Progressive neurodegeneration following spinal cord in

Neurology 90, e1257-e1266 DOI: 10.1212/wnl.00000000005258

Citation Report

#	Article	IF	CITATIONS
1	Reader response: The state of clinical research in neurology. Neurology, 2018, 91, 983.2-983.	1.5	0
2	Author response: The state of clinical research in neurology. Neurology, 2018, 91, 984-984.	1.5	0
3	Editors' note: Progressive neurodegeneration following spinal cord injury: Implications for clinical trials. Neurology, 2018, 91, 984-984.	1.5	0
4	Reader response: Progressive neurodegeneration following spinal cord injury: Implications for clinical trials. Neurology, 2018, 91, 984-985.	1.5	0
5	Editors' note: The state of clinical research in neurology. Neurology, 2018, 91, 983-983.	1.5	0
6	Author response: Progressive neurodegeneration following spinal cord injury: Implications for clinical trials. Neurology, 2018, 91, 985-985.	1.5	7
7	Quantitative MRI of rostral spinal cord and brain regions is predictive of functional recovery in acute spinal cord injury. NeuroImage: Clinical, 2018, 20, 556-563.	1.4	46
8	Progressive Ventricles Enlargement and Cerebrospinal Fluid Volume Increases as a Marker of Neurodegeneration in Patients with Spinal Cord Injury: A Longitudinal Magnetic Resonance Imaging Study. Journal of Neurotrauma, 2018, 35, 2941-2946.	1.7	22
9	MRI in traumatic spinal cord injury: from clinical assessment to neuroimaging biomarkers. Lancet Neurology, The, 2019, 18, 1123-1135.	4.9	125
10	Longitudinal spinal cord atrophy in multiple sclerosis using the generalized boundary shift integral. Annals of Neurology, 2019, 86, 704-713.	2.8	32
11	Guidelines for the conduct of clinical trials in spinal cord injury: Neuroimaging biomarkers. Spinal Cord, 2019, 57, 717-728.	0.9	40
12	Traumatic and nontraumatic spinal cord injury: pathological insights from neuroimaging. Nature Reviews Neurology, 2019, 15, 718-731.	4.9	125
13	hMRI – A toolbox for quantitative MRI in neuroscience and clinical research. NeuroImage, 2019, 194, 191-210.	2.1	161
14	Residual descending motor pathways influence spasticity after spinal cord injury. Annals of Neurology, 2019, 86, 28-41.	2.8	44
15	Specific Brain Morphometric Changes in Spinal Cord Injury: A Voxel-Based Meta-Analysis of White and Gray Matter Volume. Journal of Neurotrauma, 2019, 36, 2348-2357.	1.7	17
16	In vivo evidence of remote neural degeneration in the lumbar enlargement after cervical injury. Neurology, 2019, 92, e1367-e1377.	1.5	29
17	White Matter Microstructure Alterations in Patients With Spinal Cord Injury Assessed by Diffusion Tensor Imaging. Frontiers in Human Neuroscience, 2019, 13, 11.	1.0	12
18	Disconnected Body Representation: Neuroplasticity Following Spinal Cord Injury. Journal of Clinical Medicine, 2019, 8, 2144.	1.0	32

TATION REDO

#	Article	IF	CITATIONS
19	What is the functional relevance of reorganization in primary motor cortex after spinal cord injury?. Neurobiology of Disease, 2019, 121, 286-295.	2.1	16
20	Longitudinal <i>In Vivo</i> Diffusion Magnetic Resonance Imaging Remote from the Lesion Site in Rat Spinal Cord Injury. Journal of Neurotrauma, 2019, 36, 1389-1398.	1.7	7
21	Regional estimates of cortical thickness in brain areas involved in control of surgically restored limb movement in patients with tetraplegia. Journal of Spinal Cord Medicine, 2020, 43, 462-469.	0.7	1
22	Intersubject Variability and Normalization Strategies for Spinal Cord Total Cross ectional and Gray Matter Areas. Journal of Neuroimaging, 2020, 30, 110-118.	1.0	31
23	Advanced liposome-loaded scaffolds for therapeutic and tissue engineering applications. Biomaterials, 2020, 232, 119706.	5.7	127
24	Multispectral diffusion-weighted MRI of the instrumented cervical spinal cord: a preliminary study of 5 cases. European Spine Journal, 2020, 29, 1071-1077.	1.0	4
25	Severe progressive post-traumatic trigeminal neuropathic pain after total temporomandibular joint replacement - A case report. Oral and Maxillofacial Surgery Cases, 2020, 6, 100175.	0.1	0
26	The Damaged Spinal Cord Is a Suitable Target for Stem Cell Transplantation. Neurorehabilitation and Neural Repair, 2020, 34, 758-768.	1.4	23
27	Multiparameter mapping of relaxation (<scp>R1</scp> , <scp>R2</scp> *), proton density and magnetization transfer saturation at <scp>3 T</scp> : A multicenter dualâ€vendor reproducibility and repeatability study. Human Brain Mapping, 2020, 41, 4232-4247.	1.9	59
28	Ventral posterior nucleus volume is associated with neuropathic pain intensity in neuromyelitis optica spectrum disorders. Multiple Sclerosis and Related Disorders, 2020, 46, 102579.	0.9	14
29	Extrapyramidal plasticity predicts recovery after spinal cord injury. Scientific Reports, 2020, 10, 14102.	1.6	7
30	Quantitative Multi-Parameter Mapping Optimized for the Clinical Routine. Frontiers in Neuroscience, 2020, 14, 611194.	1.4	19
31	Dementia, Depression, and Associated Brain Inflammatory Mechanisms after Spinal Cord Injury. Cells, 2020, 9, 1420.	1.8	38
32	A novel poly-ε-lysine based implant, Proliferate®, for promotion of CNS repair following spinal cord injury. Biomaterials Science, 2020, 8, 3611-3627.	2.6	4
33	Heritability of cervical spinal cord structure. Neurology: Genetics, 2020, 6, e401.	0.9	7
34	Disentangling the Effects of Spinal Cord Injury and Related Neuropathic Pain on Supraspinal Neuroplasticity: A Systematic Review on Neuroimaging. Frontiers in Neurology, 2019, 10, 1413.	1.1	18
35	Acute and non-resolving inflammation associate with oxidative injury after human spinal cord injury. Brain, 2021, 144, 144-161.	3.7	95
36	Cortical morphometric changes associated with completeness, level, and duration of spinal cord injury in humans: A case–control study. Brain and Behavior, 2021, 11, e02037.	1.0	7

CITATION REPORT

#	Article	IF	CITATIONS
37	Assessment of neuropathic pain after spinal cord injury using quantitative pain drawings. Spinal Cord, 2021, 59, 529-537.	0.9	19
38	Effect of ganglioside combined with Chip Jiaji electro-acupuncture on Nogo-NgR signal pathway in SCI rats. Saudi Journal of Biological Sciences, 2021, 28, 4132-4136.	1.8	6
39	Acute spinal cord injury: Pathophysiology and pharmacological intervention (Review). Molecular Medicine Reports, 2021, 23, .	1.1	59
40	Predicting neurological recovery after traumatic spinal cord injury by time-resolved analysis of monocyte subsets. Brain, 2021, 144, 3159-3174.	3.7	9
41	Microstructural plasticity in nociceptive pathways after spinal cord injury. Journal of Neurology, Neurosurgery and Psychiatry, 2021, 92, 863-871.	0.9	10
42	Hippocampal neurodegeneration and rhythms mirror each other during acute spinal cord injury in male rats. Brain Research Bulletin, 2021, 172, 31-42.	1.4	4
43	Improving Diagnostic Workup Following Traumatic Spinal Cord Injury: Advances in Biomarkers. Current Neurology and Neuroscience Reports, 2021, 21, 49.	2.0	9
44	An Overview of Mesenchymal Stem Cell-based Therapy Mediated by Noncoding RNAs in the Treatment of Neurodegenerative Diseases. Stem Cell Reviews and Reports, 2022, 18, 457-473.	1.7	3
45	Longitudinal changes of spinal cord grey and white matter following spinal cord injury. Journal of Neurology, Neurosurgery and Psychiatry, 2021, 92, 1222-1230.	0.9	20
46	Maladaptive reorganization following SCI: The role of body representation and multisensory integration. Progress in Neurobiology, 2022, 208, 102179.	2.8	13
47	Cerebellar contribution to sensorimotor adaptation deficits in humans with spinal cord injury. Scientific Reports, 2021, 11, 2507.	1.6	9
48	Minimum detectable spinal cord atrophy with automatic segmentation: Investigations using an open-access dataset of healthy participants. NeuroImage: Clinical, 2021, 32, 102849.	1.4	4
49	Aging with Spinal Cord Injury. Handbooks in Health, Work, and Disability, 2018, , 145-160.	0.0	0
50	Devil's advocate: Why past and future animal models of neuropathic pain in spinal cord injury are without merit. , 2022, , 113-123.		0
51	Plasticity of the Somatosensory System After Injury. , 2020, , 382-398.		1
52	Elevated Serum Neuropeptide FF Levels Are Associated with Cognitive Decline in Patients with Spinal Cord Injury. Disease Markers, 2021, 2021, 1-7.	0.6	4
53	Correlations of diffusion tensor imaging and clinical measures with spinal cord cross-sectional area measurements in pediatric spinal cord injury patients. Journal of Spinal Cord Medicine, 2021, , 1-8.	0.7	0
54	Spatial patterns of brain lesions assessed through covariance estimations of lesional voxels in multiple Sclerosis: The SPACE-MS technique. NeuroImage: Clinical, 2022, 33, 102904.	1.4	5

#	Article	IF	CITATIONS
55	Advanced imaging for spinal cord injury. , 2022, , 105-124.		0
56	NT3 treatment alters spinal cord injury-induced changes in the gray matter volume of rhesus monkey cortex. Scientific Reports, 2022, 12, 5919.	1.6	5
57	DTI of chronic spinal cord injury in children without MRI abnormalities (SCIWOMR) and with pathology on MRI and comparison to severity of motor impairment. Spinal Cord, 2022, 60, 457-464.	0.9	3
58	Multiâ€parameter quantitative mapping of R1, R2*, PD, and MTsat is reproducible when accelerated with Compressed SENSE. NeuroImage, 2022, 253, 119092.	2.1	3
59	Neuroprotection and neuroregeneration: roles for the white matter. Neural Regeneration Research, 2022, 17, 2376.	1.6	7
62	Hippocampal Mitochondrial Abnormalities Induced the Dendritic Complexity Reduction and Cognitive Decline in a Rat Model of Spinal Cord Injury. Oxidative Medicine and Cellular Longevity, 2022, 2022, 1-18.	1.9	3
64	Test-retest reliability of multi-parametric maps (MPM) of brain microstructure. NeuroImage, 2022, 256, 119249.	2.1	3
65	Magnetic resonance imaging (MRI) findings in spinal cord injury during acute and chronic phases. , 2022, , 11-22.		0
66	Ferroptosis in Neurological Disease. Neuroscientist, 2023, 29, 591-615.	2.6	6
67	Pathophysiology, Classification and Comorbidities after Traumatic Spinal Cord Injury. Journal of Personalized Medicine, 2022, 12, 1126.	1.1	22
68	Intersection of hippocampus and spinal cord: a focus on the hippocampal alpha-synuclein accumulation, dopaminergic receptors, neurogenesis, and cognitive function following spinal cord injury in male rats. BMC Neuroscience, 2022, 23, .	0.8	3
69	Bioinformatics analysis identified apolipoprotein E as a hub gene regulating neuroinflammation in macrophages and microglia following spinal cord injury. Frontiers in Immunology, 0, 13, .	2.2	7
70	Ferroptosis: a critical player and potential therapeutic target in traumatic brain injury and spinal cord injury. Neural Regeneration Research, 2023, 18, 506.	1.6	33
71	Brain morphology changes after spinal cord injury: A voxel-based meta-analysis. Frontiers in Neurology, 0, 13, .	1.1	4
72	Integrated Neuroregenerative Techniques for Plasticity of the Injured Spinal Cord. Biomedicines, 2022, 10, 2563.	1.4	3
73	Microglial activation in the motor cortex mediated NLRP3-related neuroinflammation and neuronal damage following spinal cord injury. Frontiers in Cellular Neuroscience, 0, 16, .	1.8	4
74	Restoration of spinal cord injury: From endogenous repairing process to cellular therapy. Frontiers in Cellular Neuroscience, 0, 16, .	1.8	3
75	A decrease in the neuroprotective effects of acute spinal cord decompression according to injury severity: introducing the concept of a ceiling effect. Journal of Neurosurgery: Spine, 2023, 38, 299-306.	0.9	2

CITATION REPORT

CITATION REPORT

#	Article	IF	CITATIONS
76	Protocol paper: kainic acid excitotoxicity-induced spinal cord injury paraplegia in Sprague–Dawley rats. Biological Research, 2022, 55, .	1.5	1
77	Dynamics of progressive degeneration of major spinal pathways following spinal cord injury: A longitudinal study. NeuroImage: Clinical, 2023, 37, 103339.	1.4	1
78	Spinal cord atrophy after spinal cord injury – A systematic review and meta-analysis. NeuroImage: Clinical, 2023, 38, 103372.	1.4	3
79	Reliability of spinal cord measures based on synthetic T1-weighted MRI derived from multiparametric mapping (MPM). NeuroImage, 2023, 271, 120046.	2.1	2
80	Myokines may target accelerated cognitive aging in people with spinal cord injury: A systematic and topical review. Neuroscience and Biobehavioral Reviews, 2023, 146, 105065.	2.9	5
81	MicroRNAs in spinal cord injury: A narrative review. Frontiers in Molecular Neuroscience, 0, 16, .	1.4	4
82	IFN-γ-STAT1-mediated CD8+ T-cell-neural stem cell cross talk controls astrogliogenesis after spinal cord injury. Inflammation and Regeneration, 2023, 43, .	1.5	2