DNA Nanotechnology-Enabled Drug Delivery Systems

Chemical Reviews 119, 6459-6506

DOI: 10.1021/acs.chemrev.7b00663

Citation Report

#	Article	IF	CITATIONS
1	Translatable High Drug Loading Drug Delivery Systems Based on Biocompatible Polymer Nanocarriers. Biomacromolecules, 2018, 19, 1732-1745.	2.6	102
2	DNA flower-encapsulated horseradish peroxidase with enhanced biocatalytic activity synthesized by an isothermal one-pot method based on rolling circle amplification. Nanoscale, 2018, 10, 22456-22465.	2.8	40
3	Fibrous polymer nanomaterials for biomedical applications and their transport by fluids: an overview. Soft Matter, 2018, 14, 8421-8444.	1.2	15
4	A versatile method for the UVA-induced cross-linking of acetophenone- or benzophenone-functionalized DNA. Scientific Reports, 2018, 8, 16484.	1.6	11
5	Role of Endocrine-Disrupting Engineered Nanomaterials in the Pathogenesis of Type 2 Diabetes Mellitus. Frontiers in Endocrinology, 2018, 9, 704.	1.5	15
6	DNA Aptamers for the Functionalisation of DNA Origami Nanostructures. Genes, 2018, 9, 571.	1.0	32
7	DNA origami nanostructures can exhibit preferential renal uptake and alleviate acute kidney injury. Nature Biomedical Engineering, 2018, 2, 865-877.	11.6	297
8	RNA-Cleaving DNAzymes: Old Catalysts with New Tricks for Intracellular and In Vivo Applications. Catalysts, 2018, 8, 550.	1.6	41
9	DNA-templated nanofabrication. Current Opinion in Colloid and Interface Science, 2018, 38, 88-99.	3.4	16
10	DNA Polymer Nanoparticles Programmed via Supersandwich Hybridization for Imaging and Therapy of Cancer Cells. Analytical Chemistry, 2018, 90, 12951-12958.	3.2	50
11	Intercalation of Bioactive Molecules into Nanosized ZnAl Hydrotalcites for Combined Chemo and Photo Cancer Treatment. ACS Applied Nano Materials, 2018, 1, 6387-6397.	2.4	8
12	DNA Nanocarriers: Programmed to Deliver. Trends in Biochemical Sciences, 2018, 43, 997-1013.	3.7	94
13	Layered-Crossover Tiles with Precisely Tunable Angles for 2D and 3D DNA Crystal Engineering. Journal of the American Chemical Society, 2018, 140, 14670-14676.	6.6	62
14	Rod-shaped mesoporous silica nanoparticles for nanomedicine: recent progress and perspectives. Expert Opinion on Drug Delivery, 2018, 15, 881-892.	2.4	55
15	Self-assembled nanomaterials for synergistic antitumour therapy. Journal of Materials Chemistry B, 2018, 6, 6685-6704.	2.9	26
16	Logic circuit controlled multi-responsive branched DNA scaffolds. Chemical Communications, 2018, 54, 6132-6135.	2.2	16
17	DNA Origami Nanomachines. Molecules, 2018, 23, 1766.	1.7	68
18	Nanobiotechnology medical applications: Overcoming challenges through innovation. The EuroBiotech Journal, 2018, 2, 146-160.	0.5	9

ARTICLE IF CITATIONS Inhibiting Methicillin-Resistant <i>Staphylococcus aureus</i> by Tetrahedral DNA 19 4.5 117 Nanostructure-Enabled Antisense Peptide Nucleic Acid Delivery. Nano Letters, 2018, 18, 5652-5659. Current Challenges in Delivery and Cytosolic Translocation of Therapeutic RNAs. Nucleic Acid Therapeutics, 2018, 28, 178-193. Bioapplications of DNA nanotechnology at the solidâ€"liquid interface. Chemical Society Reviews, 2019, 21 18.7 68 48, 4892-4920. Polypeptide-engineered DNA tetrahedrons for targeting treatment of colorectal cancer via apoptosis 4.8 and autophagy. Journal of Controlled Release, 2019, 309, 48-58. Electrodeposited Nanoporous Polypyrrole Layers for Controlled Drug Release. Journal of the 23 1.3 3 Electrochemical Society, 2019, 166, G122-G129. Bottomâ€Up Assembly of DNA–Silica Nanocomposites into Micrometerâ€Sized Hollow Spheres. Angewandte Chemie - International Edition, 2019, 58, 17269-17272. pH-Responsive and Gemcitabine-Containing DNA Nanogel To Facilitate the Chemodrug Delivery. ACS 25 4.0 41 Applied Materials & amp; Interfaces, 2019, 11, 41082-41090. Dual-Responsive DNA Nanodevice for the Available Imaging of an Apoptotic Signaling Pathway <i>in 7.3 26 28 Situ</i>. ACS Nano, 2019, 13, 12840-12850. Nanostructured DNA for the delivery of therapeutic agents. Advanced Drug Delivery Reviews, 2019, 27 6.6 21 147, 29-36. A universal converting strategy based on target-induced DNA nanoprobe conformational change for 5.3 lead (II) ion assay. Biosensors and Bioelectronics, 2019, 144, 111679. Dynamic DNA nanostructures in biomedicine: Beauty, utility and limits. Journal of Controlled Release, 29 31 4.8 2019, 315, 166-185. Nanoparticle Delivery of Immunostimulatory Agents for Cancer Immunotherapy. Theranostics, 2019, 9, 4.6 59 7826-7848. Dual-Color Emissive AIEgen for Specific and Label-Free Double-Stranded DNA Recognition and $\mathbf{31}$ Single-Nucleotide Polymorphisms Detection. Journal of the American Chemical Society, 2019, 141, 6.6 70 20097-20106. Polarization Induced Electro-Functionalization of Pore Walls: A Contactless Technology. Biosensors, 2.3 2019, 9, 121. A Self-Assembled Platform Based on Branched DNA for sgRNA/Cas9/Antisense Delivery. Journal of the 33 93 6.6 American Chemical Society, 2019, 141, 19032-19037. Spectrum-Quantified Morphological Evolution of Enzyme-Protected Silver Nanotriangles by 34 DNA-Guided Postshaping. Journal of the American Chemical Society, 2019, 141, 19533-19537. Bottomâ€Up Assembly of DNAâ€"Silica Nanocomposites into Micrometerâ€Sized Hollow Spheres. 35 1.6 1 Angewandte Chemie, 2019, 131, 17429-17432. Patterning Porous Networks through Selfâ€Assembly of Programmed Biomacromolecules. Chemistry - A

CITATION REPORT

European Journal, 2019, 25, 16179-16200.

#

#	Article	IF	CITATIONS
37	A non-cationic nucleic acid nanogel for the delivery of the CRISPR/Cas9 gene editing tool. Nanoscale, 2019, 11, 17211-17215.	2.8	64
38	Fabrication and Biomedical Applications of "Polymer-Like―Nucleic Acids Enzymatically Produced by Rolling Circle Amplification. ACS Applied Bio Materials, 2019, 2, 4106-4120.	2.3	33
39	Etching silver nanoparticles using DNA. Materials Horizons, 2019, 6, 155-159.	6.4	35
40	Tetrahedral DNA Nanostructure-Delivered DNAzyme for Gene Silencing to Suppress Cell Growth. ACS Applied Materials & Interfaces, 2019, 11, 6850-6857.	4.0	67
41	Minimalist Design of a Stimuli-Responsive Spherical Nucleic Acid for Conditional Delivery of Oligonucleotide Therapeutics. ACS Applied Materials & Interfaces, 2019, 11, 13912-13920.	4.0	27
42	Engineering a stable future for DNA-origami as a biomaterial. Biomaterials Science, 2019, 7, 532-541.	2.6	119
43	Targeting mitochondria with Au–Ag@Polydopamine nanoparticles for papillary thyroid cancer therapy. Biomaterials Science, 2019, 7, 1052-1063.	2.6	31
44	<p>Small interfering RNAs (siRNAs) in cancer therapy: a nano-based approach</p> . International Journal of Nanomedicine, 2019, Volume 14, 3111-3128.	3.3	167
45	Recent progress in multienzymes co-immobilization and multienzyme system applications. Chemical Engineering Journal, 2019, 373, 1254-1278.	6.6	257
46	Simply Constructed and Highly Efficient Classified Cargo-Discharge DNA Robot: A DNA Walking Nanomachine Platform for Ultrasensitive Multiplexed Sensing. Analytical Chemistry, 2019, 91, 8123-8128.	3.2	55
47	Self-assemblies of nucleolipid supramolecular synthons show unique self-sorting and cooperative assembling process. Nanoscale, 2019, 11, 11956-11966.	2.8	13
48	Realâ€Time Observation of Superstructureâ€Dependent DNA Origami Digestion by DNaseâ€I Using Highâ€Spec Atomic Force Microscopy. ChemBioChem, 2019, 20, 2818-2823.	ed 1.3	66
49	Advances in DNA/RNA detection using nanotechnology. Advances in Clinical Chemistry, 2019, 91, 31-98.	1.8	16
50	Base‣equenceâ€Independent Efficient Redox Switching of Selfâ€Assembled DNA Nanocages. ChemBioChem, 2019, 20, 2743-2746.	1.3	4
51	Fabrication of Metal Nanostructures with Programmable Length and Patterns Using a Modular DNA Platform. Nano Letters, 2019, 19, 2707-2714.	4.5	40
52	Achieving Selective Targeting Using Engineered Nanomaterials. Series in Bioengineering, 2019, , 147-182.	0.3	2
53	Oligosaccharides Self-Assemble and Show Intrinsic Optical Properties. Journal of the American Chemical Society, 2019, 141, 4833-4838.	6.6	57
54	Target-triggered dynamic hairpin assembly for signal amplification of microRNA and oncogenes and its application in live-cell imaging. Chemical Communications, 2019, 55, 4103-4106.	2.2	20

#	Article	IF	CITATIONS
55	DNA Logic Operations in Living Cells Utilizing Lysosome-Recognizing Framework Nucleic Acid Nanodevices for Subcellular Imaging. ACS Nano, 2019, 13, 5778-5784.	7.3	108
56	Structural and Functional Stability of DNA Nanopores in Biological Media. Nanomaterials, 2019, 9, 490.	1.9	19
57	Cholesterol Anchors Enable Efficient Binding and Intracellular Uptake of DNA Nanostructures. Bioconjugate Chemistry, 2019, 30, 1836-1844.	1.8	25
58	A Photocaged DNA Nanocapsule for Controlled Unlocking and Opening inside the Cell. Bioconjugate Chemistry, 2019, 30, 1860-1863.	1.8	13
59	DNA tetrahedron-based nanogels for siRNA delivery and gene silencing. Chemical Communications, 2019, 55, 4222-4225.	2.2	83
60	Progress Toward Absorption, Distribution, Metabolism, Elimination, and Toxicity of DNA Nanostructures. Advanced Therapeutics, 2019, 2, 1900144.	1.6	9
61	2′-Deoxy-2′-fluoro-arabinonucleic acid: a valid alternative to DNA for biotechnological applications using charge transport. Physical Chemistry Chemical Physics, 2019, 21, 22869-22878.	1.3	6
62	Stimulus-responsive nanomotors based on gated enzyme-powered Janus Au–mesoporous silica nanoparticles for enhanced cargo delivery. Chemical Communications, 2019, 55, 13164-13167.	2.2	46
63	Single-Particle Tracking with Scattering-Based Optical Microscopy. Analytical Chemistry, 2019, 91, 15327-15334.	3.2	45
64	One-Step Self-Assembly of Multifunctional DNA Nanohydrogels: An Enhanced and Harmless Strategy for Guiding Combined Antitumor Therapy. ACS Applied Materials & Interfaces, 2019, 11, 46479-46489.	4.0	54
65	Single-molecule dynamic DNA junctions for engineering robust molecular switches. Chemical Science, 2019, 10, 9922-9927.	3.7	8
66	Targeting nucleolin to obstruct vasculature feeding with an intelligent DNA nanorobot. Journal of Cellular and Molecular Medicine, 2019, 23, 2248-2250.	1.6	24
67	Enhancing Biocompatible Stability of DNA Nanostructures Using Dendritic Oligonucleotides and Brick Motifs. Angewandte Chemie - International Edition, 2020, 59, 700-703.	7.2	46
68	An Aptamerâ€Nanotrain Assembled from Six‣etter DNA Delivers Doxorubicin Selectively to Liver Cancer Cells. Angewandte Chemie, 2020, 132, 673-678.	1.6	8
69	An Aptamerâ€Nanotrain Assembled from Six‣etter DNA Delivers Doxorubicin Selectively to Liver Cancer Cells. Angewandte Chemie - International Edition, 2020, 59, 663-668.	7.2	61
70	Programming DNA Nanoassembly for Enhanced Photodynamic Therapy. Angewandte Chemie, 2020, 132, 1913-1921.	1.6	14
71	Programming DNA Nanoassembly for Enhanced Photodynamic Therapy. Angewandte Chemie - International Edition, 2020, 59, 1897-1905.	7.2	99
72	Hyper-dendritic rolling circle amplification for RNA and GSH detection. Microchemical Journal, 2020, 153, 104381.	2.3	3

#	Article	IF	CITATIONS
73	Framework Nucleic Acids for Cell Imaging and Therapy. Chemical Research in Chinese Universities, 2020, 36, 1-9.	1.3	11
74	The Benefits of Macromolecular/Supramolecular Approaches in Hydrogen Sulfide Delivery: A Review of Polymeric and Self-Assembled Hydrogen Sulfide Donors. Antioxidants and Redox Signaling, 2020, 32, 79-95.	2.5	32
75	Enhancing Biocompatible Stability of DNA Nanostructures Using Dendritic Oligonucleotides and Brick Motifs. Angewandte Chemie, 2020, 132, 710-713.	1.6	13
76	Gold Nanoparticles in Conjunction with Nucleic Acids as a Modern Molecular System for Cellular Delivery. Molecules, 2020, 25, 204.	1.7	78
77	Graphene oxide as a photocatalytic nuclease mimicking nanozyme for DNA cleavage. Nano Research, 2020, 13, 455-460.	5.8	57
78	Lipid–oligonucleotide conjugates for simple and efficient cell membrane engineering and bioanalysis. Current Opinion in Biomedical Engineering, 2020, 13, 76-83.	1.8	18
79	Analysis of Tertiary Structural Features of Branched DNA Nanostructures with Partially Common Sequences Using Small-Angle X-ray Scattering. ACS Applied Bio Materials, 2020, 3, 308-314.	2.3	1
80	Engineered functionalized 2D nanoarchitectures for stimuli-responsive drug delivery. Materials Horizons, 2020, 7, 455-469.	6.4	57
81	A self-assembled RNA-triple helix hydrogel drug delivery system targeting triple-negative breast cancer. Journal of Materials Chemistry B, 2020, 8, 3527-3533.	2.9	55
82	Engineering a Floxuridine-integrated RNA Prism as Precise Nanomedicine for Drug Delivery. Chemical Research in Chinese Universities, 2020, 36, 274-280.	1.3	1
83	Progress toward Safe Tumor Diagnosis and Therapy via Degradable Inorganic Nanomaterials Constructed with Metabolically Safe Elements. ACS Applied Nano Materials, 2020, 3, 1028-1042.	2.4	5
84	Tumor-Targeted DNA Bipyramid for <i>in Vivo</i> Dual-Modality Imaging. ACS Applied Bio Materials, 2020, 3, 2854-2860.	2.3	14
85	Aptamer-Functionalized DNA Origami for Targeted Codelivery of Antisense Oligonucleotides and Doxorubicin to Enhance Therapy in Drug-Resistant Cancer Cells. ACS Applied Materials & Interfaces, 2020, 12, 400-409.	4.0	99
86	Engineering Lipid Membranes with Programmable DNA Nanostructures. Advanced Biology, 2020, 4, 1900215.	3.0	34
87	Incorporation of Boronic Acid into Aptamer-Based Molecularly Imprinted Hydrogels for Highly Specific Recognition of Adenosine. ACS Applied Bio Materials, 2020, 3, 2568-2576.	2.3	20
88	Designer DNA architecture offers precise and multivalent spatial pattern-recognition for viral sensing and inhibition. Nature Chemistry, 2020, 12, 26-35.	6.6	193
89	A smart bioresponsive nanosystem with dual-modal imaging for drug visual loading and targeted delivery. Chemical Engineering Journal, 2020, 391, 123619.	6.6	37
90	Multivalent Aptamer-modified DNA Origami as Drug Delivery System for Targeted Cancer Therapy. Chemical Research in Chinese Universities, 2020, 36, 254-260.	1.3	23

#	Article	IF	CITATIONS
91	Rational Design of DNA Frameworkâ€Based Hybrid Nanomaterials for Anticancer Drug Delivery. Small, 2020, 16, e2002578.	5.2	37
92	DNA Nanostructures and DNAâ€Functionalized Nanoparticles for Cancer Theranostics. Advanced Science, 2020, 7, 2001669.	5.6	47
93	Programmable DNA Nanoflowers for Biosensing, Bioimaging, and Therapeutics. Chemistry - A European Journal, 2020, 26, 14512-14524.	1.7	32
94	Photoluminescent and Chromic Nanomaterials for Anticounterfeiting Technologies: Recent Advances and Future Challenges. ACS Nano, 2020, 14, 14417-14492.	7.3	314
95	An Organelle‧pecific Nanozyme for Diabetes Care in Genetically or Dietâ€Induced Models. Advanced Materials, 2020, 32, e2003708.	11.1	58
96	One-Dimensional Synergistic Core–Shell Nanozymes with Superior Peroxidase-like Activity for Ultrasensitive Colorimetric Detection of Blood Cholesterol. ACS Applied Bio Materials, 2020, 3, 5111-5119.	2.3	25
97	DNA Functional Materials Assembled from Branched DNA: Design, Synthesis, and Applications. Chemical Reviews, 2020, 120, 9420-9481.	23.0	313
98	Ultrathin Silica Coating of DNA Origami Nanostructures. Chemistry of Materials, 2020, 32, 6657-6665.	3.2	52
99	Fluorescent detection of Cu (II) ions based on DNAzymatic cascaded cyclic amplification. Mikrochimica Acta, 2020, 187, 443.	2.5	11
100	Designed DNA nanostructure grafted with erlotinib for non-small-cell lung cancer therapy. Nanoscale, 2020, 12, 23953-23958.	2.8	24
101	A graphene-sandwiched DNA nano-system: regulation of intercalated doxorubicin for cellular localization. Nanoscale Advances, 2020, 2, 5746-5759.	2.2	2
102	Toehold-Mediated Selective Assembly of Compact Discrete DNA Nanostructures. Langmuir, 2020, 36, 15119-15127.	1.6	5
103	Hierarchical Fabrication of DNA Wireframe Nanoarchitectures for Efficient Cancer Imaging and Targeted Therapy. ACS Nano, 2020, 14, 17365-17375.	7.3	30
104	Recent Advances on Rare Earth Upconversion Nanomaterials for Combined Tumor Near-Infrared Photoimmunotherapy. Frontiers in Chemistry, 2020, 8, 596658.	1.8	11
105	Precise design strategies of nanomedicine for improving cancer therapeutic efficacy using subcellular targeting. Signal Transduction and Targeted Therapy, 2020, 5, 262.	7.1	73
106	A photocaged DNA nanocapsule for delivery and manipulation in cells. Methods in Enzymology, 2020, 641, 329-342.	0.4	0
107	Synthesis of DNA Origami Scaffolds: Current and Emerging Strategies. Molecules, 2020, 25, 3386.	1.7	29
108	Nucleic Acid Hybrids as Advanced Antibacterial Nanocarriers. Pharmaceutics, 2020, 12, 643.	2.0	8

#	Article	IF	CITATIONS
109	pH-responsive DNA nanomicelles for chemo-gene Synergetic Therapy of Anaplastic Large Cell Lymphoma. Theranostics, 2020, 10, 8250-8263.	4.6	20
110	Development of Cu ²⁺ -Based Distance Methods and Force Field Parameters for the Determination of PNA Conformations and Dynamics by EPR and MD Simulations. Journal of Physical Chemistry B, 2020, 124, 7544-7556.	1.2	12
111	Thermodynamic Dissection of the Intercalation Binding Process of Doxorubicin to dsDNA with Implications of Ionic and Solvent Effects. Journal of Physical Chemistry B, 2020, 124, 7803-7818.	1.2	24
112	Designer, Programmable 3D DNA Nanodevices to Probe Biological Systems. ACS Applied Bio Materials, 2020, 3, 7265-7277.	2.3	25
113	Design, Bioanalytical, and Biomedical Applications of Aptamer-Based Hydrogels. Frontiers in Medicine, 2020, 7, 456.	1.2	11
114	Interfacing DNA and Polydopamine Nanoparticles and Its Applications. Particle and Particle Systems Characterization, 2020, 37, 2000208.	1.2	20
115	Nanobody-guided targeted delivery of microRNA via nucleic acid nanogel to inhibit the tumor growth. Journal of Controlled Release, 2020, 328, 425-434.	4.8	18
116	DNA-based engineering system for improving human and environmental health: Identification, detection, and treatment. Nano Today, 2020, 35, 100958.	6.2	15
117	Intrinsic dynamic and static nature of each HB in the multi-HBs between nucleobase pairs and its behavior, elucidated with QTAIM dual functional analysis and QC calculations. RSC Advances, 2020, 10, 24730-24742.	1.7	2
118	An Autonomous Self-Cleavage DNAzyme Walker for Live Cell MicroRNA Imaging. ACS Applied Bio Materials, 2020, 3, 6310-6318.	2.3	17
119	Gene Therapy Based on Nucleic Acid Nanostructure. Advanced Healthcare Materials, 2020, 9, e2001046.	3.9	29
120	Ultrasensitive DNA Detection Based on Inorganic–Organic Nanocomposite Cosensitization and G-Quadruplex/Hemin Catalysis for Signal Amplification. ACS Applied Materials & Interfaces, 2020, 12, 42604-42611.	4.0	12
121	Fluorescent nanorods based on 9,10-distyrylanthracene (DSA) derivatives for efficient and long-term bioimaging. Journal of Materials Chemistry B, 2020, 8, 9544-9554.	2.9	10
122	Aptamer-based strategies for recognizing adenine, adenosine, ATP and related compounds. Analyst, The, 2020, 145, 6753-6768.	1.7	36
123	Engineering DNA nanostructures for siRNA delivery in plants. Nature Protocols, 2020, 15, 3064-3087.	5.5	30
124	Multi-stimuli responsive heterotypic hydrogels based on nucleolipids show selective dye adsorption. Nanoscale Advances, 2020, 2, 4161-4171.	2.2	8
125	Emerging applications at the interface of DNA nanotechnology and cellular membranes: Perspectives from biology, engineering, and physics. APL Bioengineering, 2020, 4, 041507.	3.3	19
126	Fabrication of smart supramolecular systems based on polyelectrolytes and surfactants in microfluidic environment. IOP Conference Series: Materials Science and Engineering, 2020, 904, 012005.	0.3	1

	ChAnow		
#	Article	IF	CITATIONS
127	Effect of DNA Origami Nanostructures on hIAPP Aggregation. Nanomaterials, 2020, 10, 2200.	1.9	8
128	Ultrafast DNA Sensors with DNA Framework-Bridged Hybridization Reactions. Journal of the American Chemical Society, 2020, 142, 9975-9981.	6.6	54
129	Nano-Sized MIL-100(Fe) as a Carrier Material for Nitidine Chloride Reduces Toxicity and Enhances Anticancer Effects In Vitro. Journal of Inorganic and Organometallic Polymers and Materials, 2020, 30, 3388-3395.	1.9	7
130	Airâ€Stable Fe ₃ O ₄ @SiO ₂ â€EDTAâ€Ni(0) as an Efficient Recyclable Magnetic Nanocatalyst for Effective Suzukiâ€Miyaura and Heck Crossâ€Coupling via Aryl Sulfamates and Carbamates. Applied Organometallic Chemistry, 2020, 34, e5662.	1.7	48
131	Naturally derived DNA nanogels as pH- and glutathione-triggered anticancer drug carriers. Materials Science and Engineering C, 2020, 114, 111025.	3.8	16
132	Engineered gadolinium-based nanomaterials as cancer imaging agents. Applied Materials Today, 2020, 20, 100686.	2.3	29
133	Ribbon of DNA Lattice on Gold Nanoparticles for Selective Drug Delivery to Cancer Cells. Angewandte Chemie, 2020, 132, 14692-14700.	1.6	5
134	Ribbon of DNA Lattice on Gold Nanoparticles for Selective Drug Delivery to Cancer Cells. Angewandte Chemie - International Edition, 2020, 59, 14584-14592.	7.2	56
135	Ultrasound-degradable serum albumin nanoplatform for <i>in situ</i> controlled drug release. Chemical Communications, 2020, 56, 7503-7506.	2.2	4
136	An orthogonally regulatable DNA nanodevice for spatiotemporally controlled biorecognition and tumor treatment. Science Advances, 2020, 6, eaba9381.	4.7	105
137	Capturing transient antibody conformations with DNA origami epitopes. Nature Communications, 2020, 11, 3114.	5.8	64
138	Construction of Monomeric and Dimeric G-Quadruplex-Structured CpG Oligodeoxynucleotides for Enhanced Uptake and Activation in TLR9-Positive Macrophages. Nucleic Acid Therapeutics, 2020, 30, 299-311.	2.0	4
139	A smart DNA nanodevice for ATP-activatable bioimaging and photodynamic therapy. Science China Chemistry, 2020, 63, 1490-1497.	4.2	18
140	Nano-based delivery systems for berberine: A modern anti-cancer herbal medicine. Colloids and Surfaces B: Biointerfaces, 2020, 194, 111188.	2.5	47
141	Liposomal delivery of antibiotic loaded nucleic acid nanogels with enhanced drug loading and synergistic anti-inflammatory activity against S. aureus intracellular infections. Journal of Controlled Release, 2020, 324, 620-632.	4.8	40
142	A high local DNA concentration for nucleating a DNA/Fe coordination shell on gold nanoparticles. Chemical Communications, 2020, 56, 4208-4211.	2.2	5
143	Segregation of Dispersed Silica Nanoparticles in Microfluidic Waterâ€inâ€Oil Droplets: A Kinetic Study. ChemPhysChem, 2020, 21, 1070-1078.	1.0	5
144	Tailoring DNA Self-assembly to Build Hydrogels. Topics in Current Chemistry, 2020, 378, 32.	3.0	25

TION R

#	Article	IF	CITATIONS
145	Functional Applications of Nucleic Acid–Protein Hybrid Nanostructures. Trends in Biotechnology, 2020, 38, 976-989.	4.9	22
146	Selfâ€Assembly of Supramolecular DNA Amphiphiles through Host–Guest Interaction and Their Stimuliâ€Responsiveness. Macromolecular Rapid Communications, 2020, 41, e2000022.	2.0	11
147	Aminated Polysaccharide-Based Nanoassemblies as Stable Biocompatible Vehicles Enabling Crossing of Biological Barriers: An Effective Transdermal Delivery of Diclofenac Medicine. ACS Applied Bio Materials, 2020, 3, 2209-2217.	2.3	19
148	Multi-targeted Antisense Oligonucleotide Delivery by a Framework Nucleic Acid for Inhibiting Biofilm Formation and Virulence. Nano-Micro Letters, 2020, 12, 74.	14.4	41
149	DNAâ€Based Plasmonic Heterogeneous Nanostructures: Building, Optical Responses, and Bioapplications. Advanced Materials, 2020, 32, e1907880.	11.1	32
150	A DNA tetrahedral structure-mediated ultrasensitive fluorescent microarray platform for nucleic acid test. Sensors and Actuators B: Chemical, 2020, 321, 128538.	4.0	26
151	Dissecting the intracellular signalling and fate of a DNA nanosensor by super-resolution and quantitative microscopy. Nanoscale, 2020, 12, 15402-15413.	2.8	4
152	Label-free and self-assembled fluorescent DNA nanopompom for determination of miRNA-21. Mikrochimica Acta, 2020, 187, 432.	2.5	10
153	Hydrophobic Interaction: A Promising Driving Force for the Biomedical Applications of Nucleic Acids. Advanced Science, 2020, 7, 2001048.	5.6	70
154	Biofunctional nanostructured systems for regenerative medicine. Nanomedicine, 2020, 15, 1545-1549.	1.7	3
155	Robotic DNA Nanostructures. ACS Synthetic Biology, 2020, 9, 1923-1940.	1.9	102
156	Electrostatic interactions regulate the release of small molecules from supramolecular hydrogels. Journal of Materials Chemistry B, 2020, 8, 6366-6377.	2.9	23
157	Multifunctional Double-Bundle DNA Tetrahedron for Efficient Regulation of Gene Expression. ACS Applied Materials & Interfaces, 2020, 12, 32461-32467.	4.0	27
158	Aptamer-Functionalized DNA Nanostructures for Biological Applications. Topics in Current Chemistry, 2020, 378, 21.	3.0	27
159	An approach to generate DNA polyhedral links of one/two strands. Journal of Molecular Graphics and Modelling, 2020, 97, 107565.	1.3	4
160	Self-assembled DNA-Based geometric polyhedrons: Construction and applications. TrAC - Trends in Analytical Chemistry, 2020, 126, 115844.	5.8	8
161	Nucleic Acid Nanostructure Assisted Immune Modulation. ACS Applied Bio Materials, 2020, 3, 2765-2778.	2.3	8
162	Nanoscale Self-Assembly for Therapeutic Delivery. Frontiers in Bioengineering and Biotechnology, 2020, 8, 127.	2.0	170

#	Article	IF	CITATIONS
163	Facile Construction of i-Motif DNA-Conjugated Gold Nanostars as Near-Infrared and pH Dual-Responsive Targeted Drug Delivery Systems for Combined Cancer Therapy. Molecular Pharmaceutics, 2020, 17, 1127-1138.	2.3	28
164	Herausforderungen und Perspektiven von DNAâ€Nanostrukturen in der Biomedizin. Angewandte Chemie, 2020, 132, 15950-15966.	1.6	13
165	Challenges and Perspectives of DNA Nanostructures in Biomedicine. Angewandte Chemie - International Edition, 2020, 59, 15818-15833.	7.2	176
166	Ultra-thermostable RNA nanoparticles for solubilizing and high-yield loading of paclitaxel for breast cancer therapy. Nature Communications, 2020, 11, 972.	5.8	86
167	DNA Nanostructure as an Efficient Drug Delivery Platform for Immunotherapy. Frontiers in Pharmacology, 2019, 10, 1585.	1.6	54
168	Effects of tetrahedral framework nucleic acid/wogonin complexes on osteoarthritis. Bone Research, 2020, 8, 6.	5.4	67
169	Bioinspired Framework Nucleic Acid Capture Sensitively and Rapidly Resolving MicroRNAs Biomarkers in Living Cells. Analytical Chemistry, 2020, 92, 4411-4418.	3.2	48
170	Noncationic Material Design for Nucleic Acid Delivery. Advanced Therapeutics, 2020, 3, 1900206.	1.6	32
171	DNA-Based Reprogramming Strategy of Receptor-Mediated Cellular Behaviors: From Genetic Encoding to Nongenetic Engineering. ACS Applied Bio Materials, 2020, 3, 2796-2804.	2.3	20
172	Near-Atomic Fabrication with Nucleic Acids. ACS Nano, 2020, 14, 1319-1337.	7.3	22
173	Environmentâ€Recognizing DNA omputation Circuits for the Intracellular Transport of Molecular Payloads for mRNA Imaging. Angewandte Chemie - International Edition, 2020, 59, 6099-6107.	7.2	62
174	Smart drug carrier based on polyurethane material for enhanced and controlled DOX release triggered by redox stimulus. Reactive and Functional Polymers, 2020, 148, 104507.	2.0	18
175	Environmentâ€Recognizing DNA omputation Circuits for the Intracellular Transport of Molecular Payloads for mRNA Imaging. Angewandte Chemie, 2020, 132, 6155-6163.	1.6	11
176	Intelligent Nanoarchitectonics for Selfâ€Assembling Systems. Advanced Intelligent Systems, 2020, 2, 1900157.	3.3	14
177	Nanoarchitectonics from Atom to Life. Chemistry - an Asian Journal, 2020, 15, 718-728.	1.7	66
178	Engineered DNA nanodrugs alleviate inflammation in inflammatory arthritis. International Journal of Pharmaceutics, 2020, 577, 119047.	2.6	9
179	Glutaraldehyde Cross-Linking of Oligolysines Coating DNA Origami Greatly Reduces Susceptibility to Nuclease Degradation. Journal of the American Chemical Society, 2020, 142, 3311-3315.	6.6	109
180	Modular protein–DNA hybrid nanostructures as a drug delivery platform. Nanoscale, 2020, 12, 4975-4981.	2.8	13

#	Article	IF	CITATIONS
181	Selfâ€Assembly of DNA–Peptide Supermolecules: Coiledâ€Coil Peptide Structures Templated by <scp>d</scp> â€DNA and <scp>l</scp> â€DNA Triplexes Exhibit Chiralityâ€Independent but Orientationâ€Dependent Stabilizing Cooperativity. Chemistry - A European Journal, 2020, 26, 5676-5684.	1.7	8
182	DNA-Driven Nanoparticle Assemblies for Biosensing and Bioimaging. Topics in Current Chemistry, 2020, 378, 18.	3.0	15
183	Nucleic acid-based drug delivery strategies. Journal of Controlled Release, 2020, 323, 240-252.	4.8	66
184	Different Strategies for Organic Nanoparticle Preparation in Biomedicine. , 2020, 2, 531-549.		60
185	Molecular Tuning Nanoarchitectonics for Molecular Recognition and Molecular Manipulation. ChemNanoMat, 2020, 6, 870-880.	1.5	25
186	Siteâ€Specific Synthesis of Silica Nanostructures on DNA Origami Templates. Advanced Materials, 2020, 32, e2000294.	11.1	61
187	Application of DNA nanodevices for biosensing. Analyst, The, 2020, 145, 3481-3489.	1.7	14
188	Photoresponsive molecular tweezer: Control-release of anions and fluorescence switch. Dyes and Pigments, 2021, 184, 108838.	2.0	9
189	Tunable morphology and functionality of multicomponent self-assembly: A review. Materials and Design, 2021, 197, 109209.	3.3	47
190	DNA addition polymerization with logic operation for controllable self-assembly of three-dimensional nanovehicles and combinatorial cancer therapy. Chemical Engineering Journal, 2021, 408, 127258.	6.6	15
191	Polyamineâ€Functionalized 2′â€Amino‣NA in Oligonucleotides: Facile Synthesis of New Monomers and Highâ€Affinity Binding towards ssDNA and dsDNA. Chemistry - A European Journal, 2021, 27, 1416-1422.	1.7	7
192	Branched Antisense and siRNA Coâ€Assembled Nanoplatform for Combined Gene Silencing and Tumor Therapy. Angewandte Chemie - International Edition, 2021, 60, 1853-1860.	7.2	48
193	3D integration of pH-cleavable drug-hydrogel conjugates on magnetically driven smart microtransporters. Materials and Design, 2021, 197, 109212.	3.3	14
194	Branched Antisense and siRNA Coâ€Assembled Nanoplatform for Combined Gene Silencing and Tumor Therapy. Angewandte Chemie, 2021, 133, 1881-1888.	1.6	10
195	DNAâ€Based Nanocarriers to Enhance the Optoacoustic Contrast of Tumors In Vivo. Advanced Healthcare Materials, 2021, 10, e2001739.	3.9	5
196	Molecular complexes of calf thymus DNA with various bioactive compounds: Formation and characterization. International Journal of Biological Macromolecules, 2021, 168, 775-783.	3.6	14
197	The applications of functionalized DNA nanostructures in bioimaging and cancer therapy. Biomaterials, 2021, 268, 120560.	5.7	31
198	Designer DNA nanostructures for therapeutics. CheM, 2021, 7, 1156-1179.	5.8	91

#	Article	IF	CITATIONS
199	Nanoarchitectonics Revolution and Evolution: From Small Science to Big Technology. Small Science, 2021, 1, 2000032.	5.8	58
200	Enzymatical biomineralization of DNA nanoflowers mediated by manganese ions for tumor site activated magnetic resonance imaging. Biomaterials, 2021, 268, 120591.	5.7	51
201	Advanced DNA nanomachines: Strategies and bioapplications. Journal of Drug Delivery Science and Technology, 2021, 61, 102290.	1.4	3
202	Integrating DNA Nanotechnology with Aptamers for Biological and Biomedical Applications. Matter, 2021, 4, 461-489.	5.0	64
203	Molecular-scale drug delivery systems loaded with oxaliplatin for supramolecular chemotherapy. Chinese Chemical Letters, 2021, 32, 729-734.	4.8	32
204	Tetrahedral framework nucleic acids act as antioxidants in acute kidney injury treatment. Chemical Engineering Journal, 2021, 413, 127426.	6.6	51
205	Chemotherapeutic drug–DNA hybrid nanostructures for anti-tumor therapy. Materials Horizons, 2021, 8, 78-101.	6.4	31
206	Nanoparticles-based drug delivery and gene therapy for breast cancer: Recent advancements and future challenges. Seminars in Cancer Biology, 2021, 69, 226-237.	4.3	96
207	Endocrine disruption of pharmaceuticals on marine organisms: Thyroidal, gonadotrophic, and behavioral responses. , 2021, , 521-562.		0
208	Design of Blood Group Pairing Logic Circuit Based on DNA Strand Displacement. Communications in Computer and Information Science, 2021, , 481-501.	0.4	0
209	DNA-Assisted Smart Nanocarriers: Progress, Challenges, and Opportunities. ACS Nano, 2021, 15, 1942-1951.	7.3	34
210	Understanding structural and molecular properties of complexes of nucleobases and Au13 golden nanocluster by DFT calculations and DFT-MD simulation. Scientific Reports, 2021, 11, 435.	1.6	19
211	Recent progress of frame nucleic acids studies towards atomic fabrications. Wuli Xuebao/Acta Physica Sinica, 2021, 70, 026201.	0.2	1
212	DNA nanostructures as templates for biomineralization. Nature Reviews Chemistry, 2021, 5, 93-108.	13.8	46
213	Construction of an optically controllable CRISPR-Cas9 system using a DNA origami nanostructure. Chemical Communications, 2021, 57, 5594-5596.	2.2	10
214	Phenolic-enabled nanotechnology: versatile particle engineering for biomedicine. Chemical Society Reviews, 2021, 50, 4432-4483.	18.7	163
215	Biomacromolecule-based photo-thermal agents for tumor treatment. Journal of Materials Chemistry B, 2021, 9, 7007-7022.	2.9	15
216	Nanodelivery of oxiracetam enhances memory, functional recovery and induces neuroprotection following concussive head injury. Progress in Brain Research, 2021, 265, 139-230.	0.9	9

	CITATION	LFORT	
# 217	ARTICLE Supramolecular cancer nanotheranostics. Chemical Society Reviews, 2021, 50, 2839-2891.	IF 18.7	Citations 257
218	Nuclease-resistant signaling nanostructures made entirely of DNA oligonucleotides. Nanoscale, 2021, 13, 7034-7051.	2.8	20
219	Chemical ligation of an entire DNA origami nanostructure. Nanoscale, 2021, 13, 17556-17565.	2.8	17
220	DNA nanotechnology-empowered nanoscopic imaging of biomolecules. Chemical Society Reviews, 2021, 50, 5650-5667.	18.7	73
221	Advanced applications of green materials in bioelectronics applications. , 2021, , 631-661.		1
222	Constructions of iron atoms arrays based on DNA origami templates for cryptography applications. Wuli Xuebao/Acta Physica Sinica, 2021, 70, 068702.	0.2	3
223	Short intrinsically disordered polypeptide–oligonucleotide conjugates for programmed self-assembly of nanospheres with temperature-dependent size controllability. Soft Matter, 2021, 17, 1184-1188.	1.2	7
224	Self-assembled nanomaterials for biosensing and therapeutics: recent advances and challenges. Analyst, The, 2021, 146, 2807-2817.	1.7	9
225	Multifunctional DNA dendrimer nanostructures for biomedical applications. Journal of Materials Chemistry B, 2021, 9, 4991-5007.	2.9	13
226	A tetrahedral DNA nanorobot with conformational change in response to molecular trigger. Nanoscale, 2021, 13, 15552-15559.	2.8	15
227	Harnessing the physicochemical properties of DNA as a multifunctional biomaterial for biomedical and other applications. Chemical Society Reviews, 2021, 50, 7779-7819.	18.7	23
228	Fast-responding functional DNA superstructures for stimuli-triggered protein release. Chemical Science, 2021, 12, 8282-8287.	3.7	13
229	Genetically encoded RNA nanodevices for cellular imaging and regulation. Nanoscale, 2021, 13, 7988-8003.	2.8	13
230	An RNA/DNA hybrid origami-based nanoplatform for efficient gene therapy. Nanoscale, 2021, 13, 12848-12853.	2.8	21
231	Synthesis and short DNA in situ loading and delivery of 4 nm-aperture flexible organic frameworks. Materials Chemistry Frontiers, 2021, 5, 869-875.	3.2	13
232	A crosslinked colloidal network of peptide/nucleic base amphiphiles for targeted cancer cell encapsulation. Chemical Science, 2021, 12, 10063-10069.	3.7	5
233	Defectâ€Assisted Loading and Docking Conformations of Pharmaceuticals in Metal–Organic Frameworks. Angewandte Chemie, 2021, 133, 7798-7806.	1.6	6
234	Rationally Programming Nanomaterials with DNA for Biomedical Applications. Advanced Science, 2021, 8, 2003775.	5.6	51

	CHATION N		
# 235	ARTICLE Nuclease resistance of DNA nanostructures. Nature Reviews Chemistry, 2021, 5, 225-239.	IF 13.8	Citations
236	Defectâ€Assisted Loading and Docking Conformations of Pharmaceuticals in Metal–Organic Frameworks. Angewandte Chemie - International Edition, 2021, 60, 7719-7727.	7.2	25
237	DNA Nanostructures: Current Challenges and Opportunities for Cellular Delivery. ACS Nano, 2021, 15, 3631-3645.	7.3	92
238	Unraveling the interaction between doxorubicin and DNA origami nanostructures for customizable chemotherapeutic drug release. Nucleic Acids Research, 2021, 49, 3048-3062.	6.5	95
239	Functionalization of Cellular Membranes with DNA Nanotechnology. Trends in Biotechnology, 2021, 39, 1208-1220.	4.9	19
240	Progress in Molecular Nanoarchitectonics and Materials Nanoarchitectonics. Molecules, 2021, 26, 1621.	1.7	20
241	Aptamer-based ATP-responsive delivery systems for cancer diagnosis and treatment. Acta Biomaterialia, 2021, 123, 110-122.	4.1	38
242	Chargeâ€Conversion Strategies for Nucleic Acid Delivery. Advanced Functional Materials, 2021, 31, 2011103.	7.8	17
243	Recent Progress of DNA Nanostructures on Amphiphilic Membranes. Macromolecular Bioscience, 2021, 21, e2000440.	2.1	7
244	Spatiotemporal Dynamics of Endocytic Pathways Adapted by Small DNA Nanocages in Model Neuroblastoma Cell-Derived Differentiated Neurons. ACS Applied Bio Materials, 2021, 4, 3350-3359.	2.3	16
245	Constructing Large 2D Lattices Out of DNA-Tiles. Molecules, 2021, 26, 1502.	1.7	15
246	Sequential Pullâ€Ðown Purification of DNA Origami Superstructures. Small, 2021, 17, e2007218.	5.2	9
247	Ratiometric Fluorescent DNA Nanostructure for Mitochondrial ATP Imaging in Living Cells Based on Hybridization Chain Reaction. Analytical Chemistry, 2021, 93, 6715-6722.	3.2	27
248	Bioimaging Based on Nucleic Acid Nanostructures. Chemical Research in Chinese Universities, 2021, 37, 823-828.	1.3	3
249	Dual-color graphene quantum dots and carbon nanoparticles biosensing platform combined with Exonuclease III-assisted signal amplification for simultaneous detection of multiple DNA targets. Analytica Chimica Acta, 2021, 1154, 338346.	2.6	15
250	Biophysical interaction between self-assembled branched DNA nanostructures with bovine serum albumin and bovine liver catalase. International Journal of Biological Macromolecules, 2021, 177, 119-128.	3.6	13
251	Novel nucleic acid origami structures and conventional molecular beacon–based platforms: a comparison in biosensing applications. Analytical and Bioanalytical Chemistry, 2021, 413, 6063-6077.	1.9	7
252	Proteomic Exploration of Endocytosis of Framework Nucleic Acids. Small, 2021, 17, e2100837.	5.2	17

#	Article	IF	Citations
253	A Nucleic Acid/Gold Nanorod-Based Nanoplatform for Targeted Gene Editing and Combined Tumor Therapy. ACS Applied Materials & Interfaces, 2021, 13, 20974-20981.	4.0	24
254	Homogeneous biorecognition reaction-induced assembly of DNA nanostructures for ultrasensitive electrochemical detection of kanamycin antibiotic. Analytica Chimica Acta, 2021, 1154, 338317.	2.6	17
255	DNA-catalyzed efficient production of single-stranded DNA nanostructures. CheM, 2021, 7, 959-981.	5.8	23
256	Selfâ€Assembly of Copper–DNAzyme Nanohybrids for Dualâ€Catalytic Tumor Therapy. Angewandte Chemie, 2021, 133, 14445-14449.	1.6	16
257	DNAâ€Scaffolded Disulfide Redox Network for Programming Drugâ€Delivery Kinetics. Chemistry - A European Journal, 2021, 27, 8745-8752.	1.7	6
258	Engineering heterogeneity of precision nanoparticles for biomedical delivery and therapy. View, 2021, 2, 20200067.	2.7	29
259	Advances in Application of Azobenzene as a Trigger in Biomedicine: Molecular Design and Spontaneous Assembly. Advanced Materials, 2021, 33, e2007290.	11.1	118
260	Template-Assisted Assembly of DNA Nanostructures from Branched Oligonucleotides. Russian Journal of Bioorganic Chemistry, 2021, 47, 700-712.	0.3	1
261	Clustering of Death Receptor for Apoptosis Using Nanoscale Patterns of Peptides. ACS Nano, 2021, 15, 9614-9626.	7.3	49
262	Sequential Therapy of Acute Kidney Injury with a DNA Nanodevice. Nano Letters, 2021, 21, 4394-4402.	4.5	56
263	Functionalizing <scp>DNA</scp> nanostructures for therapeutic applications. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2021, 13, e1729.	3.3	14
264	A Janus-Type Phthalocyanine for the Assembly of Photoactive DNA Origami Coatings. Bioconjugate Chemistry, 2021, 32, 1123-1129.	1.8	5
265	Selfâ€Assembly of Copper–DNAzyme Nanohybrids for Dualâ€Catalytic Tumor Therapy. Angewandte Chemie - International Edition, 2021, 60, 14324-14328.	7.2	100
266	Recent advances in optical imaging of biomarkers in vivo. Nano Today, 2021, 38, 101156.	6.2	32
267	Fluorescence coupled capillary electrophoresis as a strategy for tetrahedron DNA analysis. Talanta, 2021, 228, 122225.	2.9	3
268	Improved Antiviral Activity of Classical Swine Fever Virus-Targeted siRNA by Tetrahedral Framework Nucleic Acid-Enhanced Delivery. ACS Applied Materials & Interfaces, 2021, 13, 29416-29423.	4.0	9
269	Facile fabrication of nanocarriers with yolk-shell mesoporous silica nanoparticles for effective drug delivery. Journal of Drug Delivery Science and Technology, 2021, 63, 102531.	1.4	4
270	A Combinatorial Approach Based on Nucleic Acid Assembly and Electrostatic Compression for siRNA Delivery. Chemical Research in Chinese Universities, 2021, 37, 906-913.	1.3	1

	CITATION R	CITATION REPORT	
# 271	ARTICLE Shear-driven rolling of DNA-adhesive microspheres. Biophysical Journal, 2021, 120, 2102-2111.	IF 0.2	CITATIONS 3
272	DNAâ€organic molecular amphiphiles: Synthesis, selfâ€assembly, and hierarchical aggregates. Aggregate, 2021, 2, e95.	5.2	17
273	A Synergistic DNA-polydopamine-MnO ₂ Nanocomplex for Near-Infrared-Light-Powered DNAzyme-Mediated Gene Therapy. Nano Letters, 2021, 21, 5377-5385.	4.5	62
274	Effect of Different Physical Cross-Linkers on Drug Release from Hydrogel Layers Coated on Magnetically Steerable 3D-Printed Microdevices. Technologies, 2021, 9, 43.	3.0	1
275	Engineering a Secondâ€Order DNA Logicâ€Gated Nanorobot to Sense and Release on Live Cell Membranes for Multiplexed Diagnosis and Synergistic Therapy. Angewandte Chemie, 2021, 133, 15950-15954.	1.6	12
276	Engineering a Secondâ€Order DNA Logicâ€Gated Nanorobot to Sense and Release on Live Cell Membranes for Multiplexed Diagnosis and Synergistic Therapy. Angewandte Chemie - International Edition, 2021, 60, 15816-15820.	7.2	90
277	Coordination-driven assembly of proteins and nucleic acids in a single architecture for carrier-free intracellular co-delivery. Nano Today, 2021, 38, 101140.	6.2	23
278	Self-Assembled Polyhedral Oligosilsesquioxane Dendrimers for Circularly Polarized Luminescence Energy Transfer. Journal of Physical Chemistry C, 2021, 125, 14141-14148.	1.5	5
279	Targets and Tools: Nucleic Acids for Surface-Enhanced Raman Spectroscopy. Biosensors, 2021, 11, 230.	2.3	6
280	DNA Based and Stimuli-Responsive Smart Nanocarrier for Diagnosis and Treatment of Cancer: Applications and Challenges. Cancers, 2021, 13, 3396.	1.7	46
281	"Repaired and Activated―DNAzyme Enables the Monitoring of DNA Alkylation Repair in Live Cells. Angewandte Chemie, 2021, 133, 20042-20049.	1.6	6
282	DNA nanotechnology enhanced single-molecule biosensing and imaging. TrAC - Trends in Analytical Chemistry, 2021, 140, 116267.	5.8	15
283	A Bionanozyme with Ultrahigh Activity Enables Spatiotemporally Controlled Reactive Oxygen Species Generation for Cancer Therapy. Advanced Functional Materials, 2021, 31, 2104100.	7.8	18
284	Combination inhibition of triple-negative breast cancer cell growth with CD36 siRNA-loaded DNA nanoprism and genistein. Nanotechnology, 2021, 32, 395101.	1.3	3
285	In Situ Hand-in-Hand DNA Tile Assembly: A pH-Driven and Aptamer-Targeted DNA Nanostructure for TK1 mRNA Visualization and Synergetic Killing of Cancer Cells. Analytical Chemistry, 2021, 93, 10511-10518.	3.2	15
286	"Repaired and Activated―DNAzyme Enables the Monitoring of DNA Alkylation Repair in Live Cells. Angewandte Chemie - International Edition, 2021, 60, 19889-19896.	7.2	33
287	Gold Nanoparticles Photosensitization towards 3,4,9,10-Perylenetetracarboxylic Dianhydride Integrated with a Dual-Particle Three-Dimensional DNA Roller: A General "ON–OFF–ON―Photoelectric Plasmon-Enhanced Biosensor. Analytical Chemistry, 2021, 93, 10947-10954.	3.2	21
288	Lipids and Lipid Derivatives for RNA Delivery. Chemical Reviews, 2021, 121, 12181-12277.	23.0	227

~		_	
Citati	ON	PEDU	DT
CHAH		NLPO	

#	Article	IF	CITATIONS
289	A Cyanineâ€Mediated Selfâ€Assembly System for the Construction of a Twoâ€inâ€One Nanodrug. Angewandte Chemie - International Edition, 2021, 60, 21226-21230.	7.2	10
290	DNA walker-mediated biosensor for target-triggered triple-mode detection of Vibrio parahaemolyticus. Biosensors and Bioelectronics, 2021, 186, 113305.	5.3	37
291	Vaccine delivery systems toward lymph nodes. Advanced Drug Delivery Reviews, 2021, 179, 113914.	6.6	62
292	Annealing of Polymer-Encased Nanorods on DNA Origami Forming Metal–Semiconductor Nanowires: Implications for Nanoelectronics. ACS Applied Nano Materials, 2021, 4, 9094-9103.	2.4	6
293	Aptamer-Integrated Scaffolds for Biologically Functional DNA Origami Structures. ACS Applied Materials & Interfaces, 2021, 13, 39711-39718.	4.0	8
294	Biomolecules of Similar Charge Polarity Form Hybrid Gel. Soft Materials, 0, , 1-12.	0.8	0
295	A Cyanineâ€Mediated Selfâ€Assembly System for the Construction of a Twoâ€inâ€One Nanodrug. Angewandte Chemie, 2021, 133, 21396-21400.	1.6	1
296	Antibody-Responsive Ratiometric Fluorescence Biosensing of Biemissive Silver Nanoclusters Wrapped in Switchable DNA Tweezers. Analytical Chemistry, 2021, 93, 11634-11640.	3.2	27
297	Multimodules integrated functional <scp>DNA</scp> nanomaterials for intelligent drug delivery. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2022, 14, e1753.	3.3	10
298	DNA Nanodevice as a Co-delivery Vehicle of Antisense Oligonucleotide and Silver Ions for Selective Inhibition of Bacteria Growth. ACS Applied Materials & Interfaces, 2021, 13, 47987-47995.	4.0	10
299	Chemistry of Peptide-Oligonucleotide Conjugates: A Review. Molecules, 2021, 26, 5420.	1.7	40
300	Activating a DNA Nanomachine via Computation across Cancer Cell Membranes for Precise Therapy of Solid Tumors. Journal of the American Chemical Society, 2021, 143, 15233-15242.	6.6	67
301	DNAs catalyzing DNA nanoconstruction. CheM, 2021, 7, 2556-2568.	5.8	13
302	Construction of A Highâ€Flux Protein Transport Channel Inspired by the Nuclear Pore Complex. Angewandte Chemie - International Edition, 2021, 60, 24443-24449.	7.2	12
303	Supercoiling and looping promote DNA base accessibility and coordination among distant sites. Nature Communications, 2021, 12, 5683.	5.8	24
304	Harnessing environmentalâ€RNAi to win an enduring battle: Plant versus pathogen. Journal of Phytopathology, 2021, 169, 649-657.	0.5	1
305	Artificial Protein Cage Delivers Active Protein Cargos to the Cell Interior. Biomacromolecules, 2021, 22, 4146-4154.	2.6	15
306	Construction of A Highâ€flux Protein Transport Channel Inspired by the Nuclear Pore Complex. Angewandte Chemie, 2021, 133, 24648.	1.6	0

#	Article	IF	CITATIONS
307	Recent progress and strategies for precise framework structure-enabled drug delivery systems. Materials Today Sustainability, 2021, 13, 100065.	1.9	5
308	Tetrahedral Framework Nucleic Acid Delivered RNA Therapeutics Significantly Attenuate Pancreatic Cancer Progression via Inhibition of CTR1-Dependent Copper Absorption. ACS Applied Materials & Interfaces, 2021, 13, 46334-46342.	4.0	7
309	Programming cell entry of molecules via reversible synthetic DNA circuits on cell membrane. Fundamental Research, 2021, 1, 747-751.	1.6	3
310	Fabrication of G-quadruplex/porphyrin conjugated gold/persistent luminescence theranostic nanoprobe for imaging-guided photodynamic therapy. Talanta, 2021, 233, 122567.	2.9	8
311	Graphene oxide quantum dots based nanotree illuminates AFB1: Dual signal amplified aptasensor detection AFB1. Sensors and Actuators B: Chemical, 2021, 345, 130387.	4.0	33
312	Engineering DNA/Fe–N–C single-atom nanozymes interface for colorimetric biosensing of cancer cells. Analytica Chimica Acta, 2021, 1180, 338856.	2.6	19
313	Recent advances in catalytic hairpin assembly signal amplification-based sensing strategies for microRNA detection. Talanta, 2021, 235, 122735.	2.9	45
314	Recent electroporation-based systems for intracellular molecule delivery. Nami Jishu Yu Jingmi Gongcheng/Nanotechnology and Precision Engineering, 2021, 4, .	1.7	15
315	Macromolecular assembly and membrane activity of antimicrobial D,L-α-Cyclic peptides. Colloids and Surfaces B: Biointerfaces, 2021, 208, 112086.	2.5	4
316	Anti-inflammatory activity of curcumin-loaded tetrahedral framework nucleic acids on acute gouty arthritis. Bioactive Materials, 2022, 8, 368-380.	8.6	142
317	The hierarchical assembly of a multi-level DNA ring-based nanostructure in a precise order and its application for screening tumor cells. Biomaterials Science, 2021, 9, 2262-2270.	2.6	1
318	Combined and selective miR-21 silencing and doxorubicin delivery in cancer cells using tailored DNA nanostructures. Cell Death and Disease, 2021, 12, 7.	2.7	22
319	A nucleic acid nanogel dually bears siRNA and CpG motifs for synergistic tumor immunotherapy. Biomaterials Science, 2021, 9, 4755-4764.	2.6	14
320	Nucleic acid–based aggregates and their biomedical applications. Aggregate, 2021, 2, 133-144.	5.2	16
321	Oligonucleotide Complexes in Bioorganometallic Chemistry. , 2022, , 146-182.		1
322	Perspectives of phytotherapeutics: Diagnosis and cure. , 2021, , 225-250.		0
323	Polyâ€Cytosine Deoxyribonucleic Acid Strongly Anchoring on Graphene Oxide Due to Flexible Backbone Phosphate Interactions. Advanced Materials Interfaces, 2021, 8, 2001798.	1.9	10
324	DNA nanostructureâ€encoded fluorescent barcodes. Aggregate, 2020, 1, 107-116.	5.2	8

#	Article	IF	CITATIONS
325	Exploring Cation Mediated DNA Interactions Using Computer Simulations. Lecture Notes in Bioengineering, 2020, , 51-63.	0.3	6
326	Nano-architectonics for coordination assemblies at interfacial media. Advances in Inorganic Chemistry, 2020, 76, 199-228.	0.4	4
327	Nanostructured polypyrrole layers implementation on magnetically navigable 3D printed microdevices for targeted gastrointestinal drug delivery. Multifunctional Materials, 2020, 3, 045003.	2.4	7
329	Enhanced Immunostimulatory Activity of CpG Oligodeoxynucleotide by the Combination of Mannose Modification and Incorporation into Nanostructured DNA. Biological and Pharmaceutical Bulletin, 2020, 43, 1188-1195.	0.6	2
330	Multifunctional Delivery Systems for Peptide Nucleic Acids. Pharmaceuticals, 2021, 14, 14.	1.7	27
331	Dual-targeted lung cancer therapy via inhalation delivery of UCNP-siRNA-AS1411 nanocages. Cancer Biology and Medicine, 2021, 19, 1047-1060.	1.4	3
332	Aptamer-modified DNA tetrahedra-gated metal–organic framework nanoparticle carriers for enhanced chemotherapy or photodynamic therapy. Chemical Science, 2021, 12, 14473-14483.	3.7	34
333	Nucleic acid-based molecular computation heads towards cellular applications. Chemical Society Reviews, 2021, 50, 12551-12575.	18.7	38
334	Nucleic Acid Identity, Structure, and Flexibility Affect the Electrochemical Signal of Tethered Redox Molecules upon Biopolymer Collapse. Langmuir, 2021, 37, 12466-12475.	1.6	3
335	Layer-by-Layer Fabrication of Hydrogel Microsystems for Controlled Drug Delivery From Untethered Microrobots. Frontiers in Bioengineering and Biotechnology, 2021, 9, 692648.	2.0	3
336	Empowering single-molecule analysis with self-assembled DNA nanostructures. Matter, 2021, 4, 3121-3145.	5.0	10
337	Mussel-inspired chemistry: A promising strategy for natural polysaccharides in biomedical applications. Progress in Polymer Science, 2021, 123, 101472.	11.8	77
338	Mechanism studies on the cellular internalization of nanoparticles using computer simulations: A review. AICHE Journal, 2022, 68, e17507.	1.8	6
339	An Aptamer-Modified DNA Tetrahedron-Based Nanogel for Combined Chemo/Gene Therapy of Multidrug-Resistant Tumors. ACS Applied Bio Materials, 2021, 4, 7701-7707.	2.3	22
340	The biological applications of DNA nanomaterials: current challenges and future directions. Signal Transduction and Targeted Therapy, 2021, 6, 351.	7.1	110
341	Tetrahedral DNA nanostructure-enabled electrochemical aptasensor for ultrasensitive detection of fumonisin B1 with extended dynamic range. Sensors and Actuators B: Chemical, 2022, 354, 130984.	4.0	20
342	A pH and Mg ²⁺ -Responsive Molecular Switch Based on a Stable DNA Minidumbbell Bearing 5′ and 3′-Overhangs. ACS Omega, 2021, 6, 28263-28269.	1.6	2
345	Bio-inspired Functional DNA Architectures. Nanostructure Science and Technology, 2022, , 259-280.	0.1	0

#	Article	IF	CITATIONS
346	Graphene oxide nanosheet-mediated fluorescent RPA "turn-on―biosensor for rapid RNAi transgenic plant detection. Analytica Chimica Acta, 2022, 1189, 339222.	2.6	4
347	DNA condensation and formation of ultrathin nanosheets via DNA assisted self-assembly of an amphiphilic fullerene derivative. Journal of Photochemistry and Photobiology B: Biology, 2022, 226, 112352.	1.7	4
348	Biotechnological and Therapeutic Applications of Natural Nucleic Acid Structural Motifs. Topics in Current Chemistry, 2020, 378, 26.	3.0	3
349	Engineering a Facile Aptamer "Molecule-Doctor―with Hairpin-Contained I-Motif Enables Accurate Imaging and Killing of Cancer Cells. Analytical Chemistry, 2021, 93, 14552-14559.	3.2	10
350	Stimuliâ€Responsive DNA Origami Nanodevices and Their Biological Applications. ChemMedChem, 2022, 17,	1.6	17
351	DNA nanotechnology-facilitated ligand manipulation for targeted therapeutics and diagnostics. Journal of Controlled Release, 2021, 340, 292-307.	4.8	12
352	DNA Nanodevices: From Mechanical Motions to Biomedical Applications. Current Topics in Medicinal Chemistry, 2022, 22, 640-651.	1.0	2
354	Fabrication of Pt-Nanoparticle-Loaded Mesoporous Alumina Coating through Anodizing of an Al-Pt Alloy. ECS Journal of Solid State Science and Technology, 2020, 9, 123003.	0.9	2
355	DNA nanostructures directed by RNA clamps. Nanoscale, 2021, , .	2.8	1
356	A signal processor made from DNA assembly and upconversion nanoparticle for pharmacokinetic study. Nano Today, 2022, 42, 101352.	6.2	18
357	Thermo-Responsive Behavior of Enzymatic Hydrolysis Lignin in the Ethanol/Water Mixed Solvent and Its Application in the Controlled Release of Pesticides. ACS Sustainable Chemistry and Engineering, 2021, 9, 15634-15640.	3.2	10
358	Multifunctional Nanomachinery for Enhancement of Bone Healing. Advanced Materials, 2022, 34, e2107924.	11.1	25
359	Evaluation on performance of MM/PBSA in nucleic acid-protein systems. Chinese Physics B, 2022, 31, 048701.	0.7	2
360	Flash Synthesis of DNA Hydrogel via Supramacromolecular Assembly of DNA Chains and Upconversion Nanoparticles for Cell Engineering. Advanced Functional Materials, 2022, 32, 2107267.	7.8	26
361	Multifunctional Mitochondria-Targeting Nanosystems for Enhanced Anticancer Efficacy. Frontiers in Bioengineering and Biotechnology, 2021, 9, 786621.	2.0	8
362	Organelle-level precision with next-generation targeting technologies. Nature Reviews Materials, 2022, 7, 355-371.	23.3	63
363	Recent Advances in Plant Nanoscience. Advanced Science, 2022, 9, e2103414.	5.6	45
364	SERS molecular-ruler based DNA aptamer single-molecule and its application to multi-level optical storage. Chemical Engineering Journal, 2022, 433, 133666.	6.6	11

#	Article	IF	Citations
365	Biological Effect of Differently Sized Tetrahedral Framework Nucleic Acids: Endocytosis, Proliferation, Migration, and Biodistribution. ACS Applied Materials & Interfaces, 2021, 13, 57067-57074.	4.0	25
366	Regulation of Biological Functions at the Cell Interface by DNA Nanostructures. Advanced NanoBiomed Research, 2022, 2, 2100126.	1.7	2
367	Engineering DNA walkers for bioanalysis: A review. Analytica Chimica Acta, 2022, 1209, 339339.	2.6	11
368	Shedding Light on DNAâ€Based Nanoprobes for Live ell MicroRNA Imaging. Small, 2022, 18, e2106281.	5.2	9
369	Protein Sequencing, One Molecule at a Time. Annual Review of Biophysics, 2022, 51, 181-200.	4.5	18
370	DNA nanostructures for stimuli-responsive drug delivery. Smart Materials in Medicine, 2022, 3, 66-84.	3.7	18
372	Field-flow fractionation for molecular-interaction studies of labile and complex systems: A critical review. Analytica Chimica Acta, 2022, 1193, 339396.	2.6	22
373	Dynamic hybridization of fluorescence polymers upon complexation of glucan. Journal of Photochemistry and Photobiology A: Chemistry, 2022, 426, 113736.	2.0	0
374	A target-initiated autocatalytic 3D DNA nanomachine for high-efficiency amplified detection of MicroRNA. Talanta, 2022, 240, 123219.	2.9	5
376	Triggering the nanophase separation of albumin through multivalent binding to glycogen for drug delivery in 2D and 3D multicellular constructs. Nanoscale, 2022, 14, 3452-3466.	2.8	1
377	An Energyâ€Storing DNAâ€Based Nanocomplex for Laserâ€Free Photodynamic Therapy. Advanced Materials, 2022, 34, e2109920.	11.1	40
378	DNA aptamer-based dual-responsive nanoplatform for targeted MRI and combination therapy for cancer. RSC Advances, 2022, 12, 3871-3882.	1.7	7
379	Construction of nanocarriers based on nucleic acids and their applications in nanobiology delivery systems. National Science Review, 2022, 9, .	4.6	22
380	Insights into nucleic acid-based self-assembling nanocarriers for targeted drug delivery and controlled drug release. Journal of Controlled Release, 2022, 341, 869-891.	4.8	20
381	Structural DNA nanotechnology: Immobile Holliday junctions to artificial robots. Current Topics in Medicinal Chemistry, 2022, 22, .	1.0	2
382	Treatment of kidney clear cell carcinoma, lung adenocarcinoma and glioblastoma cell lines with hydrogels made of DNA nanostars. Biomaterials Science, 2022, 10, 1304-1316.	2.6	6
383	Target-Activated, Light-Actuated Three-Dimensional DNA Walker Nanomachine for Amplified miRNA Detection. Langmuir, 2022, 38, 1151-1157.	1.6	14
384	Nanobiomaterials for bioimaging. , 2022, , 189-234.		1

		CITATION REPORT		
#	Article		IF	CITATIONS
385	Photoresponsive DNA materials and their applications. Chemical Society Reviews, 2022,	51, 720-760.	18.7	48
386	Targeting drug delivery and efficient lysosomal escape for chemo-photodynamic cancer t peptide/DNA nanocomplex. Journal of Materials Chemistry B, 2022, 10, 438-449.	herapy by a	2.9	21
387	Detection of small-sized DNA fragments in a glassy nanopore by utilization of CRISPR-Cas converter system. Analyst, The, 2022, 147, 905-914.	s12a as a	1.7	14
388	Chemical–biological approaches for the direct regulation of cell–cell aggregation. Ag 3, .	gregate, 2022,	5.2	6
389	An aptamer-tethered DNA origami amplifier for sensitive and accurate imaging of intracel microRNA. Nanoscale, 2022, 14, 1327-1332.	llular	2.8	10
390	Tumor-targeted nano-delivery system of therapeutic RNA. Materials Horizons, 2022, 9, 1	111-1140.	6.4	19
391	Aptamer-armed nanostructures improve the chemotherapy outcome of triple-negative br Molecular Therapy, 2022, 30, 2242-2256.	east cancer.	3.7	8
392	Nucleic Acids for Potential Treatment of Rheumatoid Arthritis. ACS Applied Bio Materials, 1990-2008.	, 2022, 5,	2.3	3
393	Cubic DNA nanocage-based three-dimensional molecular beacon for accurate detection of miRNAs in confined spaces. Biosensors and Bioelectronics, 2022, 204, 114077.	of exosomal	5.3	16
394	Chemically modified DNA nanostructures for drug delivery. Innovation(China), 2022, 3, 1	00217.	5.2	8
395	Microgels as drug carriers for sonopharmacology. Journal of Polymer Science, 2022, 60, 1	1864-1870.	2.0	18
396	Synthesis of siRNA nanoparticles to silence plaque-destabilizing gene in atherosclerotic le macrophages. Nature Protocols, 2022, 17, 748-780.	esional	5.5	52
397	Nanohydrogels: Advanced Polymeric Nanomaterials in the Era of Nanotechnology for Rot Functionalization and Cumulative Applications. International Journal of Molecular Science 1943.	oust es, 2022, 23,	1.8	23
398	Dibenzocyclooctyneâ€Branched Primer Assembled Gene Nanovector and Its Potential Ap Genome Editing. ChemBioChem, 2022, 23, .	plications in	1.3	5
399	Fabrication of sub-50Ânm nanochannel array by an angle forming lift-off method. Journal Manufacturing Processes, 2022, 75, 584-592.	of	2.8	3
400	Specific and robust hybridization based on double-stranded nucleic acids with single-base Analytica Chimica Acta, 2022, 1199, 339568.	e resolution.	2.6	1
401	Tetrahedral DNA nanostructures for effective treatment of cancer: advances and prospec of Nanobiotechnology, 2021, 19, 412.	:ts. Journal	4.2	43
402	Recent advances in the development and applications of conjugated polymer dots. Journ Materials Chemistry B, 2022, 10, 2995-3015.	al of	2.9	15

#	Article	IF	CITATIONS
404	A dynamic DNA nanosponge for triggered amplification of gene-photodynamic modulation. Chemical Science, 2022, 13, 5155-5163.	3.7	12
405	Antibody-Powered Lighting-Up Fluorescence Immunosensor Based on Hemin/G-Quadruplex-Quenched Dna-Hosted Dual Silver Nanoclusters as Emitters. SSRN Electronic Journal, 0, , .	0.4	0
406	Innovative developments and emerging technologies in RNA therapeutics. RNA Biology, 2022, 19, 313-332.	1.5	19
407	Harnessing DNA for Immunotherapy: Cancer, Infectious Diseases, and Beyond. Advanced Functional Materials, 2022, 32, .	7.8	10
408	An mTOR siRNAâ€Loaded Spermidine/DNA Tetrahedron Nanoplatform with a Synergistic Antiâ€Inflammatory Effect on Acute Lung Injury. Advanced Healthcare Materials, 2022, 11, e2200008.	3.9	8
409	Principles of Nanoparticle Design for Genome Editing in Plants. Frontiers in Genome Editing, 2022, 4, 846624.	2.7	7
410	Nucleic Acid Nanotechnology for Diagnostics and Therapeutics in Acute Kidney Injury. International Journal of Molecular Sciences, 2022, 23, 3093.	1.8	2
411	DNA Logic Circuits for Cancer Theranostics. Small, 2022, 18, e2108008.	5.2	26
412	Smart Drug Delivery Systems Based on DNA Nanotechnology. ChemPlusChem, 2022, 87, e202100548.	1.3	19
413	DNAâ€Based Nanoarchitectures as Eminent Vehicles for Smart Drug Delivery Systems. Advanced Functional Materials, 2022, 32, .	7.8	32
414	Activatable Dual Cancer-Related RNA Imaging and Combined Gene-Chemotherapy through the Target-Induced Intracellular Disassembly of Functionalized DNA Tetrahedron. Analytical Chemistry, 2022, 94, 5937-5945.	3.2	10
415	What's Next after Lipid Nanoparticles? A Perspective on Enablers of Nucleic Acid Therapeutics. Bioconjugate Chemistry, 2022, 33, 1996-2007.	1.8	7
416	Regulation of 2D DNA Nanostructures by the Coupling of Intrinsic Tile Curvature and Arm Twist. Journal of the American Chemical Society, 2022, 144, 6759-6769.	6.6	8
417	Light responsive nucleic acid for biomedical application. Exploration, 2022, 2, .	5.4	19
418	Supramolecular organic nanotubes for drug delivery. Materials Today Advances, 2022, 14, 100239.	2.5	17
419	Self-assembled DNA/RNA nanospheres with cascade signal amplification for intracellular MicroRNA imaging. Sensors and Actuators B: Chemical, 2022, 360, 131644.	4.0	15
420	Enhanced Immunostimulatory Activity of Covalent DNA Dendrons. ChemBioChem, 2022, 23, .	1.3	9
421	Activation of Antibiotic-Grafted Polymer Brushes by Ultrasound. ACS Macro Letters, 2022, 11, 15-19.	2.3	12

#	Article	IF	CITATIONS
422	Nanoparticle-Based RNAi Therapeutics Targeting Cancer Stem Cells: Update and Prospective. Pharmaceutics, 2021, 13, 2116.	2.0	16
423	Metal Complexes as DNA Synthesis and/or Repair Inhibitors: Anticancer and Antimicrobial Agents. Pharmaceutical Fronts, 2021, 03, e164-e182.	0.4	7
424	Simultaneous Targeted Analysis of GGT and Its H-Type mRNA in HepG2 Cells Based on Degradable Silicon Nanomaterials. Analytical Chemistry, 2021, 93, 16581-16589.	3.2	3
425	Driving DNA Origami Assembly with a Terahertz Wave. Nano Letters, 2022, 22, 468-475.	4.5	23
426	Copackaging photosensitizer and PD-L1 siRNA in a nucleic acid nanogel for synergistic cancer photoimmunotherapy. Science Advances, 2022, 8, eabn2941.	4.7	50
427	Pure DNA scaffolded drug delivery systems for cancer therapy. Biomaterials, 2022, 285, 121532.	5.7	9
428	Facile Purification and Concentration of DNA Origami Structures by Ethanol Precipitation. ChemNanoMat, 2022, 8, .	1.5	4
429	Adenosine triphosphate/pH dual-responsive controlled drug release system with high cancer/normal cell selectivity and low side toxicity. Journal of Biomaterials Applications, 2022, , 088532822210874.	1.2	0
430	Freeze-Driven Adsorption of Poly-A DNA on Gold Nanoparticles: From a Stable Biointerface to Plasmonic Dimers. Langmuir, 2022, 38, 4625-4632.	1.6	5
431	Tailored protein-conjugated DNA nanoplatform for synergistic cancer therapy. Journal of Controlled Release, 2022, 346, 250-259.	4.8	8
432	A designer DNA tetrahedron-based molecular beacon for tumor-related microRNA fluorescence imaging in living cells. Analyst, The, 2022, 147, 2231-2237.	1.7	5
433	Gold Nanoparticles Conjugated Dna-Tiles for Simultaneous Delivery of Morpholino Antisense Oligonucleotides and Doxorubicin. SSRN Electronic Journal, 0, , .	0.4	0
434	DNA nanotechnology-empowered finite state machines. Nanoscale Horizons, 2022, 7, 578-588.	4.1	5
435	Intelligent and robust DNA robots capable of swarming into leakless nonlinear amplification in response to a trigger. Nanoscale Horizons, 2022, 7, 634-643.	4.1	3
436	Acidic microenvironment triggered <i>in situ</i> assembly of activatable three-arm aptamer nanoclaw for contrast-enhanced imaging and tumor growth inhibition <i>in vivo</i> . Theranostics, 2022, 12, 3474-3487.	4.6	4
437	基于PNAçš"ç"Ÿç‰©ä¼æ"ŸæŠ€æœ⁻最æ−°ç"ç©¶èį›å±•. Scientia Sinica Chimica, 2022, , .	0.2	0
439	Integrating CRISPR/Cas systems with programmable DNA nanostructures for delivery and beyond. IScience, 2022, , 104389.	1.9	9
440	Programming DNA Self-Assembly by Geometry. Journal of the American Chemical Society, 2022, 144, 8741-8745.	6.6	18

#	Article	IF	CITATIONS
441	DNAâ€Based Dissipative Assembly toward Nanoarchitectonics. Advanced Functional Materials, 2022, 32, .	7.8	26
442	Recent Updates on Supramolecularâ€Based Drug Delivery – Macrocycles and Supramolecular Gels. Chemical Record, 2022, 22, e202200053.	2.9	16
443	DNAâ€Directed Seeded Synthesis of Gold Nanoparticles without Changing DNA Sequence. ChemNanoMat, 2022, 8, .	1.5	3
444	Computational DNA Droplets Recognizing miRNA Sequence Inputs Based on Liquid–Liquid Phase Separation. Advanced Functional Materials, 2022, 32, .	7.8	22
445	Recent Advances in Self-Assembled DNA Nanostructures for Bioimaging. ACS Applied Bio Materials, 2022, 5, 4652-4667.	2.3	12
446	Cholesterol-Mediated Seeding of Protein Corona on DNA Nanostructures for Targeted Delivery of Oligonucleotide Therapeutics to Treat Liver Fibrosis. ACS Nano, 2022, 16, 7331-7343.	7.3	23
447	DNA Kirigami Driven by Polymeraseâ€Triggered Strand Displacement. Small, 2022, 18, e2201478.	5.2	8
448	Determining the Cytosolic Stability of Small DNA Nanostructures <i>In Cellula</i> . Nano Letters, 2022, 22, 5037-5045.	4.5	14
449	Engineered extracellular vesicles as intelligent nanosystems for next-generation nanomedicine. Nanoscale Horizons, 2022, 7, 682-714.	4.1	37
450	Micro―and Nanorobots Meet DNA. Advanced Functional Materials, 2022, 32, .	7.8	17
451	An electrochemical aptasensor based on intelligent walking DNA nanomachine with cascade signal amplification powered by nuclease for Mucin 1 assay. Analytica Chimica Acta, 2022, 1214, 339964.	2.6	11
452	A covalently conjugated branched DNA aptamer cluster-based nanoplatform for efficiently targeted drug delivery. Nanoscale, 2022, 14, 9369-9378.	2.8	8
453	Strategic Insights into Engineering Parameters Affecting Cell Type-Specific Uptake of DNA-Based Nanomaterials. Biomacromolecules, 2022, 23, 2586-2594.	2.6	13
454	Recent applications of immunomodulatory biomaterials for disease immunotherapy. Exploration, 2022, 2, .	5.4	81
455	DNAâ€Mediated Membrane Fusion and Its Biological Applications: Sensing, Reaction Control and Drug Delivery. Analysis & Sensing, 2022, 2, .	1.1	2
456	Development of a fluorescence-based DNAzyme biosensor to detect Pb2+ in tobacco leaf extracts for cleaner crop production. Journal of Cleaner Production, 2022, , 132544.	4.6	3
457	Nanoparticle-based medicines in clinical cancer therapy. Nano Today, 2022, 45, 101512.	6.2	59
458	Self-assembly of DNA nanogels with endogenous microRNA toehold self-regulating switches for targeted gene regulation therapy. Biomaterials Science, 2022, 10, 4119-4125.	2.6	12

#	ARTICLE	IF	CITATIONS
459	Chiral Ru ^{II} â€Pt ^{II} Complexes Inducing Telomere Dysfunction against Cisplatinâ€Resistant Cancer Cells. Angewandte Chemie - International Edition, 2022, 61, .	7.2	8
460	Chiral Rullâ€PtII Complexes Inducing Telomere Dysfunction against Cisplatinâ€Resistant Cancer Cells. Angewandte Chemie, 0, , .	1.6	0
461	Sensitive Detection of Staphylococcus aureus by a Colorimetric Biosensor Based on Magnetic Separation and Rolling Circle Amplification. Foods, 2022, 11, 1852.	1.9	4
462	A Peculiar Binding Characterization of DNA (RNA) Nucleobases at MoOS-Based Janus Biosensor: Dissimilar Facets Role on Selectivity and Sensitivity. Biosensors, 2022, 12, 442.	2.3	2
463	Boosted Productivity in Singleâ€Tileâ€Based DNA Polyhedra Assembly by Simple Cation Replacement. ChemBioChem, 0, , .	1.3	3
464	Recent Advances in DNA Nanotechnology for Plasmonic Biosensor Construction. Biosensors, 2022, 12, 418.	2.3	5
465	DNA-Programmed Orientation-Ordered Multivalent Microfluidic Interface for Liquid Biopsy. Analytical Chemistry, 2022, 94, 8766-8773.	3.2	11
466	Drug delivery systems based on renewable polymers: A conceptual short review. Polymers From Renewable Resources, 2022, 13, 44-54.	0.8	5
467	Calcium-Differentiated Cellular Internalization of Allosteric Framework Nucleic Acids for Targeted Payload Delivery. Analytical Chemistry, 2022, 94, 9097-9105.	3.2	3
468	Dissipative DNA nanotechnology. Nature Chemistry, 2022, 14, 600-613.	6.6	72
469	Integrating DNA nanostructures with DNAzymes for biosensing, bioimaging and cancer therapy. Coordination Chemistry Reviews, 2022, 468, 214651.	9.5	18
470	Probing the self-assembly process of amphiphilic tetrahedral DNA frameworks. Chemical Communications, 2022, 58, 8352-8355.	2.2	5
471	Nanoswimmers Based on Capped Janus Nanospheres. Materials, 2022, 15, 4442.	1.3	0
472	Self-assembly of DNA-organic hybrid amphiphiles by frame-guided assembly strategies. Giant, 2022, 11, 100113.	2.5	3
473	Tetrahedral framework nucleic <scp>acidsâ€based</scp> delivery promotes intracellular transfer of healing peptides and accelerates diabetic would healing. Cell Proliferation, 2022, 55, .	2.4	13
474	Biointerface Engineering with Nucleic Acid Materials for Biosensing Applications. Advanced Functional Materials, 2022, 32, .	7.8	15
475	Nanovoid-confinement and click-activated nanoreactor for synchronous delivery of prodrug pairs and precise photodynamic therapy. Nano Research, 2022, 15, 9264-9273.	5.8	10
476	Nanoscale organization of two-dimensional multimeric pMHC reagents with DNA origami for CD8+ T cell detection. Nature Communications, 2022, 13, .	5.8	17

		CITATION REPORT		
#	Article		IF	Citations
477	Frame-Guided Assembly of Amphiphiles. Accounts of Chemical Research, 2022, 55, 19	38-1948.	7.6	15
478	Gold nanoparticles conjugated DNA-tile nanomaterials for simultaneous delivery of mo antisense oligonucleotides and doxorubicin. Journal of Drug Delivery Science and Tech 74, 103546.	rpholino nology, 2022,	1.4	3
479	Nanostructures with at least one dimension in ultra-small size for the treatment of acu injury. Giant, 2022, 11, 100111.	ıte kidney	2.5	2
480	An Osimertinib-Perfluorocarbon Nanoemulsion with Excellent Targeted Therapeutic Eff Non-small Cell Lung Cancer: Achieving Intratracheal and Intravenous Administration. A 16, 12590-12605.		7.3	14
481	Myelosuppression Alleviation and Hematopoietic Regeneration by Tetrahedralâ€Frame Nanostructures Functionalized with Osteogenic Growth Peptide. Advanced Science, 2	work Nucleicâ€Acid 022, 9, .	5.6	41
483	Toll-like receptor 9 agonists and combination therapies: strategies to modulate the tur microenvironment for systemic anti-tumour immunity. British Journal of Cancer, 2022,	mour immune 127, 1584-1594.	2.9	21
484	DNA circuits compatible encoder and demultiplexer based on a single biomolecular pla strands as outputs. Nucleic Acids Research, 2022, 50, 8431-8440.	tform with DNA	6.5	11
485	Immunology Meets Bioengineering: Improving the Effectiveness of Glioblastoma Immu Cancers, 2022, 14, 3698.	notherapy.	1.7	8
486	Development of a simple and rapid fluorescent aptasensor based on <scp>DNA</scp> of the Chinese Chemical Society, 0, , .	tweezer. Journal	0.8	0
487	Self-Assembled DNA–Protein Hybrid Nanospheres: Biocompatible Nano-Drug-Carrier Cancer Therapy. ACS Applied Materials & Interfaces, 2022, 14, 37493-37503.	s for Targeted	4.0	3
488	Advancing the Utility of DNA Origami Technique through Enhanced Stability of DNA-O Assemblies. Bioconjugate Chemistry, 2023, 34, 6-17.	rigami-Based	1.8	6
489	Reprogramming tumor-immune cell communication with a radiosensitive nanoregulate immunotherapy. Science China Materials, 2023, 66, 352-362.	br for	3.5	5
490	Directing the Selfâ€Assembly of Aromatic Foldamer Helices using Acridine Appendage Coordination. Chemistry - A European Journal, 2022, 28, .	s and Metal	1.7	3
491	Smart drug delivery systems for precise cancer therapy. Acta Pharmaceutica Sinica B, 2 4098-4121.	2022, 12,	5.7	47
492	DNA Framework-Programmed Ligand Positioning to Modulate the Targeting Performa Materials & Interfaces, 2022, 14, 36957-36965.	nce. ACS Applied	4.0	0
493	DNA Origami as a Nanomedicine for Targeted Rheumatoid Arthritis Therapy through R Species and Nitric Oxide Scavenging. ACS Nano, 2022, 16, 12520-12531.	eactive Oxygen	7.3	23
494	Engineering Programmable DNA Particles and Capsules Using Catechol-Functionalized Copolymers. Chemistry of Materials, 2022, 34, 7468-7480.	DNA Block	3.2	9
496	Dynamic Catalysis Guided by Nucleic Acid Networks and DNA Nanostructures. Bioconj 2023, 34, 51-69.	ugate Chemistry,	1.8	1

#	Article	IF	CITATIONS
497	An Endoplasmic Reticulum (ER)â€Targeting DNA Nanodevice for Autophagyâ€Dependent Degradation of Proteins in Membraneâ€Bound Organelles. Angewandte Chemie, 0, , .	1.6	1
498	An Endoplasmic Reticulum (ER)â€Targeting DNA Nanodevice for Autophagyâ€Dependent Degradation of Proteins in Membraneâ€Bound Organelles. Angewandte Chemie - International Edition, 2022, 61, .	7.2	6
499	Engineering the Surface Properties of DNA Nanostructures by Tuning the Valency of Assembling Species for Biomedical Applications. Macromolecular Bioscience, 2022, 22, .	2.1	2
500	Coarse-Grained Simulations for the Characterization and Optimization of Hybrid Protein–DNA Nanostructures. ACS Nano, 2022, 16, 14086-14096.	7.3	3
501	Albumin-Coated Framework Nucleic Acids as Bionic Delivery System for Triple-Negative Breast Cancer Therapy. ACS Applied Materials & Interfaces, 2022, 14, 39819-39829.	4.0	8
502	Silver Nanoclusters Serve as Fluorescent Rivets Linking Hoogsteen Triplex DNA and Hairpin-Loop DNA Structures. ACS Nano, 2022, 16, 13211-13222.	7.3	14
503	Delivery of DNA octahedra enhanced by focused ultrasound with microbubbles for glioma therapy. Journal of Controlled Release, 2022, 350, 158-174.	4.8	5
504	Programmable Assembly of Multivalent DNAâ€Protein Superstructures for Tumor Imaging and Targeted Therapy. Angewandte Chemie - International Edition, 2022, 61, .	7.2	20
505	Programmable Assembly of Multivalent DNAâ€Protein Superstructures for Tumor Imaging and Targeted Therapy. Angewandte Chemie, 2022, 134, .	1.6	0
506	DNA-assisted nanoparticle assembly. , 2023, , 128-148.		1
506 507	DNA-assisted nanoparticle assembly. , 2023, , 128-148. Erythrocyte membrane camouflaged siRNA/chemodrug nanoassemblies for cancer combination therapy. Biomaterials Science, 2022, 10, 6601-6613.	2.6	1
	Erythrocyte membrane camouflaged siRNA/chemodrug nanoassemblies for cancer combination	2.6	
507	Erythrocyte membrane camouflaged siRNA/chemodrug nanoassemblies for cancer combination therapy. Biomaterials Science, 2022, 10, 6601-6613.	2.6 0.5	9
507 508	Erythrocyte membrane camouflaged siRNA/chemodrug nanoassemblies for cancer combination therapy. Biomaterials Science, 2022, 10, 6601-6613. Bio-interfacial DNA self-assemblies for biomedical applications. , 2022, , 259-273. Rational computational approaches to predict novel drug candidates against leishmaniasis. Annual		9
507 508 509	 Erythrocyte membrane camouflaged siRNA/chemodrug nanoassemblies for cancer combination therapy. Biomaterials Science, 2022, 10, 6601-6613. Bio-interfacial DNA self-assemblies for biomedical applications. , 2022, , 259-273. Rational computational approaches to predict novel drug candidates against leishmaniasis. Annual Reports in Medicinal Chemistry, 2022, , . Programmable mismatch-fueled high-efficiency DNA signal amplifier. Chemical Science, 2022, 13, 	0.5	9 0 0
507 508 509 510	 Erythrocyte membrane camouflaged siRNA/chemodrug nanoassemblies for cancer combination therapy. Biomaterials Science, 2022, 10, 6601-6613. Bio-interfacial DNA self-assemblies for biomedical applications. , 2022, , 259-273. Rational computational approaches to predict novel drug candidates against leishmaniasis. Annual Reports in Medicinal Chemistry, 2022, , . Programmable mismatch-fueled high-efficiency DNA signal amplifier. Chemical Science, 2022, 13, 11926-11935. A cancer cell membrane vesicle-packaged DNA nanomachine for intracellular microRNA imaging. 	0.5 3.7	9 0 0 7
507 508 509 510 511	 Erythrocyte membrane camouflaged siRNA/chemodrug nanoassemblies for cancer combination therapy. Biomaterials Science, 2022, 10, 6601-6613. Bio-interfacial DNA self-assemblies for biomedical applications., 2022, , 259-273. Rational computational approaches to predict novel drug candidates against leishmaniasis. Annual Reports in Medicinal Chemistry, 2022, , . Programmable mismatch-fueled high-efficiency DNA signal amplifier. Chemical Science, 2022, 13, 11926-11935. A cancer cell membrane vesicle-packaged DNA nanomachine for intracellular microRNA imaging. Chemical Communications, 2022, 58, 9488-9491. Preparation, applications, and challenges of functional DNA nanomaterials. Nano Research, 2023, 16, 	0.5 3.7 2.2	9 0 0 7 5

#	Article	IF	CITATIONS
515	Biocompatible Iron Oxide Nanoparticles for Targeted Cancer Gene Therapy: A Review. Nanomaterials, 2022, 12, 3323.	1.9	18
516	Purification of Selfâ€Assembled DNA Tetrahedra Using Gel Electrophoresis. Current Protocols, 2022, 2, .	1.3	3
517	BACE1 Aptamer-Modified Tetrahedral Framework Nucleic Acid to Treat Alzheimer's Disease in an APP-PS1 Animal Model. ACS Applied Materials & Interfaces, 2022, 14, 44228-44238.	4.0	8
518	In situ small-angle X-ray scattering reveals strong condensation of DNA origami during silicification. Nature Communications, 2022, 13, .	5.8	13
519	Novel DNA nanoflower biosensing technologies towards next-generation molecular diagnostics. Trends in Biotechnology, 2023, 41, 653-668.	4.9	7
520	Tuning Mesoporous Silica Nanoparticles in Novel Avenues of Cancer Therapy. Molecular Pharmaceutics, 2022, 19, 4428-4452.	2.3	13
521	Investigation of the Transporting Behavior of Framework DNA Nanoâ€Devices Across the Artificial Bloodâ€Brain Barrier (BBB). ChemBioChem, 0, , .	1.3	3
522	Assembling defined DNA nanostructures with anticancer drugs: a metformin/DNA complex nanoplatform with a synergistic antitumor effect for KRAS-mutated lung cancer therapy. NPG Asia Materials, 2022, 14, .	3.8	4
523	"Shutter―Effects Enhance Protein Diffusion in Dynamic and Rigid Molecular Networks. Journal of the American Chemical Society, 2022, 144, 19017-19025.	6.6	14
524	On-Chip Control over Polyelectrolyte–Surfactant Complexation in Nonequilibrium Microfluidic Confinement. Polymers, 2022, 14, 4109.	2.0	5
525	Covalent stabilization of DNA nanostructures on cell membranes for efficient surface receptor-mediated labeling and function regulations. Science China Chemistry, 2022, 65, 2327-2334.	4.2	1
526	Precise Design Strategies of Nanotechnologies for Controlled Drug Delivery. Journal of Functional Biomaterials, 2022, 13, 188.	1.8	2
527	DNA-Based Molecular Machines. Jacs Au, 2022, 2, 2381-2399.	3.6	15
528	Ab initio predictions for 3D structure and stability of single- and double-stranded DNAs in ion solutions. PLoS Computational Biology, 2022, 18, e1010501.	1.5	1
529	Nucleic acid nanoassembly-enhanced RNA therapeutics and diagnosis. Acta Pharmaceutica Sinica B, 2023, 13, 916-941.	5.7	50
530	Recent advancements in DNA nanotechnology-enabled extracellular vesicles detection and diagnosis: A mini review. Chinese Chemical Letters, 2023, 34, 107926.	4.8	2
531	Selfâ€Assemblies of DNA ―Amphiphiles Nanostructures for New Design Strategies of Varied Morphologies. ChemistrySelect, 2022, 7, .	0.7	0
532	Current understanding of biological interactions and processing of DNA origami nanostructures: Role of machine learning and implications in drug delivery. Biotechnology Advances, 2022, 61, 108052.	6.0	9

	Сітатіо	N REPORT	
#	Article	IF	CITATIONS
533	Recent Advances in DNA Nanostructureâ€enabled Drug Delivery. ChemNanoMat, 2023, 9, .	1.5	1
534	Drug delivery application: an outlook on past and present technologies. , 2023, , 9-29.		0
535	DNA conformational equilibrium enables continuous changing of curvatures. Nanoscale, 2023, 15, 470-475.	2.8	3
536	Self-assembly of alkyl–perylenebisdiimide–DNA amphiphiles and control of their morphology through cyclodextrin-based host–guest interaction. Soft Matter, 2023, 19, 342-346.	1.2	1
537	Cationic lipid modification of DNA tetrahedral nanocages enhances their cellular uptake. Nanoscale, 2023, 15, 1099-1108.	2.8	5
538	Nucleic acid-based artificial nanocarriers for gene therapy. Journal of Materials Chemistry B, 2023, 11, 261-279.	2.9	6
539	Ion-mediated control of structural integrity and reconfigurability of DNA nanostructures. Nanoscale, 2023, 15, 1317-1326.	2.8	6
540	Attenuating endothelial leakiness with self-assembled DNA nanostructures for pulmonary arterial hypertension. Nanoscale Horizons, 2023, 8, 270-278.	4.1	2
541	A DNA origami nanostructure embedded with NQO1-activated prodrugs for precision drug delivery. Chemical Communications, 2023, 59, 912-915.	2.2	6
542	Stimuli-responsive nucleic acid nanostructures for efficient drug delivery. Nanoscale, 2022, 14, 17862-17870.	2.8	10
543	Tissue-Specific Drug Delivery Platforms Based on DNA Nanoparticles. , 2022, , 1-28.		0
544	Selfâ€Assembled Peptideâ€Based Nanodrugs: Molecular Design, Synthesis, Functionalization, and Targeted Tumor Bioimaging and Biotherapy. Small, 2023, 19, .	5.2	16
545	Folate-Functionalization Enhances Cytotoxicity of Multivalent DNA Nanocages on Triple-Negative Breast Cancer Cells. Pharmaceutics, 2022, 14, 2610.	2.0	3
546	Development and classification of RNA aptamers for therapeutic purposes: an updated review with emphasis on cancer. Molecular and Cellular Biochemistry, 2023, 478, 1573-1598.	1.4	15
547	Advanced diagnostic and therapeutic strategies in nanotechnology for lung cancer. Frontiers in Oncology, 0, 12, .	1.3	6
548	Injectable Nanomedicine–Hydrogel for NIR Light Photothermal–Chemo Combination Therapy of Tumor. Polymers, 2022, 14, 5547.	2.0	7
549	Cellular Ingestible DNA Nanostructures for Biomedical Applications. Advanced NanoBiomed Research, 2023, 3, .	1.7	6
550	Tuning Properties of Polyelectrolyte-Surfactant Associates in Two-Phase Microfluidic Flows. Polymers, 2022, 14, 5480.	2.0	0

#	Article	IF	CITATIONS
551	Oneâ€Pot Controllable Assembly of a Baicalinâ€Condensed Aptamer Nanodrug for Synergistic Antiâ€Obesity. Small, 2023, 19, .	5.2	0
552	Recent advances in developing active targeting and multi-functional drug delivery systems via bioorthogonal chemistry. Signal Transduction and Targeted Therapy, 2022, 7, .	7.1	30
553	Automated design of 3D DNA origami with non-rasterized 2D curvature. Science Advances, 2022, 8, .	4.7	7
555	A versatile and convenient tool for regulation of DNA strand displacement and post-modification on pre-fabricated DNA nanodevices. Nucleic Acids Research, 2023, 51, 29-40.	6.5	5
556	Inflammation specific environment activated methotrexate-loaded nanomedicine to treat rheumatoid arthritis by immune environment reconstruction. Acta Biomaterialia, 2023, 157, 367-380.	4.1	7
557	The enhancement of enzyme cascading <i>via</i> tetrahedral DNA framework modification. Analyst, The, 2023, 148, 906-911.	1.7	1
558	DNA Nanomaterialsâ \in Based Platforms for Cancer Immunotherapy. Small Methods, 2023, 7, .	4.6	11
559	Engineering CRISPR/Cas-based nanosystems for therapeutics, diagnosis and bioimaging. Chinese Chemical Letters, 2023, 34, 108134.	4.8	2
560	Single-molecule fluorescence methods for protein biomarker analysis. Analytical and Bioanalytical Chemistry, 2023, 415, 3655-3669.	1.9	8
561	Immunomodulation with Nucleic Acid Nanodevices. Small, 2023, 19, .	5.2	4
562	Constructing Artificial Nucleobase Compilation to Enable Precise Molecular Medicine ^{â€} . Chinese Journal of Chemistry, 2023, 41, 1385-1398.	2.6	2
563	Nucleic Acids Enabledâ€Interfacial Engineering for Biomarker Sensing with Distance Constraint Effects. , 2023, 2, .		1
564	Recent Advances in DNA Nanostructures Applied in Sensing Interfaces and Cellular Imaging. Analytical Chemistry, 2023, 95, 407-419.	3.2	7
565	A DNA-based nanodevice for near-infrared light-controlled drug release and bioimaging. Nano Today, 2023, 48, 101747.	6.2	11
566	Nanomaterial-assisted theranosis of bone diseases. Bioactive Materials, 2023, 24, 263-312.	8.6	8
567	Nucleic acid nanostructure for delivery of CRISPR/Cas9â€based gene editing system. , 2023, 1, .		7
568	Molecular elements: novel approaches for molecular building. Philosophical Transactions of the Royal Society B: Biological Sciences, 2023, 378, .	1.8	2
569	Nanomaterials for Therapeutic Nucleic Acid Delivery. , 2022, , 1-29.		0

#	Article	IF	CITATIONS
570	The compact integration of a cascaded HCR circuit for highly reliable cancer cell discrimination. Chemical Science, 2023, 14, 2159-2167.	3.7	16
571	Biocompatibility of green synthesized nanomaterials. , 2023, , 209-223.		1
572	Low-density lipoprotein: a versatile nanoscale platform for targeted delivery. Nanoscale Advances, 2023, 5, 1011-1022.	2.2	3
573	Proximity binding-initiated DNA walker and CRISPR/Cas12a reaction for dual signal amplification detection of thrombin. Talanta, 2023, 256, 124286.	2.9	7
574	Nanotechnologies in the Health Management of Aquatic Animal Diseases. Nanotechnology in the Life Sciences, 2023, , 157-181.	0.4	0
575	Targeted delivery of epirubicin to breast cancer cells using poly-aptamer DNA nanocarriers prepared by the RCA method with multiple repeats of aptamers of FOXM1 and AS1411. Drug Development and Industrial Pharmacy, 2023, 49, 260-270.	0.9	2
576	Construction of rolling circle amplification products-based pure nucleic acid nanostructures for biomedical applications. Acta Biomaterialia, 2023, 160, 1-13.	4.1	14
577	Recent advances in nanomedicine development for traumatic brain injury. Tissue and Cell, 2023, 82, 102087.	1.0	0
578	Nucleic acid nanostructures for <i>in vivo</i> applications: The influence of morphology on biological fate. Applied Physics Reviews, 2023, 10, .	5.5	6
579	High-Affinity DNA Nanomatrix: A Platform Technology for Synergistic Drug Delivery and Photothermal Therapy. ACS Macro Letters, 2023, 12, 255-262.	2.3	5
580	Dendronized DNA Chimeras Harness Scavenger Receptors To Degrade Cell Membrane Proteins. Angewandte Chemie, 2023, 135, .	1.6	0
581	Dendronized DNA Chimeras Harness Scavenger Receptors To Degrade Cell Membrane Proteins. Angewandte Chemie - International Edition, 2023, 62, .	7.2	22
582	Construction of a DNA Nanoassembly Based on Spatially Ordered Recognition Elements for Inhibiting β-Amyloid Aggregation. Langmuir, 2023, 39, 2192-2203.	1.6	0
583	Pillararene-Based Supramolecular Polymers for Cancer Therapy. Molecules, 2023, 28, 1470.	1.7	10
584	High-throughput single-molecule quantification of individual base stacking energies in nucleic acids. Nature Communications, 2023, 14, .	5.8	8
585	CRISPR/Cas genome editing in triple negative breast cancer: Current situation and future directions. Biochemical Pharmacology, 2023, 209, 115449.	2.0	3
586	Biomimetic retractable DNA nanocarrier with sensitive responsivity for efficient drug delivery and enhanced photothermal therapy. Journal of Nanobiotechnology, 2023, 21, .	4.2	4
587	Protein-Scaffolded DNA Nanostructures for Imaging of Apurinic/Apyrimidinic Endonuclease 1 Activity in Live Cells. Analytical Chemistry, 2023, 95, 3551-3555.	3.2	3

#	Article	IF	CITATIONS
588	Cucurbit[7]uril-Based Supramolecular DNA Nanogel for Targeted Codelivery of Chemo/Photodynamic Drugs. ACS Macro Letters, 2023, 12, 295-301.	2.3	8
589	Transmembrane capability of DNA origami sheet enhanced by 3D configurational changes. IScience, 2023, 26, 106208.	1.9	1
590	Liver-Targeted Delivery of Small Interfering RNA of C–C Chemokine Receptor 2 with Tetrahedral Framework Nucleic Acid Attenuates Liver Cirrhosis. ACS Applied Materials & Interfaces, 2023, 15, 10492-10505.	4.0	8
591	Recent advances in hydrogels for preventing tumor recurrence. Biomaterials Science, 2023, 11, 2678-2692.	2.6	4
592	Engineering Circular Aptamer Assemblies with Tunable Selectivity to Cell Membrane Antigens <i>In Vitro</i> and <i>In Vivo</i> . ACS Applied Materials & Interfaces, 2023, 15, 12822-12830.	4.0	2
593	Ethane groups modified DNA nanopores to prolong the dwell time on live cell membranes for transmembrane transport. Frontiers in Chemistry, 0, 11, .	1.8	0
594	Nanoscale Organization of TRAIL Trimers using DNA Origami to Promote Clustering of Death Receptor and Cancer Cell Apoptosis. Small, 2023, 19, .	5.2	4
596	Assembly of an A ₆ L ₆ Anion Trigonal Antiprism and Binding of Glucopyranosides and Polyethylene Glycols (PEGs). Angewandte Chemie - International Edition, 2023, 62, .	7.2	2
597	Assembly of an A ₆ L ₆ Anion Trigonal Antiprism and Binding of Glucopyranosides and Polyethylene Glycols (PEGs). Angewandte Chemie, 0, , .	1.6	0
598	The power of super-resolution microscopy in modern biomedical science. Advances in Colloid and Interface Science, 2023, 314, 102880.	7.0	4
599	Potential socioeconomic approaches for commercialized antimicrobial applications. , 2023, , 365-401.		0
600	Programmable Nanostructures Based on Framework-DNA for Applications in Biosensing. Sensors, 2023, 23, 3313.	2.1	3
601	Caffeine-induced release of small molecules from DNA nanostructures. IScience, 2023, 26, 106564.	1.9	2
602	DNA-Based Nanomaterials as Drug Delivery Platforms for Increasing the Effect of Drugs in Tumors. Cancers, 2023, 15, 2151.	1.7	4
603	The role of size in biostability of DNA tetrahedra. Chemical Communications, 2023, 59, 5083-5085.	2.2	3
604	An Overview of the Stability and Delivery Challenges of Commercial Nucleic Acid Therapeutics. Pharmaceutics, 2023, 15, 1158.	2.0	9
605	A survey on molecular-scale learning systems with relevance to DNA computing. Nanoscale, 2023, 15, 7676-7694.	2.8	4
606	Synthesis, Characteristation and Biological Activity of Silver Nanoparticles Generated Using the Leaf and Stembark Extract of Combretum Erythrophyllum. Anti-Cancer Agents in Medicinal Chemistry, 2023, 23, .	0.9	0

#	Article	IF	CITATIONS
607	Genetically Encoded DNA Origami for Gene Therapy In Vivo. Journal of the American Chemical Society, 2023, 145, 9343-9353.	6.6	16
608	Rational engineering of nucleic acid probe system for enhanced intracellular MicroRNA detection. Coordination Chemistry Reviews, 2023, 487, 215157.	9.5	3
610	Fabricating higher-order functional DNA origami structures to reveal biological processes at multiple scales. NPG Asia Materials, 2023, 15, .	3.8	5
617	Structural DNA nanotechnology and its biomedical applications. , 2023, , 561-585.		Ο
623	Molecularly or atomically precise nanostructures for bio-applications: how far have we come?. Materials Horizons, 0, , .	6.4	0
624	Drug-Grafted DNA for Cancer Therapy. Journal of Physical Chemistry B, 2023, 127, 5379-5388.	1.2	0
647	Nanomaterials enabled and enhanced DNA-based biosensors. Journal of Materials Chemistry B, 2023, 11, 6994-7003.	2.9	3
650	Nanotechnology in herbal medicine: Challenges and future perspectives. , 2023, , 515-548.		0
654	Tissue-Specific Drug Delivery Platforms Based on DNA Nanoparticles. , 2023, , 1527-1554.		0
656	Nanomaterials for Therapeutic Nucleic Acid Delivery. , 2023, , 2005-2033.		0
657	Nanoliposomes as safe and efficient drug delivery nanovesicles. , 2023, , 159-197.		4
670	DNA as highly biocompatible carriers for drug delivery. Materials Chemistry Frontiers, 2023, 7, 6345-6365.	3.2	1
674	Application and prospects of nucleic acid nanomaterials in tumor therapy. RSC Advances, 2023, 13, 26288-26301.	1.7	2
698	siRNA-loaded DNA nanostructures restore endothelial leakiness. Nanoscale Horizons, 0, , .	4.1	0
712	Recent Advancement of Nanotechnology in Bio Applications. , 2024, , 59-104.		0
727	Structural DNA nanotechnology at the nexus of next-generation bio applications: Challenges and Perspectives. Nanoscale Advances, 0, , .	2.2	0
730	DNA Nanotechnology-Based Nucleic Acid Delivery Systems for Bioimaging and Disease Treatment. Analyst, The, 0, , .	1.7	0
735	Nanoarchitectonics: a land of opportunities. , 2024, , 1-12.		0

#	Article	IF	CITATIONS
736	Metal-Responsive DNA Tweezers Driven by Base Pair Switching of 5-Hydroxyuracil Nucleobases. Springer Theses, 2024, , 89-115.	0.0	0
739	Parameters affecting the APIs release profile from polymersomes. , 2024, , 391-422.		0
744	DNA nanotechnology for diagnostic applications. , 2024, , 77-99.		0
750	DNA as a universal chemical substrate for computing and data storage. Nature Reviews Chemistry, 2024, 8, 179-194.	13.8	0
751	Framework nucleic acids as promising reactive oxygen species scavengers for anti-inflammatory therapy. Nanoscale, 0, , .	2.8	0