The Nucleus Reuniens Controls Long-Range Hippocamp Synchronization during Slow Oscillations

Journal of Neuroscience 38, 3026-3038

DOI: 10.1523/jneurosci.3058-17.2018

Citation Report

#	ARTICLE	IF	Citations
1	Nucleus reuniens of the thalamus controls fear memory intensity, specificity and longâ€ŧerm maintenance during consolidation. Hippocampus, 2018, 28, 602-616.	0.9	42
2	A cFos activation map of remote fear memory attenuation. Psychopharmacology, 2019, 236, 369-381.	1.5	86
3	Nucleus reuniens mediates the extinction of contextual fear conditioning. Behavioural Brain Research, 2019, 374, 112114.	1.2	39
4	The nucleus reuniens of the thalamus sits at the nexus of a hippocampus and medial prefrontal cortex circuit enabling memory and behavior. Learning and Memory, 2019, 26, 191-205.	0.5	146
5	Computing hubs in the hippocampus and cortex. Science Advances, 2019, 5, eaax4843.	4.7	26
6	Functional signature of conversion of patients with mild cognitive impairment. Neurobiology of Aging, 2019, 74, 21-37.	1.5	34
7	Afferent connections of the thalamic nucleus reuniens in the mouse. Journal of Comparative Neurology, 2020, 528, 1189-1202.	0.9	20
8	Na \tilde{A}^- ve to expert: Considering the role of previous knowledge in memory. Brain and Neuroscience Advances, 2020, 4, 239821282094868.	1.8	22
9	Calretinin and calbindin architecture of the midline thalamus associated with prefrontalâ€"hippocampal circuitry. Hippocampus, 2021, 31, 770-789.	0.9	13
10	The thalamic midline nucleus reuniens: potential relevance for schizophrenia and epilepsy. Neuroscience and Biobehavioral Reviews, 2020, 119, 422-439.	2.9	16
11	Thalamic nucleus reuniens regulates fear memory destabilization upon retrieval. Neurobiology of Learning and Memory, 2020, 175, 107313.	1.0	12
12	Cross-Frequency Power-Power Coupling Analysis: A Useful Cross-Frequency Measure to Classify ICA-Decomposed EEG. Sensors, 2020, 20, 7040.	2.1	10
13	The reuniens and rhomboid nuclei are necessary for contextual fear memory persistence in rats. Brain Structure and Function, 2020, 225, 955-968.	1.2	23
14	In Vivo Characterization of Neurophysiological Diversity in the Lateral Supramammillary Nucleus during Hippocampal Sharp-wave Ripples of Adult Rats. Neuroscience, 2020, 435, 95-111.	1.1	5
15	Nucleus reuniens of the thalamus controls fear memory reconsolidation. Neurobiology of Learning and Memory, 2021, 177, 107343.	1.0	13
17	The nucleus reuniens, a thalamic relay for cortico-hippocampal interaction in recent and remote memory consolidation. Neuroscience and Biobehavioral Reviews, 2021, 125, 339-354.	2.9	30
18	The reuniens and rhomboid nuclei of the thalamus: A crossroads for cognition-relevant information processing?. Neuroscience and Biobehavioral Reviews, 2021, 126, 338-360.	2.9	24
21	The Reuniens Nucleus of the Thalamus Has an Essential Role in Coordinating Slow-Wave Activity between Neocortex and Hippocampus. ENeuro, 2019, 6, ENEURO.0365-19.2019.	0.9	45

#	Article	IF	Citations
22	Cell Assemblies in the Cortico-Hippocampal-Reuniens Network during Slow Oscillations. Journal of Neuroscience, 2020, 40, 8343-8354.	1.7	11
23	mPFC spindle cycles organize sparse thalamic activation and recently active CA1 cells during non-REM sleep. ELife, 2020, 9, .	2.8	37
24	Skipping ahead: A circuit for representing the past, present, and future. ELife, 2021, 10, .	2.8	14
30	Effects of subanesthetic ketamine and (2R,6R) hydroxynorketamine on working memory and synaptic transmission in the nucleus reuniens in mice. Neuropharmacology, 2022, 208, 108965.	2.0	5
31	Dual medial prefrontal cortex and hippocampus projecting neurons in the paraventricular nucleus of the thalamus. Brain Structure and Function, 2022, 227, 1857-1869.	1.2	4
33	Tonic excitation of nucleus reuniens decreases prefrontalâ€hippocampal coordination during slowâ€wave states. Hippocampus, 2022, 32, 466-477.	0.9	2
34	The ventral midline thalamus coordinates prefrontal–hippocampal neural synchrony during vicarious trial and error. Scientific Reports, 2022, 12, .	1.6	6
36	Neural Oscillations in Aversively Motivated Behavior. Frontiers in Behavioral Neuroscience, 0, 16, .	1.0	12
37	Prefrontal projections to the nucleus reuniens signal behavioral relevance of stimuli during associative learning. Scientific Reports, 2022, 12 , .	1.6	0
38	Neuronal circuitry for recognition memory of object and place in rodent models. Neuroscience and Biobehavioral Reviews, 2022, 141, 104855.	2.9	30
39	Nucleus Reuniens: Circuitry, Function, and Dysfunction. Neuromethods, 2022, , 55-101.	0.2	1
40	Coupling between the prelimbic cortex, nucleus reuniens, and hippocampus during NREM sleep remains stable under cognitive and homeostatic demands. European Journal of Neuroscience, 2023, 57, 106-128.	1.2	2
42	Paroxysmal slow-wave discharges in a model of absence seizure are coupled to gamma oscillations in the thalamocortical and limbic systems. Epilepsy Research, 2023, 191, 107103.	0.8	0