State-of-the-Art Medium Access Control (MAC) Protoco Networks: A Survey Based on a MAC Reference Model

IEEE Communications Surveys and Tutorials 20, 96-131 DOI: 10.1109/comst.2017.2768802

Citation Report

#	Article	IF	CITATIONS
1	MAC for UWANs. , 2018, , 245-285.		1
2	Medium Access Control (MAC). , 2018, , 51-74.		0
3	MAC Protocols for RWNs. , 2018, , 75-100.		0
4	Overview of Underwater Acoustic Communication. , 2018, , 233-244.		3
5	Receiver-Initiated Handshaking MAC Based on Traffic Estimation for Underwater Sensor Networks ‡. Sensors, 2018, 18, 3895.	2.1	4
6	Software-Defined Architectures and Technologies for Underwater Wireless Sensor Networks: A Survey. IEEE Communications Surveys and Tutorials, 2018, 20, 2855-2888.	24.8	92
7	On Securing Underwater Acoustic Networks: A Survey. IEEE Communications Surveys and Tutorials, 2019, 21, 729-752.	24.8	87
8	Self-Organizing and Scalable Routing Protocol (SOSRP) for Underwater Acoustic Sensor Networks. Sensors, 2019, 19, 3130.	2.1	12
9	Marine Internet for Internetworking in Oceans: A Tutorial. Future Internet, 2019, 11, 146.	2.4	17
10	A Load-Based Hybrid MAC Protocol for Underwater Wireless Sensor Networks. IEEE Access, 2019, 7, 104542-104552.	2.6	14
11	CUMAC-CAM: a channel allocation aware MAC protocol for addressing triple hidden terminal problems in multi-channel UWSNs. SN Applied Sciences, 2019, 1, 1.	1.5	8
12	Survey on high reliability wireless communication for underwater sensor networks. Journal of Network and Computer Applications, 2019, 148, 102446.	5.8	64
13	A Signaling-Free Underwater Code Division Multiple Access Scheme. Electronics (Switzerland), 2019, 8, 880.	1.8	2
14	QoS mechanisms for MAC protocols in wireless sensor networks: a survey. IET Communications, 2019, 13, 2045-2062.	1.5	21
15	REMEDY: Receiver-Initiated MAC Based on Energy-Efficient Duty-Cycling in the IoUT. IEEE Access, 2019, 7, 105202-105211.	2.6	6
16	A Novel Energy-Efficient Contention-Based MAC Protocol Used for OA-UWSN. Sensors, 2019, 19, 183.	2.1	15
17	Maximizing network coverage in a multichannel short-range underwater acoustic sensor network. Computer Networks, 2019, 160, 1-10.	3.2	9
18	Concurrent Transmission Based on Distributed Scheduling for Underwater Acoustic Networks. Sensors, 2019, 19, 1871.	2.1	5

#	Article	IF	CITATIONS
19	Towards Void Hole Alleviation by Exploiting the Energy Efficient Path and by Providing the Interference-Free Proactive Routing Protocols in IoT Enabled Underwater WSNs. Sensors, 2019, 19, 1313.	2.1	13
20	An Energy-Conserving Collision-Free MAC Protocol for Underwater Sensor Networks. IEEE Access, 2019, 7, 27155-27171.	2.6	32
21	A Collision-Free Graph Coloring MAC Protocol for Underwater Sensor Networks. IEEE Access, 2019, 7, 39862-39878.	2.6	34
22	Examining Carrier Sense Multiple Access to Enhance LoRa IoT Network Performance for Smart City Applications. , 2019, , .		5
23	Cooperative Autonomy in the CMRE ASW Multistatic Robotic Network: Results From LCAS18 Trial. , 2019, , .		11
24	Optimizing Design and Performance of Underwater Acoustic Sensor Networks with 3D Topology. IEEE Transactions on Mobile Computing, 2020, 19, 1689-1701.	3.9	14
25	Analysis of Throughput and Delay for an Underwater Multi-DATA Train Protocol with Multi-RTS Reception and Block ACK. Sensors, 2020, 20, 6473.	2.1	3
26	A Co-Design-Based Reliable Low-Latency and Energy-Efficient Transmission Protocol for UWSNs. Sensors, 2020, 20, 6370.	2.1	8
27	Channel Modeling for Underwater Acoustic Network Simulation. IEEE Access, 2020, 8, 136151-136175.	2.6	47
28	Deep Reinforcement Learning Based MAC Protocol for Underwater Acoustic Networks. IEEE Transactions on Mobile Computing, 2022, 21, 1625-1638.	3.9	12
29	A Trust Update Mechanism Based on Reinforcement Learning in Underwater Acoustic Sensor Networks. IEEE Transactions on Mobile Computing, 2022, 21, 811-821.	3.9	31
30	A Power Control based Handshake-Competition MAC Protocol for Underwater Acoustic Networks. , 2020, , .		3
31	MAC Protocol for Underwater Sensor Networks Using EM Wave With TDMA Based Control Channel. IEEE Access, 2020, 8, 168439-168455.	2.6	5
32	On Underwater Wireless Sensor Networks Routing Protocols: A Review. IEEE Sensors Journal, 2020, 20, 10371-10386.	2.4	68
33	Scalable Adaptive Networking for the Internet of Underwater Things. IEEE Internet of Things Journal, 2020, 7, 10023-10037.	5.5	28
34	A Collision-Free Hybrid MAC Protocol Based on Pipeline Parallel Transmission for Distributed Multi-Channel Underwater Acoustic Networks. Electronics (Switzerland), 2020, 9, 679.	1.8	3
35	Event-Driven Data Gathering in Pure Asynchronous Multi-Hop Underwater Acoustic Sensor Networks. Sensors, 2020, 20, 1407.	2.1	5
36	RPCPâ€MAC: Receiver preambling with channel polling MAC protocol for underwater wireless sensor networks. International Journal of Communication Systems, 2020, 33, e4383.	1.6	4

#	Article	IF	CITATIONS
37	On Connectivity of UAV-Assisted Data Acquisition for Underwater Internet of Things. IEEE Internet of Things Journal, 2020, 7, 5371-5385.	5.5	55
38	A Survey on MAC Protocol Approaches for Underwater Wireless Sensor Networks. IEEE Sensors Journal, 2021, 21, 3916-3932.	2.4	45
39	A synchronous duty-cycled reservation based MAC protocol for underwater wireless sensor networks. Digital Communications and Networks, 2021, 7, 385-398.	2.7	19
40	Multichannel Ordered Contention MAC Protocol For Underwater Wireless Sensor Networks. Computer Journal, 2021, 64, 185-194.	1.5	3
41	A Time-Slotted Data Gathering Medium Access Control Protocol Using Q-Learning for Underwater Acoustic Sensor Networks. IEEE Access, 2021, 9, 48742-48752.	2.6	16
42	Internet of Underwater Things and Big Marine Data Analytics—A Comprehensive Survey. IEEE Communications Surveys and Tutorials, 2021, 23, 904-956.	24.8	192
43	A Survey of Autonomous Underwater Vehicle Formation: Performance, Formation Control, and Communication Capability. IEEE Communications Surveys and Tutorials, 2021, 23, 815-841.	24.8	145
44	Effectiveness of handshake strategy in 3D underwater acoustic networks. Journal of Physics: Conference Series, 2021, 1748, 032044.	0.3	1
45	A message transmission scheduling algorithm based on time-domain interference alignment in UWANs. Peer-to-Peer Networking and Applications, 2021, 14, 1058-1070.	2.6	4
46	An Efficient Multi-link Concurrent Transmission MAC Protocol for Long-Delay Underwater Acoustic Sensor Networks. Lecture Notes in Computer Science, 2021, , 262-273.	1.0	0
47	UW-SEEDEX: A Pseudorandom-Based MAC Protocol for Underwater Acoustic Networks. IEEE Transactions on Mobile Computing, 2022, 21, 3402-3413.	3.9	9
48	A Traffic Load-Aware OFDMA-Based MAC Protocol for Distributed Underwater Acoustic Sensor Networks. IEEE Transactions on Vehicular Technology, 2021, 70, 10501-10513.	3.9	7
49	A routing-benefited deployment approach combining static and dynamic layouts for underwater optical wireless networks. International Journal of Distributed Sensor Networks, 2021, 17, 155014772199961.	1.3	3
50	Design of Algorithms and Protocols for Underwater Acoustic Wireless Sensor Networks. ACM Computing Surveys, 2021, 53, 1-34.	16.1	19
51	A MAC Protocol of Concurrent Scheduling Based on Spatial-Temporal Uncertainty for Underwater Sensor Networks. Journal of Sensors, 2021, 2021, 1-15.	0.6	7
52	Networking in Oceans. ACM Computing Surveys, 2022, 54, 1-33.	16.1	8
53	New View on Adversarial Queueing on MAC. IEEE Communications Letters, 2021, 25, 1144-1148.	2.5	1
54	Systematic Review of Fault Tolerant Techniques in Underwater Sensor Networks. Sensors, 2021, 21, 3264.	2.1	8

#	Article	IF	CITATIONS
55	LTDA-MAC v2.0: Topology-Aware Unsynchronized Scheduling in Linear Multi-Hop UWA Networks. Network, 2021, 1, 2-10.	1.5	3
56	Packet-Level Slot Scheduling MAC Protocol in Underwater Acoustic Sensor Networks. IEEE Internet of Things Journal, 2021, 8, 8990-9004.	5.5	8
57	Propagation Delay Based Cyclic Interference Alignment for X Channels With Two Transmitters. IEEE Communications Letters, 2021, 25, 1844-1847.	2.5	4
58	Impact and Analysis of Spatial Correlation on Slotted Based MAC in UANs. , 2021, , .		2
59	Energy-Efficient Collision Avoidance MAC Protocols for Underwater Sensor Networks: Survey and Challenges. Journal of Marine Science and Engineering, 2021, 9, 741.	1.2	27
60	A Physical Layer Security Mechanism based on Cooperative Jamming in Underwater Acoustic Sensor Networks. , 2021, , .		0
61	Medium Access Control Under Space-Time Coupling in Underwater Acoustic Networks. IEEE Internet of Things Journal, 2021, 8, 12398-12409.	5.5	16
62	A Study of Standardizing Frequencies Using Channel Raster for Underwater Wireless Acoustic Sensor Networks. Sensors, 2021, 21, 5669.	2.1	2
63	A TDMA-Based Data Gathering Protocol for Molecular Communication via Diffusion-Based Nano-Sensor Networks. IEEE Sensors Journal, 2021, 21, 19582-19595.	2.4	5
64	Efficient Design of Underwater Acoustic Sensor Networks Communication for Delay Sensitive Applications over Multi-hop. Advances in Intelligent Systems and Computing, 2021, , 91-103.	0.5	0
65	Underwater Communication. , 2020, , 1-10.		1
66	Power Control for MACA-based Underwater MAC Protocol: A Q-Learning Approach. , 2021, , .		5
67	Fundamentals and Advancements of Topology Discovery in Underwater Acoustic Sensor Networks: A Review. IEEE Sensors Journal, 2021, 21, 21159-21174.	2.4	29
68	Delay and Stability Analysis of Connection-Based Slotted-Aloha. IEEE/ACM Transactions on Networking, 2020, , 1-17.	2.6	3
69	Measurement-based Packet Dropping MAC Protocol for Improving Energy Efficiency in Underwater Sensor Networks. The Journal of Korean Institute of Information Technology, 2020, 18, 57-64.	0.1	0
70	Failure Reasons Identification for the Next Generation WLAN: A Machine Learning Approach. Lecture Notes of the Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering, 2020, , 417-426.	0.2	0
71	A survey on energy efficiency in underwater wireless communications. Journal of Network and Computer Applications, 2022, 198, 103295.	5.8	40
72	Reliable Data Collection Techniques in Underwater Wireless Sensor Networks: A Survey. IEEE Communications Surveys and Tutorials, 2022, 24, 404-431.	24.8	51

#	Article	IF	CITATIONS
73	A Concurrent MAC Protocol with Master-Slave Transmission for Multi-hop Underwater Acoustic Sensor Networks. , 2021, , .		0
74	A software-defined multi-modal wireless sensor network for ocean monitoring. International Journal of Distributed Sensor Networks, 2022, 18, 155014772110683.	1.3	11
75	Medium Access Control layer protocol design based on stochastic network calculus for underwater wireless communication in openâ€ocean fish farming. International Journal of Communication Systems, 0, , .	1.6	1
76	Towards the internet of underwater things: a comprehensive survey. Earth Science Informatics, 2022, 15, 735-764.	1.6	30
77	On the Underwater Acoustic Channel Effects on Uplink Multiple Access Techniques. , 2021, , .		3
78	Analysis of a Multi-directional Data Access Control System for Underwater Wireless Network using UAN MAC Protocols. , 2021, , .		1
79	E2RIC: Energy-Efficient Receiver-Initiated Cooperative MAC Protocol for IoUT Networks. , 2021, , .		2
80	Applying stochastic network calculus to logical link control layer in underwater wireless communication: Underwater fish farming perspective. International Journal of Communication Systems, 0, , .	1.6	0
81	Backoffâ€ŧolerationâ€based opportunistic MAC protocol for underwater acoustic sensor networks. IET Communications, 0, , .	1.5	2
82	Recent Progress of Air/Water Cross-Boundary Communications for Underwater Sensor Networks: A Review. IEEE Sensors Journal, 2022, 22, 8360-8382.	2.4	29
83	Reinforcement Learning-Based Power Control for MACA-Based Underwater MAC Protocol. IEEE Access, 2022, 10, 71044-71053.	2.6	1
84	Deep Reinforcement Learning Based Time-Domain Interference Alignment Scheduling for Underwater Acoustic Networks. Journal of Marine Science and Engineering, 2022, 10, 903.	1.2	3
85	A Collision-Avoided MAC Protocol With Time Synchronization and Power Control for Underwater Sensor Networks. IEEE Sensors Journal, 2022, 22, 19073-19087.	2.4	7
86	A Multi-Level Trust Framework for the Internet of Underwater Things. , 2022, , .		0
87	A secure relay selection scheme based on cooperative jamming for Underwater Acoustic Sensor Networks. Computer Networks, 2022, 217, 109307.	3.2	2
88	Data Gathering in UWA Sensor Networks: Practical Considerations and Lessons from Sea Trials. Journal of Marine Science and Engineering, 2022, 10, 1268.	1.2	5
89	A Comprehensive Survey of Energy-Efficient MAC and Routing Protocols for Underwater Wireless Sensor Networks. Electronics (Switzerland), 2022, 11, 3015.	1.8	14
90	An Adaptive MAC Protocol Based on Time-Domain Interference Alignment for UWANs. Computer Journal, 0, , .	1.5	Ο

#	Article	IF	CITATIONS
91	A Survey on UAV-Aided Maritime Communications: Deployment Considerations, Applications, and Future Challenges. IEEE Open Journal of the Communications Society, 2023, 4, 56-78.	4.4	27
92	TSV-MAC: Time Slot Variable MAC Protocol Based onÂDeep Reinforcement Learning forÂUASNs. Lecture Notes in Computer Science, 2022, , 225-237.	1.0	0
93	A Q-Learning and Data Importance Rating-Based MAC Protocol for Dynamic Clustering Underwater Acoustic Networks. , 2022, , .		0
94	Machine Learning-Based Performance-Efficient MAC Protocol for Single Hop Underwater Acoustic Sensor Networks. Journal of Grid Computing, 2022, 20, .	2.5	4
95	Survey of Reinforcement-Learning-Based MAC Protocols for Wireless Ad Hoc Networks with a MAC Reference Model. Entropy, 2023, 25, 101.	1.1	8
96	Graph coloring-based multichannel MAC protocol in distributed underwater acoustic sensor networks. Frontiers in Marine Science, 0, 9, .	1.2	1
97	Asymmetric Collision Phenomenon and its Impact on Underwater Acoustic Networks. , 2022, , .		0
98	An adaptive backoff selection scheme based on Q-learning for CSMA/CA. Wireless Networks, 2023, 29, 1899-1909.	2.0	4
99	CSMA/CA-based MAC Protocol for Aerial Audio Networking. , 2023, , .		0
100	A Peaking Staggering Transmission MAC Protocol for Underwater Acoustic Networks. , 2022, , .		0
101	A Spatially Fair and Low Conflict Medium Access Control Protocol for Underwater Acoustic Networks. Journal of Marine Science and Engineering, 2023, 11, 802.	1.2	0
106	Energy optimized quorum system MAC protocol for wireless sensor networks. AIP Conference Proceedings, 2023, , .	0.3	0
110	Optimization-Based Collision Avoidance in Underwater Wireless Sensor Network. , 2023, , .		0
113	A Parallel-Transmission Enhanced Random Time Slot MAC Protocol for UASNs. , 2023, , .		0
114	Exploiting the Collision-Free Region with Slotting Access for Data-Gathering in the Linear UANs. , 2023, , .		0
115	Adaptive MAC Schemes in Dynamic MANETs: Parameter Adjustment versus Mechanism Combination on Real-time. , 2023, , .		1
116	Target Detection Using Underwater Acoustic Networking. , 2023, , .		1
119	Underwater wireless sensor network risk analysis, security, and mitigation policies. AIP Conference Proceedings. 2023	0.3	0

#	Article	IF	CITATIONS
120	A MACA-Based Energy-Efficient MAC Protocol Using Q-Learning Technique for Underwater Acoustic Sensor Network. , 2023, , .		0
121	A Novel Underwater Packet Flooding Protocol. , 2023, , .		0
122	IEEE 802.15.4 Signal Strength Evaluation in an Indoor Environment for Positioning Applications. , 2023, , .		0