Draperâ€mediated JNK signaling is required for glial ph during <i>Drosophila</i> metamorphosis

Glia

66, 1520-1532

DOI: 10.1002/glia.23322

Citation Report

#	Article	IF	CITATIONS
1	Identification of raw as a regulator of glial development. PLoS ONE, 2018, 13, e0198161.	1.1	7
2	Role of Glial Immunity in Lifespan Determination: A Drosophila Perspective. Frontiers in Immunology, 2018, 9, 1362.	2.2	23
3	Glial Phagocytic Receptors Promote Neuronal Loss in Adult Drosophila Brain. Cell Reports, 2019, 29, 1438-1448.e3.	2.9	32
4	Cortex glia clear dead young neurons via Drpr/dCed-6/Shark and Crk/Mbc/dCed-12 signaling pathways in the developing Drosophila optic lobe. Developmental Biology, 2019, 453, 68-85.	0.9	22
5	Phagocytosis in Drosophila: From molecules and cellular machinery to physiology. Insect Biochemistry and Molecular Biology, 2019, 109, 1-12.	1.2	63
6	Dying Neurons Utilize Innate Immune Signaling to Prime Glia for Phagocytosis during Development. Developmental Cell, 2019, 48, 506-522.e6.	3.1	43
7	Degeneration of Injured Axons and Dendrites Requires Restraint of a Protective JNK Signaling Pathway by the Transmembrane Protein Raw. Journal of Neuroscience, 2019, 39, 8457-8470.	1.7	11
8	Phagocyte Responses to Cell Death in Flies. Cold Spring Harbor Perspectives in Biology, 2020, 12, a036350.	2.3	11
9	Pattern recognition receptors in Drosophila immune responses. Developmental and Comparative Immunology, 2020, 102, 103468.	1.0	95
10	Glial phagocytosis in developing and mature Drosophila CNS: tight regulation for a healthy brain. Current Opinion in Immunology, 2020, 62, 62-68.	2.4	23
11	Drosophila Glia: Models for Human Neurodevelopmental and Neurodegenerative Disorders. International Journal of Molecular Sciences, 2020, 21, 4859.	1.8	17
12	Neuron–glia interaction in the Drosophila nervous system. Developmental Neurobiology, 2021, 81, 438-452.	1.5	60
13	The Glial Perspective on Sleep and Circadian Rhythms. Annual Review of Neuroscience, 2020, 43, 119-140.	5.0	31
14	Neuronal fragile X mental retardation protein activates glial insulin receptor mediated PDF-Tri neuron developmental clearance. Nature Communications, 2021, 12, 1160.	5.8	12
16	More Than Mortar: Glia as Architects of Nervous System Development and Disease. Frontiers in Cell and Developmental Biology, 2020, 8, 611269.	1.8	33
17	<i>trim</i> -21 Promotes Proteasomal Degradation of CED-1 for Apoptotic Cell Clearance in <i>C. elegans</i> . SSRN Electronic Journal, 0, , .	0.4	O
20	Drosophila ßHeavy-Spectrin is required in polarized ensheathing glia that form a diffusion-barrier around the neuropil. Nature Communications, 2021, 12, 6357.	5.8	21
21	bfc, a novel serpent co-factor for the expression of croquemort, regulates efferocytosis in Drosophila melanogaster. PLoS Genetics, 2021, 17, e1009947.	1.5	5

CITATION REPORT

#	Article	IF	CITATIONS
22	The phagocytic cyst cells in <i>Drosophila</i> testis eliminate germ cell progenitors via phagoptosis. Science Advances, 2022, 8, .	4.7	8
23	Integrative analysis of drug response and clinical outcome in acute myeloid leukemia. Cancer Cell, 2022, 40, 850-864.e9.	7.7	82
24	Metabolic strategy of macrophages under homeostasis or immune stress in Drosophila. Marine Life Science and Technology, 0 , $,$.	1.8	1
25	trim-21 promotes proteasomal degradation of CED-1 for apoptotic cell clearance in C. elegans. ELife, 0, 11 , .	2.8	5
26	Vexed mutations promote degeneration of dopaminergic neurons through excessive activation of the innate immune response. Npj Parkinson's Disease, 2022, 8, .	2.5	1
28	Drosophila glia take shape to sculpt the nervous system. Current Opinion in Neurobiology, 2023, 79, 102689.	2.0	5