1.9	1
325	Joint analysis of EDGES 21-cm line observations with standard candles and rulers in $\hat{\flat}CDM$ and non-adiabatic gCg models. Physics of the Dark Universe, 2020, 28, 100486.	1.8	0
326	Improved upper limits on the 21 cm signal power spectrum of neutral hydrogen at z â‰^ 9.1 from LOFAR. Monthly Notices of the Royal Astronomical Society, 2020, 493, 1662-1685.	1.6	185
327	The Radio Scream from black holes at Cosmic Dawn: a semi-analytic model for the impact of radio-loud black holes on the 21 cm global signal. Monthly Notices of the Royal Astronomical Society, 2020, 492, 6086-6104.	1.6	39
328	The Structure and Evolution of Massive Rotating Single and Binary Population III Stars. Astrophysical Journal, 2020, 892, 41.	1.6	3
329	Stability analysis and constraints on interacting viscous cosmology. Physical Review D, 2020, 101, .	1.6	13
330	Dynamics of millicharged dark matter in supernova remnants. Physical Review D, 2020, 101, .	1.6	17
331	Two Flavors of Hydrogen Atoms: A Possible Explanation of Dark Matter. Atoms, 2020, 8, 33.	0.7	14
332	A unified framework for 21 cm tomography sample generation and parameter inference with progressively growing GANs. Monthly Notices of the Royal Astronomical Society, 2020, 493, 5913-5927.	1.6	18

#	Article	IF	CITATIONS
333	Simulating star clusters across cosmic time – II. Escape fraction of ionizing photons from molecular clouds. Monthly Notices of the Royal Astronomical Society, 2020, 492, 4858-4873.	1.6	22
334	Absolute Calibration Strategies for the Hydrogen Epoch of Reionization Array and Their Impact on the 21 cm Power Spectrum. Astrophysical Journal, 2020, 890, 122.	1.6	35
335	Testing for calibration systematics in the EDGES low-band data using Bayesian model selection. Monthly Notices of the Royal Astronomical Society, 2020, 492, 22-38.	1.6	84
336	Physics beyond the Standard Model with circular polarization in the CMB and CMB-21cm cross-correlation. Journal of Cosmology and Astroparticle Physics, 2020, 2020, 032-032.	1.9	7
337	Fundamental physics with the Square Kilometre Array. Publications of the Astronomical Society of Australia, 2020, 37, .	1.3	179
338	Probing small scale primordial power spectrum with 21cm line global signal. Physical Review D, 2020, 101, .	1.6	11
339	Large-misalignment mechanism for the formation of compact axion structures: Signatures from the QCD axion to fuzzy dark matter. Physical Review D, 2020, 101, .	1.6	118
340	Hydrogen Molecules in the Dark Ages Halos: Thermal Emission versus Resonant Scattering. Astrophysical Journal, 2020, 888, 27.	1.6	6
341	Data Analysis for Precision 21 cm Cosmology. Publications of the Astronomical Society of the Pacific, 2020, 132, 062001.	1.0	107
342	Impact of Ly α heating on the global 21-cm signal from the Cosmic Dawn. Monthly Notices of the Royal Astronomical Society, 2020, 492, 634-644.	1.6	25
343	A tight correlation between the enclosed gravitational mass and hot gas mass in galaxy clusters at intermediate radii. Physics of the Dark Universe, 2020, 28, 100478.	1.8	4
344	The effects of population III radiation backgrounds on the cosmological 21-cm signal. Monthly Notices of the Royal Astronomical Society, 2020, 493, 1217-1226.	1.6	52
345	An updated estimate of the cosmic radio background and implications for ultra-high-energy photon propagation. Astroparticle Physics, 2021, 126, 102532.	1.9	9
346	Revealing the cosmic reionization history with fast radio bursts in the era of Square Kilometre Array. Monthly Notices of the Royal Astronomical Society, 2021, 502, 2346-2355.	1.6	11
347	Australian square kilometre array pathfinder: I. system description. Publications of the Astronomical Society of Australia, 2021, 38, .	1.3	128
348	The First Three Seconds: a Review of Possible Expansion Histories of the Early Universe. The Open Journal of Astrophysics, 2021, 4, .	0.8	117
349	Thermodynamics in the Evolution of the Dark Universe. Journal of Modern Physics, 2021, 12, 1527-1544.	0.3	2
350	Spectral index of synchrotron emission: insights from the diffuse and magnetised interstellar medium. Astronomy and Astrophysics, 2021, 651, A116.	2.1	9

		CITATION RE	PORT	
#	Article		IF	CITATIONS
351	Sonifying Data: For the Art, for the Science and for What Lies Between. Leonardo, 202	1, 54, 223-227.	0.2	0
352	First constraints on small-scale non-Gaussianity from UV galaxy luminosity functions. Jo Cosmology and Astroparticle Physics, 2021, 2021, 010-010.	burnal of	1.9	20
353	SARAS 3 CD/EoR radiometer: design and performance of the receiver. Experimental Ast 193-234.	ronomy, 2021, 51,	1.6	23
354	Can the Local Bubble explain the radio background?. Monthly Notices of the Royal Astr Society, 2021, 502, 2807-2814.	onomical	1.6	9
355	<scp> maxsmooth</scp> : rapid maximally smooth function fitting with applications in cosmology. Monthly Notices of the Royal Astronomical Society, 2021, 502, 4405-4425	Global 21-cm 5.	1.6	30
356	Cosmic variance of the 21-cm global signal. Physical Review D, 2021, 103, .		1.6	11
357	Using artificial neural networks to extract the 21-cm global signal from the EDGES data Notices of the Royal Astronomical Society, 2021, 502, 2815-2825.	ı. Monthly	1.6	9
358	High-redshift SMBHs can grow from stellar-mass seeds via chaotic accretion. Monthly I Royal Astronomical Society, 2021, 501, 4289-4297.	Notices of the	1.6	12
359	Potential of Radio Telescopes as High-Frequency Gravitational Wave Detectors. Physica Letters, 2021, 126, 021104.	al Review	2.9	43
360	Probing the effects of primordial black holes on 21-cm EDGES signal along with interac energy and dark matter–baryon scattering. Monthly Notices of the Royal Astronomic 508, 3446-3454.	ting dark al Society, 2021,	1.6	14
361	Modelling population III stars for seminumerical simulations. Monthly Notices of the Ro Astronomical Society, 2021, 502, 463-471.	yyal	1.6	10
362	ETHOS ―an effective theory of structure formation: Impact of dark acoustic oscillatio dawn. Physical Review D, 2021, 103, .	ns on cosmic	1.6	14
363	Absolute Calibration of Diffuse Radio Surveys at 45 and 150 MHz. Astrophysical Journa	l, 2021, 908, 145.	1.6	18
364	Quantiles as robust probes of non-Gaussianity in 21-cm images. Monthly Notices of the Astronomical Society, 2021, 503, 1221-1232.	e Royal	1.6	8
365	Quantifying ionospheric effects on global 21-cm observations. Monthly Notices of the Astronomical Society, 2021, 503, 344-353.	Royal	1.6	22
366	Stability analysis of two-fluid dark energy models. Physica Scripta, 2021, 96, 045006.		1.2	5
367	Ensuring Robustness in Training-set-based Global 21 cm Cosmology Analysis. Astrophy 2021, 908, 189.	sical Journal,	1.6	4
368	Effects of observer peculiar motion on the isotropic background frequency spectrum: F monopole to higher multipoles. Astronomy and Astrophysics, 2021, 646, A75.	rom the	2.1	2

	CHATION R	PORI	
#	Article	IF	CITATIONS
369	The anomalous 21-cm absorption at high redshifts. European Physical Journal C, 2021, 81, 1.	1.4	2
370	Probing interacting dark energy and scattering of baryons with dark matter in light of the EDGES 21-cm signal. Physical Review D, 2021, 103, .	1.6	9
372	A detailed exploration of the EDGES 21cm absorption anomaly and axion-induced cooling. International Journal of Modern Physics D, 2021, 30, 2150041.	0.9	6
373	Bounds on abundance of primordial black hole and dark matter from EDGES 21-cm signal. Physical Review D, 2021, 103, .	1.6	19
374	Constraining the state of the intergalactic medium during the Epoch of Reionization using MWA 21-cm signal observations. Monthly Notices of the Royal Astronomical Society, 2021, 503, 4551-4562.	1.6	37
375	An evolutionary system of mineralogy. Part III: Primary chondrule mineralogy (4566 to 4561 Ma). American Mineralogist, 2021, 106, 325-350.	0.9	17
376	Gravitational vector Dark Matter. Journal of High Energy Physics, 2021, 2021, 1.	1.6	19
377	Conceptual Design of the Lunar Crater Radio Telescope (LCRT) on the Far Side of the Moon. , 2021, , .		8
378	Large-scale Dynamo in a Primordial Accretion Flow: An Interpretation from Hydrodynamic Simulation. Astrophysical Journal, 2021, 909, 37.	1.6	1
379	Rydberg States of H3 and HeH as Potential Coolants for Primordial Star Formation. Journal of Physical Chemistry A, 2021, 125, 4267-4275.	1.1	1
380	Extracting the 21 cm EoR signal using MWA drift scan data. Monthly Notices of the Royal Astronomical Society, 2021, 504, 2062-2072.	1.6	10
381	The Case for Cold Hydrogen Dark Matter. , 0, , .		0
382	Systematic uncertainties in models of the cosmic dawn. Monthly Notices of the Royal Astronomical Society, 2021, 504, 1555-1564.	1.6	11
383	Millicharged cosmic rays and low recoil detectors. Physical Review D, 2021, 103, .	1.6	17
384	The contribution of discrete sources to the sky temperature at 144 MHz. Astronomy and Astrophysics, 2021, 648, A10.	2.1	26
385	Hubble sinks in the low-redshift swampland. Physical Review D, 2021, 103, .	1.6	112
386	Investigating X-Ray Sources during the Epoch of Reionization with the 21 cm Signal. Astrophysical Journal, 2021, 912, 143.	1.6	12
387	Axions: From magnetars and neutron star mergers to beam dumps and BECs. International Journal of Modern Physics D, 2021, 30, 2130002.	0.9	15

#	Article	IF	CITATIONS
388	Bayesian noise wave calibration for 21-cm global experiments. Monthly Notices of the Royal Astronomical Society, 2021, 505, 2638-2646.	1.6	9
389	Constraint on primordial magnetic fields in the light of ARCADE 2 and EDGES observations. European Physical Journal C, 2021, 81, 1.	1.4	11
390	A Brief Review on Primordial Black Holes as Dark Matter. Frontiers in Astronomy and Space Sciences, 2021, 8, .	1.1	80
391	Prospects of future CMB anisotropy probes for primordial black holes. Journal of Cosmology and Astroparticle Physics, 2021, 2021, 051.	1.9	16
392	Search for sub-millicharged particles at J-PARC. Journal of High Energy Physics, 2021, 2021, 1.	1.6	5
393	Discovery of magnetic fields along stacked cosmic filaments as revealed by radio and X-ray emission. Monthly Notices of the Royal Astronomical Society, 2021, 505, 4178-4196.	1.6	30
394	Conceptual design of BabyIAXO, the intermediate stage towards the International Axion Observatory. Journal of High Energy Physics, 2021, 2021, 1.	1.6	28
395	Fuzzy Dark Matter and the 21 cm Power Spectrum. Astrophysical Journal, 2021, 913, 7.	1.6	24
396	Concepts for future missions to search for technosignatures. Acta Astronautica, 2021, 182, 446-453.	1.7	12
397	Prospects of constraining reionization model parameters using Minkowski tensors and Betti numbers. Journal of Cosmology and Astroparticle Physics, 2021, 2021, 026.	1.9	19
398	The Universe acceleration from the Unimodular gravity view point: Background and linear perturbations. Physics of the Dark Universe, 2021, 32, 100840.	1.8	11
399	Radio-Frequency Interference at the McGill Arctic Research Station. Journal of Astronomical Instrumentation, 2021, 10, 2150007.	0.8	1
400	Spectral index of the Galactic foreground emission in the 50–87 MHz range. Monthly Notices of the Royal Astronomical Society, 2021, 505, 1575-1588.	1.6	13
401	Edges and Endpoints in 21-cm Observations from Resonant Photon Production. Physical Review Letters, 2021, 127, 011102.	2.9	5
402	Constraints on dark matter to dark radiation conversion in the late universe with DES-Y1 and external data. Physical Review D, 2021, 103, .	1.6	25
403	Gas-rich dwarf galaxies as a new probe of dark matter interactions with ordinary matter. Physical Review D, 2021, 103, .	1.6	30
404	A 21-cm power spectrum at 48ÂMHz, using the Owens Valley Long Wavelength Array. Monthly Notices of the Royal Astronomical Society, 2021, 506, 5802-5817.	1.6	23
405	Rapid onset of the 21-cm signal suggests a preferred mass range for dark matter particle. Physical Review D, 2021, 103, .	1.6	7

	CITATION	Report	
#	Article	IF	CITATIONS
406	A general Bayesian framework for foreground modelling and chromaticity correction for global 21 cm experiments. Monthly Notices of the Royal Astronomical Society, 2021, 506, 2041-2058.	1.6	32
407	Cosmic Reionization May Still Have Started Early and Ended Late: Confronting Early Onset with Cosmic Microwave Background Anisotropy and 21 cm Global Signals. Astrophysical Journal, 2021, 914, 44.	1.6	13
408	Linear perturbations spectra for dynamical dark energy inspired by modified gravity. International Journal of Modern Physics D, 2021, 30, 2150077.	0.9	3
409	A new MWA limit on the 21Âcm power spectrum at redshifts â^¼13–17. Monthly Notices of the Royal Astronomical Society, 2021, 505, 4775-4790.	1.6	25
410	The longitudinal plasma modes in mDM-plasma system. AIP Advances, 2021, 11, 065013.	0.6	1
411	Constraining mixed dark-matter scenarios of WIMPs and primordial black holes from CMB and 21-cm observations. Physical Review D, 2021, 103, .	1.6	11
412	Probing cosmic dawn: Ages and star formation histories of candidate <i>z</i> ≥ 9 galaxies. Monthly Notices of the Royal Astronomical Society, 2021, 505, 3336-3346.	1.6	63
413	On the feasibility of truncated Israel–Stewart model in the context of late acceleration. Classical and Quantum Gravity, 2021, 38, 145016.	1.5	4
414	Meson production in air showers and the search for light exotic particles. Astroparticle Physics, 2021, , 102622.	1.9	5
415	Validation of the EDGES Low-band Antenna Beam Model. Astronomical Journal, 2021, 162, 38.	1.9	16
416	Large-scale 21 cm signal predictions at cosmic dawn with calibrated subgrid galaxy formation. Monthly Notices of the Royal Astronomical Society, 2021, 507, 3179-3186.	1.6	2
417	Effects of model incompleteness on the drift-scan calibration of radio telescopes. Monthly Notices of the Royal Astronomical Society, 2021, 506, 4578-4592.	1.6	2
418	Introducing SPHINX-MHD: the impact of primordial magnetic fields on the first galaxies, reionization, and the global 21-cm signal. Monthly Notices of the Royal Astronomical Society, 2021, 507, 1254-1282.	1.6	30
419	Redshift-space distortions in simulations of the 21-cm signal from the cosmic dawn. Monthly Notices of the Royal Astronomical Society, 2021, 506, 3717-3733.	1.6	14
420	Gamma-ray astrophysics in the MeV range. Experimental Astronomy, 2021, 51, 1225-1254.	1.6	22
421	Microwave spectro-polarimetry of matter and radiation across space and time. Experimental Astronomy, 2021, 51, 1471-1514.	1.6	15
422	The subtlety of Ly α photons: changing the expected range of the 21-cm signal. Monthly Notices of the Royal Astronomical Society, 2021, 506, 5479-5493.	1.6	40
423	Global 21 cm Signal Extraction from Foreground and Instrumental Effects. IV. Accounting for Realistic Instrument Uncertainties and Their Overlap with Foreground and Signal Models. Astrophysical Journal, 2021, 915, 66.	1.6	12

#	Article	IF	CITATIONS
424	The influence of streaming velocities and Lyman–Werner radiation on the formation of the first stars. Monthly Notices of the Royal Astronomical Society, 2021, 507, 1775-1787.	1.6	39
425	Spectral distortion constraints on photon injection from low-mass decaying particles. Monthly Notices of the Royal Astronomical Society, 2021, 507, 3148-3178.	1.6	38
426	Beyond AstroSat: Astronomy missions under review. Journal of Astrophysics and Astronomy, 2021, 42, 1.	0.4	1
427	Classical Description of Resonant Charge Exchange Involving the Second Flavor of Hydrogen Atoms. Atoms, 2021, 9, 41.	0.7	5
428	The H <scp>i</scp> intensity mapping bispectrum including observational effects. Monthly Notices of the Royal Astronomical Society, 2021, 507, 1623-1639.	1.6	13
429	C <scp>ii</scp> and H <scp>i</scp> 21-cm line intensity mapping from the EoR: impact of the light-cone effect on auto and cross-power spectra. Monthly Notices of the Royal Astronomical Society, 2021, 507, 2500-2509.	2 1.6	5
430	Looking forward to millicharged dark sectors at the LHC. Physical Review D, 2021, 104, .	1.6	24
431	<tt>CosmoReionMC</tt> : a package for estimating cosmological and astrophysical parameters using CMB, Lyman-α absorption, and global 21 cm data. Monthly Notices of the Royal Astronomical Society, 2021, 507, 2405-2422.	1.6	16
432	Constraints on warm dark matter from UV luminosity functions of high- <i>z</i> galaxies with Bayesian model comparison. Monthly Notices of the Royal Astronomical Society, 2021, 507, 3046-3056.	1.6	20
433	Origin and growth of primordial black holes. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2021, 819, 136468.	1.5	2
434	Bounds on dark matter annihilation cross-sections from inert doublet model in the context of 21-cm cosmology of dark ages. International Journal of Modern Physics A, 2021, 36, 2150163.	0.5	4
435	Implications of the <i>z</i> > 5 Lyman-α forest for the 21-cm power spectrum from the epoch of reionization. Monthly Notices of the Royal Astronomical Society, 2021, 507, 4684-4696.	1.6	6
436	Constraints on the properties of warm dark matter using the satellite galaxies of the Milky Way. Journal of Cosmology and Astroparticle Physics, 2021, 2021, 062.	1.9	43
437	A strong broadband 21 cm cosmological signal from dark matter spin-flip interactions. Journal of Cosmology and Astroparticle Physics, 2021, 2021, 041.	1.9	2
438	PASSAT at future neutrino experiments: Hybrid beam-dump-helioscope facilities to probe light axionlike particles. Physical Review D, 2021, 104, .	1.6	4
439	Trapped Electrons and lons as Particle Detectors. Physical Review Letters, 2021, 127, 061804.	2.9	11
440	Methods of Error Estimation for Delay Power Spectra in 21 cm Cosmology. Astrophysical Journal, Supplement Series, 2021, 255, 26.	3.0	9
442	Unveiling the gravitational universe at μ-Hz frequencies. Experimental Astronomy, 2021, 51, 1333-1383.	1.6	88

#	Article	IF	CITATIONS
443	Implications of triangular features in the Gaia skymap for the Caustic Ring Model of the Milky Way halo. Physics of the Dark Universe, 2021, 33, 100838.	1.8	6
444	Dark matter annihilation to neutrinos. Reviews of Modern Physics, 2021, 93, .	16.4	52
445	The global 21-cm signal of a network of cosmic string wakes. Monthly Notices of the Royal Astronomical Society, 2021, 508, 408-413.	1.6	2
446	Constraints on accreting primordial black holes with the global 21-cm signal. Physical Review D, 2021, 104, .	1.6	12
447	Ultra-light dark matter. Astronomy and Astrophysics Review, 2021, 29, 1.	9.1	150
448	Peering into the dark (ages) with low-frequency space interferometers. Experimental Astronomy, 2021, 51, 1641-1676.	1.6	10
449	<scp>globalemu</scp> : a novel and robust approach for emulating the sky-averaged 21-cm signal from the cosmic dawn and epoch of reionization. Monthly Notices of the Royal Astronomical Society, 2021, 508, 2923-2936.	1.6	22
450	Revealing the formation histories of the first stars with the cosmic near-infrared background. Monthly Notices of the Royal Astronomical Society, 2021, 508, 1954-1972.	1.6	21
451	Wave Dark Matter. Annual Review of Astronomy and Astrophysics, 2021, 59, 247-289.	8.1	133
452	Cosmology of Sub-MeV Dark Matter Freeze-In. Physical Review Letters, 2021, 127, 111301.	2.9	34
453	Constraining reionization with the first measurement of the cross-correlation between the CMB optical-depth fluctuations and the Compton <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mi>y</mml:mi> -map. Physical Review D, 2021, 104, .</mml:math 	1.6	6
454	CMB and 21-cm bounds on early structure formation boosted by primordial black hole entropy fluctuations. Physical Review D, 2021, 104, .	1.6	6
456	Sensitivity Reach of Gamma-Ray Measurements for Strong Cosmological Magnetic Fields. Astrophysical Journal, 2021, 906, 116.	1.6	9
457	Removing Astrophysics in 21 cm Maps with Neural Networks. Astrophysical Journal, 2021, 907, 44.	1.6	27
458	Ultralight DM bosons with an axion-like potential: scale-dependent constraints revisited. Journal of Cosmology and Astroparticle Physics, 2021, 2021, 051-051.	1.9	17
459	Viscous Dark Matter and Its Implication for 21 cm Signal. Springer Proceedings in Physics, 2020, , 321-327.	0.1	2
460	Dark photon dark matter in the presence of inhomogeneous structure. Journal of High Energy Physics, 2020, 2020, 1.	1.6	30
461	BBN constraints on universally-coupled ultralight scalar dark matter. Journal of High Energy Physics, 2020, 2020, 1.	1.6	13

#	Article	IF	CITATIONS
462	Searching in the dark: the hunt for the dark photon. Reviews in Physics, 2020, 5, 100042.	4.4	45
466	Reply to Hills et al Nature, 2018, 564, E35-E35.	13.7	22
467	Cosmic microwave background constraints in light of priors over reionization histories. Astronomy and Astrophysics, 2018, 617, A96.	2.1	30
468	<i>Planck</i> 2018 results. Astronomy and Astrophysics, 2020, 641, A1.	2.1	804
469	Cassiopeia A, Cygnus A, Taurus A, and Virgo A at ultra-low radio frequencies. Astronomy and Astrophysics, 2020, 635, A150.	2.1	19
470	Lightening the dark matter from its viscosity and explanation of EDGES anomaly. Journal of Cosmology and Astroparticle Physics, 2020, 2020, 034-034.	1.9	3
471	Reacceleration of charged dark matter. Journal of Cosmology and Astroparticle Physics, 2020, 2020, 001-001.	1.9	3
472	Effective photon mass and (dark) photon conversion in the inhomogeneous Universe. Journal of Cosmology and Astroparticle Physics, 2020, 2020, 011-011.	1.9	23
473	Inverse Cosmography: testing the effectiveness of cosmographic polynomials using machine learning. Journal of Cosmology and Astroparticle Physics, 2020, 2020, 007-007.	1.9	13
474	Energy injection in pre-recombination era and EDGES detection. Journal of Cosmology and Astroparticle Physics, 2020, 2020, 034-034.	1.9	5
475	The temperature of IGM at high redshifts: shock heating and high mach problem. Research in Astronomy and Astrophysics, 2020, 20, 095.	0.7	3
476	Alternative kind of hydrogen atoms as a possible explanation for the latest puzzling observation of the 21 cm radio line from the early Universe. Research in Astronomy and Astrophysics, 2020, 20, 109.	0.7	19
477	Redundant-baseline calibration of the hydrogen epoch of reionization array. Monthly Notices of the Royal Astronomical Society, 2020, 499, 5840-5861.	1.6	33
478	High-redshift radio galaxies: a potential new source of 21-cm fluctuations. Monthly Notices of the Royal Astronomical Society, 2020, 499, 5993-6008.	1.6	45
479	The AARTFAAC Cosmic Explorer: observations of the 21-cm power spectrum in the EDGES absorption trough. Monthly Notices of the Royal Astronomical Society, 2020, 499, 4158-4173.	1.6	23
480	A tale of two sites – II. Inferring the properties of minihalo-hosted galaxies with upcoming 21-cm interferometers. Monthly Notices of the Royal Astronomical Society, 2021, 501, 4748-4758.	1.6	26
481	Comparing foreground removal techniques for recovery of the LOFAR-EoR 21 cm power spectrum. Monthly Notices of the Royal Astronomical Society, 2020, 500, 2264-2277.	1.6	34
482	Exploring reionization and high- <i>z</i> galaxy observables with recent multiredshift MWA upper limits on the 21-cm signal. Monthly Notices of the Royal Astronomical Society, 2020, 500, 5322-5335.	1.6	42

#	Article	IF	CITATIONS
483	Interpreting LOFAR 21-cm signal upper limits at <i>z</i> â‰^ 9.1 in the context of high- <i>z</i> galaxy and reionization observations. Monthly Notices of the Royal Astronomical Society, 2020, 501, 1-13.	1.6	46
484	The bispectrum and 21-cm foregrounds during the Epoch of Reionization. Monthly Notices of the Royal Astronomical Society, 2020, 501, 367-382.	1.6	12
485	Ly α coupling and heating at cosmic dawn. Monthly Notices of the Royal Astronomical Society, 2021, 503, 4264-4275.	1.6	32
486	The impact of LyÎ \pm emission line heating and cooling on the cosmic dawn 21-cm signal. Monthly Notices of the Royal Astronomical Society, 2020, 501, 1920-1932.	1.6	4
487	The limits of cosmology: role of the Moon. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2021, 379, 20190561.	1.6	9
488	Transformative science from the lunar farside: observations of the dark ages and exoplanetary systems at low radio frequencies. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2021, 379, 20190564.	1.6	21
489	Radio-emission of axion stars. Physical Review D, 2020, 102, .	1.6	47
490	Constraints on millicharged particles from cosmic-ray production. Physical Review D, 2020, 102, .	1.6	36
491	Possible nonequilibrium imprint in the cosmic background at low frequencies. Physical Review Research, 2020, 2, .	1.3	10
492	CCAT-Prime: science with an ultra-widefield submillimeter observatory on Cerro Chajnantor. , 2018, , .		24
493	Baryon-Dark matter interaction in presence of magnetic fields in light of EDGES signal. European Physical Journal C, 2020, 80, 1.	1.4	12
494	Subjecting Dark Matter Candidates to the Cluster Test. Fluctuation and Noise Letters, 2020, 19, 2050016.	1.0	2
495	Neutrino Mass Ordering from Oscillations and Beyond: 2018 Status and Future Prospects. Frontiers in Astronomy and Space Sciences, 2018, 5, .	1.1	128
496	Assessment of the Projection-induced Polarimetry Technique for Constraining the Foreground Spectrum in Global 21 cm Cosmology. Astrophysical Journal, 2019, 883, 126.	1.6	24
497	Stages of Reionization as Revealed by the Minkowski Functionals. Astrophysical Journal, 2019, 885, 23.	1.6	24
498	The Impact of Realistic Foreground and Instrument Models on 21 cm Epoch of Reionization Experiments. Astrophysical Journal, 2020, 893, 118.	1.6	9
499	Implications of Inhomogeneous Metal Mixing for Stellar Archaeology. Astrophysical Journal, 2020, 897, 58.	1.6	26
500	Self-consistent Semianalytic Modeling of Feedback during Primordial Star Formation and Reionization. Astrophysical Journal, 2020, 897, 95.	1.6	30

#	Article	IF	CITATIONS
501	Formulating and Critically Examining the Assumptions of Global 21 cm Signal Analyses: How to Avoid the False Troughs That Can Appear in Single-spectrum Fits. Astrophysical Journal, 2020, 897, 132.	1.6	38
502	Global 21 cm Signal Extraction from Foreground and Instrumental Effects. II. Efficient and Self-consistent Technique for Constraining Nonlinear Signal Models. Astrophysical Journal, 2020, 897, 174.	1.6	20
503	Global 21 cm Signal Extraction from Foreground and Instrumental Effects. III. Utilizing Drift-scan Time Dependence and Full Stokes Measurements. Astrophysical Journal, 2020, 897, 175.	1.6	20
504	Statistical Detection of IGM Structures during Cosmic Reionization Using Absorption of the Redshifted 21 cm line by H i against Compact Background Radio Sources. Astrophysical Journal, 2020, 899, 16.	1.6	6
505	Modeling the Galactic Foreground and Beam Chromaticity for Global 21 cm Cosmology. Astrophysical Journal, 2020, 905, 113.	1.6	11
506	Strong Hydrogen Absorption at Cosmic Dawn: The Signature of a Baryonic Universe. Research Notes of the AAS, 2018, 2, 37.	0.3	13
507	My C.G.S.I.S.A.H. Theory of Dark Matter. Journal of Modern Physics, 2019, 10, 881-887.	0.3	4
508	Influences of accreting primordial black holes on the global 21 cm signal in the dark ages. Monthly Notices of the Royal Astronomical Society, 2021, 508, 5709-5715.	1.6	10
509	Radiometer Design for the REACH 21cm Global Experiment. , 2021, , .		0
510	The Precision Radio Instrument for Antenna Measurements (PRIAM): measurement strategy. , 2021, , .		1
511	Earth as a transducer for dark-photon dark-matter detection. Physical Review D, 2021, 104, .	1.6	19
512	Large HÂi optical depth and Redshifted 21-cm signal from cosmic dawn. Monthly Notices of the Royal Astronomical Society, 0, , .	1.6	3
513	A model for mixed warm and hot right-handed neutrino dark matter. Journal of High Energy Physics, 2021, 2021, 1.	1.6	10
514	Global 21cm absorption signal from superconducting cosmic strings. Journal of Cosmology and Astroparticle Physics, 2021, 2021, 046.	1.9	7
515	Exploring multimessenger signals from heavy dark matter decay with EDGES 21-cm result and IceCube. Journal of Cosmology and Astroparticle Physics, 2021, 2021, 033.	1.9	6
516	Brief review of recent advances in understanding dark matter and dark energy. New Astronomy Reviews, 2021, 93, 101632.	5.2	28
517	Temperature Scaling in Flat Space Cosmology in Comparison to Standard Cosmology. Journal of Modern Physics, 2018, 09, 1404-1414.	0.3	13
518	Reionisation in Sterile Neutrino Cosmologies. Springer Theses, 2018, , 77-100.	0.0	Ο

#	Article	IF	CITATIONS
519	Why Flat Space Cosmology Is Superior to Standard Inflationary Cosmology. Journal of Modern Physics, 2018, 09, 1867-1882.	0.3	17
520	Astronomers detect light from the Universe's first stars. Nature, 0, , .	13.7	0
521	Gas Cloud Temperature Constrains Dark Matter. Physics Magazine, 0, 11, .	0.1	0
522	The Use of Instructional Coaching and Analogy to Enhance STREAM Professional Development for Teacher Quality Improvement. Advances in Early Childhood and K-12 Education, 2019, , 95-120.	0.2	0
523	Predicting Dark Energy Survey Results Using the Flat Space Cosmology Model. Journal of Modern Physics, 2019, 10, 1083-1089.	0.3	1
524	21 cm Absorption as a Probe of Dark Photons. Thirty Years of Astronomical Discovery With UKIRT, 2019, , 121-127.	0.3	0
525	Direct Detection of Sub-GeV Dark Matter: Models and Constraints. Thirty Years of Astronomical Discovery With UKIRT, 2019, , 59-67.	0.3	0
526	Indirect Probes of Light Dark Matter. Thirty Years of Astronomical Discovery With UKIRT, 2019, , 143-152.	0.3	0
527	Observations of Ly\$\$alpha \$\$ Emitters at High Redshift. Saas-Fee Advanced Course, 2019, , 189-318.	1.1	6
528	Standard Models and What Lies Beyond. Springer Theses, 2020, , 5-36.	0.0	Ο
530	Enabling discoveries: a review of 30 years of advanced technologies and instrumentation at the National Science Foundation. Journal of Astronomical Telescopes, Instruments, and Systems, 2020, 6, .	1.0	2
531	Impacts of new small-scale <mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">display="inline"><mml:mi>N</mml:mi></mml:math> -body simulations on dark matter annihilations constrained from cosmological 21-cm line observations. Physical Review D, 2021, 104, .	1.6	5
533	Biobased Materials for Medical Applications. , 2021, , 139-193.		1
534	Photoevaporation of Minihalos During Cosmic Reionization: Primordial and Metal-enriched Halos. Astrophysical Journal, 2020, 905, 151.	1.6	9
535	Gaussian process foreground subtraction and power spectrum estimation for 21 cm cosmology. Monthly Notices of the Royal Astronomical Society, 2020, 501, 1463-1480.	1.6	23
536	Simulated differential observations of the Sunyaev-Zel'dovich effect: probing the dark ages and epoch of reionization. Astrophysics and Space Science, 2020, 365, 1.	0.5	0
537	A Heuristic Model of the Evolving Universe Inspired by Hawking and Penrose. , 0, , .		4
538	Starburst Galaxies. , 2020, , 379-411.		0

#	Article	IF	Citations
539	Mapping the universe with 21 cm observations. , 2020, , 379-406.		0
540	Informing antenna design for sky-averaged 21-cm experiments using a simulated Bayesian data analysis pipeline. Monthly Notices of the Royal Astronomical Society, 2021, 509, 4679-4693.	1.6	15
541	The mass of a dark matter WIMP derived from the Hubble constant conflict. Research in Astronomy and Astrophysics, 2020, 20, 136.	0.7	0
542	Cosmic rays and spectral distortions from collapsing textures. Journal of Cosmology and Astroparticle Physics, 2020, 2020, 035-035.	1.9	1
543	maxsmooth: Derivative Constrained Function Fitting. Journal of Open Source Software, 2020, 5, 2596.	2.0	2
544	Discovering the sky at the longest wavelengths with a lunar orbit array. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2021, 379, 20190566.	1.6	24
545	Reaching small scales with low-frequency imaging: applications to the Dark Ages. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2021, 379, 20190571.	1.6	3
546	Low-frequency technology for a lunar interferometer. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2021, 379, 20190575.	1.6	2
547	Lux Ex Tenebris: The Imprint of Annihilating Dark Matter on the Intergalactic Medium during Cosmic Dawn. Astrophysical Journal, 2020, 904, 153.	1.6	3
548	DES map shows a smoother distribution of matter than expected: a possible explanation. Research in Astronomy and Astrophysics, 2021, 21, 241.	0.7	12
549	Two-component millicharged dark matter and the EDGES 21 cm signal *. Chinese Physics C, 2022, 46, 045102.	1.5	7
550	Improvements to the Search for Cosmic Dawn Using the Long Wavelength Array. Journal of Astronomical Instrumentation, 2021, 10, .	0.8	2
551	Feebly-interacting particles: FIPs 2020 workshop report. European Physical Journal C, 2021, 81, 1.	1.4	130
552	External calibrator in global signal experiment for detection of the epoch of reionization. Research in Astronomy and Astrophysics, 2021, 21, 243.	0.7	1
553	Search for dark-photon dark matter in the SuperMAG geomagnetic field dataset. Physical Review D, 2021, 104, .	1.6	13
554	Cosmological boost factor for dark matter annihilation at redshifts of z=10â^'100 using the power spectrum approach. Physical Review D, 2021, 104, .	1.6	2
555	Probing small-scale baryon and dark matter isocurvature perturbations with cosmic microwave background anisotropies. Physical Review D, 2021, 104, .	1.6	8
556	Millicharged particles from the heavens: single- and multiple-scattering signatures. Journal of High Energy Physics, 2021, 2021, 1.	1.6	12

		CITATION REPORT		
#	Article		IF	Citations
557	Gaussian Process Reconstruction of Reionization History. Astrophysical Journal, 2021,	922, 95.	1.6	6
558	Probing PeV scale SUSY breaking with satellite galaxies and primordial gravitational wa Review D, 2021, 104, .	ives. Physical	1.6	1
559	Analysis of Experimental Cross-Sections of Charge Exchange between Hydrogen Atom Yields More Evidence of the Existence of the Second Flavor of Hydrogen Atoms. Found 265-270.	s and Protons ations, 2021, 1,	0.4	10
560	21 cm forest constraints on primordial black holes. Publication of the Astronomic 2023, 75, S33-S49.	al Society of Japan,	1.0	14
562	THE HOT DARK MATTER MODEL: FURTHER INVESTIGATION. Odessa Astronomical Publ 11-17.	ications, 2020, 33,	0.2	0
563	A multi-messenger view of cosmic dawn: <i>Conquering the final frontier</i> . Internation of Modern Physics D, 2021, 30, .	onal Journal	0.9	3
564	HERA Phase I Limits on the Cosmic 21 cm Signal: Constraints on Astrophysics and Cos the Epoch of Reionization. Astrophysical Journal, 2022, 924, 51.	mology during	1.6	63
565	Singularities and soft-Big Bang in a viscous <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mi mathvariant="normal">ĥ<mml:mi>CDM</mml:mi> model. Phy 105</mml:mi </mml:math 	sical Review D, 2022,	1.6	6
566	The impact of the first galaxies on cosmic dawn and reionization. Monthly Notices of t Astronomical Society, 2022, 511, 3657-3681.	he Royal	1.6	47
567	Exact solutions of a causal viscous FRW cosmology within the Israel–Stewart theory factorization. General Relativity and Gravitation, 2022, 54, 1.	through	0.7	2
568	Bursty star formation during the Cosmic Dawn driven by delayed stellar feedback. Mor the Royal Astronomical Society, 2022, 511, 3895-3909.	ithly Notices of	1.6	20
569	Probing the primordial Universe with 21 cm line from cosmic dawn/epoch of reion of the Astronomical Society of Japan, 2023, 75, S154-S180.	ization. Publication	1.0	4
570	First Results from HERA Phase I: Upper Limits on the Epoch of Reionization 21 cm Pow Astrophysical Journal, 2022, 925, 221.	er Spectrum.	1.6	82
571	Radio Antenna Design for Sky-Averaged 21cm Cosmology Experiments: The REACH Ca Astronomical Instrumentation, 2022, 11, .	se. Journal of	0.8	11
572	Kinetic theory of Jeans' gravitational instability in millicharged dark matter system. 2022, 31, 070401.	Chinese Physics B,	0.7	3
573	Bounds on sterile neutrino lifetime and mixing angle with active neutrinos by global 21 Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2022	cm signal. 827, 136955.	1.5	0
574	Challenges and opportunities of gravitational-wave searches at MHz to GHz frequencie Reviews in Relativity, 2021, 24, 1.	es. Living	8.2	105
575	Constraints on primordial black holes. Reports on Progress in Physics, 2021, 84, 11690)2.	8.1	391

#	Article	IF	CITATIONS
576	Forecasts on interacting dark energy from the 21-cm angular power spectrum with BINGO and SKA observations. Monthly Notices of the Royal Astronomical Society, 2021, 510, 1495-1514.	1.6	6
577	Constraining spinning primordial black holes with global 21-cm signal. Monthly Notices of the Royal Astronomical Society, 2022, 510, 4236-4241.	1.6	9
578	Calibration requirements for Epoch of Reionization 21-cm signal observations – II. Analytical estimation of the bias and variance with time-correlated residual gains. Monthly Notices of the Royal Astronomical Society, 2022, 512, 186-198.	1.6	4
579	Exploring the High-redshift PBH-ΛCDM Universe: Early Black Hole Seeding, the First Stars and Cosmic Radiation Backgrounds. Astrophysical Journal, 2022, 926, 205.	1.6	26
580	Cosmic backgrounds from the radio to the far-infrared: recent results and perspectives from cosmological and astrophysical surveys. International Journal of Modern Physics D, 0, , .	0.9	0
581	Shot noise and scatter in the star formation efficiency as a source of 21-cm fluctuations. Monthly Notices of the Royal Astronomical Society, 2022, 511, 5265-5273.	1.6	10
582	Did astronomers see hints of first stars? Experiment casts doubt on bold claim. Nature, 2022, , .	13.7	0
583	Peculiar Features of Molecular Hydrogen Ions Formed by Proton Collisions with Hydrogen Atoms of the Second Flavor. Foundations, 2022, 2, 228-233.	0.4	0
584	Distinctive Features of Charge Exchange Involving the Second Flavor of Hydrogen Atoms—The Candidates for Dark Matter. Physics, 2022, 4, 286-293.	0.5	0
585	Black holes at cosmic dawn in the redshifted 21cm signal of HI. New Astronomy Reviews, 2022, 94, 101642.	5.2	4
586	Constraining primordial black holes as dark matter using the global 21-cm signal with X-ray heating and excess radio background. Journal of Cosmology and Astroparticle Physics, 2022, 2022, 030.	1.9	38
587	Effects of Small-scale Absorption Systems on Neutral Islands during the Late Epoch of Reionization. Astrophysical Journal, 2022, 927, 5.	1.6	4
588	Astrophysical information from the Rayleigh-Jeans Tail of the CMB. Journal of Cosmology and Astroparticle Physics, 2022, 2022, 055.	1.9	4
589	21-cm constraints on spinning primordial black holes. Journal of Cosmology and Astroparticle Physics, 2022, 2022, 012.	1.9	19
590	On the Stellar Populations of Galaxies at $z = 9\hat{a} \in 11$: The Growth of Metals and Stellar Mass at Early Times. Astrophysical Journal, 2022, 927, 170.	1.6	73
591	Extracting the 21-cm power spectrum and the reionization parameters from mock data sets using artificial neural networks. Monthly Notices of the Royal Astronomical Society, 2022, 512, 5010-5022.	1.6	8
592	Statistical analysis of the causes of excess variance in the 21 cm signal power spectra obtained with the Low-Frequency Array. Astronomy and Astrophysics, 2022, 663, A9.	2.1	6
593	Joint constraints on reionization: A framework for combining the global 21Âcm signal and the kinetic Sunyaev-Zel'dovich effect. Physical Review D, 2022, 105, .	1.6	4

#	Article	IF	Citations
594	Neural networks and standard cosmography with newly calibrated high redshift GRB observations. Journal of Cosmology and Astroparticle Physics, 2022, 2022, 016.	1.9	6
595	Array element coupling in radio interferometry I: a semi-analytic approach. Monthly Notices of the Royal Astronomical Society, 2022, 514, 1804-1827.	1.6	7
596	Efficient MoM simulation of 3D metallic antenna connected to finite ground plane. , 2021, , .		0
597	Lost Horizon: Quantifying the Effect of Local Topography on Global 21 cm Cosmology Data Analysis. Astrophysical Journal, 2021, 923, 33.	1.6	8
598	Maximum Absorption of the Global 21 cm Spectrum in the Standard Cosmological Model. Astrophysical Journal, 2021, 923, 98.	1.6	9
599	The Phantom Dark Matter Halos of the Local Volume in the Context of Modified Newtonian Dynamics. Astrophysical Journal, 2021, 923, 68.	1.6	14
600	Does the reionization model influence the constraints on dark matter decay or annihilation?. Journal of Cosmology and Astroparticle Physics, 2021, 2021, 034.	1.9	1
601	A cosmologically consistent millicharged dark matter solution to the EDGES anomaly of possible string theory origin. Journal of High Energy Physics, 2021, 2021, 1.	1.6	14
602	On the detection of a cosmic dawn signal in the radio background. Nature Astronomy, 2022, 6, 607-617.	4.2	106
603	Probing Cosmic Dawn in a Global Spectrum Detection System. , 2021, , .		1
604	21cm Global Spectrum Measuring Instrument For Lunar-Orbit Satellite Array. , 2021, , .		0
605	Super-Wide Band and Frequency-Independent Antenna for 21cm detection in Lunar-Orbit Satellite Array. , 2021, , .		0
606	Degree-scale galactic radio emission at 122 MHz around the North Celestial Pole with LOFAR-AARTFAAC. Astronomy and Astrophysics, 2022, 662, A97.	2.1	3
607	Evolution of Primordial Magnetic Fields during Large-scale Structure Formation. Astrophysical Journal, 2022, 929, 127.	1.6	14
608	Lunar Orbit Measurement of the Cosmic Dawn's 21 cm Global Spectrum. Astrophysical Journal, 2022, 929, 32.	1.6	7
609	System design and calibration of SITARA—a global 21 cm short spacing interferometer prototype. Publications of the Astronomical Society of Australia, 2022, 39, .	1.3	5
610	A comprehensive Bayesian reanalysis of the SARAS2 data from the epoch of reionization. Monthly Notices of the Royal Astronomical Society, 2022, 513, 4507-4526.	1.6	10
611	在æœ^çf开展åॐä¿jä½¿å®æ−‡å¦çš"ç"究进展. Scientia Sinica: Physica, Mechanica Et Astronomica, 2022,	,0.2	1

#	Article	IF	CITATIONS
612	Imprints of fermionic and bosonic mixed dark matter on the 21-cm signal at cosmic dawn. Physical Review D, 2022, 105, .	1.6	11
613	Probing isocurvature perturbations with 21-cm global signal in the light of HERA result. Physical Review D, 2022, 105, .	1.6	3
614	Constraining Warm Dark Matter and Population III Stars with the Global 21 cm Signal. Astrophysical Journal, 2022, 929, 151.	1.6	12
615	Composite solution to the EDGES anomaly. Physical Review D, 2022, 105, .	1.6	5
616	Understanding the Impact of Semi-numeric Reionization Models when Using CNNs. Publications of the Astronomical Society of the Pacific, 2022, 134, 044001.	1.0	2
617	The large-scale 21-cm power spectrum from reionization. Monthly Notices of the Royal Astronomical Society, 2022, 513, 5109-5124.	1.6	8
618	21cmVAE: A Very Accurate Emulator of the 21 cm Global Signal. Astrophysical Journal, 2022, 930, 79.	1.6	12
619	The first molecules in the intergalactic medium and halos of the Dark Ages and Cosmic Dawn. Astronomy and Astrophysics, 2022, 663, A120.	2.1	3
620	Hints of dark matter-neutrino interactions in Lyman- <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"> <mml:mi>α </mml:mi> data. Physical Review D, 2022, 105, .</mml:math 	1.6	19
621	Probing the Early History of Cosmic Reionization by Future Cosmic Microwave Background Experiments. Astrophysical Journal, 2022, 930, 140.	1.6	2
622	Primordial black hole dark matter in the context of extra dimensions. Physical Review D, 2022, 105, .	1.6	7
623	The Forward Physics Facility: Sites, experiments, and physics potential. Physics Reports, 2022, 968, 1-50.	10.3	57
624	Dark atoms and composite dark matter. SciPost Physics Lecture Notes, 0, , .	0.0	11
625	Les Houches Lectures on Indirect Detection of Dark Matter. SciPost Physics Lecture Notes, 0, , .	0.0	13
626	Premature black hole death of Population III stars by dark matter. Journal of Cosmology and Astroparticle Physics, 2022, 2022, 025.	1.9	4
627	Exploring delaying and heating effects on the 21-cm signature of fuzzy dark matter. Physical Review D, 2022, 105, .	1.6	10
628	Sensitivities on nonspinning and spinning primordial black hole dark matter with global 21-cm troughs. Physical Review D, 2022, 105, .	1.6	31
629	A galaxy-free phenomenological model for the 21-cm power spectrum during reionization. Monthly Notices of the Royal Astronomical Society, 2022, 514, 2010-2030.	1.6	5

#	Article	IF	CITATIONS
630	Effects of stellar-mass primordial black holes on first star formation. Monthly Notices of the Royal Astronomical Society, 2022, 514, 2376-2396.	1.6	7
631	Dark matter: experimental and observational status. , 2022, , .		0
632	Snowmass2021 theory frontier white paper: Astrophysical and cosmological probes of dark matter. Journal of High Energy Astrophysics, 2022, 35, 112-138.	2.4	20
633	Effect of the cosmological transition to metal-enriched star formation on the hydrogen 21-cm signal. Monthly Notices of the Royal Astronomical Society, 2022, 514, 4433-4449.	1.6	18
634	Parallel Measurements of Vibrational Modes in a Few-Layer Graphene Nanomechanical Resonator Using Software-Defined Radio Dongles. IEEE Access, 2022, 10, 69981-69991.	2.6	1
635	Exploring the cosmic dawn and epoch of reionization with the 21 cm line. Publication of the Astronomical Society of Japan, 2023, 75, S1-S32.	1.0	2
636	Experiments on the Electron Impact Excitation of the 2s and 2p States of Hydrogen Atoms Confirm the Presence of Their Second Flavor as the Candidate for Dark Matter. Foundations, 2022, 2, 541-546.	0.4	7
637	Implications of the cosmological 21-cm absorption profile for high-redshift star formation and deep JWST surveys. Monthly Notices of the Royal Astronomical Society, 2022, 515, 2901-2913.	1.6	9
638	Mapping Discrete Galaxies at Cosmic Dawn with 21 cm Observations. Astrophysical Journal, 2022, 933, 51.	1.6	4
639	Bayesian data analysis for sky-averaged 21-cm experiments in the presence of ionospheric effects. Monthly Notices of the Royal Astronomical Society, 2022, 515, 4565-4573.	1.6	5
640	Antenna beam characterization for the global 21-cm experiment LEDA and its impact on signal model parameter reconstruction. Monthly Notices of the Royal Astronomical Society, 2022, 515, 1580-1597.	1.6	8
641	Challenges for <mml:math <br="" altimg="si238.svg" xmlns:mml="http://www.w3.org/1998/Math/MathML">display="inline" id="d1e11032"><mml:mi mathvariant="normal">î></mml:mi></mml:math> CDM: An update. New Astronomy Reviews, 2022, 95, 101659.	5.2	246
642	Novel Search for High-Frequency Gravitational Waves with Low-Mass Axion Haloscopes. Physical Review Letters, 2022, 129, .	2.9	38
643	The REACH radiometer for detecting the 21-cm hydrogen signal from redshift z â‰^ 7.5–28. Nature Astronomy, 2022, 6, 984-998.	4.2	29
644	Observing the reionization: effect of calibration and position errors on realistic observation conditions. Monthly Notices of the Royal Astronomical Society, 2022, 515, 4020-4037.	1.6	4
645	Upper Limit on the Diffuse Radio Background from GZK Photon Observation. Universe, 2022, 8, 402.	0.9	3
646	From a small antenna to cosmic dawn. Nature Astronomy, 2022, 6, 887-888.	4.2	1
647	Impact of the primordial stellar initial mass function on the 21-cm signal. Monthly Notices of the Royal Astronomical Society, 2022, 516, 841-860.	1.6	16

#	Article	IF	CITATIONS
648	A Digital Calibration Source for 21cm Cosmology Telescopes. Journal of Astronomical Instrumentation, 0, , .	0.8	0
649	The Giant Radio Array for Neutrino Detection (GRAND) Project. SciPost Physics Proceedings, 2022, , .	0.2	1
650	Unveiling hidden physics at the LHC. European Physical Journal C, 2022, 82, .	1.4	26
651	An effective fluid description of scalar-vector-tensor theories under the sub-horizon and quasi-static approximations. Journal of Cosmology and Astroparticle Physics, 2022, 2022, 059.	1.9	6
652	Modified dispersion relations and a potential explanation of the EDGES anomaly. European Physical Journal C, 2022, 82, .	1.4	0
653	Maximal X-ray feedback in the pre-reionization Universe. Monthly Notices of the Royal Astronomical Society, 2022, 515, 5568-5575.	1.6	3
654	Testing general relativity with cosmological large scale structure. General Relativity and Gravitation, 2022, 54, .	0.7	1
655	Experiments on the Electron Impact Excitation of Hydrogen Molecules Indicate the Presence of the Second Flavor of Hydrogen Atoms. Foundations, 2022, 2, 697-703.	0.4	5
656	Multi-frequency angular power spectrum of the 21 cm signal from the Epoch of Reionisation using the Murchison Widefield Array. Astronomy and Astrophysics, 2022, 666, A106.	2.1	4
657	Study of a Viscous ĥWDM Model: Near-Equilibrium Condition, Entropy Production, and Cosmological Constraints. Symmetry, 2022, 14, 1866.	1.1	3
658	Cosmological 21-cm line observations to test scenarios of super-Eddington accretion on to black holes being seeds of high-redshifted supermassive black holes. Physical Review D, 2022, 106, .	1.6	8
659	Impact of the turnover in the high- <i>z</i> galaxy luminosity function on the 21-cm signal during Cosmic Dawn and Epoch of Reionization. Monthly Notices of the Royal Astronomical Society, 2022, 516, 1573-1583.	1.6	2
660	Can accreting primordial black holes explain the excess radio background?. Monthly Notices of the Royal Astronomical Society, 2022, 517, 2454-2461.	1.6	6
661	Counterparts of candidate dusty starbursts at <i>z</i> > 6. Monthly Notices of the Royal Astronomical Society, 2022, 516, 5471-5486.	1.6	1
662	A Bayesian calibration framework for EDGES. Monthly Notices of the Royal Astronomical Society, 2022, 517, 2264-2284.	1.6	6
663	Generating extremely large-volume reionization simulations. Monthly Notices of the Royal Astronomical Society, 2022, 516, 5588-5600.	1.6	5
664	Line Shape-Based Spectroscopic Diagnostics of Astrophysical Plasmas in the Visible, Microwave, and Radio Ranges: A Mini-Review. IEEE Transactions on Plasma Science, 2022, 50, 2558-2567.	0.6	0
665	Dark radiation constraints on portal interactions with hidden sectors. Journal of Cosmology and Astroparticle Physics, 2022, 2022, 056.	1.9	7

#	Article	IF	CITATIONS
666	A tower of hidden sectors: a general treatment and physics implications. Journal of High Energy Physics, 2022, 2022, .	1.6	4
667	Cosmic radiation backgrounds from primordial black holes. Monthly Notices of the Royal Astronomical Society, 2022, 517, 1086-1097.	1.6	7
668	Efficiency of a 3D Metallic Antenna on top of Finite Ground Plane and Soil. , 2022, , .		1
669	Measurements of one-point statistics in 21-cm intensity maps via foreground avoidance strategy. Monthly Notices of the Royal Astronomical Society, 2022, 517, 2138-2150.	1.6	1
670	Observations of the Large-Scale Structure of the Universe. Springer Theses, 2022, , 9-28.	0.0	0
671	Bayesian evidence-driven diagnosis of instrumental systematics for sky-averaged 21-cm cosmology experiments. Publications of the Astronomical Society of Australia, 2022, 39, .	1.3	5
672	Global 21-cm brightness temperature in viscous dark energy models. Journal of Cosmology and Astroparticle Physics, 2022, 2022, 049.	1.9	5
673	Consistency test of the fine-structure constant from the whole ionization history. Journal of Cosmology and Astroparticle Physics, 2022, 2022, 070.	1.9	0
674	Assessing the impact of two independent direction-dependent calibration algorithms on the LOFAR 21 cm signal power spectrum. Astronomy and Astrophysics, 2023, 669, A20.	2.1	4
675	One likelihood to bind them all: Lyman-α constraints on non-standard dark matter. Journal of Cosmology and Astroparticle Physics, 2022, 2022, 032.	1.9	16
676	Beamforming approaches towards detecting the 21-cm global signal from Cosmic Dawn with radio array telescopes. Publications of the Astronomical Society of Australia, 2022, 39, .	1.3	0
677	Hunt for light primordial black hole dark matter with ultrahigh-frequency gravitational waves. Physical Review D, 2022, 106, .	1.6	23
678	Modern Cosmology, an Amuse-Gueule. , 2022, , 37-70.		2
679	First light: switching on stars at the dawn of time. Contemporary Physics, 2022, 63, 15-33.	0.8	0
680	Astrophysical constraints from the SARAS 3 non-detection of the cosmic dawn sky-averaged 21-cm signal. Nature Astronomy, 2022, 6, 1473-1483.	4.2	17
681	Swampland bounds on dark sectors. Journal of High Energy Physics, 2022, 2022, .	1.6	7
682	Structure formation and the global 21-cm signal in the presence of Coulomb-like dark matter-baryon interactions. Physical Review D, 2022, 106, .	1.6	7
683	A Bose horn antenna radio telescope (BHARAT) design for 21 cm hydrogen line experiments for radio astronomy teaching. American Journal of Physics, 2022, 90, 948-960.	0.3	2

#	Article	IF	CITATIONS
684	Impact of radiation from primordial black holes on the 21-cm angular-power spectrum in the dark ages. Physical Review D, 2022, 106, .	1.6	0
685	Balancing the efficiency and stochasticity of star formation with dust extinction in <i>z</i> ≳ 10 galaxies observed by JWST. Monthly Notices of the Royal Astronomical Society, 2022, 519, 843-853.	1.6	23
686	Effective bias expansion for 21-cm cosmology in redshift space. Physical Review D, 2022, 106, .	1.6	9
687	A Long Time Ago in a Galaxy Far, Far Away: A Candidate z â^¼ 12 Galaxy in Early JWST CEERS Imaging. Astrophysical Journal Letters, 2022, 940, L55.	3.0	144
688	Importance of intracluster scattering and relativistic corrections from tSZ effect with cosmic infrared background. Monthly Notices of the Royal Astronomical Society, 2022, 519, 2138-2154.	1.6	1
689	Probing the epoch of reionization using synergies of line intensity mapping. Journal of Astrophysics and Astronomy, 2022, 43, .	0.4	1
690	CCAT-prime Collaboration: Science Goals and Forecasts with Prime-Cam on the Fred Young Submillimeter Telescope. Astrophysical Journal, Supplement Series, 2023, 264, 7.	3.0	20
691	Analytic Approximations of Scattering Effects on Beam Chromaticity in 21â€em Global Experiments. Radio Science, 2022, 57, .	0.8	3
692	Use of time dependent data in Bayesian global 21-cm foreground and signal modelling. Monthly Notices of the Royal Astronomical Society, 2023, 520, 850-865.	1.6	9
693	Impact of instrument and data characteristics in the interferometric reconstruction of the 21 cm power spectrum. Monthly Notices of the Royal Astronomical Society, 2023, 520, 375-391.	1.6	3
694	Design of a Blade Dipole Antenna for Radio Astronomy. , 2022, , .		0
695	Impact of cosmic rays on the global 21-cm signal during cosmic dawn. Monthly Notices of the Royal Astronomical Society, 2023, 519, 4869-4883.	1.6	4
696	First Batch of z â‰^ 11–20 Candidate Objects Revealed by the James Webb Space Telescope Early Release Observations on SMACS 0723-73. Astrophysical Journal Letters, 2023, 942, L9.	3.0	56
697	The role of Pop III stars and early black holes in the 21-cm signal from Cosmic Dawn. Monthly Notices of the Royal Astronomical Society, 2023, 520, 3609-3625.	1.6	10
698	The Forward Physics Facility at the High-Luminosity LHC. Journal of Physics G: Nuclear and Particle Physics, 2023, 50, 030501.	1.4	53
699	Thermal and reionization history within a large-volume semi-analytic galaxy formation simulation. Monthly Notices of the Royal Astronomical Society, 2023, 520, 3368-3382.	1.6	2
700	Review of latest advances on dark matter from the viewpoint of the Occam razor principle. New Astronomy Reviews, 2023, 96, 101673.	5.2	7
701	Discovering the Sky at the Longest Wavelength Missionâ^'A Pathfinder for Exploring the Cosmic Dark Ages. Kongjian Kexue Xuebao, 2023, 43, 43.	0.2	0

#	Article	IF	CITATIONS
702	Homeopathic Dark Matter. Springer Theses, 2022, , 223-265.	0.0	0
703	Standard Model ofÂCosmology. Springer Theses, 2022, , 73-176.	0.0	0
704	Accelerating astrophysics with the SpaceX Starship. Physics Today, 2023, 76, 40-45.	0.3	3
705	FLArE up dark sectors with EM form factors at the LHC forward physics facility. Nuclear Physics B, 2023, 987, 116103.	0.9	6
706	Studying cosmic dawn using redshifted HI 21-cm signal: A brief review. Journal of Astrophysics and Astronomy, 2023, 44, .	0.4	4
707	Galactic Dark Matter Halos Containing H i Regions: A Possible Overestimation of the Column Densities. Research in Astronomy and Astrophysics, 2023, 23, 035011.	0.7	2
708	Hubble Tension: The Evidence of New Physics. Universe, 2023, 9, 94.	0.9	30
709	Accurate modelling of the Lyman- <i>$\hat{l}\pm$</i> coupling for the 21-cm signal, observability with NenuFAR, and SKA. Astronomy and Astrophysics, 2023, 672, A162.	2.1	4
710	Bringing Stellar Evolution and Feedback Together: Summary of Proposals from the Lorentz Center Workshop. Publications of the Astronomical Society of the Pacific, 2023, 135, 021001.	1.0	0
711	Population III X-ray binaries and their impact on the early universe. Monthly Notices of the Royal Astronomical Society, 2023, 521, 4039-4055.	1.6	8
712	A Bayesian approach to modelling spectrometer data chromaticity corrected using beam factors – I. Mathematical formalism. Monthly Notices of the Royal Astronomical Society, 2023, 521, 3273-3297.	1.6	3
713	Synthetic observations with the Square Kilometre Array: Development towards an end-to-end pipeline. Journal of Astrophysics and Astronomy, 2023, 44, .	0.4	0
714	On Measuring the 21 cm Global Spectrum of the Cosmic Dawn with an Interferometer Array. Astrophysical Journal, 2023, 945, 109.	1.6	0
715	Improved Constraints on the 21 cm EoR Power Spectrum and the X-Ray Heating of the IGM with HERA Phase I Observations. Astrophysical Journal, 2023, 945, 124.	1.6	29
716	A closer look at dark photon explanations of the excess radio background. Monthly Notices of the Royal Astronomical Society, 2023, 521, 3939-3950.	1.6	2
717	The Second Radio Synchrotron Background Workshop: Conference Summary and Report. Publications of the Astronomical Society of the Pacific, 2023, 135, 036001.	1.0	3
718	New EoR power spectrum limits from MWA Phase II using the delay spectrum method and novel systematic rejection. Monthly Notices of the Royal Astronomical Society, 2023, 521, 5120-5138.	1.6	4
719	Primordial black hole constraints with Hawking radiation—A review. Progress in Particle and Nuclear Physics, 2023, 131, 104040.	5.6	7

#	Article	IF	CITATIONS
720	Detecting global signal from cosmic dawn and epoch of reionization with SKA. Journal of Astrophysics and Astronomy, 2023, 44, .	0.4	0
721	Cosmic radio background from primordial black holes at cosmic dawn. Physical Review D, 2023, 107, .	1.6	3
722	Sky-averaged 21-cm signal extraction using multiple antennas with an SVD framework: the REACH case. Monthly Notices of the Royal Astronomical Society, 2023, 522, 1022-1032.	1.6	2
723	Reionizing islands with inhomogeneous recombinations. Research in Astronomy and Astrophysics, 0, ,	0.7	Ο
724	A needle in a haystack? Catching Population III stars in the epoch of reionization: I. Population III star-forming environments. Monthly Notices of the Royal Astronomical Society, 2023, 522, 3809-3830.	1.6	8
761	Prospects for precision cosmology with the 21 cm signal from the dark ages. Nature Astronomy, 2023, 7, 1025-1030.	4.2	4
767	Measuring receiver noise parameters for global 21-cm experiments. , 2023, , .		0