Tensile performance of sustainable Strain-Hardening C PVA and recycled PET fibers

Cement and Concrete Research 107, 110-123 DOI: 10.1016/j.cemconres.2018.02.013

Citation Report

#	Article	IF	CITATION
1	Tensile performance and impact resistance of Strain Hardening Cementitious Composites (SHCC) with recycled fibers. Construction and Building Materials, 2018, 171, 566-576.	7.2	62
2	Recycling polyethylene terephthalate wastes as short fibers in Strain-Hardening Cementitious Composites (SHCC). Journal of Hazardous Materials, 2018, 357, 40-52.	12.4	69
3	Structural behaviors of ultra-high performance engineered cementitious composites (UHP-ECC) beams subjected to bending-experimental study. Construction and Building Materials, 2018, 177, 102-115.	7.2	93
4	Experimental determination of crack-bridging constitutive relations of hybrid-fiber Strain-Hardening Cementitious Composites using digital image processing. Construction and Building Materials, 2018, 173, 359-367.	7.2	42
5	Micromechanical modeling of crack-bridging relations of hybrid-fiber Strain-Hardening Cementitious Composites considering interaction between different fibers. Construction and Building Materials, 2018, 182, 629-636.	7.2	36
6	Fiber-to-mortar bond behavior in TRM composites: Effect of embedded length and fiber configuration. Composites Part B: Engineering, 2018, 152, 43-57.	12.0	57
7	Fatigue deformation behavior and fiber failure mechanism of ultra-high toughness cementitious composites in compression. Materials and Design, 2018, 157, 457-468.	7.0	81
8	Theoretical analysis on optimal fiber-matrix interfacial bonding and corresponding fiber rupture effect for high ductility cementitious composites. Construction and Building Materials, 2019, 223, 841-851.	7.2	14
9	Mechanical performance of Strain-Hardening Cementitious Composites (SHCC) with hybrid polyvinyl alcohol and steel fibers. Composite Structures, 2019, 226, 111198.	5.8	79
10	Development of high strain-hardening lightweight engineered cementitious composites: Design and performance. Cement and Concrete Composites, 2019, 104, 103370.	10.7	101
11	Tensile characteristics of strain-hardening cement-based composites with different curing ages. Construction and Building Materials, 2019, 221, 709-719.	7.2	9
12	Surface modification of polyethylene fiber by ozonation and its influence on the mechanical properties of Strain-Hardening Cementitious Composites. Composites Part B: Engineering, 2019, 177, 107446.	12.0	47
13	Incorporation of micro-cracking and fibre bridging mechanisms in constitutive modelling of fibre reinforced concrete. Journal of the Mechanics and Physics of Solids, 2019, 133, 103732.	4.8	28
14	Effect of water to binder ratio and sand to binder ratio on shrinkage and mechanical properties of High-strength Engineered Cementitious Composite. Construction and Building Materials, 2019, 226, 899-909.	7.2	30
15	Sustainability of Engineered Cementitious Composites (ECC) Infrastructure. , 2019, , 261-312.		2
16	Development and Mechanical Performance of Fire-Resistive Engineered Cementitious Composites. Journal of Materials in Civil Engineering, 2019, 31, .	2.9	8
17	Effect of morphological parameters of natural sand on mechanical properties of engineered cementitious composites. Cement and Concrete Composites, 2019, 100, 108-119.	10.7	80
18	Strengthening of reinforced concrete structure using sprayable fiber-reinforced cementitious composites with high ductility. Composite Structures, 2019, 220, 940-952.	5.8	77

#	Article	IF	CITATIONS
19	Impact of 3D Printing Direction on Mechanical Performance of Strain-Hardening Cementitious Composite (SHCC). RILEM Bookseries, 2019, , 255-265.	0.4	15
20	Fatigue Deformation Model of Plain and Fiber-Reinforced Concrete Based on Weibull Function. Journal of Structural Engineering, 2019, 145, .	3.4	71
21	Influence of bacterial incorporation on mechanical properties of engineered cementitious composites (ECC). Construction and Building Materials, 2019, 196, 195-203.	7.2	58
22	Methodology for predicting the properties of cement composites at different scales. Magazine of Concrete Research, 2020, 72, 217-231.	2.0	2
23	Using nano-silica to improve mechanical and fracture properties of fiber-reinforced high-volume fly ash cement mortar. Construction and Building Materials, 2020, 239, 117853.	7.2	60
24	Discontinuous micro-fibers as intrinsic reinforcement for ductile Engineered Cementitious Composites (ECC). Composites Part B: Engineering, 2020, 184, 107741.	12.0	162
25	Static and dynamic mechanical behavior of engineered cementitious composites with PP and PVA fibers. Journal of Building Engineering, 2020, 29, 101097.	3.4	48
26	Influence of Crack Width in Alternating Tension–Compression Regimes on Crack-Bridging Behaviour and Degradation of PVA Microfibres Embedded in Cement-Based Matrix. Materials, 2020, 13, 4189.	2.9	6
27	The hybrid effects of PVA fiber and basalt fiber on mechanical performance of cost effective hybrid cementitious composites. Construction and Building Materials, 2020, 263, 120564.	7.2	65
28	High-strength seawater sea-sand Engineered Cementitious Composites (SS-ECC): Mechanical performance and probabilistic modeling. Cement and Concrete Composites, 2020, 114, 103740.	10.7	85
29	Constitutive Modeling of New Synthetic Hybrid Fibers Reinforced Concrete from Experimental Testing in Uniaxial Compression and Tension. Crystals, 2020, 10, 885.	2.2	10
30	Experimental and multi-scale numerical investigation of ultra-high performance fiber reinforced concrete (UHPFRC) with different coarse aggregate content and fiber volume fraction. Construction and Building Materials, 2020, 260, 120444.	7.2	36
31	Experimental Investigation on the Mechanical Properties and Microstructure of Basalt Fiber Reinforced Engineered Cementitious Composite. Materials, 2020, 13, 3796.	2.9	24
32	Optimization of fiber volume fraction to enhance reinforcing efficiency in hybrid fiber reinforced strain hardening cementitious composite. Cement and Concrete Composites, 2020, 113, 103704.	10.7	23
33	An optimum polyvinyl alcohol fiber length for reinforced high ductility cementitious composites based on theoretical and experimental analyses. Construction and Building Materials, 2020, 259, 119824.	7.2	14
34	Macro- and Micro-Properties of Engineered Cementitious Composites (ECCs) Incorporating Industrial Waste Materials: A Review. Arabian Journal for Science and Engineering, 2020, 45, 7869-7895.	3.0	14
35	Experimental and numerical investigation on bond between steel rebar and high-strength Strain-Hardening Cementitious Composite (SHCC) under direct tension. Cement and Concrete Composites, 2020, 112, 103666.	10.7	32
36	Hydraulic conductivity and self-healing performance of Engineered Cementitious Composites exposed to Acid Mine Drainage. Science of the Total Environment, 2020, 716, 137095.	8.0	49

#		IF	CITATIONS
#	Fire Performance of Steel-Peinforced Illtrahigh-Toughness Cementitious Composite Columns		CHAHONS
37	Experimental Investigation and Numerical Analyses. Journal of Structural Engineering, 2020, 146, .	3.4	8
38	Scaling up modeling of Strain-Hardening Cementitious Composites based on beam theory: From single fiber to composite. Cement and Concrete Composites, 2020, 108, 103534.	10.7	7
39	Compressive Strength Prediction of PVA Fiber-Reinforced Cementitious Composites Containing Nano-SiO2 Using BP Neural Network. Materials, 2020, 13, 521.	2.9	20
40	Multiscale investigation on tensile properties of ultra-high performance concrete with silane coupling agent modified steel fibers. Cement and Concrete Composites, 2020, 111, 103638.	10.7	64
41	Seawater sea-sand Engineered Cementitious Composites (SS-ECC) for marine and coastal applications. Composites Communications, 2020, 20, 100353.	6.3	90
42	The synergistic effects of shape memory alloy, steel, and carbon fibres with polyvinyl alcohol fibres in hybrid strain-hardening cementitious composites. Construction and Building Materials, 2020, 252, 119061.	7.2	41
43	Feasibility of using ultrahigh-volume limestone-calcined clay blend to develop sustainable medium-strength Engineered Cementitious Composites (ECC). Journal of Cleaner Production, 2020, 262, 121343.	9.3	92
44	Feasibility of incorporating recycled fine aggregate in high performance green lightweight engineered cementitious composites. Journal of Cleaner Production, 2021, 280, 124445.	9.3	42
45	Mechanical properties and microstructure of basalt fiber-reinforced recycled concrete. Journal of Cleaner Production, 2021, 278, 123252.	9.3	61
46	Development of basalt fiber engineered cementitious composites and its mechanical properties. Construction and Building Materials, 2021, 266, 121173.	7.2	53
47	Seawater sea-sand engineered/strain-hardening cementitious composites (ECC/SHCC): Assessment and modeling of crack characteristics. Cement and Concrete Research, 2021, 140, 106292.	11.0	135
48	Effect of fiber content on mechanical performance and cracking characteristics of ultra-high-performance seawater sea-sand concrete (UHP-SSC). Advances in Structural Engineering, 2021, 24, 1182-1195.	2.4	49
49	Mechanical performance of MgO-doped Engineered Cementitious Composites (ECC). Cement and Concrete Composites, 2021, 115, 103857.	10.7	29
50	Ecofriendly Composite/Nanocomposite from Discarded Addition and Condensation Polymers. , 2021, , 1589-1611.		0
51	Fiber reinforced cement based composites. , 2021, , 597-648.		4
52	Dynamic Single-Fiber Pull-Out of Polypropylene Fibers Produced with Different Mechanical and Surface Properties for Concrete Reinforcement. Materials, 2021, 14, 722.	2.9	17
53	Soft Computing Techniques for the Prediction and Analysis of Compressive Strength of Alkali-Activated Alumino-Silicate Based Strain-Hardening Geopolymer Composites. Silicon, 2022, 14, 1985-2008.	3.3	10
54	Study of the use of polymeric waste as reinforcement for extruded fiber-cement. Environmental Science and Pollution Research, 2021, 28, 42737-42749.	5.3	3

#	Article	IF	CITATIONS
55	Performance enhancement of green high-ductility engineered cementitious composites by nano-silica incorporation. Construction and Building Materials, 2021, 281, 122618.	7.2	22
56	Macroscopic and microscopic analyses on mechanical performance of metakaolin/fly ash based geopolymer mortar. Journal of Cleaner Production, 2021, 294, 126193.	9.3	85
57	Optimization of wellbore cement sheath resilience using nano and microscale reinforcement: A statistical approach using design of experiments. Journal of Petroleum Science and Engineering, 2021, 200, 108324.	4.2	6
58	Effect of curing relative humidity on mechanical properties of engineered cementitious composites at multiple scales. Construction and Building Materials, 2021, 284, 122834.	7.2	27
59	Relationships among the Characteristic Tensile Strain, Curing Age, and Strength of Reactive Powder Concrete. Materials, 2021, 14, 2660.	2.9	0
60	The Mechanical Properties and Damage Evolution of UHPC Reinforced with Glass Fibers and High-Performance Polypropylene Fibers. Materials, 2021, 14, 2455.	2.9	21
61	Recycled Fibers for Sustainable Hybrid Fiber Cement Based Material: A Review. Materials, 2021, 14, 2408.	2.9	14
62	Application of Plastic Wastes in Construction Materials: A Review Using the Concept of Life-Cycle Assessment in the Context of Recent Research for Future Perspectives. Materials, 2021, 14, 3549.	2.9	76
63	Clinkerless ultra-high strength concrete based on alkali-activated slag at high temperatures. Cement and Concrete Research, 2021, 145, 106465.	11.0	75
64	Shear interfacial fracture of strain-hardening fiber-reinforced cementitious composites and concrete: A novel approach. Engineering Fracture Mechanics, 2021, 253, 107849.	4.3	31
65	Research on the flexural performance of reinforced engineered cementitious composite beams. Structural Concrete, 2022, 23, 2198-2220.	3.1	8
66	Multiscale insights on enhancing tensile properties of ultra-high performance cementitious composite with hybrid steel and polymeric fibers. Journal of Materials Research and Technology, 2021, 14, 743-753.	5.8	19
67	Effect of recycled tyre polymer fibre on engineering properties of sustainable strain hardening geopolymer composites. Cement and Concrete Composites, 2021, 122, 104167.	10.7	58
68	Experimental study on the mechanical properties of different fiber-reinforced seawater sea-sand engineered cementitious composites. Construction and Building Materials, 2021, 304, 124562.	7.2	13
69	Self-healing of PE-fiber reinforced lightweight high-strength engineered cementitious composite. Cement and Concrete Composites, 2021, 123, 104209.	10.7	55
70	Development of engineered cementitious composites (ECC) using artificial fine aggregates. Construction and Building Materials, 2021, 305, 124742.	7.2	47
71	Intrinsic self-stressing and low carbon Engineered Cementitious Composites (ECC) for improved sustainability. Cement and Concrete Research, 2021, 149, 106580.	11.0	26
72	Mechanical, environmental and economic performance of sustainable Grade 45 concrete with ultrahigh-volume Limestone-Calcined Clay (LCC). Resources, Conservation and Recycling, 2021, 175, 105846.	10.8	42

ARTICLE IF CITATIONS # Interfacial technology for enhancement in steel fiber reinforced cementitious composite from nano 73 5.8 17 to macroscale. Nanotechnology Reviews, 2021, 10, 636-652. Tensile and Compressive Performance of High-Strength Engineered Cementitious Composites (ECC) 74 0.4 with Seawater and Sea-Sand. RILEM Bookseries, 2021, , 1034-1041. Experimental and molecular modeling of polyethylene fiber/cement interface strengthened by 75 10.7 51 graphene oxide. Cement and Concrete Composites, 2020, 112, 103676. Smart Self-Healing and Self-Sensing Cementitious Compositesâ€"Recent Developments, Challenges, and Prospects. Advances in Civil Engineering Materials, 2019, 8, 554-578. Experimental Investigation of Mechanical, Permeability, and Microstructural Properties of 77 2.10 PVA-Improved Sand Under Dry-Wet Cycling Conditions. Frontiers in Physics, 2021, 9, . Emerging Applications of Silica Nanoparticles as Multifunctional Modifiers for High Performance 4.1 Polyester Composites. Nanomaterials, 2021, 11, 2810. Effects of fiber hybridization on mechanical properties and autogenous healing of alkali-activated 79 7.2 16 slag-based composites. Construction and Building Materials, 2021, 310, 125280. Feasibility of Developing Engineered Cementitious Composite with High Volumes of Fly Ash Using Cost-Effective PVA Fiber. Journal of Testing and Evaluation, 2020, 48, 1188-1205. Ecofriendly Composite/Nanocomposite from Discarded Addition and Condensation Polymers., 2020, 81 0 1-23. Ultra-lightweight high ductility cement composite incorporated with low PE fiber and rubber powder. Construction and Building Materials, 2021, 312, 125430. Enhancing the hydrophobic PP fiber/cement matrix interface by coating nano-AlOOH to the fiber 83 10.7 17 surface in a facile method. Cement and Concrete Composites, 2022, 125, 104297. High-strength high-ductility Engineered/Strain-Hardening Cementitious Composites (ECC/SHCC) incorporating geopolymer fine aggregates. Cement and Concrete Composites, 2022, 125, 104296. Using Limestone Calcined Clay to Improve Tensile Performance and Greenness of High-Tensile Strength 85 0.4 3 Strain-Hardening Cementitious Composites (SHCC). RILEM Bookseries, 2020, , 513-522. Sustainable PVA Fiber-Reinforced Strain-Hardening Cementitious Composites (SHCC) with Ultrahigh-Volume Limestone Calcined Clay. RILEM Bookseries, 2020, , 503-511. 0.4 Comparison of Strength Activity of Limestone-Calcined Clay and Class F Fly Ash. RILEM Bookseries, 87 0.4 0 2020, , 481-490. Development of ultrahigh-strength ultrahigh-toughness cementitious composites (UHS-UHTCC) using polyethylene and steel fibers. Composites Communications, 2022, 29, 100992. The hybrid effects of basalt and PVA fiber on properties of a cementitious composite: Physical 89 7.2 13 properties and non-destructive tests. Construction and Building Materials, 2021, 312, 125292. Effect of Sporosarcina Pasteurii Incorporation on Mechanical Properties of Engineered Cementitious 90 Composites (Ecc). SSRN Electronic Journal, 0, , .

#	Article	IF	CITATIONS
91	Preparation and mechanical characterization of engineered cementitious composites with high-volume fly ash and waste glass powder. Journal of Cleaner Production, 2022, 333, 130222.	9.3	20
92	A review on high-strength engineered cementitious composites (HS-ECC): Design, mechanical property and structural application. Structures, 2022, 35, 903-921.	3.6	56
93	Effect of different nanosized limestone formations on fiberâ€matrix interface properties of engineered cementitious composites. Structural Concrete, 2022, 23, 1890-1906.	3.1	2
94	Nano-modified slag-based cementitious composites reinforced with basalt pellets and polyvinyl alcohol fibers. Journal of Sustainable Cement-Based Materials, 0, , 1-12.	3.1	3
95	The greening of engineered cementitious composites (ECC): A review. Construction and Building Materials, 2022, 327, 126701.	7.2	65
96	3D printing geopolymers: A review. Cement and Concrete Composites, 2022, 128, 104455.	10.7	48
97	Molecular dynamics simulation of calcium silicate hydrate/tannic acid interfacial interactions at different temperatures: configuration, structure and dynamic. Construction and Building Materials, 2022, 326, 126820.	7.2	11
98	Numerical Analysis of the Seismic Response of Tunnel Composite Lining Structures across an Active Fault. Advances in Materials Science and Engineering, 2021, 2021, 1-12.	1.8	1
99	The influence of oiled fiber, freeze-thawing cycle, and sulfate attack on strain hardening cement-based composites. Reviews on Advanced Materials Science, 2022, 61, 208-220.	3.3	1
100	Mechanical Properties of Hybrid PVA–Natural Curaua Fiber Composites. Materials, 2022, 15, 2808.	2.9	3
101	Green-Engineered Cementitious Composite Production with High-Strength Synthetic Fiber and Aggregate Replacement. Materials, 2022, 15, 3047.	2.9	10
102	Effect of recycled polymer fibre on dynamic compressive behaviour of engineered geopolymer composites. Ceramics International, 2022, 48, 23713-23730.	4.8	18
103	Experimental investigation on strain rate effect of high-performance fiber reinforced cementitious composites subject to dynamic direct tensile loading. Cement and Concrete Research, 2022, 157, 106825.	11.0	13
104	A Experimental Study on Engineered Cementitious Composites (ECC) Incorporated with Sporosarcina pasteurii. Buildings, 2022, 12, 691.	3.1	5
105	Evaluation on the performance of magnesium phosphate cement-based engineered cementitious composites (MPC-ECC) with blended fly ash/silica fume. Construction and Building Materials, 2022, 341, 127861.	7.2	13
106	Thermophysical characteristics of eco-friendly mortars containing recycled PET as partial sand replacement in dry and wet conditions. Innovative Infrastructure Solutions, 2022, 7, .	2.2	10
107	Tensile performance of 3D-printed Strain-Hardening Cementitious Composites (SHCC) considering material parameters, nozzle size and printing pattern. Cement and Concrete Composites, 2022, 132, 104601.	10.7	18
108	Recent developments in Engineered/Strain-Hardening Cementitious Composites (ECC/SHCC) with high and ultra-high strength. Construction and Building Materials, 2022, 342, 127956.	7.2	50

#	Article	IF	CITATIONS
109	Durability and Ecological Performance of Hybrid Engineered Cementitious Composite Containing Stone Industry Waste. Journal of the Institution of Engineers (India): Series A, 0, , .	1.2	0
110	Experimental Investigation on the Mechanical Behavior of Polyvinyl Alcohol Fiber Recycled Aggregate Concrete Under Triaxial Compression. SSRN Electronic Journal, 0, , .	0.4	0
111	Performance of Hybrid Fiber Reinforced ECC Containing Stone Industry Powder Waste. Iranian Journal of Science and Technology - Transactions of Civil Engineering, 0, , .	1.9	1
112	Investigation of mechanical properties of PVA fiber-reinforced cementitious composites under the coupling effect of wet-thermal and chloride salt environment. Case Studies in Construction Materials, 2022, 17, e01325.	1.7	19
113	Mechanical properties and material characterization of cement mortar incorporating CNT-engineered polyvinyl alcohol latex. Construction and Building Materials, 2022, 345, 128320.	7.2	8
114	Optimal design of a low-cost high-performance hybrid fiber engineered cementitious composites. Construction and Building Materials, 2022, 345, 128372.	7.2	12
115	Enhancing long-term tensile performance of Engineered Cementitious Composites (ECC) using sustainable artificial geopolymer aggregates. Cement and Concrete Composites, 2022, 133, 104676.	10.7	34
116	A highly energy-efficient and ductile building material reinforced by micro-PCMs. MRS Communications, 0, , .	1.8	0
117	Analytical and Numerical Modeling of the Pullout Behavior between High-Strength Stainless Steel Wire Mesh and ECC. Materials, 2022, 15, 5649.	2.9	2
118	Highly ductile behavior and sustainability of engineered cementitious composites reinforced by PE based selvage fibers. Cement and Concrete Composites, 2022, 134, 104729.	10.7	3
119	An evaluation of aromatic hydrocarbons in recycled PET fibers by a reliable and effective static headspace GC-FID method. Journal of the Textile Institute, 2023, 114, 1050-1058.	1.9	1
120	Experimental investigation on the mechanical behavior of polyvinyl alcohol fiber recycled aggregate concrete under triaxial compression. Construction and Building Materials, 2022, 350, 128825.	7.2	16
121	Predicting the strain-hardening behaviour of polyethylene fibre reinforced engineered cementitious composites accounting for fibre-matrix interaction. Cement and Concrete Composites, 2022, 134, 104770.	10.7	9
122	NUMERICAL SIMULATION ON THE TENSILE STRAIN HARDENING BEHAVIOUR OF ENGINEERED CEMENTITIOUS COMPOSITES (ECC). Jurnal Teknologi (Sciences and Engineering), 2022, 84, 39-50.	0.4	0
123	Dynamic splitting tensile behaviour of engineered geopolymer composites with hybrid polyvinyl alcohol and recycled tyre polymer fibres. Journal of Cleaner Production, 2022, 379, 134779.	9.3	10
124	Engineered geopolymer composites: A state-of-the-art review. Cement and Concrete Composites, 2023, 135, 104850.	10.7	20
125	Influence of Stone Processing Waste on Mechanical, Durability, and Ecological Performance of Hybrid Fiber-Reinforced Engineered Cementitious Composite. Transportation Research Record, 2023, 2677, 260-278.	1.9	2
126	Experimental performance of novel cost – effective hybrid composite slabs made with cementitious composite. Structures, 2022, 46, 1029-1042.	3.6	2

#	Article	IF	CITATIONS
127	Investigation on the roles of glass sand in sustainable engineered geopolymer composites. Construction and Building Materials, 2023, 363, 129576.	7.2	3
128	Micromechanics of engineered cementitious composites (ECC): A critical review and new insights. Construction and Building Materials, 2023, 362, 129765.	7.2	18
129	Long-term stable and sustainable high-strength engineered cementitious composite incorporating limestone powder. Structures, 2023, 47, 530-543.	3.6	20
130	Tensile over-saturated cracking of Ultra-High-Strength Engineered Cementitious Composites (UHS-ECC) with artificial geopolymer aggregates. Cement and Concrete Composites, 2023, 136, 104896.	10.7	41
131	Mechanical Performance Optimization in Spray-Based Three-Dimensional-Printed Mortar Using Carbon Fiber. Journal of Materials in Civil Engineering, 2023, 35, .	2.9	2
132	Preparation and mechanical characterization of cost-effective low-carbon engineered cementitious composites with seawater and sea-sand. Cement and Concrete Composites, 2023, 136, 104883.	10.7	8
133	Highly accurate and automatic semantic segmentation of multiple cracks in engineered cementitious composites (ECC) under dual pre-modification deep-learning strategy. Cement and Concrete Research, 2023, 165, 107066.	11.0	31
134	Performance of cost effective engineered cementitious composite in exterior beam olumn connections under cyclic loading. Structural Concrete, 2023, 24, 3692-3707.	3.1	1
135	Effect of stone slurry powder waste and low-cost fibers on strength, electrical resistivity, permeability, and ecological performance of engineered cementitious composite. Arabian Journal of Geosciences, 2022, 15, .	1.3	0
136	Tensile strain-hardening cementitious composites and its practical exploration without reinforcement: A review. Frontiers in Materials, 0, 9, .	2.4	1
137	An investigation on the performance enhancement and cost reduction of engineered cementitious composites developed with local PVA and PET fibers. Journal of Sustainable Cement-Based Materials, 2023, 12, 1020-1032.	3.1	2
138	An Investigation of the Mechanical Properties of Basalt Fibre-Reinforced Graphite Tailings Cement Mortar. Buildings, 2022, 12, 2106.	3.1	5
139	Investigation on performance of engineered cementitious composites (ECC) based on surface modification of PET fibers using graphene oxide (GO) and polydopamine (PDA). Construction and Building Materials, 2023, 368, 130343.	7.2	7
140	Strain-hardening alkali-activated fly ash/slag composites with ultra-high compressive strength and ultra-high tensile ductility. Cement and Concrete Research, 2023, 165, 107075.	11.0	48
141	Flexural behavior of precast ultra-lightweight ECC-concrete composite slab with lattice girders. Engineering Structures, 2023, 279, 115553.	5.3	28
142	Carbon fiber surface nano-modification and enhanced mechanical properties of fiber reinforced cementitious composites. Construction and Building Materials, 2023, 370, 130701.	7.2	8
143	Numerical study on the axial compression behavior of composite columns with steel tube SHCC flanges and honeycombed steel web. Engineering Structures, 2023, 283, 115883.	5.3	4
144	Cementless ultra-ductile composites reinforced by polyethylene-based short selvedge fibers for sustainable and resilient infrastructure. Journal of Building Engineering, 2023, 68, 106198.	3.4	3

#	Article	IF	CITATIONS
145	Mechanical performance of high-strength engineering cementitious composites (ECC) with hybriding PE and steel fibers. Case Studies in Construction Materials, 2023, 18, e01961.	1.7	1
146	Experimental study of tensile properties of strain-hardening cementitious composites (SHCCs) reinforced with innovative twisted basalt fibers. Structures, 2023, 48, 1977-1988.	3.6	3
147	Impact of silica fume and PET fibre over the strength aspects of the concrete. IOP Conference Series: Earth and Environmental Science, 2023, 1110, 012023.	0.3	2
148	Engineering properties of sustainable engineered cementitious composites with recycled tyre polymer fibres. Construction and Building Materials, 2023, 370, 130672.	7.2	2
149	Dynamic mechanical behavior of strain-hardening cementitious composites under drop weight impact loading. Journal of Materials Research and Technology, 2023, 23, 5573-5586.	5.8	1
150	Stress Mechanism and Energy Dissipation Performance Optimization of Prefabricated ECC/RC Combined Shear Walls under Low Cyclic Loading. Buildings, 2023, 13, 772.	3.1	3
151	Investigation on triaxial compressive mechanical properties of ultra high toughness cementitious composites with high strain capacity. Cement and Concrete Research, 2023, 170, 107185.	11.0	5
152	Mechanical Performance of Fiber-Reinforced Slag-Based Geopolymer Composite. Practice Periodical on Structural Design and Construction, 2023, 28, .	1.3	Ο
153	Toughening Mechanism of Directional Fabric Woven Net and/or Non-Directional Short-Cut Fiber-Reinforced Sprayed Cement Mortar Thin-Plates. Materials, 2023, 16, 4418.	2.9	0
154	Quasi-static and Dynamic Mechanical Properties of Engineered Geopolymer Composites with Hybrid PVA and Recycled Steel Fibres. Journal of Advanced Concrete Technology, 2023, 21, 405-420.	1.8	1
155	Upcycling of recycled plastic fiber for sustainable cementitious composites: A critical review and new perspective. Cement and Concrete Composites, 2023, 142, 105192.	10.7	16
157	Experimental studies on durability performances of ultra-lightweight low-carbon LC3 cement composites against chloride ingression and carbonation. Construction and Building Materials, 2023, 395, 132340.	7.2	1
158	Micromechanical study on polypropylene-bicomponent fibers to improve mechanical interlocking for application in strain-hardening cement-based composites. Cement and Concrete Composites, 2023, 142, 105181.	10.7	0
159	Enhancing self-healing efficiency of concrete using multifunctional granules and PVA fibers. Journal of Building Engineering, 2023, 76, 107314.	3.4	2
160	Strain hardening geopolymer composites with hybrid POM and UHMWPE fibers: Analysis of static mechanical properties, economic benefits, and environmental impact. Journal of Building Engineering, 2023, 76, 107315.	3.4	6
161	Effect of PVA fibres and crystalline admixtures on the self-healing efficiency under long-term aconstant loading. Materials Letters, 2023, 349, 134906.	2.6	Ο
162	Investigation of the Effect of Magnetic Water and Polyethylene Fiber Insertion in Concrete Mix. Journal of Composites Science, 2023, 7, 303.	3.0	0
163	Cost-Effective Engineered Cementitious Composites with Hybrid PVA and Basalt/PP Fiber: A Study on Compressive, Tensile and Impact Performance. Materials, 2023, 16, 5172.	2.9	3

ARTICLE IF CITATIONS # Development of Reactive MgO Cement-Silica Fumeâ€"Based Strain-Hardening Engineered Cementitious 2.9 0 164 Composite. Journal of Materials in Civil Engineering, 2023, 35, . Carbon nanofibers and polyvinyl-alcohol fiber hybrid-reinforced high-performance concrete: Mechanical property, chloride penetration resistance, and material characterization. Construction 7.2 and Building Materials, 2023, 399, 131891. Mechanical properties and cracking behaviour of lightweight engineered geopolymer composites with 166 7.2 4 fly ash cenospheres. Construction and Building Materials, 2023, 400, 132622. Analysis of stress-strain behavior in engineered geopolymer composites reinforced with hybrid PE-PP fibers: A focus on cracking characteristics. Composite Structures, 2023, 323, 117437. 5.8 29 Preparation of In(OH)3@GO with high surface roughness and its effect on the hydration performance, microstructures and mechanical properties of cement composites. Cement and Concrete 168 11.0 2 Research, 2023, 173, 107306. Effect of Recycled Polyethylene Terephthalate (PET) fibres on fresh and hardened properties of concrete: a review. International Journal of Sustainable Engineering, 2023, 16, 269-284. 3.5 Experimental investigation and numerical simulation on uniaxial tensile behavior of hybrid PVA-ECC. 170 7.2 1 Construction and Building Materials, 2023, 398, 132517. Mechanical and seepage characteristics of polyvinyl alcohol fiber concrete under stress-seepage 171 3.4 coupling. Journal of Building Engineering, 2023, 78, 107694. Feasibility of utilising waste tyre steel fibres to develop sustainable engineered cementitious composites: Engineering properties, impact resistance and environmental assessment. Journal of Cleaner Production, 2023, 427, 139148. 172 9.3 7 Mechanical, environmental, and economic performance of engineered cementitious composite incorporated limestone calcined clay cement: A review. Journal of Building Engineering, 2023, 79, 3.4 107901. Tailoring crack width control of LC3-based engineered cementitious composites (ECC) via fiber hybridization: From micromechanics design to macro investigation. Materials and Design, 2023, 235, 174 2 7.0 112433. Mechanical and durability performance of polyvinyl alcohol fiber hybrid geopolymer-portland cement concrete under freeze–thaw cycles. Boletin De La Sociedad Espanola De Ceramica Y Vidrio, 2023, , . Advancing seismic resilience: Performance-based assessment of mid-rise and high-rise engineered 176 1.7 0 cementitious composite (ECC) Buildings. Case Studies in Construction Materials, 2024, 20, e02732. Application of R-curve, ANCOVA, and RSM techniques on fracture toughness enhancement in PET 7.2 fiber-reinforced concrete. Construction and Building Materials, 2024, 411, 134644. Influence of free water on compressive fatigue properties of ECC. International Journal of Fatigue, 178 0 5.72024, 181, 108112. Engineered geopolymer composite (EGC) with ultra-low fiber content of 0.2%. Construction and Building Materials, 2024, 411, 134626. 179 Development of green engineered cementitious composites with acceptable dynamic split resistance 180 7.2 2 utilising recycled polymer fibres. Construction and Building Materials, 2024, 415, 134979. Trends toward lower-carbon ultra-high performance concrete (UHPC) – A review. Construction and Building Materials, 2024, 420, 135602.

#	Article	IF	CITATIONS
182	Upcycling use of red mud-based solid waste in engineered cementitious composites: Properties, activation mechanism, and life-cycle assessment. Journal of Cleaner Production, 2024, 447, 141504.	9.3	0
183	Performance Improvement and Design of UHDMC Using Fly Ash and Silica Fume. , 2024, , 67-121.		0
184	The role of supplementary cementitious materials and fiber reinforcements in enhancing the sulfate attack resistance of SCC/ECC composite systems. Construction and Building Materials, 2024, 423, 135821.	7.2	0
185	Self-Healing Performance of Nanosilica-Modified Engineered Cementitious Composites Exposed to High Temperatures. Journal of Materials in Civil Engineering, 2024, 36, .	2.9	0