Graphene hybridization for energy storage applications

Chemical Society Reviews 47, 3189-3216 DOI: 10.1039/c7cs00871f

Citation Report

#	Article	IF	CITATIONS
1	Liquid-Phase Exfoliation of Graphene: An Overview on Exfoliation Media, Techniques, and Challenges. Nanomaterials, 2018, 8, 942.	1.9	222
2	Mechanism of large tunable thermal transport in graphene with oxygen functional groups. Journal of Applied Physics, 2018, 124, 175108.	1.1	4
3	Redoxâ€Active Organic Sodium Anthraquinoneâ€2â€5ulfonate (AQS) Anchored on Reduced Graphene Oxide for Highâ€Performance Supercapacitors. Advanced Energy Materials, 2018, 8, 1802088.	10.2	147
4	Rational design of MnCo ₂ O ₄ @NC@MnO ₂ three-layered core–shell octahedron for high-rate and long-life lithium storage. Dalton Transactions, 2018, 47, 14540-14548.	1.6	16
5	Large-scale synthesis of free-standing N-doped graphene using microwave plasma. Scientific Reports, 2018, 8, 12595.	1.6	85
6	Sulfanilic Acid Pending on a Graphene Scaffold: Novel, Efficient Synthesis and Much Enhanced Polymer Solar Cell Efficiency and Stability Using It as a Hole Extraction Layer. ACS Applied Materials & Interfaces, 2018, 10, 24679-24688.	4.0	12
7	MOF-derived sponge-like hierarchical porous carbon for flexible all-solid-state supercapacitors. Materials Chemistry Frontiers, 2018, 2, 1692-1699.	3.2	48
8	Printable Nanomaterials for the Fabrication of High-Performance Supercapacitors. Nanomaterials, 2018, 8, 528.	1.9	46
9	Conversion of furfuryl alcohol into butyl levulinate with graphite oxide and reduced graphite oxide. FlatChem, 2018, 10, 39-44.	2.8	19
10	Effect of oxygen contents in graphene like graphite anodes on their capacity for lithium ion battery. Journal of Power Sources, 2018, 396, 134-140.	4.0	29
11	Influence of Thermal and Photochemical Treatments on Structure and Optical Properties of Single‣ayer Carbon Nitride. Physica Status Solidi (B): Basic Research, 2019, 256, 1800279.	0.7	4
12	Multiscale Porous Carbon Nanomaterials for Applications in Advanced Rechargeable Batteries. Batteries and Supercaps, 2019, 2, 9-36.	2.4	56
13	A robust hierarchical 3D Si/CNTs composite with void and carbon shell as Li-ion battery anodes. Chemical Engineering Journal, 2019, 360, 974-981.	6.6	78
14	Multiscale Buffering Engineering in Silicon–Carbon Anode for Ultrastable Li-Ion Storage. ACS Nano, 2019, 13, 10179-10190.	7.3	73
15	Facile fabrication of 3D ferrous ion crosslinked graphene oxide hydrogel membranes for excellent water purification. Environmental Science: Nano, 2019, 6, 3060-3071.	2.2	18
16	FUNCTIONALIZED GRAPHENE-BASED MATERIALS AS INNOVATIVE ADSORBENTS OF ORGANIC POLLUTANTS: A CONCISE OVERVIEW. Brazilian Journal of Chemical Engineering, 2019, 36, 1-31.	0.7	55
17	Carbon nanotubes, graphene, porous carbon, and hybrid carbon-based materials: synthesis, properties, and functionalization for efficient energy storage. , 2019, , 1-24.		7
18	Graphene-based advanced nanoplatforms and biocomposites from environmentally friendly and biomimetic approaches. Green Chemistry, 2019, 21, 4887-4918.	4.6	37

#	Article	IF	CITATIONS
19	High-performance microwave absorption of hierarchical graphene-based and MWCNT-based full-carbon nanostructures. Applied Surface Science, 2019, 493, 541-550.	3.1	18
20	Review Article: Layer-structured carbonaceous materials for advanced Li-ion and Na-ion batteries: Beyond graphene. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2019, 37, .	0.9	24
21	Constructing molecules supported holey graphene sheets framework in compact graphene film to achieve synergistic effect for ion transport and high gravimetric/volumetric capacitances. Journal of Power Sources, 2019, 441, 227167.	4.0	17
22	Synthesis of a Novel Mn(II)-porphyrins polycondensation polymer and its application as pseudo-capacitor electrode material. Journal of Organometallic Chemistry, 2019, 900, 120940.	0.8	12
23	Organic molecule electrode with high capacitive performance originating from efficient collaboration between caffeic acid and graphene & graphene nanomesh hydrogel. Electrochimica Acta, 2019, 326, 134953.	2.6	21
24	Recent Advances of Porous Graphene: Synthesis, Functionalization, and Electrochemical Applications. Small, 2019, 15, e1903780.	5.2	144
25	From Low- to High-Crystallinity Bimetal–Organic Framework Nanosheet with Highly Exposed Boundaries: An Efficient and Stable Electrocatalyst for Oxygen Evolution Reaction. ACS Sustainable Chemistry and Engineering, 2019, 7, 16629-16639.	3.2	52
26	Heteroatom doped high porosity carbon nanomaterials as electrodes for energy storage in electrochemical capacitors: A review. Journal of Science: Advanced Materials and Devices, 2019, 4, 341-352.	1.5	104
27	Thermoelectric phase diagram of the SrTiO3-LaTiO3 solid-solution system through a metal to Mott insulator transition. Journal of Applied Physics, 2019, 126, .	1.1	8
28	Graphene Nanostructure-Based Tactile Sensors for Electronic Skin Applications. Nano-Micro Letters, 2019, 11, 71.	14.4	97
29	Reduced graphene oxide/CoS ₂ porous nanoparticle hybrid electrode material for supercapacitor application. RSC Advances, 2019, 9, 26637-26645.	1.7	23
30	Preparation of nano-VBO3 on graphene as anode material for lithium-ion batteries. Materials Letters, 2019, 241, 60-63.	1.3	1
31	<i>In situ</i> tunable pillaring of compact and high-density graphite fluoride with pseudocapacitive diamines for supercapacitors with combined predominance in gravimetric and volumetric performances. Journal of Materials Chemistry A, 2019, 7, 3353-3365.	5.2	28
32	Graphene quantum dots encapsulated tremella-like NiCo2O4 for advanced asymmetric supercapacitors. Carbon, 2019, 146, 1-8.	5.4	136
33	NASICON-Structured NaTi2(PO4)3 for Sustainable Energy Storage. Nano-Micro Letters, 2019, 11, 44.	14.4	100
34	Freeâ€standing nitrogenâ€doped grapheneâ€carbon nanofiber composite mats: electrospinning synthesis and application as anode material for lithiumâ€ion batteries. Journal of Chemical Technology and Biotechnology, 2019, 94, 3793-3799.	1.6	15
35	Three-dimensional carambola-like MXene/polypyrrole composite produced by one-step co-electrodeposition method for electrochemical energy storage. Electrochimica Acta, 2019, 318, 820-827.	2.6	84
36	Textile carbon network with enhanced areal capacitance prepared by chemical activation of cotton cloth. Journal of Colloid and Interface Science, 2019, 553, 705-712.	5.0	51

#	Article	IF	CITATIONS
37	Flexible and Free-Standing Reduced Graphene Oxide and Polypyrrole Coated Air-Laid Paper-Based Supercapacitor Electrodes. Industrial & Engineering Chemistry Research, 2019, 58, 12018-12027.	1.8	32
38	Effects of out-of-plane strains and electric fields on the electronic structures of graphene/MTe (M =) Tj ETQq1 1	0.784314 2.8	rgBT /Overlo
39	Commercialization of Lithium Battery Technologies for Electric Vehicles. Advanced Energy Materials, 2019, 9, 1900161.	10.2	865
40	Combined Application of Grapheneâ€Family Materials and Silk Fibroin in Biomedicine. ChemistrySelect, 2019, 4, 5745-5754.	0.7	17
41	Construction of NiMoO4/CoMoO4 nanorod arrays wrapped by Ni-Co-S nanosheets on carbon cloth as high performance electrode for supercapacitor. Journal of Alloys and Compounds, 2019, 799, 415-424.	2.8	51
42	Highly conductive graphene-modified TiO2 hierarchical film electrode for flexible Li-ion battery anode. Electrochimica Acta, 2019, 313, 10-19.	2.6	27
43	The Effect of an External Magnetic Field on the Electrochemical Capacitance of Nanoporous Nickel for Energy Storage. Nanomaterials, 2019, 9, 694.	1.9	18
44	Controlled microstructure in two dimensional Ni-Co LDH nanosheets-crosslinked network for high performance supercapacitors. Advanced Powder Technology, 2019, 30, 1239-1246.	2.0	13
45	Adsorption-assisted transport of water vapour in super-hydrophobic membranes filled with multilayer graphene platelets. Nanoscale, 2019, 11, 11521-11529.	2.8	38
46	Recent Advances and Perspectives of Carbon-Based Nanostructures as Anode Materials for Li-ion Batteries. Materials, 2019, 12, 1229.	1.3	102
47	Design and Prediction of a Novel Two-Dimensional Carbon Nanostructure with In-Plane Negative Poisson's Ratio. Journal of Nanomaterials, 2019, 2019, 1-10.	1.5	2
49	Electrospinning and Electrospun Nanofibers: Methods, Materials, and Applications. Chemical Reviews, 2019, 119, 5298-5415.	23.0	2,814
50	Mild synthesis of holey N-doped reduced graphene oxide and its double-edged effects in polyaniline hybrids for supercapacitor application. Electrochimica Acta, 2019, 305, 175-186.	2.6	51
51	Copper Doped Manganese Ferrites PANI for Fabrication of Binder-Free Nanohybrid Symmetrical Supercapacitors. Journal of the Electrochemical Society, 2019, 166, A1154-A1159.	1.3	7
52	Facile synthesis of defect-rich nitrogen and sulfur Co-doped graphene quantum dots as metal-free electrocatalyst for the oxygen reduction reaction. Journal of Alloys and Compounds, 2019, 792, 844-850.	2.8	71
54	3D Heteroatomâ€Doped Carbon Nanomaterials as Multifunctional Metalâ€Free Catalysts for Integrated Energy Devices. Advanced Materials, 2019, 31, e1805598.	11.1	194
55	Recent Advances in Carbonâ€Based Metalâ€Free Electrocatalysts. Advanced Materials, 2019, 31, e1806403.	11.1	222
56	Scalable one-step synthesis of N,S co-doped graphene-enhanced hierarchical porous carbon foam for high-performance solid-state supercapacitors. Journal of Materials Chemistry A, 2019, 7, 7591-7603.	5.2	98

ARTICLE IF CITATIONS Investigation of twoâ€dimensional hfâ€based MXenes as the anode materials for li/naâ€ion batteries: A DFT 1.5 38 57 study. Journal of Computational Chemistry, 2019, 40, 1352-1359. Removing Metal Ions from Water with Graphene–Bovine Serum Albumin Hybrid Membrane. 23 Nanomaterials, 2019, 9, 276. Supported optically active poly(amide-imide) on magnetic graphene oxide/Fe₃O₄ for Hg²⁺ adsorption from aqueous solution. Journal of Thermoplastic Composite Materials, 2022, 35, 375-390. 59 0 2.6 MoS₂/carbon composites prepared by ball-milling and pyrolysis for the high-rate and stable anode of lithium ion capacitors. RSC Advances, 2019, 9, 42316-42323. An easy and innovative one-step in situ synthesis strategy of silica nanoparticles decorated by 61 0.8 7 graphéne oxide particles through covalent linkages. Matérials Research Express, 2019, 6, 1250g4. Lithium Ion Capacitor with Identical Carbon Electrodes Yields 6 s Charging and 100â€⁻000 Cycles Stability with 1% Capacity Fade. ACS Sustainable Chemistry and Engineering, 2019, 7, 2867-2877. 3.2 The effects of different surfactants on the morphologies and electrochemical properties of 63 1.2 19 MoS2/reduce graphene oxide composites. Chemical Physics Letters, 2019, 716, 6-10. Porous graphene prepared from anthracite as high performance anode materials for lithium-ion 2.8 64 battery applications. Journal of Alloys and Compounds, 2019, 779, 202-211. Resorcinol-formaldehyde based carbon aerogel: Preparation, structure and applications in energy 2.2 78 65 storage devices. Micróporous and Mesoporous Materials, 2019, 279, 293-315. Hierarchical 3D electrodes for electrochemical energy storage. Nature Reviews Materials, 2019, 4, 23.3 554 45-60. Sp2-carbon dominant carbonaceous materials for energy conversion and storage. Materials Science 67 14.8 25 and Engineering Reports, 2019, 137, 1-37. Znâ€Ion Hybrid Microâ€Supercapacitors with Ultrahigh Areal Energy Density and Longâ€Term Durability. 11.1 68 266 Advanced Materials, 2019, 31, e1806005. A rapid heat pressing strategy to prepare fluffy reduced graphene oxide films with meso/macropores 69 6.6 44 for high-performance supercapacitors. Chemical Engineering Journal, 2019, 361, 1437-1450. Two-dimensional materials for lithium/sodium-ion capacitors. Materials Today Energy, 2019, 11, 30-45. 2.5 Enhanced Roles of Carbon Architectures in High-Performance Lithium-Ion Batteries. Nano-Micro 71 14.4 56 Letters, 2019, 11, 5. Recent Advances in 3D Graphene Architectures and Their Composites for Energy Storage Applications. 99 Small, 2019, 15, e1803858. Fully printed one-step biosensing device using graphene/AuNPs composite. Biosensors and 73 5.339 Bioélectronics, 2019, 129, 238-244. A simple, supersensitive and highly selective electrochemical aptasensor for Microcystin-LR based on 74 synergistic signal amplification strategy with graphene, DNase'l enzyme and Au nanoparticles. Electrochimica Acta, 2019, 293, 220-229.

		CITATION REPORT	
#	Article	IF	CITATIONS
75	In situ synthesis of Mn3O4 on Ni foam/graphene substrate as a newly self-supported electrode high supercapacitive performance. Journal of Colloid and Interface Science, 2019, 534, 665-671	or 5.0	26
76	Fabrication of superhydrophobic/superoleophilic functionalized reduced graphene oxide/polydopamine/PFDT membrane for efficient oil/water separation. Separation and Purificat Technology, 2020, 236, 116240.	on 3.9	42
77	High photoresponse and fast carrier mobility: Twoâ€dimensional rGOâ€AgBr/Ag composite base Zâ€scheme heterointerface with plasma for hydrogen evolution. International Journal of Energy Research, 2020, 44, 833-844.	ed on 2.2	7
78	Free-standing N-Graphene as conductive matrix for Ni(OH)2 based supercapacitive electrodes. Electrochimica Acta, 2020, 334, 135592.	2.6	33
79	Solid‣tate Hybrid Supercapacitor Assembled from a Heterostructured Coâ^'Ni Batteryâ€like C Supercapacitorâ€Type Highly Disordered Carbon Nanosheets. ChemElectroChem, 2020, 7, 517	athode and 1.7 525. 1.7	8
80	Green synthesis of chemical converted graphene sheets derived from pulping black liquor. Carbo 2020, 158, 690-697.	on, 5.4	45
81	Konjac glucomannan-derived nitrogen-containing layered microporous carbon for high-performa supercapacitors. New Journal of Chemistry, 2020, 44, 1400-1406.	ince 1.4	7
82	Holey graphene: an emerging versatile material. Journal of Materials Chemistry A, 2020, 8, 918-	977. 5.2	81
83	Graphene materials in green energy applications: Recent development and future perspective. Renewable and Sustainable Energy Reviews, 2020, 120, 109656.	8.2	100
84	Effects of chlorine adatoms on small lithium nanoclusters adsorbed on graphene. Chemical Phys Letters, 2020, 738, 136896.	sics 1.2	4
85	In-situ hybridization of graphene sheets onto polyaniline nanofiber arrays grown on the surface carbon cloth under high electric voltage field for high–performance flexible supercapacitor. Carbon, 2020, 158, 711-718.	of 5.4	49
86	Nitrogen doped graphene/CuCr2O4 nanocomposites for supercapacitors application: Effect of nitrogen doping on coulombic efficiency. Electrochimica Acta, 2020, 332, 135368.	2.6	54
87	Non-covalently self-assembled organic molecules graphene aerogels to enhance supercapacitive performance. Applied Surface Science, 2020, 508, 145192.	3.1	24
88	Control of Charge Carriers and Band Structure in 2D Monolayer Molybdenum Disulfide via Cova Functionalization. ACS Applied Materials & Interfaces, 2020, 12, 4607-4615.	lent 4.0	19
89	The tunable electric and magnetic properties of 2D MXenes and their potential applications. Ma Advances, 2020, 1, 3104-3121.	terials 2.6	57
90	Advances in graphene-based supercapacitor electrodes. Energy Reports, 2020, 6, 2768-2784.	2.5	100
91	Tantalum pentoxide-reduced graphene oxide nanocomposite as a new conversion type anode m having extrinsic pseudocapacitance for electrochemical lithium storage. Journal of Energy Stora 2020, 32, 101991.	aterial ge, 3.9	2
92	Synthesis of a pomegranate shaped reduced graphene oxide stabilized secondary Si nanoparticl composite anode for lithium ion batteries. International Journal of Hydrogen Energy, 2020, 45, 29492-29504.	es 3.8	13

#	Article	IF	CITATIONS
93	Cutting edge development on graphene derivatives modified by liquid crystal and CdS/TiO ₂ hybrid matrix: optoelectronics and biotechnological aspects. Critical Reviews in Solid State and Materials Sciences, 2021, 46, 385-449.	6.8	117
94	Highâ€efficiency utilization of carbon materials for supercapacitors. Nano Select, 2020, 1, 244-262.	1.9	27
95	Structural and Electronic Properties of Heterostructures Composed of Antimonene and Monolayer MoS2. Nanomaterials, 2020, 10, 2358.	1.9	3
96	Bare Mo-Based Ordered Double-Transition Metal MXenes as High-Performance Anode Materials for Aluminum-Ion Batteries. Journal of Physical Chemistry C, 2020, 124, 25769-25774.	1.5	23
97	Stable high-capacity and high-rate silicon-based lithium battery anodes upon two-dimensional covalent encapsulation. Nature Communications, 2020, 11, 3826.	5.8	193
98	Influence of flake size and porosity of activated graphene on the performance of silicon/activated graphene composites as lithium-ion battery anodes. Journal of Electroanalytical Chemistry, 2020, 876, 114475.	1.9	11
99	Aggregation-induced responses (AIR) of 2D-derived layered nanostructures enable emerging colorimetric and fluorescence sensors. Analyst, The, 2020, 145, 7464-7476.	1.7	3
100	Ambient Temperature Graphitization Based on Mechanochemical Synthesis. Angewandte Chemie, 2020, 132, 22119-22123.	1.6	3
101	Ambient Temperature Graphitization Based on Mechanochemical Synthesis. Angewandte Chemie - International Edition, 2020, 59, 21935-21939.	7.2	32
102	Controlling the Morphology of Nanoflakes Obtained by Liquid-Phase Exfoliation: Implications for the Mass Production of 2D Materials. ACS Applied Nano Materials, 2020, 3, 12095-12105.	2.4	21
103	Stacking-configuration-enriched essential properties of bilayer graphenes and silicenes. Journal of Chemical Physics, 2020, 153, 154707.	1.2	5
104	Interfacial effect of Co4S3–Co9S8 nanoparticles hosted on rGO sheets derived from molecular precursor pyrolysis on enhancing electrochemical behaviour. Catalysis Science and Technology, 2020, 10, 3622-3634.	2.1	11
105	Preparation and electrochemical properties of ultra-high specific surface area N-doped biomass-porous carbon. Journal of Energy Storage, 2020, 30, 101537.	3.9	11
106	Electrochemical exfoliation for few-layer graphene in molybdate aqueous solution and its application for fast electrothermal film. Progress in Natural Science: Materials International, 2020, 30, 312-320.	1.8	13
107	Two-Dimensional Black Phosphorus: An Emerging Anode Material for Lithium-Ion Batteries. Nano-Micro Letters, 2020, 12, 120.	14.4	68
108	Harmonizing self-supportive VN/MoS2 pseudocapacitance core-shell electrodes for boosting the areal capacity of lithium storage. Materials Today Energy, 2020, 17, 100461.	2.5	59
109	Precipitated synthesis of Al2O3-ZnO nanorod for high-performance symmetrical supercapacitors. Materials Chemistry and Physics, 2020, 253, 123289.	2.0	32
110	Molecular Interpretation of Pharmaceuticals' Adsorption on Carbon Nanomaterials: Theory Meets Experiments. Processes, 2020, 8, 642.	1.3	29

#	Article	IF	CITATIONS
111	Polymer solution-assisted assembly of hierarchically nanostructured ZnO onto 2D neat graphene sheets with excellent photocatalytic performance. Journal of Alloys and Compounds, 2020, 843, 156030.	2.8	24
112	Ultrastable Silicon Anode by Three-Dimensional Nanoarchitecture Design. ACS Nano, 2020, 14, 4374-4382.	7.3	107
113	Poly(methyl methacrylate)â€Assisted Exfoliation of Graphite and Its Use in Acrylonitrileâ€Butadieneâ€Styrene Composites. Chemistry - A European Journal, 2020, 26, 6715-6725.	1.7	2
114	The Chemistry and Promising Applications of Graphene and Porous Graphene Materials. Advanced Functional Materials, 2020, 30, 1909035.	7.8	181
115	Nacre-Mimicking Titania/Graphene/Chitin Assemblies in Macroscopic Layered Membranes and Their Performance. Journal of Electronic Materials, 2020, 49, 3791-3803.	1.0	4
116	Anthraquinone-functionalized graphene framework for supercapacitors and lithium batteries. Ceramics International, 2020, 46, 15379-15384.	2.3	23
117	Siloxene-reduced graphene oxide composite hydrogel for supercapacitors. Chemical Engineering Journal, 2020, 393, 124684.	6.6	61
118	Dehydration of Cations Inducing Fast Ion Transfer and High Electrical Capacitance Performance on Graphene Electrode in Aqueous Electrolytes. Industrial & Engineering Chemistry Research, 2020, 59, 5768-5774.	1.8	4
119	Graphene and molybdenum disulphide hybrids for energy applications: an update. Materials Today Advances, 2020, 6, 100053.	2.5	24
120	Copper halide diselenium: predicted two-dimensional materials with ultrahigh anisotropic carrier mobilities. RSC Advances, 2020, 10, 8016-8026.	1.7	10
121	Synthesis of 3D phosphorus doped graphene foam in carbon cloth to support V2O5/CoMoS4 hybrid for flexible all-solid-state asymmetry supercapacitors. Journal of Power Sources, 2020, 453, 227902.	4.0	27
122	The COMPASS force field: Validation for carbon nanoribbons. Physica E: Low-Dimensional Systems and Nanostructures, 2020, 118, 113937.	1.3	27
123	Printing of graphene supercapacitors with enhanced capacitances induced by a leavening agent. Journal of Energy Storage, 2020, 28, 101210.	3.9	15
124	Fluorine edge decoration on zigzag silicene nanoribbons. Superlattices and Microstructures, 2020, 139, 106394.	1.4	9
125	Thinner fillers, coarser pores? A comparative study of the pore structure alterations of cement composites by graphene oxides and graphene nanoplatelets. Composites Part A: Applied Science and Manufacturing, 2020, 130, 105750.	3.8	43
126	Conductivity-tailored PtNi/MoS2 3D nanoflower catalyst via Sc doping as a hybrid anode for a variety of hydrocarbon fuels in proton exchange membrane fuel cells. Applied Catalysis B: Environmental, 2020, 267, 118724.	10.8	24
127	Microwave-reduced graphene oxide wrapped NCM layered oxide as a cathode material for Li-ion batteries. Journal of Alloys and Compounds, 2020, 834, 155014.	2.8	18
128	Facile fabrication of graphitization-enhanced wrinkled paper-like N-doped porous carbon <i>via</i> a ZnCl ₂ -modified NaCl-template method for use as an anode in lithium ion batteries. Sustainable Energy and Fuels, 2020, 4, 3477-3486.	2.5	8

#	Article	IF	CITATIONS
129	Preparation of Slightly Crumpled Aminated Graphene Nanosheets for Honeycomb-Like Flexible Graphene/PANI Composite Film Electrode with Enhanced Capacitive Performance in Solid-State Supercapacitors. Langmuir, 2020, 36, 4654-4663.	1.6	19
130	Achieving ultrahigh volumetric performance of graphene composite films by an outer–inner dual space utilizing strategy. Journal of Materials Chemistry A, 2020, 8, 9661-9669.	5.2	24
131	A high-performance graphene based asymmetric supercapacitor. International Journal of Modern Physics B, 2020, 34, 2040007.	1.0	4
132	Memristive Non-Volatile Memory Based on Graphene Materials. Micromachines, 2020, 11, 341.	1.4	36
133	Multifunctional coatings of exfoliated and reassembled graphite on cellulosic substrates. Faraday Discussions, 2021, 227, 105-124.	1.6	9
134	PAANa-induced ductile SEI of bare micro-sized FeS enables high sodium-ion storage performance. Science China Materials, 2021, 64, 105-114.	3.5	23
135	Two dimensional nanocarbons from biomass and biological molecules: Synthetic strategies and energy related applications. Journal of Energy Chemistry, 2021, 54, 795-814.	7.1	52
136	Perforated two-dimensional nanoarchitectures for next-generation batteries: Recent advances and extensible perspectives. Progress in Materials Science, 2021, 116, 100716.	16.0	30
137	Ï€-Ï€ stacked iron (II) phthalocyanine/graphene oxide composites: rational fabrication and excellent supercapacitor properties with superior rate performance. Journal of Solid State Electrochemistry, 2021, 25, 659-670.	1.2	7
138	Recent developments of graphene composites for energy storage devices. Materials Today: Proceedings, 2021, 45, 1779-1782.	0.9	15
139	Flexible, low-cost and scalable, nanostructured conductive paper-based, efficient hygroelectric generator. Energy and Environmental Science, 2021, 14, 353-358.	15.6	29
140	Rational design, synthesis, and application of silica/graphene-based nanocomposite: A review. Materials and Design, 2021, 198, 109367.	3.3	47
141	Electrochemical performance of composites made of rGO with Zn-MOF and PANI as electrodes for supercapacitors. Electrochimica Acta, 2021, 367, 137563.	2.6	44
142	Optimizing high-quality graphene nanoflakes production through organic (bio)-precursor plasma decomposition. Fuel Processing Technology, 2021, 212, 106630.	3.7	14
143	Fabrication of Fe nanocomplex pillared few-layered Ti3C2Tx MXene with enhanced rate performance for lithium-ion batteries. Nano Research, 2021, 14, 1218-1227.	5.8	45
144	Synthesis and characterization of aryl substituted functionalized graphene sheets and their electrochemical behavior. Journal of Solid State Electrochemistry, 2021, 25, 149-158.	1.2	2
145	In-situ preparation of Fe3O4/graphene nanocomposites and their electrochemical performances for supercapacitor. Materials Chemistry and Physics, 2021, 258, 123995.	2.0	24
146	Comparison of Additives in Anode: The Case of Graphene, MXene, CNTs Integration with Silicon Inside Carbon Nanofibers. Acta Metallurgica Sinica (English Letters), 2021, 34, 337-346.	1.5	14

ARTICLE IF CITATIONS Graphene-Based Nanocomposites., 2021, , 987-1012. 0 147 High-power graphene supercapacitors for the effective storage of regenerative energy during the braking and deceleration process in electric vehicles. Materials Chemistry Frontiers, 2021, 5, 6200-6211. 148 3.2 Boosting the lithium storage performance of 149 Na₂Li₂Ti₆O₁₄ anodes by 1.6 13 g-C₃N₄ modification. Dalton Transactions, 2021, 50, 5208-5217. New graphene-based nanocomposite for photocatalysis., 2021, , 181-207. Controllable synthesis of non-layered two-dimensional plate-like CuGaSe2 materials for 151 1.7 3 optoelectronic devices. RSC Advances, 2021, 11, 3673-3680. Smart fibers for energy conversion and storage. Chemical Society Reviews, 2021, 50, 7009-7061. 18.7 108 Functionalized Natural Polymer-Based Electrospun Nanofiber. Springer Series on Polymer and 153 0.5 0 Composite Materials, 2021, , 285-314. Synthesis of graphene through electrochemical exfoliation technique in aqueous medium. Materials 154 9 Today: Proceedings, 2021, 44, 2<u>695-2699.</u> CHAPTER 4. 3D Graphene-based Materials for Enhancing the Energy Density of Sodium Ion Batteries. 155 0.2 0 Chemistry in the Environment, 2021, , 86-114. Aryne cycloaddition reaction as a facile and mild modification method for design of electrode 2.6 materials for high-performance symmetric supercapacitor. Electrochimica Acta, 2021, 369, 137667. Chiral Graphene Hybrid Materials: Structures, Properties, and Chiral Applications. Advanced Science, 157 5.6 43 2021, 8, 2003681. Hybridized Graphene for Supercapacitors: Beyond the Limitation of Pure Graphene. Small, 2021, 17, 5.2 e2007311. Multifunctionalities enabled by the synergistic effects of mesoporous carbon dots and ZnO 159 0.8 4 nanorods. Materials Research Express, 2021, 8, 115504. Covalent modified reduced graphene oxide: Facile fabrication and high rate supercapacitor performances. Electrochimica Acta, 2021, 369, 137700. 2.6 Comparative study of half-metallic ferromagnetic behaviour in ZnO monolayer doped with boron and 161 2.33 carbon atoms. International Nano Letters, 2021, 11, 113. A simple hydrothermal one-step synthesis of 3D-MoS2/rGO for the construction of sensitive enzyme-frée hydrogen peroxide sénsor. Microchemical Journal, 2021, 162, 105746. Self-sacrificial template synthesis of heteroatom doped porous biochar for enhanced 163 4.0 61 electrochemical energy storage. Journal of Power Sources, 2021, 488, 229455. Rheological behavior of stabilized diamond-graphene nanoplatelets hybrid nanosuspensions in 164 2.3 mineral oil. Journal of Molecular Liquids, 2021, 328, 115509.

#	Article	IF	CITATIONS
165	Phenyl sulfonic acid functionalized graphene-based materials: Synthetic approaches and applications in organic reactions. Tetrahedron, 2021, 86, 132083.	1.0	4
166	Precisely Controlled Vertical Alignment in Mesostructured Carbon Thin Films for Efficient Electrochemical Sensing. ACS Nano, 2021, 15, 7713-7721.	7.3	28
167	Molecular Orientations at Buried Conducting Polymer/Graphene Interfaces. Macromolecules, 2021, 54, 4050-4060.	2.2	6
168	Laserâ€Manufactured Metastable Supranano SnO <i>_x</i> for Efficient Electron/Ion Bridging in SnO ₂ â€Graphene Heterostructure Boosting Lithium Storage. Advanced Functional Materials, 2021, 31, 2101059.	7.8	22
169	High energy storage performance of Sr-doped lanthanum titanate flexible self-supporting film for all-solid-state supercapacitor application. Journal of Materials Science, 2021, 56, 13243-13258.	1.7	4
170	Flexible Carbon Nanofibrous Membranes with Adjustable Hierarchical Porous Structure as High apacity Anodes for Sodiumâ€lon Batteries. Energy Technology, 2021, 9, 2100049.	1.8	11
171	Improved electrochemical performances of LiNi0.5Co0.2Mn0.3O2 modified by Graphene/V2O5 co-coating. Ceramics International, 2021, 47, 21759-21768.	2.3	12
172	Grapheneâ€Based Hybrid Functional Materials. Small, 2021, 17, e2100514.	5.2	31
173	Zinc oxide assisted synthesis of a holey carbon shell and graphene sheet supported silicon nanoparticle composite anode for lithium-ion batteries. Composites Communications, 2021, 25, 100713.	3.3	5
174	Hybridization of a Polymer inside the Pores of Activated Carbon and Pore Structural Characterization. ACS Applied Polymer Materials, 2021, 3, 3603-3611.	2.0	4
175	Microwave-assisted synthesis of carbon dots modified graphene for full carbon-based potassium ion capacitors. Carbon, 2021, 178, 1-9.	5.4	42
176	A review on supramolecules/nanocomposites based on carbonic precursors and dielectric/conductive polymers and their applications. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2021, 269, 115181.	1.7	6
177	Introductory Chapter: Introduction to Advanced Carbon Materials and Innovative Engineering Applications. , 0, , .		1
178	Charge/discharge properties of activated carbon/ruthenocene hybrid electrodes in an ionic liquid electrolyte. Journal of Solid State Chemistry, 2021, 299, 122149.	1.4	3
179	The Manufacture of Unbreakable Bionics via Multifunctional and Selfâ€Healing Silk–Graphene Hydrogels. Advanced Materials, 2021, 33, e2100047.	11.1	87
180	Redox active organic molecule-Emodin modified graphene for high-performance supercapacitors. Journal of Electroanalytical Chemistry, 2021, 895, 115402.	1.9	18
181	Recovery of thermal transport in atomic-layer-deposition-healed defective graphene. Carbon, 2021, 180, 77-84.	5.4	2
182	Graphene Fiberâ€Based Wearable Supercapacitors: Recent Advances in Design, Construction, and Application. Small Methods, 2021, 5, e2100502.	4.6	33

# 183	ARTICLE Development of PANI based ternary nanocomposite with enhanced capacity retention for high performance supercapacitor application. Electrochimica Acta, 2021, 388, 138564.	IF 2.6	CITATIONS
184	Biomass Homogeneity Reinforced Carbon Aerogels Derived Functional Phaseâ€Change Materials for Solar–Thermal Energy Conversion and Storage. Energy and Environmental Materials, 2023, 6, .	7.3	16
185	Facile synthesis and simulation of MnO2 nanoflakes on vertically aligned carbon nanotubes, as a high-performance electrode for Li-ion battery and supercapacitor. Electrochimica Acta, 2021, 390, 138826.	2.6	23
186	Graphene-Based Materials for Flexible Lithium–Sulfur Batteries. ACS Nano, 2021, 15, 13901-13923.	7.3	94
187	High uptake and fixation ability of BC monolayer for CO and NO toxic gases: a computational analysis. Journal of Materials Science, 2021, 56, 18566-18580.	1.7	0
188	Carbon nanomaterials: Synthesis, properties and applications in electrochemical sensors and energy conversion systems. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2021, 272, 115341.	1.7	40
189	Recent progress in solution assembly of 2D materials for wearable energy storage applications. Journal of Energy Chemistry, 2021, 62, 27-42.	7.1	29
190	High-performance flexible supercapacitor enabled by Polypyrrole-coated NiCoP@CNT electrode for wearable devices. Journal of Colloid and Interface Science, 2022, 606, 135-147.	5.0	48
191	Hybrid Nanostructured Carbon Materials for Supercapacitors. , 2022, , 409-414.		2
192	Graphene/MoS2 Nanohybrid for Biosensors. Materials, 2021, 14, 518.	1.3	25
193	Structure engineering of van der Waals layered transition metal-containing compounds for aqueous energy storage. Materials Chemistry Frontiers, 2021, 5, 2996-3020.	3.2	4
194	Fine structures of valley-polarized excitonic states in monolayer transitional metal dichalcogenides. Nanophotonics, 2020, 9, 1811-1829.	2.9	27
195	Free-standing Three Dimensional Graphene Incorporated with Gold Nanoparticles as Novel Binder-free Electrochemical Sensor for Enhanced Glucose Detection. Journal of Electrochemical Science and Technology, 2018, 9, 229-237.	0.9	6
196	Fe ₃ C doped modified nano-Si/C composites as high-coulombic-efficiency anodes for lithium-ion batteries. Sustainable Energy and Fuels, 2021, 5, 6170-6180.	2.5	5
197	Chemically derived graphene nanoribbons from carbon nanotubes for supercapacitor application. Materials Today: Proceedings, 2022, 50, 1511-1515.	0.9	2
198	Novel poly(<scp>1H</scp> â€benzo[g]indole)/ <scp>TiO₂</scp> nanocomposites for highâ€performance electrochromic supercapacitor application. Journal of Polymer Science, 2021, 59, 3100-3110.	2.0	4
199	MXeneâ€Coupled Sandwichâ€Like Polyaniline as Dual Conductive Electrode for Flexible Allâ€Solidâ€State and Ionicâ€liquidâ€Based Supercapacitors with Superior Energy Density. Advanced Materials Interfaces, 2021, 8, 2101263.	1.9	14
200	Graphene-Based Advanced Materials: Properties and Their Key Applications. Carbon Nanostructures, 2019, , 31-51.	0.1	2

ARTICLE IF CITATIONS Graphene-Based Nanocomposites., 2020, , 1-26. 201 0 A Unique Structural Highly Compacted Binderâ€Free Siliconâ€Based Anode with High Electronic 6.9 Conductivity for Highã€Performance Lithiumâ€Ion Batteries. Small Structures, 2022, 3, 2100174. Tracking the complete degradation lifecycle of poly(ethyl cyanoacrylate): From induced 204 photoluminescence to nitrogen-doped nano-graphene precursor residue. Polymer Degradation and 2.7 2 Stability, 2022, 195, 109772. Recent advances of the graphite exfoliation processes and structural modification of graphene: a review. Journal of Nanoparticle Research, 2021, 23, 1. Self-assembly synthesis of 3D graphene/nano-Fe3O4 hybrid aerogels with improved mechanical and 206 2.8 5 thermal properties. Journal of Alloys and Compounds, 2022, 902, 163718. The interlayer coupling modulation of a g-C₃N₄/WTe₂ heterostructure for solar cell applications. RSC Advances, 2021, 12, 998-1004. 1.7 Environmental and health effects of graphene-family nanomaterials: Potential release pathways, 208 6.2 56 transformation, environmental fate and health risks. Nano Today, 2022, 42, 101379. Aluminum-ion intercalation and reduced graphene oxide wrapping enable the electrochemical 209 properties of hydrated V2O5 for Zn-ion storage. Colloids and Surfaces A: Physicochemical and 2.3 Engineering Aspects, 2022, 641, 128473. MXenes with applications in supercapacitors and secondary batteries: A comprehensive review. 210 1.7 19 Materials Reports Energy, 2022, 2, 100080. Sulfur-Doped Graphene as a Rational Anode for an Ionic Liquid Based Hybrid Capacitor with a 3.5 V 2.5 Working Window. Energy & amp; Fuels, 2022, 36, 2799-2810. Heteroatom Doping in Nanocarbon and Its Applications. Advances in Material Research and 212 2 0.3 Technology, 2022, , 61-81. Prospect of DFT Utilization in Polymer-Graphene Composites for Electromagnetic Interference Shielding Application: A Review. Polymers, 2022, 14, 704. Generating Bright Emissive States by Modulating the Bandgap of Monolayer Tungsten Diselenide. 214 1.5 3 Journal of Physical Chemistry C, 2022, 126, 5598-5606. Fabrication of MoO3 Nanowires/MXene@CC hybrid as highly conductive and flexible electrode for next-generation supercapacitors applications. Ceramics International, 2022, 48, 19314-19323. 2.3 34 Laser-Derived Interfacial Confinement Enables Planar Growth of 2D SnS2 on Graphene for High-Flux 216 10 14.4 Electron/Ion Bridging in Sodium Storage. Nano-Micro Letters, 2022, 14, 91. Safety assessment of graphene oxide and microcystin-LR complex: a toxicological scenario beyond physical mixture. Particle and Fibre Toxicology, 2022, 19, 26. Oxygen vacancy defect tungsten-oxide-quantum-dot-modified nitrogen-doped graphene with 218 interfacial tiny primitives to boost oxygen reduction reaction. Journal of Alloys and Compounds, 2.8 5 2022, 908, 164588. Synthesis of Nano-polypyrrole/Reduced Graphene Oxide via Double Emulsion Method. Polymer Science 219

Series A, 2021, 63, 828-841.

#	Article	IF	CITATIONS
220	Taloring solid state electrodes for the development of next generation asymmetric supercapacitors. , 2021, , .		0
221	Short-Process Multiscale Core–Shell Structure Buffer Control of a Ni/N Codoped Si@C Composite Using Waste Silicon Powder for Lithium-Ion Batteries. ACS Applied Energy Materials, 2022, 5, 178-185.	2.5	5
222	Graphene Acid for Lithiumâ€lon Batteries—Carboxylation Boosts Storage Capacity in Graphene. Advanced Energy Materials, 2022, 12, .	10.2	25
223	Advanced graphene oxide-based paper sensor for colorimetric detection of miRNA. Mikrochimica Acta, 2022, 189, 35.	2.5	15
224	Green Solvents for the Liquid Phase Exfoliation Production of Graphene: The Promising Case of Cyrene. Frontiers in Chemistry, 2022, 10, 878799.	1.8	14
225	Free-standing graphene-carbon as negative and FeCoS as positive electrode for asymmetric supercapacitor. Journal of Energy Storage, 2022, 50, 104637.	3.9	2
226	Microstructure Dependent Behavior of the Contacting Interface on Porous Graphene EncapsulatedÂSi Anodes for Li-Ion Batteries. SSRN Electronic Journal, 0, , .	0.4	0
227	Ganoderma Lucidum-derived erythrocyte-like sustainable materials. Carbon, 2022, 196, 70-77.	5.4	14
228	Temperature-Adaptable Pressure Sensors Based on Mxene-Coated Go Hierarchical Aerogels with Superb Detection Capability. SSRN Electronic Journal, 0, , .	0.4	0
229	Hierarchical polygon Co3O4 flakes/N,O-dual doped porous carbon frameworks for flexible hybrid supercapacitors. Electrochimica Acta, 2022, 424, 140631.	2.6	19
230	Recent progress in emerging hybrid nanomaterials towards the energy storage and heat transfer applications: A review. Journal of Molecular Liquids, 2022, 360, 119443.	2.3	22
231	Hierarchical hybrid architectures assembled from carbon coated Li3VO4 and in-situ generated N-doped graphene framework towards superior lithium storage. Journal of Alloys and Compounds, 2022, 918, 165668.	2.8	7
232	Research progress on ZnSe and ZnTe anodes for rechargeable batteries. Nanoscale, 2022, 14, 9609-9635.	2.8	15
233	Design and synthesis of cellulose nanofiber-derived CoO/Co/C two-dimensional nanosheet toward enhanced and stable lithium storage. Journal of Colloid and Interface Science, 2022, 625, 915-924.	5.0	8
234	Graphene oxide-based materials in electrocatalysis. , 2022, , 189-238.		0
235	Practical Graphene Technologies for Electrochemical Energy Storage. Advanced Functional Materials, 2022, 32, .	7.8	32
236	Polydopamine-coated graphene for supercapacitors with improved electrochemical performances and reduced self-discharge. Electrochimica Acta, 2022, 426, 140776.	2.6	13
237	Preparation of pâ€fluoroaniline modified graphene oxide composite and its application in polyurethane weatherproof coating. Journal of Applied Polymer Science, 2022, 139, .	1.3	2

	CITATION	Report	
#	Article	IF	Citations
238	Concentrated Solar Induced Graphene. ACS Omega, 2022, 7, 27263-27271.	1.6	7
239	Covalent edge-functionalization of graphene oxide with porphyrins for highly efficient photoinduced electron/energy transfer and enhanced nonlinear optical performance. Nano Research, 2023, 16, 25-32.	5.8	9
240	Direct-Chemical Vapor Deposition-Enabled Graphene for Emerging Energy Storage: Versatility, Essentiality, and Possibility. ACS Nano, 2022, 16, 11646-11675.	7.3	16
241	The facile detection and micromechanism of ATMP and DTPMP by fluorescence sensor based on nitrogen-doped carbon nanomaterials. Dyes and Pigments, 2022, 207, 110659.	2.0	3
242	Temperature-adaptable pressure sensors based on MXene-coated GO hierarchical aerogels with superb detection capability. Carbon, 2022, 200, 47-55.	5.4	15
243	Chiral graphene materials for enantiomer separation. Chemical Engineering Journal, 2023, 452, 139499.	6.6	13
244	Flash Nitrogen-Doped Graphene for High-Rate Supercapacitors. , 2022, 4, 1863-1871.		23
246	MOF-derived nanoporous carbons with diverse tunable nanoarchitectures. Nature Protocols, 2022, 17, 2990-3027.	5.5	128
247	Recent Advancement in Rational Design Modulation of MXene: A Voyage from Environmental Remediation to Energy Conversion and Storage. Chemical Record, 2022, 22, .	2.9	16
248	Redox-active conjugated microporous anthraquinonylamine-based polymer network grafted with activated graphene toward high-performance flexible asymmetric supercapacitor electrodes. Electrochimica Acta, 2022, 434, 141315.	2.6	7
249	Green reduction of graphene oxide as a substitute of acidic reducing agents for supercapacitor applications. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2023, 287, 116128.	1.7	15
250	rGO/Ni-MOF Composite Modified with PANI Applied as Electrode Materials for Supercapacitor. Chemistry Letters, 2023, 52, 17-21.	0.7	6
251	Multiwalled carbon nanotube network connected Mg _{0.5} Ti ₂ (PO ₄) ₃ composites to improve sodium storage performance. RSC Advances, 2022, 12, 35756-35762.	1.7	0
252	Current progresses in two-dimensional MXene-based framework: prospects from superficial synthesis to energy conversion and storage applications. Materials Today Chemistry, 2023, 27, 101238.	1.7	8
253	Materials design and preparation for high energy density and high power density electrochemical supercapacitors. Materials Science and Engineering Reports, 2023, 152, 100713.	14.8	54
254	2D Metallic Abnormal Li ₂ Cl Crystals with Unique Electronic Characteristics Applied in Capacitor and Humidity Sensor. Advanced Materials Interfaces, 2023, 10, .	1.9	0
255	2D, Metalâ€Free Electrocatalysts for the Nitrogen Reduction Reaction. Advanced Functional Materials, 2023, 33, .	7.8	17
256	On the Road to the Frontiers of Lithium″on Batteries: A Review and Outlook of Graphene Anodes. Advanced Materials, 2023, 35, .	11.1	58

#	Article	IF	CITATIONS
257	Click and Detect: Versatile Ampicillin Aptasensor Enabled by Click Chemistry on a Graphene–Alkyne Derivative. Small, 2023, 19, .	5.2	1
258	Effects of nitrogen, sulphur, and temperature treatments on the spectral, structural, and electrochemical characteristics of graphene oxide for energy storage applications. Carbon Trends, 2023, 11, 100262.	1.4	3
259	Functionalization of graphene-based nanomaterials for energy and hydrogen storage. Electrochimica Acta, 2023, 452, 142340.	2.6	13
260	Microstructure dependent behavior of the contact interface on porous graphene wrapped Si anodes for Li-ion batteries. Electrochimica Acta, 2023, 444, 141976.	2.6	4
261	Ordered-Range Tuning of Flash Graphene for Fast-Charging Lithium-Ion Batteries. ACS Applied Nano Materials, 2023, 6, 2450-2458.	2.4	3
262	UiOâ€66â€NH ₂ @67 Core–Shell Metal–Organic Framework as Fillers in Solid Composite Electrolytes for Highâ€Performance Allâ€Solidâ€State Lithium Metal Batteries. Energy Technology, 2023, 11, .	1.8	17
263	Nitrogen doped reduced graphene oxide/ZnCo2O4 nanocomposite electrode for hybrid supercapacitor application. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2023, 290, 116328.	1.7	10
264	Facile synthesis of nitrogen-doped graphene, and its advanced electrochemical activity toward efficient lithium ion storage. Functional Materials Letters, 0, , .	0.7	0
265	Core–Shell Nanostructures-Based Porous Carbon Nanomaterials for Oxygen Reduction Reaction. Materials Horizons, 2023, , 323-350.	0.3	0
266	Nanoporous Carbon Materials for Energy Harvesting, Storage, and Conversion. Materials Horizons, 2023, , 41-63.	0.3	0
272	Graphene Nanotechnology for Renewable Energy Systems. Engineering Materials, 2023, , 167-193.	0.3	0
273	Trends and Perspectives Towards Activated Carbon and Activated Carbon-derived Materials in Environmental Catalysis Applications. , 2023, , 206-232.		1
276	Synergistic MXene/LDH heterostructures with extensive interfacing as emerging energy conversion and storage materials. Journal of Materials Chemistry A, 2023, 11, 14469-14488.	5.2	8
290	Recent advances in metal-free electrocatalysts for the hydrogen evolution reaction. Journal of Materials Chemistry A, O, , .	5.2	0
296	Graphene and its hybrid materials: Properties and applications. , 2023, , .		0