Nanoscale kinetics of asymmetrical corrosion in core-sl

Nature Communications 9, 1011 DOI: 10.1038/s41467-018-03372-z

Citation Report

#	Article	IF	CITATIONS
1	Shell-Induced Ostwald Ripening: Simultaneous Structure, Composition, and Morphology Transformations during the Creation of Hollow Iron Oxide Nanocapsules. ACS Nano, 2018, 12, 9051-9059.	7.3	36
2	Particle Shape Control <i>via</i> Etching of Core@Shell Nanocrystals. ACS Nano, 2018, 12, 9186-9195.	7.3	11
3	Constant-rate dissolution of InAs nanowires in radiolytic water observed by <i>in situ</i> liquid cell TEM. Nanoscale, 2018, 10, 19733-19741.	2.8	28
4	A literature review of in situ transmission electron microscopy technique in corrosion studies. Micron, 2018, 112, 69-83.	1.1	39
5	Electrochemical Synthesis of Individual Core@Shell and Hollow Ag/Ag ₂ S Nanoparticles. Nano Letters, 2019, 19, 5612-5619.	4.5	26
6	In Situ Transmission Electron Microscopy Study of Nanocrystal Formation for Electrocatalysis. ChemNanoMat, 2019, 5, 1439-1455.	1.5	14
7	Silica Restricting the Sulfur Volatilization of Nickel Sulfide for Highâ€Performance Lithiumâ€Ion Batteries. Advanced Energy Materials, 2019, 9, 1901153.	10.2	94
8	Intermediate Structures of Pt–Ni Nanoparticles during Selective Chemical and Electrochemical Etching. Journal of Physical Chemistry Letters, 2019, 10, 6090-6096.	2.1	25
9	Formation of cerium oxide hollow spheres and investigation of hollowing mechanism. SN Applied Sciences, 2019, 1, 1.	1.5	5
10	Shape-Controlled Synthesis of Trimetallic PtPdCu Nanocrystals and Their Electrocatalytic Properties. ACS Applied Energy Materials, 2019, 2, 2515-2523.	2.5	27
11	Recent Advances on Controlled Synthesis and Engineering of Hollow Alloyed Nanotubes for Electrocatalysis. Advanced Materials, 2019, 31, e1803503.	11.1	81
12	Dissolution Behavior of Isolated and Aggregated Hematite Particles Revealed by in Situ Liquid Cell Transmission Electron Microscopy. Environmental Science & Technology, 2019, 53, 2416-2425.	4.6	20
13	Monitoring chemical reactions in liquid media using electron microscopy. Nature Reviews Chemistry, 2019, 3, 624-637.	13.8	62
14	Activation of persulfate with 3D urchin-like CoO-CuO microparticles for DBP degradation: A catalytic mechanism study. Science of the Total Environment, 2019, 655, 614-621.	3.9	29
15	Trimetallic PtPdNi-Truncated Octahedral Nanocages with a Well-Defined Mesoporous Surface for Enhanced Oxygen Reduction Electrocatalysis. ACS Applied Materials & Interfaces, 2019, 11, 4252-4257.	4.0	57
16	Kirkendall effect in the two-dimensional lattice-gas model. Physical Review E, 2019, 99, 012132.	0.8	3
17	Colorimetric captopril assay based on oxidative etching-directed morphology control of silver nanoprisms. Mikrochimica Acta, 2020, 187, 107.	2.5	18
18	Biomimetic Sn ₄ P ₃ Anchored on Carbon Nanotubes as an Anode for High-Performance Sodium-Ion Batteries. ACS Nano, 2020, 14, 8826-8837.	7.3	95

#	Article	IF	CITATIONS
19	Lattice-mismatch-induced growth of ultrathin Pt shells with high-index facets for boosting oxygen reduction catalysis. Journal of Materials Chemistry A, 2020, 8, 16477-16486.	5.2	21
20	Selective shortening of gold nanorods: when surface functionalization dictates the reactivity of nanostructures. Nanoscale, 2020, 12, 22658-22667.	2.8	13
21	Uniform, Anticorrosive, and Antiabrasive Coatings on Metallic Surfaces for Cation–Metal and Cationâ^'ï€ Interactions. ACS Applied Materials & Interfaces, 2020, 12, 38638-38646.	4.0	13
22	4D Multimodal Nanomedicines Made of Nonequilibrium Au–Fe Alloy Nanoparticles. ACS Nano, 2020, 14, 12840-12853.	7.3	53
23	Recent Advances in Earth-Abundant Core/Noble-Metal Shell Nanoparticles for Electrocatalysis. ACS Catalysis, 2020, 10, 10886-10904.	5.5	38
24	Liquid phase transmission electron microscopy for imaging of nanoscale processes in solution. MRS Bulletin, 2020, 45, 704-712.	1.7	26
25	Manipulating Bimetallic Nanostructures With Tunable Localized Surface Plasmon Resonance and Their Applications for Sensing. Frontiers in Chemistry, 2020, 8, 411.	1.8	28
26	Imaging the kinetics of anisotropic dissolution of bimetallic core–shell nanocubes using graphene liquid cells. Nature Communications, 2020, 11, 3041.	5.8	36
27	Evolution of the PtNi Bimetallic Alloy Fuel Cell Catalyst under Simulated Operational Conditions. ACS Applied Materials & Interfaces, 2020, 12, 17602-17610.	4.0	22
28	Degradation of the transition metal@Pt core–shell nanoparticle catalyst: a DFT study. Physical Chemistry Chemical Physics, 2020, 22, 9467-9476.	1.3	7
29	Stable and Active Oxygen Reduction Catalysts with Reduced Noble Metal Loadings through Potential Triggered Support Passivation. ChemElectroChem, 2020, 7, 2404-2409.	1.7	4
30	Strain-Induced Corrosion Kinetics at Nanoscale Are Revealed in Liquid: Enabling Control of Corrosion Dynamics of Electrocatalysis. CheM, 2020, 6, 2257-2271.	5.8	48
31	Enhancing Oxygen Reduction Activity of Ptâ€based Electrocatalysts: From Theoretical Mechanisms to Practical Methods. Angewandte Chemie, 2020, 132, 18490-18504.	1.6	24
32	Enhancing Oxygen Reduction Activity of Ptâ€based Electrocatalysts: From Theoretical Mechanisms to Practical Methods. Angewandte Chemie - International Edition, 2020, 59, 18334-18348.	7.2	174
33	Real-Time Visualization of Solid-Phase Ion Migration Kinetics on Nanowire Monolayer. Journal of the American Chemical Society, 2020, 142, 7968-7975.	6.6	10
34	Point-of-care assay for drunken driving with Pd@Pt core-shell nanoparticles-decorated ploy(vinyl) Tj ETQq1 1 0.	784314 rgl 4.6	3T /Overlock 24
35	PtPdCu cubic nanoframes as electrocatalysts for methanol oxidation reaction. CrystEngComm, 2021, 23, 7978-7984.	1.3	5
36	<i>In situ</i> liquid cell transmission electron microscopy guiding the design of large-sized cocatalysts coupled with ultra-small photocatalysts for highly efficient energy harvesting. Journal of Materials Chemistry A, 2021, 9, 13056-13064.	5.2	21

CITATION REPORT

	C	ITATION REPORT	
#	Article	IF	Citations
37	<i>Operando</i> Methods in Electrocatalysis. ACS Catalysis, 2021, 11, 1136-1178.	5.5	131
38	In-situ liquid phase transmission electron microscope and its application in nanoparticle characterization. Wuli Xuebao/Acta Physica Sinica, 2021, .	0.2	1
39	Synergy between Structure Characteristics and the Solution Chemistry in a Near/Non-Equilibrium Oxidative Etching of Penta-Twinned Palladium Nanorods. Journal of Physical Chemistry C, 2021, 125, 4010-4020.	1.5	8
40	Formation Pathways of Porous Alloy Nanoparticles through Selective Chemical and Electrochemical Etching. Small, 2021, 17, e2006953.	5.2	14
41	Single-Particle Imaging of Anion Exchange Reactions in Cuprous Oxide. ACS Nano, 2021, 15, 6481-64	488. 7.3	4
42	Deposition of Atomically Thin Pt Shells on Amorphous Palladium Phosphide Cores for Enhancing the Electrocatalytic Durability. ACS Nano, 2021, 15, 7348-7356.	7.3	53
44	Selective phosphidation and reduction strategy to construct heterostructured porous nanorod of CoP coated on Mn3O4 as a bifunctional electrocatalyst for overall water splitting. Applied Surface Science, 2021, 544, 148860.	3.1	14
45	The studies on wet chemical etching via in situ liquid cell TEM. Ultramicroscopy, 2021, 231, 113271.	0.8	6
46	Observation of Surface Ligands-Controlled Etching of Palladium Nanocrystals. Nano Letters, 2021, 21 6640-6647.	l, 4.5	10
47	A Large-Scalable, Surfactant-Free, and Ultrastable Ru-Doped Pt ₃ Co Oxygen Reduction Catalyst. Nano Letters, 2021, 21, 6625-6632.	4.5	43
48	Galvanic Transformation Dynamics in Heterostructured Nanoparticles. Advanced Functional Materials, 2021, 31, 2105866.	7.8	7
49	Design of Highly Durable Coreâ^'Shell Catalysts by Controlling Shell Distribution Guided by Inâ€6itu Corrosion Study. Advanced Materials, 2021, 33, e2101511.	11.1	21
50	Nickel-zinc tungstate nanocomposites deposited on copper surface for corrosion protection in chloride solution. Journal of Molecular Liquids, 2021, 336, 116342.	2.3	4
51	Construction of Lattice Strain in Bimetallic Nanostructures and Its Effectiveness in Electrochemical Applications. Small, 2021, 17, e2102244.	5.2	34
52	Designing large-sized cocatalysts for fast charge separation towards highly efficient visible-light-driven hydrogen evolution. International Journal of Hydrogen Energy, 2021, 46, 28545-28553.	3.8	37
53	Etching to unveil active sites of nanocatalysts for electrocatalysis. Materials Chemistry Frontiers, 2021, 5, 3962-3985.	3.2	6
54	Oxygen Reduction Reaction of Third Element-Modified Pt/Pd(111): Effect of Atomically Controlled Ir Locations on the Activity and Durability. ACS Catalysis, 2021, 11, 1554-1562.	5.5	12
55	Real-time imaging of nanoscale electrochemical Ni etching under thermal conditions. Chemical Science, 2021, 12, 5259-5268.	3.7	10

#	Article	IF	Citations
56	In Situ Liquid Cell Transmission Electron Microscopy Investigation on the Dissolution-Regrowth Mechanism Dominating the Shape Evolution of Silver Nanoplates. Crystal Growth and Design, 2021, 21, 1314-1322.	1.4	9
57	Atomic-scale study of nanocatalysts by aberration-corrected electron microscopy. Journal of Physics Condensed Matter, 2020, 32, 413004.	0.7	2
58	Challenges and Opportunities in Understanding Proton Exchange Membrane Fuel Cell Materials Degradation Using In‧itu Electrochemical Liquid Cell Transmission Electron Microscopy. Advanced Functional Materials, 2022, 32, 2105188.	7.8	23
59	Robust bulk micro-nano hierarchical copper structures possessing exceptional bactericidal efficacy. Biomaterials, 2022, 280, 121271.	5.7	15
60	Characterization of nanomaterials dynamics with transmission electron microscope. , 2022, , .		0
61	Applications of Liquid Cell-TEM in Corrosion Research. , 2022, , 121-150.		2
62	Corrosion Chemistry of Electrocatalysts. Advanced Materials, 2022, 34, e2200840.	11.1	43
63	Understanding the growth mechanisms of metal-based core–shell nanostructures revealed by in situ liquid cell transmission electron microscopy. Journal of Energy Chemistry, 2022, 71, 370-383.	7.1	16
64	Recent advances in the study of colloidal nanocrystals enabled by in situ liquid-phase transmission electron microscopy. MRS Bulletin, 2022, 47, 305-313.	1.7	3
65	Unveiling the Dynamic Oxidative Etching Mechanisms of Nanostructured Metals/Metallic Oxides in Liquid Media Through In Situ Transmission Electron Microscopy. Advanced Functional Materials, 2022, 32, .	7.8	7
66	Coreâ€shell nanocatalysts with reduced platinum content toward more costâ€effective proton exchange membrane fuel cells. Nano Select, 2022, 3, 1459-1483.	1.9	2
67	Review in situ transmission electron microscope with machine learning. Journal of Semiconductors, 2022, 43, 081001.	2.0	9
68	Ultrathin Nanotube Structure for Mass-Efficient and Durable Oxygen Reduction Reaction Catalysts in PEM Fuel Cells. Journal of the American Chemical Society, 2022, 144, 19106-19114.	6.6	34
69	Manipulating a smart multi-functional nano-carrier based on l-cysteine-GO-ZIF67@ZIF8 core@shell MOFs-LDH for designing an excellent self-healing coating. Applied Materials Today, 2023, 30, 101718.	2.3	2
70	Electron Microscopy Studies of Soft Nanomaterials. Chemical Reviews, 2023, 123, 4051-4145.	23.0	16
71	Quasi/non-equilibrium state in nanobubble growth trajectory revealed by in-situ transmission electron microscopy. Nano Today, 2023, 48, 101761.	6.2	1
72	Synthesis of Platinum Nanocrystals Dispersed on Nitrogen-Doped Hierarchically Porous Carbon with Enhanced Oxygen Reduction Reaction Activity and Durability. Nanomaterials, 2023, 13, 444.	1.9	2
73	In-Situ Liquid Cell TEM. , 2023, , 221-250.		2

CITATION REPORT

CITATION REPORT

#	Article	IF	CITATIONS
74	Combining atomic force microscopy with complementary techniques for multidimensional single ell analysis. Journal of Microscopy, 2023, 290, 69-96.	0.8	2
75	An odyssey to operando environmental transmission electron microscopy: What's next?. , 2023, 1, 100007.		1
76	Functionalized nanoparticles: Tailoring properties through surface energetics and coordination chemistry for advanced biomedical applications. Nanoscale, 2023, 15, 6075-6104.	2.8	15
77	Shape-Controlled Synthesis of Platinum-Based Nanocrystals and Their Electrocatalytic Applications in Fuel Cells. Nano-Micro Letters, 2023, 15, .	14.4	19
78	Revealing Controlled Etching Behaviors of Gold Nanobipyramids by Carbon Film Liquid Cell Transmission Electron Microscopy. Journal of Physical Chemistry C, 0, , .	1.5	1
80	<i>In Situ</i> and Emerging Transmission Electron Microscopy for Catalysis Research. Chemical Reviews, 2023, 123, 8347-8394.	23.0	11
86	Emerging transmission electron microscopy solutions for electrocatalysts: from synthesis to deactivation. Materials Chemistry Frontiers, 0, , .	3.2	0