Differential Evolution With a New Encoding Mechanism

IEEE Transactions on Industrial Informatics 14, 1040-1054 DOI: 10.1109/tii.2017.2743761

Citation Report

#	Article	IF	CITATIONS
1	A nonlinear hybrid wind speed forecasting model using LSTM network, hysteretic ELM and Differential Evolution algorithm. Energy Conversion and Management, 2018, 173, 123-142.	9.2	236
2	Evaluating agro-meteorological disaster of China based on differential evolution algorithm and VIKOR. Natural Hazards, 2018, 94, 671-687.	3.4	3
3	Evolutionary dynamic constrained optimization: Test suite construction and algorithm comparisons. Swarm and Evolutionary Computation, 2019, 50, 100559.	8.1	19
4	A Hybrid Cable Connection Structure for Wind Farms With Reliability Consideration. IEEE Access, 2019, 7, 144398-144407.	4.2	4
5	Optimization of the PI controller used in Model Predictive Torque Control through Differential Evolution. , 2019, , .		0
6	Order acceptance and scheduling with sequence-dependent setup times: A new memetic algorithm and benchmark of the state of the art. Computers and Industrial Engineering, 2019, 138, 106102.	6.3	24
7	Recurrent Neural Network-Based Model Predictive Control for Multiple Unmanned Quadrotor Formation Flight. International Journal of Aerospace Engineering, 2019, 2019, 1-18.	0.9	13
8	A New Bi-Level Planning Approach to Find Economic and Reliable Layout for Large-Scale Wind Farm. IEEE Systems Journal, 2019, 13, 3080-3090.	4.6	26
9	Techno-Economic Design of Wind Farms: A Methodology and Multi-Scenario Application. Procedia Manufacturing, 2019, 39, 1270-1278.	1.9	1
10	Visual-Based Positioning of Aerial Maintenance Platforms on Overhead Transmission Lines. Applied Sciences (Switzerland), 2019, 9, 165.	2.5	36
11	Transient Stability Augmentation of a Wave Energy Conversion System Using a Water Cycle Algorithm-Based Multiobjective Optimal Control Strategy. IEEE Transactions on Industrial Informatics, 2019, 15, 3411-3419.	11.3	52
12	An Adaptive Framework to Tune the Coordinate Systems in Nature-Inspired Optimization Algorithms. IEEE Transactions on Cybernetics, 2019, 49, 1403-1416.	9.5	38
13	Composite Differential Evolution for Constrained Evolutionary Optimization. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2019, 49, 1482-1495.	9.3	111
14	Toward Intelligent Inertial Frequency Participation of Wind Farms for the Grid Frequency Control. IEEE Transactions on Industrial Informatics, 2020, 16, 6772-6786.	11.3	52
15	Efficient Large-Scale Multiobjective Optimization Based on a Competitive Swarm Optimizer. IEEE Transactions on Cybernetics, 2020, 50, 3696-3708.	9.5	195
16	Joint Deployment and Task Scheduling Optimization for Large-Scale Mobile Users in Multi-UAV-Enabled Mobile Edge Computing. IEEE Transactions on Cybernetics, 2020, 50, 3984-3997.	9.5	174
17	MDMaaS: Medical-Assisted Diagnosis Model as a Service With Artificial Intelligence and Trust. IEEE Transactions on Industrial Informatics, 2020, 16, 2102-2114.	11.3	17
18	Differential Evolution With a Variable Population Size for Deployment Optimization in a UAV-Assisted IoT Data Collection System. IEEE Transactions on Emerging Topics in Computational Intelligence, 2020, 4, 324-335.	4.9	59

		CITATION REPORT		
#	Article		IF	CITATIONS
19	Dimensionality reduction in evolutionary algorithms-based feature selection for motor brain-computer interface. Swarm and Evolutionary Computation, 2020, 52, 100597.	imagery	8.1	25
20	Tracking control of multiple unmanned aerial vehicles incorporating disturbance observed model predictive approach. Transactions of the Institute of Measurement and Control, 951-964.	ver and 2020, 42,	1.7	17
21	In search of flexible and robust wind farm layouts considering wind state uncertainty. Jo Cleaner Production, 2020, 248, 119195.	ournal of	9.3	19
22	Adaptive Differential Evolution-Based Distributed Model Predictive Control for Multi-UA Flight. International Journal of Aeronautical and Space Sciences, 2020, 21, 538-548.	W Formation	2.0	9
23	A data-driven evolutionary algorithm for wind farm layout optimization. Energy, 2020, 2	208, 118310.	8.8	35
24	Backtracking search algorithm with competitive learning for identification of unknown of photovoltaic systems. Expert Systems With Applications, 2020, 160, 113750.	parameters	7.6	36
25	PaDE-NPC: Parameter Adaptive Differential Evolution With Novel Parameter Control for Single-Objective Optimization. IEEE Access, 2020, 8, 139460-139478.	-	4.2	10
26	Nonuniform wind farm layout optimization: A state-of-the-art review. Energy, 2020, 20	9, 118339.	8.8	26
27	Joint optimization of the number, type and layout of wind turbines for a new offshore v Journal of Renewable and Sustainable Energy, 2020, 12, .	vind farm.	2.0	7
28	Dynamic Stability Improvement of AWS-Based Wave Energy Systems Using a Multiobje Algorithm-Based Optimal Control Scheme. IEEE Systems Journal, 2022, 16, 79-87.	ective Salp Swarm	4.6	9
29	Optimization of Wind Farm Layout Based on Wake Effect Modelling. , 2020, , .			3
30	Wind farm layout optimization with a three-dimensional Gaussian wake model. Renewa 2020, 159, 553-569.	able Energy,	8.9	28
31	Evolutionary algorithms and their applications to engineering problems. Neural Compu Applications, 2020, 32, 12363-12379.	ting and	5.6	261
32	Synthesis of Large Unequally Spaced Planar Arrays Utilizing Differential Evolution With Encoding Mechanism and Cauchy Mutation. IEEE Transactions on Antennas and Propas 4406-4416.	New gation, 2020, 68,	5.1	28
33	Bi-Hierarchy Optimization of a Wind Farm Considering Environmental Impact. IEEE Trar Sustainable Energy, 2020, 11, 2515-2524.	isactions on	8.8	22
34	A test-suite of non-convex constrained optimization problems from the real-world and results. Swarm and Evolutionary Computation, 2020, 56, 100693.	some baseline	8.1	223
35	A Method for Diagnosing the State of Insulation Paper in Traction Transformer Based o CS-DQ Algorithm. IEEE Transactions on Transportation Electrification, 2021, 7, 91-103.	n FDS Test and	7.8	13
36	Joint Optimization of Wind Turbine Micrositing and Cabling in an Offshore Wind Farm. Transactions on Smart Grid, 2021, 12, 834-844.	IEEE	9.0	25

#	Article	IF	CITATIONS
37	Evolutionary Sensor Placement for Spatiotemporal Modeling of Battery Thermal Process. IEEE Transactions on Industrial Informatics, 2022, 18, 2223-2232.	11.3	6
38	Optimization for Variable Height Wind Farm Layout Model. Intelligent Automation and Soft Computing, 2021, 29, 525-537.	2.1	5
39	An Efficient Competitive Swarm Optimizer for Solving Large-Scale Multi-objective Optimization Problems. Lecture Notes in Computer Science, 2021, , 72-85.	1.3	0
40	Discrete Multi-height Wind Farm Layout Optimization for Optimal Energy Output. Communications in Computer and Information Science, 2021, , 245-256.	0.5	2
41	Energy Optimization in Multi-UAV-Assisted Edge Data Collection System. Computers, Materials and Continua, 2021, 69, 1671-1686.	1.9	2
42	Optimizing Wind Farm Layouts. , 2021, , 1-27.		2
43	Ranking-based hierarchical random mutation in differential evolution. PLoS ONE, 2021, 16, e0245887.	2.5	3
44	Coâ€optimisation of wind farm microâ€siting and cabling layouts. IET Renewable Power Generation, 2021, 15, 1848-1860.	3.1	10
45	A neighborhoodâ€adaptive state transition algorithm for operational optimization of residue hydrogenation fractionation process. International Journal of Energy Research, 2021, 45, 12740-12757.	4.5	3
46	Influence of atmospheric stability on wind farm layout optimization based on an improved Gaussian wake model. Journal of Wind Engineering and Industrial Aerodynamics, 2021, 211, 104548.	3.9	19
47	Comparative Performance of Twelve Metaheuristics for Wind Farm Layout Optimisation. Archives of Computational Methods in Engineering, 2022, 29, 717-730.	10.2	42
48	Wind power plant layout optimization using particle swarm optimization. Turkish Journal of Engineering, 2021, 5, 89-94.	1.2	4
49	A new differential evolution algorithm for joint mining decision and resource allocation in a MEC-enabled wireless blockchain network. Computers and Industrial Engineering, 2021, 155, 107186.	6.3	18
50	A New Encoding Mechanism Embedded Evolutionary Algorithm for UAV Route Planning. , 2021, , .		1
51	A fast constrained state transition algorithm. Neurocomputing, 2021, 455, 202-214.	5.9	9
52	An Efficient Computational Cost Reduction Strategy for the Population-Based Intelligent Optimization of Nonlinear Dynamical Systems. IEEE Transactions on Industrial Informatics, 2021, 17, 6624-6633.	11.3	2
53	A Two-Layer Hybrid Optimization Approach for Large-Scale Offshore Wind Farm Collector System Planning. IEEE Transactions on Industrial Informatics, 2021, 17, 7433-7444.	11.3	20
54	Simple-Encoded evolving convolutional neural network and its application to skin disease image classification. Swarm and Evolutionary Computation, 2021, 67, 100955.	8.1	10

CITATION REPORT

#	Article	IF	CITATIONS
55	Wind Farm Power Generation Control Via Double-Network-Based Deep Reinforcement Learning. IEEE Transactions on Industrial Informatics, 2022, 18, 2321-2330.	11.3	19
56	Adaptive Coordination Ant Colony Optimization for Multipoint Dynamic Aggregation. IEEE Transactions on Cybernetics, 2022, 52, 7362-7376.	9.5	15
57	X-Architecture Steiner Minimal Tree Construction Based on Discrete Differential Evolution. Advances in Intelligent Systems and Computing, 2020, , 433-442.	0.6	5
58	Surrogate-Assisted Differential Evolution With Region Division for Expensive Optimization Problems With Discontinuous Responses. IEEE Transactions on Evolutionary Computation, 2022, 26, 780-792.	10.0	8
59	Optimal Number of Wind Turbine in Farm Layout with Power Maximization. , 2020, , .		0
60	Energy-efficient trajectory planning for a multi-UAV-assisted mobile edge computing system. Frontiers of Information Technology and Electronic Engineering, 2020, 21, 1713-1725.	2.6	21
62	A novel model based on multiple input factors and variance reciprocal: application on wind speed forecasting. Soft Computing, 2022, 26, 8857-8877.	3.6	5
63	Design of 3D Wind Farm Layout Using an Improved Electric Charge Particles Optimization With Hub-Height Variety. IEEE Access, 2022, 10, 31385-31396.	4.2	7
64	A constrained cooperative adaptive multi-population differential evolutionary algorithm for economic load dispatch problems. Applied Soft Computing Journal, 2022, 121, 108719.	7.2	12
65	A novel approach for optimal cabling and determination of suitable topology of MTDC connected offshore wind farm cluster. Electric Power Systems Research, 2022, 208, 107877.	3.6	7
66	Control-Oriented Low-Order Approximation and Reconstruction of Yaw-Excited Wind Turbine Wake Dynamics. IEEE Transactions on Industrial Informatics, 2022, 18, 8498-8508.	11.3	2
67	A selfâ€organizing weighted optimization based framework for largeâ€scale multiâ€objective optimization. Swarm and Evolutionary Computation, 2022, 72, 101084.	8.1	6
68	Intelligent Time Allocation for Wireless Power Transfer in Wireless-Powered Mobile Edge Computing. Wireless Communications and Mobile Computing, 2022, 2022, 1-13.	1.2	1
69	An adaptive replacement strategy-incorporated particle swarm optimizer for wind farm layout optimization. Energy Conversion and Management, 2022, 269, 116174.	9.2	13
70	Optimizing Wind Farm Layouts. , 2022, , 1223-1249.		0
71	Discrete complex-valued code pathfinder algorithm for wind farm layout optimization problem. Energy Conversion and Management: X, 2022, 16, 100307.	1.6	1
72	A Review of Optimization Technologies for Large-Scale Wind Farm Planning With Practical and Prospective Concerns. IEEE Transactions on Industrial Informatics, 2023, 19, 7862-7875.	11.3	6
73	Memetic Algorithm with Isomorphic Transcoding for UAV Deployment Optimization in Energy-Efficient AloT Data Collection. Mathematics, 2022, 10, 4668.	2.2	3

CITATION REPORT

#	Article	IF	CITATIONS
74	Metaheuristics for solving the wind turbine placement problem. , 2023, , 181-194.		0
75	A quantum inspired differential evolution algorithm with multiple mutation strategies. , 2022, , .		0
76	Wind farm repowering optimization: a technoâ€economicâ€aesthetic approach. IET Renewable Power Generation, 2023, 17, 2137-2147.	3.1	4
77	A low-complexity evolutionary algorithm for wind farm layout optimization. Energy Reports, 2023, 9, 5752-5761.	5.1	3
78	A biâ€kevel programming model and differential evolution for optimizing offshore wind farm layout. Energy Science and Engineering, 2023, 11, 2775-2792.	4.0	0
79	A new differential evolution using a bilevel optimization model for solving generalized multi-point dynamic aggregation problems. Mathematical Biosciences and Engineering, 2023, 20, 13754-13776.	1.9	0
80	Large-scale mobile users deployment optimization based on a two-stage hybrid global HS-DE algorithm in multi-UAV-enabled mobile edge computing. Engineering Applications of Artificial Intelligence, 2023, 124, 106608.	8.1	1
81	Backtracking search algorithm with dynamic population for energy consumption problem of a UAV-assisted IoT data collection system. Engineering Applications of Artificial Intelligence, 2023, 123, 106331.	8.1	4
82	Multi-objective distributionally robust approach for optimal location of renewable energy sources. AEJ - Alexandria Engineering Journal, 2023, 77, 75-94.	6.4	3
83	Redefined decision variable analysis method for large-scale optimization and its application to feature selection. Swarm and Evolutionary Computation, 2023, 82, 101360.	8.1	1
84	LCAHA: A hybrid artificial hummingbird algorithm with multi-strategy for engineering applications. Computer Methods in Applied Mechanics and Engineering, 2023, 415, 116238.	6.6	4
85	Adaptive Particle Swarm Optimization with Local Search for Multi-robot Multi-point Dynamic Aggregation. , 2023, , .		0
86	Neuro-evolutionary for time series forecasting and its application in hourly energy consumption prediction. Neural Computing and Applications, 0, , .	5.6	0
87	Quadratic Interpolation Optimization (QIO): A new optimization algorithm based on generalized quadratic interpolation and its applications to real-world engineering problems. Computer Methods in Applied Mechanics and Engineering, 2023, 417, 116446.	6.6	6
88	Optimal configuration of distributed wind turbines with D-STATCOMs for improving voltage recovery capability of sensitive nodes. Electrical Engineering, 2024, 106, 1079-1091.	2.0	0
89	Reinforcement learning-based multi-objective differential evolution for wind farm layout optimization. Energy, 2023, 284, 129300.	8.8	3
90	Metaheuristic optimization algorithms: a comprehensive overview and classification of benchmark test functions. Soft Computing, 2024, 28, 3123-3186.	3.6	2
91	Electric eel foraging optimization: A new bio-inspired optimizer for engineering applications. Expert Systems With Applications, 2024, 238, 122200.	7.6	6

CITATION REPORT

#	Article	IF	CITATIONS
94	Synthesis of Large Ultra-wideband Sparse Circular Planar Arrays Based on Rotationally Symmetric Structure. Electronics (Switzerland), 2023, 12, 4833.	3.1	0
95	Operational optimization of copper flotation process based on the weighted Gaussian process regression and index-oriented adaptive differential evolution algorithm. Chinese Journal of Chemical Engineering, 2024, 66, 167-179.	3.5	0
96	An efficient manta ray foraging optimization algorithm with individual information interaction and fractional derivative mutation for solving complex function extremum and engineering design problems. Applied Soft Computing Journal, 2024, 150, 111042.	7.2	1
98	Layout optimization of Clustered Wind Farms Based on Potential Game Approach. , 2023, , .		0
99	A solution method for mixed-variable constrained blackbox optimization problems. Optimization and Engineering, 0, , .	2.4	0
100	A survey of meta-heuristic algorithms in optimization of space scale expansion. Swarm and Evolutionary Computation, 2024, 84, 101462.	8.1	0
101	Evolution-based energy-efficient data collection system for UAV-supported IoT: Differential evolution with population size optimization mechanism. Expert Systems With Applications, 2024, 245, 123082.	7.6	0
102	Impact of Spatial Encoding Methods on Differential Evolution: A Case Study on Non-Contact Current Measurement. , 2023, , .		0
103	A PSO-based energy-efficient data collection optimization algorithm for UAV mission planning. PLoS ONE, 2024, 19, e0297066.	2.5	0
104	Complete joint-optimization for offshore wind farm planning. International Journal of Electrical Power and Energy Systems, 2024, 157, 109832.	5.5	0
105	Optimal design and operation of a wind farm/battery energy storage considering demand side management. IET Renewable Power Generation, 0, , .	3.1	0
106	Comparative Study of Hybridization and Parameter Tuning Improvement Methods for EAs in WFLOP. , 2023, , .		0
107	Multi-objective optimization of clustered wind farms based on potential game approach. Ocean Engineering, 2024, 300, 117291.	4.3	0
108	Optimization of Non-Uniform Onshore Wind Farm Layout Using Modified Electric Charged Particles Optimization Algorithm Considering Different Terrain Characteristics. Sustainability, 2024, 16, 2611.	3.2	0