Pd Metal Catalysts for Cross-Couplings and Related Rea Critical Review

Chemical Reviews 118, 2249-2295

DOI: 10.1021/acs.chemrev.7b00443

Citation Report

#	Article	IF	CITATIONS
1	Applications of SBA-15 supported Pd metal catalysts as nanoreactors in C–C coupling reactions. RSC Advances, 2018, 8, 41048-41100.	3.6	41
2	Palladium-scavenging self-assembled hybrid hydrogels – reusable highly-active green catalysts for Suzuki–Miyaura cross-coupling reactions. Chemical Science, 2018, 9, 8673-8681.	7.4	57
3	Pd/Gorlos-Phos-catalyzed cross-coupling between two different aryl chlorides in the presence of B ₂ Pin ₂ and cytotoxicity studies of the products. Organic Chemistry Frontiers, 2018, 5, 3319-3323.	4.5	5
4	Mechanisms of Bisphosphine Iron-Catalyzed C(SP ²)-C(SP ³) Cross-Coupling Reactions: Inner-Sphere or Outer-Sphere Arylation?. Comments on Inorganic Chemistry, 2018, 38, 210-237.	5.2	8
5	Synthesis of Pyridazine Derivatives by Suzuki-Miyaura Cross-Coupling Reaction and Evaluation of Their Optical and Electronic Properties through Experimental and Theoretical Studies. Molecules, 2018, 23, 3014.	3.8	7
6	Pd/DNA as Highly Active and Recyclable Catalyst of Suzuki–Miyaura Coupling. Catalysts, 2018, 8, 552.	3.5	16
7	Directed ortho Metalation (DoM)-Linked Corriu–Kumada, Negishi, and Suzuki–Miyaura Cross-Coupling Protocols: A Comparative Study. Synthesis, 2018, 50, 4395-4412.	2.3	7
8	Facile synthesis of palladium nanoparticles on hierarchical hollow silica spheres and its catalytic properties in Suzuki-reaction. Royal Society Open Science, 2018, 5, 180545.	2.4	11
9	Bench‣table Sulfoxideâ€Based Boronates: Preparation and Application in a Tandem Suzuki Reaction. Advanced Synthesis and Catalysis, 2018, 360, 4604-4614.	4.3	8
10	Planarâ€Chiral Ferroceneâ€Based Nâ€Heterocyclic Carbene Ligands. Chemistry - A European Journal, 2018, 24, 18575-18586.	3.3	46
11	Formation of hierarchically-ordered nanoporous silver foam and its electrocatalytic properties in reductive dehalogenation of organic compounds. New Journal of Chemistry, 2018, 42, 17499-17512.	2.8	6
12	A new efficient, highly dispersed, Pd nanoparticulate silica supported catalyst synthesized from an organometallic precursor. Study of the homogeneous vs. heterogeneous activity in the Suzuki-Miyaura reaction. Journal of Catalysis, 2018, 367, 283-295.	6.2	29
13	Decarboxylative Negishi Coupling of Redoxâ€Active Aliphatic Esters by Cobalt Catalysis. Angewandte Chemie, 2018, 130, 13280-13284.	2.0	21
14	Decarboxylative Negishi Coupling of Redoxâ€Active Aliphatic Esters by Cobalt Catalysis. Angewandte Chemie - International Edition, 2018, 57, 13096-13100.	13.8	78
15	Palladium-catalyzed cascade carboesterification of norbornene with alkynes. Organic and Biomolecular Chemistry, 2018, 16, 8495-8504.	2.8	5
16	Direct Synthesis of Chalcones from Anilides with Phenyl Vinyl Ketones by Oxidative Coupling Through C–H Bond Activation. ACS Omega, 2018, 3, 5375-5381.	3.5	4
17	Organometallic Gold(III) Reagents for Cysteine Arylation. Journal of the American Chemical Society, 2018, 140, 7065-7069.	13.7	148
18	Electrophilic Cyclization Involving Carbon–Selenium/Carbon–Halide Bond Formation: Synthesis of 3-Substituted Selenophenes. Journal of Organic Chemistry, 2018, 83, 6706-6718.	3.2	30

#	Article	IF	CITATIONS
19	A polystyrene supported [PdCl–(SeCSe)] complex: a novel, reusable and robust heterogeneous catalyst for the Sonogashira synthesis of 1,2-disubstituted alkynes and 1,3-enynes. New Journal of Chemistry, 2018, 42, 11471-11479.	2.8	21
20	Metalâ€Catalyzed C–H Functionalization Processes with "Clickâ€â€Triazole Assistance. European Journal of Organic Chemistry, 2018, 2018, 6034-6049.	2.4	21
21	Functional Group Transposition: A Palladium-Catalyzed Metathesis of Ar–X σ-Bonds and Acid Chloride Synthesis. Journal of the American Chemical Society, 2018, 140, 10140-10144.	13.7	81
22	Synthesis of a palladium acetylide-based tubular microporous polymer monolith <i>via</i> a self-template approach: a potential precursor of supported palladium nanoparticles for heterogeneous catalysis. RSC Advances, 2018, 8, 25277-25282.	3.6	16
23	Direct Transformation of Arylamines to Aryl Halides via Sodium Nitrite and <i>N</i> â€Halosuccinimide. Chemistry - A European Journal, 2018, 24, 14622-14626.	3.3	33
24	Palladium nanodendrites uniformly deposited on the surface of polymers as an efficient and recyclable catalyst for direct drug modification via Z-selective semihydrogenation of alkynes. Green Chemistry, 2018, 20, 3875-3883.	9.0	9
25	Heterogeneous Catalytic Composites from Palladium Nanoparticles in Montmorillonite Intercalated with Poly (Vinyl Pyrrolidone) Chains. Polymers, 2018, 10, 669.	4.5	10
26	Highly Recoverable Pd(II) Catalysts for the Mizoroki–Heck Reaction Based on N-Heterocyclic Carbenes and Poly(benzyl ether) Dendrons. Organometallics, 2018, 37, 3598-3610.	2.3	15
27	Comprehensive Study of the Reactions Between Chelating Phosphines and Ni(cod) ₂ . Organometallics, 2018, 37, 3259-3268.	2.3	31
28	Synthesis, characterization and catalytic performance of palladium supported on pyridineâ€based covalent organic polymer for Suzukiâ€Miyaura reaction. Applied Organometallic Chemistry, 2019, 33, e5172.	3.5	23
29	A new, <i>substituted</i> palladacycle forÂppm level Pd-catalyzed Suzuki–Miyaura cross couplings in water. Chemical Science, 2019, 10, 8825-8831.	7.4	56
30	Designer 3D CoAl-layered double hydroxide@N, S doped graphene hollow architecture decorated with Pd nanoparticles for Sonogashira couplings. Applied Surface Science, 2019, 496, 143599.	6.1	22
31	Regioselective Single-Electron Tsuji–Trost Reaction of Allylic Alcohols: A Photoredox/Nickel Dual Catalytic Approach. Organic Letters, 2019, 21, 6543-6547.	4.6	31
32	The Destiny of Palladium: Development of Efficient Palladium Analysis Techniques in Enhancing Palladium Recovery. Organic Process Research and Development, 2019, 23, 2175-2180.	2.7	13
33	Metal Organic Frameworks as Robust Host of Palladium Nanoparticles in Heterogeneous Catalysis: Synthesis, Application, and Prospect. ACS Applied Materials & Interfaces, 2019, 11, 32579-32598.	8.0	120
34	C–N Cross-Couplings for Site-Selective Late-Stage Diversification via Aryl Sulfonium Salts. Journal of the American Chemical Society, 2019, 141, 13346-13351.	13.7	152
35	Development of Metal Nanoparticle Catalysis toward Drug Discovery. Chemical and Pharmaceutical Bulletin, 2019, 67, 733-771.	1.3	10
36	Catalytic Transfer Hydrodebenzylation with Low Palladium Loading. Advanced Synthesis and Catalysis, 2019, 361, 4781-4789.	4.3	21

#	ARTICLE	IF	Citations
37	Functionalization of silica gel by ultrasound-assisted surface Suzuki coupling. Tetrahedron Letters, 2019, 60, 150937.	1.4	2
38	Porous organic polymer with in situ generated palladium nanoparticles as a phase-transfer catalyst for Sonogashira cross-coupling reaction in water. RSC Advances, 2019, 9, 21671-21678.	3.6	17
39	Ligand-free Suzuki–Miyaura coupling reaction of an aryl chloride using a continuous irradiation type microwave and a palladium nanoparticle catalyst: effect of a co-existing solid. Green Chemistry, 2019, 21, 4541-4549.	9.0	12
40	Benzophenone assisted UV-activated synthesis of unique Pd-nanodendrite embedded reduced graphene oxide nanocomposite: a catalyst for C–C coupling reaction and fuel cell. RSC Advances, 2019, 9, 21329-21343.	3.6	10
41	Synthesis and structural characterization of 20-membered macrocyclic rings bearing trans-chelating bis(N-heterocyclic carbene) ligands and the catalytic activity of their palladium(ii) complexes. Dalton Transactions, 2019, 48, 12577-12590.	3.3	10
42	The Effect of Degradation of Soda Lignin Using Pd/SO42â^'/ZrO2 as a Catalyst: Improved Reactivity and Antioxidant Activity. Polymers, 2019, 11, 1218.	4.5	6
43	Synthesis, structural properties and reactivity of ruthenocene-based pincer Pd(ii) tetrahydroborate. Dalton Transactions, 2019, 48, 12720-12729.	3.3	8
44	Carbopalladation/Suzuki Coupling Cascade for the Generation of Quaternary Centers: Access to Pyrrolo[1,2- <i>b</i>]isoquinolines. Journal of Organic Chemistry, 2019, 84, 10183-10196.	3.2	7
45	Palladium nanoparticles supported on graphene acid: a stable and eco-friendly bifunctional C–C homo- and cross-coupling catalyst. Green Chemistry, 2019, 21, 5238-5247.	9.0	33
46	An Efficient Approach to Regio―and Stereodefined Fullyâ€Substituted Alkenylsilanes by Pdâ€Catalyzed Allenic C(sp 3)â^'H Oxidation. Chemistry - A European Journal, 2019, 25, 11566-11573.	3.3	3
47	Recent developments in palladium (nano)catalysts supported on polymers for selective and sustainable oxidation processes. Coordination Chemistry Reviews, 2019, 397, 54-75.	18.8	103
48	Mesoporous Hierarchically Hollow Flower-Like CoAl-LDH@N,S-doped Graphene@Pd Nanoarchitectures for Heck Couplings. Catalysis Letters, 2019, 149, 2984-2993.	2.6	15
49	Nickel-metalated porous organic polymer for Suzuki–Miyaura cross-coupling reaction. RSC Advances, 2019, 9, 20266-20272.	3.6	12
50	Palladium nanoparticles supported on silica, alumina or titania: greener alternatives for Suzuki–Miyaura and other C–C coupling reactions. Environmental Chemistry Letters, 2019, 17, 1585-1602.	16.2	49
51	A domino reaction for generating β-aryl aldehydes from alkynes by substrate recognition catalysis. Nature Communications, 2019, 10, 4868.	12.8	7
52	Multifunctional Tubular Organic Cageâ€Supported Ultrafine Palladium Nanoparticles for Sequential Catalysis. Angewandte Chemie - International Edition, 2019, 58, 18011-18016.	13.8	103
53	Metalâ€Free Aryl Cross oupling Directed by Traceless Linkers. Chemistry - A European Journal, 2019, 25, 16068-16073.	3.3	11
54	Multifunctional Tubular Organic Cageâ€Supported Ultrafine Palladium Nanoparticles for Sequential Catalysis. Angewandte Chemie, 2019, 131, 18179-18184.	2.0	30

#	Article	IF	CITATIONS
55	Analysis of Differential Selectivity Using Phase Trajectories of Catalytic Reactions: New Aspects and Applications. Kinetics and Catalysis, 2019, 60, 551-572.	1.0	18
56	Regioselective Oxybromination of Benzene and Its Derivatives by Bromide Anion with a Mononuclear Nonheme Mn(Ⅳ)–Oxo Complex. Inorganic Chemistry, 2019, 58, 14299-14303.	4.0	8
57	Potential Safety Hazards Associated with Pd-Catalyzed Cross-Coupling Reactions. Organic Process Research and Development, 2019, 23, 2608-2626.	2.7	24
58	Recent Advances and Prospects of Organic Reactions "On Water― ChemistrySelect, 2019, 4, 12337-12355.	1.5	25
59	Sustainable Ligandâ€Free, Palladium atalyzed Suzuki–Miyaura Reactions in Water: Insights into the Role of Base. ChemSusChem, 2019, 12, 5265-5273.	6.8	18
60	Palladiumâ€Catalyzed Domino Heck/Phosphorylation towards 3,3â€Disubstituted Phosphinonyloxindoles. Advanced Synthesis and Catalysis, 2019, 361, 4961-4965.	4.3	10
61	Iron atalyzed Cross oupling of Alkynyl and Styrenyl Chlorides with Alkyl Grignard Reagents in Batch and Flow. Chemistry - A European Journal, 2019, 25, 14532-14535.	3.3	21
62	1-Butyl-3-methyl-2-(diphenylphosphino)imidazalolium hexafluorophosphate as an efficient ligand for recoverable palladium-catalyzed Suzuki-Miyaura reaction in neat water. Journal of Organometallic Chemistry, 2019, 901, 120941.	1.8	12
63	Palladium Mesoionic Carbene Pre-catalyst for General Cross-Coupling Transformations in Deep Eutectic Solvents. Frontiers in Chemistry, 2019, 7, 700.	3.6	21
64	Nickel-catalyzed reductive defunctionalization of esters in the absence of an external reductant: activation of C–O bonds. Chemical Communications, 2019, 55, 13610-13613.	4.1	16
65	Uniform, Scalable, High-Temperature Microwave Shock for Nanoparticle Synthesis through Defect Engineering. Matter, 2019, 1, 759-769.	10.0	58
66	Pd/PTABS: An Efficient Catalytic System for the Aminocarbonylation of a Sugar-Protected Nucleoside. Synthesis, 2019, 51, 4239-4248.	2.3	15
67	Palladium(<scp>ii</scp>) ligated with a selenated (Se, C _{NHC} , N ^{â^'})-type pincer ligand: an efficient catalyst for Mizoroki–Heck and Suzuki–Miyaura coupling in water. Organic and Biomolecular Chemistry, 2019, 17, 8969-8976.	2.8	42
68	Pd Nanoparticles Capped with [CpPd(II)Cl] ₂ Complexes for Hydrogenation and Acid-Free Acetalization of α,β-Unsaturated Aldehydes. ACS Applied Nano Materials, 2019, 2, 5634-5642.	5.0	3
69	Perfluorinated phosphine and hybrid P–O ligands for Pd catalysed C–C bond forming reactions in solution and on Teflon supports. RSC Advances, 2019, 9, 28936-28945.	3.6	4
70	Designing a Mesoporous Zeolite Catalyst for Products Optimizing in n-Decane Hydrocraking. Catalysts, 2019, 9, 766.	3.5	7
71	Synthesis, Photophysical Properties, and Metal-Ion Recognition Studies of Fluoroionophores Based on 1-(2-Pyridyl)-4-Styrylpyrazoles. ACS Omega, 2019, 4, 16689-16700.	3.5	20
72	Synthesis of PdCu nanowire assembly and their catalytic activity toward ethanol oxidation. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 583, 123909.	4.7	8

#	Article	IF	CITATIONS
73	Cu(0)/Selectfluor system-catalyzed intramolecular Csp2-H/Csp2-H cross-dehydrogenative coupling (CDC). Tetrahedron, 2019, 75, 130533.	1.9	16
74	One-Pot Aqueous and Template-Free Synthesis of Mesoporous Polymeric Resins. Catalysts, 2019, 9, 782.	3.5	1
75	Metal-catalyzed cross-coupling chemistry with polyhedral boranes. Chemical Communications, 2019, 55, 430-442.	4.1	99
76	Pd–Co nanoalloys nested on CuO nanosheets for efficient electrocatalytic N2 reduction and room-temperature Suzuki–Miyaura coupling reaction. Nanoscale, 2019, 11, 1379-1385.	5.6	40
77	Catalytic farming: reaction rotation extends catalyst performance. Chemical Science, 2019, 10, 1419-1425.	7.4	18
78	Biocatalytic Friedel–Crafts Alkylation Using a Promiscuous Biosynthetic Enzyme. Angewandte Chemie - International Edition, 2019, 58, 3151-3155.	13.8	37
79	Biocatalytic Friedel–Crafts Alkylation Using a Promiscuous Biosynthetic Enzyme. Angewandte Chemie, 2019, 131, 3183-3187.	2.0	25
80	The role of palladium nanoparticles in catalytic C–C cross-coupling reactions. Coordination Chemistry Reviews, 2019, 384, 1-20.	18.8	142
81	Salen–porphyrin-based conjugated microporous polymer supported Pd nanoparticles: highly efficient heterogeneous catalysts for aqueous C–C coupling reactions. Journal of Materials Chemistry A, 2019, 7, 2660-2666.	10.3	97
82	Pd–Au–Y as Efficient Catalyst for C–C Coupling Reactions, Benzylic C–H Bond Activation, and Oxidation of Ethanol for Synthesis of Cinnamaldehydes. ACS Catalysis, 2019, 9, 5860-5875.	11.2	35
83	Synthesis, Structure, and Catalytic Reactivity of Pd(II) Complexes of Proline and Proline Homologs. Catalysts, 2019, 9, 515.	3.5	7
84	Controlled assembly of Ag nanoparticles on the surface of phosphate pillar [6]arene functionalized single-walled carbon nanotube for enhanced catalysis and sensing performance. Electrochimica Acta, 2019, 318, 711-719.	5.2	23
85	Control loading Au nanoparticles on the surface of hydroxyl pillar[5]arene functionalized single-walled carbon nanotubes and its application in catalysis and sensing. Sustainable Energy and Fuels, 2019, 3, 2312-2320.	4.9	10
86	A Kinetic Study of the Step of Aryl Halide Activation in a Direct Arylation Reaction of Indole under Real Catalysis Conditions. Kinetics and Catalysis, 2019, 60, 337-342.	1.0	2
87	High Glassâ€Transition Temperature Polymer Networks Harnessing the Dynamic Ring Opening of Pinacol Boronates. Angewandte Chemie, 2019, 131, 12344-12350.	2.0	1
88	Copper-catalyzed Mizoroki-Heck coupling reaction using an efficient and magnetically reusable Fe3O4@SiO2@PrNCu catalyst. Journal of Organometallic Chemistry, 2019, 897, 236-246.	1.8	18
89	Engineering of highly active Au/Pd supported on hydrogenated urchin-like yolk@shell TiO ₂ for visible light photocatalytic Suzuki coupling. Catalysis Science and Technology, 2019, 9, 3820-3827.	4.1	45
90	High Glassâ€Transition Temperature Polymer Networks Harnessing the Dynamic Ring Opening of Pinacol Boronates. Angewandte Chemie - International Edition, 2019, 58, 12216-12222.	13.8	24

#	Article	IF	CITATIONS
91	A Comparative Study of Dibenzylideneacetone Palladium Complexes in Catalysis. Organic Process Research and Development, 2019, 23, 1462-1470.	2.7	24
92	20S Proteasome Inhibitory Activity of [<i>N</i> -(9-Anthracenylmethyl)-1,3-propanediamine] (2,2′-Bipyridine) Palladium(II) Chloride. Chemistry Letters, 2019, 48, 936-938.	1.3	0
93	Cross-Coupling of Heteroatomic Electrophiles. Chemical Reviews, 2019, 119, 8192-8228.	47.7	151
94	Pd nanoparticle and molecular Pd2+ leaching pathways for a strongly acid versus strongly basic resin supported Pd nanoparticle catalyst in Suzuki coupling. Chemical Engineering Journal, 2019, 374, 576-588.	12.7	41
95	Pyridylphenylene dendrons immobilized on the surface of chemically modified magnetic silica as efficient stabilizing molecules of Pd species. Applied Surface Science, 2019, 488, 865-873.	6.1	17
96	<i>N</i> -Heterocarbene Palladium Complexes with Dianisole Backbones: Synthesis, Structure, and Catalysis. Organometallics, 2019, 38, 2539-2552.	2.3	25
97	Impact of Oxidation State on Reactivity and Selectivity Differences between Nickel(III) and Nickel(IV) Alkyl Complexes. Angewandte Chemie, 2019, 131, 9202-9206.	2.0	4
98	A Bipyridineâ€Palladium Derivative as General Preâ€Catalyst for Crossâ€Coupling Reactions in Deep Eutectic Solvents. Advanced Synthesis and Catalysis, 2019, 361, 3868-3879.	4.3	44
99	Fluorination of organoboron compounds. Organic and Biomolecular Chemistry, 2019, 17, 5651-5660.	2.8	19
100	Pd(OAc)2-catalyzed orthogonal synthesis of 2-hydroxybenzoates and substituted cyclohexanones from acyclic unsaturated 1,3-carbonyl compounds. Tetrahedron Letters, 2019, 60, 1653-1657.	1.4	6
101	The role of phosphine ligands in the catalytic systems of the Heck reaction with aromatic carboxylic anhydrides. Russian Chemical Bulletin, 2019, 68, 817-824.	1.5	4
102	Palladium on magnetic Irish moss: A new nanoâ€biocatalyst for suzuki type crossâ€coupling reactions. Applied Organometallic Chemistry, 2019, 33, e4859.	3.5	12
103	Design and Optimization of Catalysts Based on Mechanistic Insights Derived from Quantum Chemical Reaction Modeling. Chemical Reviews, 2019, 119, 6509-6560.	47.7	130
104	Importance of monodentate mono-ligand designs in developing N-stabilized Pd catalysts for efficient ambient temperature C C coupling: Donor strengths and steric features. Molecular Catalysis, 2019, 473, 110398.	2.0	3
105	Palladium(II) Complexes with <i>N</i> -Phosphine Oxide-Substituted Imidazolylidenes (PoxIms): Coordination Chemistry and Catalysis. Organometallics, 2019, 38, 2298-2306.	2.3	10
106	Transition metal-catalyzed cross-coupling methodologies for the engineering of small molecules with applications in organic electronics and photovoltaics. Coordination Chemistry Reviews, 2019, 392, 177-236.	18.8	35
107	Distinguishing between Homogeneous and Heterogeneous Catalytic Activity in C–H Arylation of an Indole with Aryl Halides under "Ligandless―Conditions: Crucial Evidence from Real Catalytic Experiments. Organic Process Research and Development, 2019, 23, 1052-1059.	2.7	4
108	4-Amino-3-pentadecyl-3 <i>H</i> -1,2,4-triazole-3-thiones and 3-pentadecyl-1,3,4-oxadiazole-2(3 <i>H</i>)-thione for the preparation of dimeric palladium(II) complexes and their applications in Tsuji-Trost and Mizoroki-Heck reactions. Synthetic Communications, 2019, 49, 1301-1307.	2.1	10

#	Article	IF	CITATIONS
109	Timeâ€Dependent Surface Oxidation of Pd Nanocubes and its Role in Controlling Catalytic Performance. ChemNanoMat, 2019, 5, 878-882.	2.8	2
110	Impact of Oxidation State on Reactivity and Selectivity Differences between Nickel(III) and Nickel(IV) Alkyl Complexes. Angewandte Chemie - International Edition, 2019, 58, 9104-9108.	13.8	22
111	Crossâ€Coupling Reaction of Alkenyl Sulfoximines and Alkenyl Aminosulfoxonium Salts with Organozincs by Dual Nickel Catalysis and Lewis Acid Promotion. Chemistry - A European Journal, 2019, 25, 8371-8386.	3.3	5
112	Aromatic Halogenation Using <i>N</i> -Halosuccinimide and PhSSiMe ₃ or PhSSPh. Journal of Organic Chemistry, 2019, 84, 7405-7410.	3.2	24
113	Modeling Key Pathways Proposed for the Formation and Evolution of "Cocktail―Type Systems in Pd-Catalyzed Reactions Involving ArX Reagents. ACS Catalysis, 2019, 9, 3991-4005.	11.2	63
114	lodide-Mediated or lodide-Catalyzed Demethylation and Friedel–Crafts C–H Borylative Cyclization Leading to Thiophene-Fused 1,2-Oxaborine Derivatives. Organic Letters, 2019, 21, 2171-2175.	4.6	14
115	Pd and Pt Catalyst Poisoning in the Study of Reaction Mechanisms: What Does the Mercury Test Mean for Catalysis?. ACS Catalysis, 2019, 9, 2984-2995.	11.2	85
116	Surface coordination chemistry on graphene and two-dimensional carbon materials for well-defined single atom supported catalysts. Advances in Organometallic Chemistry, 2019, 71, 53-174.	1.0	33
117	Readily Available Immobilized Pd Catalysts for Suzukiâ€Miyaura Coupling under Continuousâ€flow Conditions. ChemCatChem, 2019, 11, 2427-2431.	3.7	19
118	Palladium Catalyst with Task-Specific Ionic Liquid Ligands: Intracellular Reactions and Mitochondrial Imaging with Benzothiadiazole Derivatives. Journal of Organic Chemistry, 2019, 84, 5118-5128.	3.2	20
119	Dihalogen-bridged NHC–palladium(<scp>i</scp>) dimers: synthesis, characterisation and applications in cross-coupling reactions. Chemical Communications, 2019, 55, 5275-5278.	4.1	17
120	A review on catalytic pyrolysis of microalgae to high-quality bio-oil with low oxygeneous and nitrogenous compounds. Renewable and Sustainable Energy Reviews, 2019, 108, 481-497.	16.4	127
121	Copper-Catalyzed Trifluoromethylation of Alkyl Bromides. Journal of the American Chemical Society, 2019, 141, 6853-6858.	13.7	114
122	Concepts of Catalysis in Site-Selective Protein Modifications. Journal of the American Chemical Society, 2019, 141, 8005-8013.	13.7	73
123	Hoveyda–Grubbs catalysts with an N→Ru coordinate bond in a six-membered ring. Synthesis of stable, industrially scalable, highly efficient ruthenium metathesis catalysts and 2-vinylbenzylamine ligands as their precursors. Beilstein Journal of Organic Chemistry, 2019, 15, 769-779.	2.2	16
124	Identification of an Oxalamide Ligand for Copper atalyzed Câ^'O Couplings from a Pharmaceutical Compound Library. ChemCatChem, 2019, 11, 5748-5753.	3.7	21
125	Different properties of P,C-donor Pd(II) and Pt(II); spectroscopic and X-ray analysis, catalytic potential and anti-proliferative potency. Journal of Organometallic Chemistry, 2019, 890, 21-31.	1.8	9
126	Fluorescent and colorimetric immunoassay of nuclear matrix protein 22 enhanced by porous Pd nanoparticles. Chinese Chemical Letters, 2019, 30, 1307-1309.	9.0	7

#	Article	IF	CITATIONS
127	Differential Dihydrofunctionalization of Terminal Alkynes: Synthesis of Benzylic Alkyl Boronates through Reductive Three-Component Coupling. Journal of the American Chemical Society, 2019, 141, 6173-6179.	13.7	39
128	Cobaltâ€Catalyzed Crossâ€Couplings and Electrophilic Aminations using Organozinc Pivalates. ChemCatChem, 2019, 11, 5188-5197.	3.7	26
129	Isinglass–palladium as collagen peptide–metal complex: a highly efficient heterogeneous biocatalyst for Suzuki cross-coupling reaction in water. Journal of the Iranian Chemical Society, 2019, 16, 1473-1481.	2.2	12
130	Eucalyptol: a new solvent for the synthesis of heterocycles containing oxygen, sulfur and nitrogen. Green Chemistry, 2019, 21, 1531-1539.	9.0	39
131	Synthesis of Cytospolide Analogues and Late-State Diversification Thereof. Journal of Organic Chemistry, 2019, 84, 3132-3147.	3.2	5
132	The Suzuki-Miyaura reaction after the Nobel prize. Coordination Chemistry Reviews, 2019, 385, 137-173.	18.8	279
133	Effect of Substrates on Catalytic Activity of Biogenic Palladium Nanoparticles in C–C Cross-Coupling Reactions. ACS Omega, 2019, 4, 3329-3340.	3.5	44
134	Oxiranes and Oxirenes: Monocyclic. , 2019, , 199-199.		0
135	Catalytic Intermolecular Functionalization of Benzimidazoles. , 2019, , .		0
136	Enhanced Heck reaction on flower-like Co(Mg or Ni)Al layered double hydroxide supported ultrafine PdCo alloy nanocluster catalysts: the promotional effect of Co. Dalton Transactions, 2019, 48, 17741-17751.	3.3	4
137	"Water soluble―palladium nanoparticle engineering for C–C coupling, reduction and cyclization catalysis. Green Chemistry, 2019, 21, 6646-6657.	9.0	30
138	Process Economics and Atom Economy for Industrial Cross Coupling Applications via LnPd(0)-Based Catalysts. Topics in Organometallic Chemistry, 2019, , 161-198.	0.7	2
139	Amine-catalyzed and functional group-controlled chemo- and regioselective synthesis of multi-functionalized CF ₃ -benzene <i>via</i> a metal-free process. Green Chemistry, 2019, 21, 6179-6186.	9.0	21
140	Harnessing Noncovalent Interactions in Dual-Catalytic Enantioselective Heck–Matsuda Arylation. Journal of the American Chemical Society, 2019, 141, 998-1009.	13.7	59
141	3d Transition Metals for C–H Activation. Chemical Reviews, 2019, 119, 2192-2452.	47.7	1,666
142	Metal Speciation in Pharmaceutical Process Development: Case Studies and Process/Analytical Challenges for a Palladium-Catalyzed Cross-Coupling Reaction. Organometallics, 2019, 38, 185-193.	2.3	9
143	Rhodiumâ€Catalyzed Cascade Annulation Reaction via Câ^'H Activation of Azobenzenes with Terminal Alkynes: A Synthesis of Indolo[1,2―b]cinnolines. Advanced Synthesis and Catalysis, 2019, 361, 451-455.	4.3	10
144	Synthesis of Pd Nanoparticles Supported on the Threeâ€Dimensional Mesostructured of Hardwood and its Application. ChemistrySelect, 2019, 4, 766-773.	1.5	6

		ION REPORT	
#	ARTICLE About Solid Phase vs. Liquid Phase in Suzuki-Miyaura Reaction. Catalysts, 2019, 9, 60.	IF 2 5	CITATIONS
145	About Solid Phase vs. Elquid Phase III Suzuki-Wiyadia Reaction. Catalysts, 2019, 9, 60.	3.5	27
146	Flexible, N-sulfonyl-substituted aliphatic amine ligands in palladium-catalyzed Suzuki–Miyaura C C coupling: Influence of substituents bulkiness and co-ligand size. Polyhedron, 2019, 159, 182-191.	2.2	8
147	Switching the nature of catalytic centers in Pd/NHC systems by solvent effect driven nonâ€classical Râ€NHC Coupling. Journal of Computational Chemistry, 2019, 40, 191-199.	3.3	9
148	State of the Art and Prospects in Metal–Organic Framework (MOF)-Based and MOF-Derived Nanocatalysis. Chemical Reviews, 2020, 120, 1438-1511.	47.7	1,505
149	Polymer hydrogel confined palladium nanoparticles as recyclable catalysts for Suzuki and Heck cross-coupling reactions. Chinese Chemical Letters, 2020, 31, 1630-1634.	9.0	10
150	Polyvinylpyridine-Supported Palladium Nanoparticles: A Valuable Catalyst for the Synthesis of Alkynyl Ketones via Acyl Sonogashira Reactions. Catalysis Letters, 2020, 150, 652-659.	2.6	25
151	Palladium Nanoparticles in Polyols: Synthesis, Catalytic Couplings, and Hydrogenations. Chemical Reviews, 2020, 120, 1146-1183.	47.7	155
152	Nickelâ€Catalyzed Anionic Crossâ€Coupling Reaction of Lithium Sulfonimidoyl Alkylidene Carbenoids With Organolithiums. Chemistry - A European Journal, 2020, 26, 2914-2926.	3.3	8
153	Snowflake-like Cu2S as visible-light-carrier for boosting Pd electrocatalytic ethylene glycol oxidation under visible light irradiation. Electrochimica Acta, 2020, 330, 135214.	5.2	27
154	An insight into the novel covalent functionalization of multi-wall carbon nanotubes with pseudopeptide backbones for palladium nanoparticles immobilization: A versatile catalyst towards diverse cross-coupling reactions in bio-based solvents. Polyhedron, 2020, 175, 114238.	2.2	14
155	Precatalyst or dosing-device? The [Pd2{î¼-(C6H4) PPh2}2{î¼-O2C(C6H5)}2] complex anchored on a carboxypolystyrene polymer as an effective supplier of palladium catalytically active nanoparticles for the Suzuki-Miyaura reaction. Journal of Catalysis, 2020, 381, 26-37.	6.2	8
156	Late‣tage Diversification of Tryptophanâ€Derived Biomolecules. Chemistry - A European Journal, 2020, 26, 5328-5340.	3.3	51
157	Structural characterization of the metalloligand tbpyPt(C22-py)2 and its interaction with Pd(OAc)2. Inorganic Chemistry Communication, 2020, 112, 107722.	3.9	1
158	A Ketimide-Stabilized Palladium Nanocluster with a Hexagonal Aromatic Pd ₇ Core. Inorganic Chemistry, 2020, 59, 1471-1480.	4.0	24
159	Exploring organo-palladium(II) complexes as novel organometallic materials for Li-ion batteries. Electrochimica Acta, 2020, 337, 135659.	5.2	6
160	Air- and moisture-stable Xantphos-ligated palladium dialkyl complex as a precatalyst for cross-coupling reactions. Chemical Communications, 2020, 56, 407-410.	4.1	22
161	Copper-catalysed three-component carboiodination of arynes: expeditious synthesis of <i>o</i> -alkynyl aryl iodides. Chemical Communications, 2020, 56, 972-975.	4.1	21
162	Preventing Pd–NHC bond cleavage and switching from nano-scale to molecular catalytic systems: amines and temperature as catalyst activators. Catalysis Science and Technology, 2020, 10, 1228-1247.	4.1	20

ARTICLE IF CITATIONS # Aryl-Decarboxylation Reactions Catalyzed by Palladium: Scope and Mechanism. Synthesis, 2020, 52, 163 2.3 12 365-377. Pdâ€Catalyzed Dearomatization of Indole Derivatives <i>via</i> Intermolecular Heck 164 Reactions (sup>†(sup>. Chinese Journal of Chemistry, 2020, 38, 235-241. In situ preparation of magnetic nickel-containing functionalized carbon nanotubes to support 165 4.3 19 palladium as a catalyst for the Heck reaction. Applied Catalysis A: General, 2020, 591, 117405. A simple, efficient and green approach for the synthesis of palladium nanoparticles using Oxytocin: Application for ligand free Suzuki reaction and total synthesis of aspongpyrazine A. Journal of Organometallic Chemistry, 2020, 909, 121093. 1.8 NHC-Pd(II)-azole complexes catalyzed Suzuki–Miyaura cross-coupling of sterically hindered aryl 167 1.4 7 chlorides with arylboronic acids. Tetrahedron Letters, 2020, 61, 151541. Metalâ€Metal Cooperation in Dinucleating Complexes Involving Late Transition Metals Directed towards Organic Catalysis. Chinese Journal of Chemistry, 2020, 38, 185-201. Carbonylative Suzuki coupling reactions catalyzed by ONO pincer–type Pd(II) complexes using 169 3.5 20 chloroform as a carbon monoxide surrogate. Applied Organometallic Chemistry, 2020, 34, e5414. Chemistry and Chemical Biology of Thiopeptide Natural Products., 2020, , 166-192. 170 High-Performance Lithium Ion Batteries Combining Submicron Silicon and Thiophene–Terephthalic 171 6.7 21 Acid-Conjugated Polymer Binders. ACS Sustainable Chemistry and Engineering, 2020, 8, 1043-1049. Microwave-Assisted Palladium-Catalyzed Cross-Coupling Reactions: Generation of Carbon–Carbon 3.5 44 Bond. Catalysts, 2020, 10, 4. Density functional theory study of N-doping effect on the stability and activity of Pd/NCNT catalysts 173 7 6.1 for heck reaction. Applied Surface Science, 2020, 506, 144960. Recyclable Palladium-Loaded Hyperbranched Polytriazoles as Efficient Polymer Catalysts for Heck 174 4.4 Reaction. ACS Applied Polymer Materials, 2020, 2, 677-684. 1,2-(Benz)Azaphospholes: A Slow Beginning to a Bright Future. Comments on Inorganic Chemistry, 175 5.2 3 2020, 40, 25-51. Rongalite-promoted metal-free aerobic ipso-hydroxylation of arylboronic acids under sunlight: DFT mechanistic studies. Tetrahedron Letters, 2020, 61, 151539. 1.4 Highly selective detection of Pd2+ ion in aqueous solutions with rhodamine-based colorimetric and 177 5.524 fluorescent chemosensors. Talanta, 2020, 210, 120634. Facile access to libraries of diversely substituted 2-aryl-benzoxazoles/benzothiazoles from readily accessible aldimines via cyclization/cross coupling in imidazolium-ILs with Pd(OAc)2 or NiCl2 (dppp) as catalyst. Tetrahedron Letters, 2020, 61, 151509. 179 Difunctionalization of Alkenes Involving Metal Migration. Angewandte Chemie, 2020, 132, 8066-8079. 2.0 28 Difunctionalization of Alkenes Involving Metal Migration. Angewandte Chemie - International Edition, 13.8 214 2020, 59, 7990-8003.

#	ARTICLE	IF	CITATIONS
181	Synthesis of novel steroids using Mizoroki-Heck reaction, their spectroscopic analysis, anticancer activity against cervical cancer and DFT studies. Journal of Molecular Structure, 2020, 1204, 127512.	3.6	6
182	Exploring the Potential of Supported Ionic Liquids as Building Block Systems in Catalysis. ChemistrySelect, 2020, 5, 12057-12086.	1.5	16
183	Evolution of strept(avidin)-based artificial metalloenzymes in organometallic catalysis. Chemical Communications, 2020, 56, 14519-14540.	4.1	2
184	Thiosemicarbazone Complexes of Transition Metals as Catalysts for Cross-Coupling Reactions. Catalysts, 2020, 10, 1107.	3.5	21
185	Urchin-like double-shelled Pd–PdO/ZnO hollow sphere as an efficient catalyst for the Suzuki-Miyaura reaction. Materials Today Chemistry, 2020, 18, 100353.	3.5	12
186	Hypervalent Iodine Reagents in Palladium-Catalyzed Oxidative Cross-Coupling Reactions. Frontiers in Chemistry, 2020, 8, 705.	3.6	19
187	Synthesis and Optical Properties of Monodisperse Phenothiazinevinyleneâ€Based Conjugated Oligomers. ChemistrySelect, 2020, 5, 12218-12223.	1.5	3
188	Palladium PEPPSI-IPr Complex Supported on a Calix[8]arene: A New Catalyst for Efficient Suzuki–Miyaura Coupling of Aryl Chlorides. Catalysts, 2020, 10, 1081.	3.5	10
189	Effect of Aryl Ligand Identity on Catalytic Performance of Trineopentylphosphine Arylpalladium Complexes in <i>N</i> -Arylation Reactions. Organometallics, 2020, 39, 3618-3627.	2.3	4
190	Monolith catalyst design <i>via</i> 3D printing: a reusable support for modern palladium-catalyzed cross-coupling reactions. New Journal of Chemistry, 2020, 44, 18867-18878.	2.8	22
191	Catalyst-Controlled Regioselective Chlorination of Phenols and Anilines through a Lewis Basic Selenoether Catalyst. Journal of Organic Chemistry, 2020, 85, 13895-13905.	3.2	16
192	Engineering functional group decorated ZIFs to high-performance Pd@ZIF-92 nanocatalysts for C(sp2)-C(sp2) couplings in aqueous medium. Journal of Catalysis, 2020, 392, 80-87.	6.2	9
193	The Allylic Alkylation of Ketone Enolates. ChemistryOpen, 2020, 9, 929-952.	1.9	18
194	Anchoring Positively Charged Pd Single Atoms in Ordered Porous Ceria to Boost Catalytic Activity and Stability in Suzuki Coupling Reactions. Small, 2020, 16, e2001782.	10.0	51
195	Palladium-catalysed cross-coupling of lithium acetylides. Nature Catalysis, 2020, 3, 664-671.	34.4	23
196	Glucopyranoside-substituted imidazolium-based chiral ionic liquids for Pd-catalyzed homo-coupling of arylboronic acids in water. Journal of Carbohydrate Chemistry, 2020, 39, 288-299.	1.1	8
197	Confirmation of Suzuki–Miyaura Cross-Coupling Reaction Mechanism through Synthetic Architecture of Nanocatalysts. Journal of the American Chemical Society, 2020, 142, 13823-13832.	13.7	48
199	Transition-Metal-Catalyzed Arene Alkylation and Alkenylation: Catalytic Processes for the Generation of Chemical Intermediates. ACS Catalysis, 2020, 10, 14080-14092.	11.2	15

#	Article	IF	CITATIONS
200	Application of Green Solvents: PEG and scCO2 in the Mono- or Biphasic Catalytic Systems for the Repetitive Batch Coupling of Vinylsilanes with Vinyl Boronates toward 1-Boryl-1-silylethenes. Inorganic Chemistry, 2020, 59, 17555-17564.	4.0	2
201	Intermetallic ZrPd ₃ -Embedded Nanoporous ZrC as an Efficient and Stable Catalyst of the Suzuki Cross-Coupling Reaction. ACS Catalysis, 2020, 10, 14366-14374.	11.2	13
202	Switching from Biaryl Formation to Amidation with Convoluted Polymeric Nickel Catalysis. ACS Catalysis, 2020, 10, 14410-14418.	11.2	17
203	Cu-Catalyzed Dehydrogenative Olefinsulfonation of Alkyl Arenes. Organic Letters, 2020, 22, 8791-8795.	4.6	9
204	Phosphine-Built-in Porous Organic Cage for Stabilization and Boosting the Catalytic Performance of Palladium Nanoparticles in Cross-Coupling of Aryl Halides. ACS Applied Materials & Interfaces, 2020, 12, 53141-53149.	8.0	28
205	Impact of Cross-Coupling Reactions in Drug Discovery and Development. Molecules, 2020, 25, 3493.	3.8	125
206	B(C ₆ F ₅) ₃ â€Catalyzed Tandem Friedelâ€Crafts and Câ^'H/Câ^'O Coupling Reactions of Dialkylanilines. Chemistry - an Asian Journal, 2020, 15, 3082-3086.	3.3	6
207	Highly Reactive Cyclic Monoaryl Iodoniums Tuned as Carbene Generators Couple with Nucleophiles under Metal-Free Conditions. IScience, 2020, 23, 101307.	4.1	6
208	Mimics of Pincer Ligands: An Accessible Phosphine-Free <i>N</i> -(Pyrimidin-2-yl)-1,2-azole-3-carboxamide Framework for Binuclear Pd(II) Complexes and High-Turnover Catalysis in Water. Inorganic Chemistry, 2020, 59, 10384-10388.	4.0	22
209	Room-Temperature Negishi Reaction of Trisubstituted Vinyl Phosphates for the Synthesis of Tetrasubstituted Alkenes. Journal of Organic Chemistry, 2020, 85, 10728-10739.	3.2	9
210	Photoreduction of palladium nanoparticles on ZnO nanorods for enhancing photocatalytic decolorization of methylene blue. IOP Conference Series: Earth and Environmental Science, 2020, 483, 012042.	0.3	3
211	Efficient synthesis of mono- and bis-arylated ethylenedioxy thiophene-based functional π-conjugated molecules via clay-supported palladium-catalysed direct arylation reactions. Research on Chemical Intermediates, 2020, 46, 4529-4542.	2.7	5
212	Oxidative Addition of Water, Alcohols, and Amines in Palladium Catalysis. Angewandte Chemie - International Edition, 2020, 59, 21088-21095.	13.8	25
213	Synthesis of Nanosheets Containing Uniformly Dispersed Pdll Ions at an Aqueous/Aqueous Interface: Development of a Highly Active Nanosheet Catalyst for Mizoroki–Heck Reaction. ACS Omega, 2020, 5, 18484-18489.	3.5	6
214	Polymer surfaces adorning ligand-coordinated palladium for hydrogenation reactions. Molecular Catalysis, 2020, 494, 111129.	2.0	2
215	Synthesis and characterization of non-symmetric Ni(II)- and Pd(II)-POCOP pincer complexes derived from 1,7-naphthalenediol. Evaluation of their catalytic activity in Suzuki-Miyaura couplings. Inorganica Chimica Acta, 2020, 512, 119920.	2.4	9
216	Synthetic Routes to Late Transition Metal–NHC Complexes. Trends in Chemistry, 2020, 2, 721-736.	8.5	118
217	Low Valent Palladium Clusters: Synthesis, Structures and Catalytic Applications. Chinese Journal of Chemistry, 2020, 38, 1897-1908.	4.9	10

#	Article	IF	CITATIONS
218	A Boron Dipyrrometheneâ€Based Fluorescence â€~OFFâ€ON' Probe for Sensitive and Selective Detection of Palladium(II) Ions and Its Application in Live Cell Imaging. Chemistry - an Asian Journal, 2020, 15, 4104-4112.	3.3	14
219	The role of allyl ammonium salts in palladium-catalyzed cascade reactions towards the synthesis of spiro-fused heterocycles. Nature Communications, 2020, 11, 5383.	12.8	25
220	Ultrafine PdCu Nanoclusters by Ultrasonic-Assisted Reduction on the LDHs/rGO Hybrid with Significantly Enhanced Heck Reactivity. ACS Applied Materials & Interfaces, 2020, 12, 50365-50376.	8.0	17
221	Synthesis of trisubstituted alkenes by Ni-catalyzed hydroalkylation of internal alkynes with cycloketone oxime esters. Chemical Communications, 2020, 56, 14191-14194.	4.1	11
222	Computational Study of Carbon-Doped Boron Nitride Nanotubes Loaded with Pd Atoms as Single-Atom Catalysts for Heck Reactions. ACS Applied Nano Materials, 2020, 3, 10905-10913.	5.0	3
223	Stereoselective Construction of (<i>E,Z</i>)â€1,3â€Dienes and Its Application in Natural Product Synthesis. Advanced Synthesis and Catalysis, 2020, 362, 5532-5575.	4.3	43
224	Ligandâ€Free Ironâ€Catalyzed Homoâ€Coupling of Aryllithium Reagents. Asian Journal of Organic Chemistry, 2020, 9, 1834-1840.	2.7	6
225	One-Pot Suzuki–Miyaura C–C Coupling Reaction versus Stepwise Reaction Involving Isolated Synthesized Catalyst Addition. Journal of Chemical Education, 2020, 97, 3822-3828.	2.3	6
226	Mechanistic Study of Pd/NHCâ€Catalyzed Sonogashira Reaction: Discovery of NHCâ€Ethynyl Coupling Process. Chemistry - A European Journal, 2020, 26, 15672-15681.	3.3	12
227	Directing-Group-Free, Carbonyl Group-Promoted Catalytic C–H Arylation of Bio-Based Furans. ACS Catalysis, 2020, 10, 11466-11480.	11.2	17
228	Rhodium-Catalyzed Arene Alkenylation Using Only Dioxygen as the Oxidant. ACS Catalysis, 2020, 10, 11519-11531.	11.2	22
229	A Review of Microwave-Assisted Synthesis-Based Approaches to Reduce Pd-Content in Catalysts. Catalysts, 2020, 10, 991.	3.5	4
230	Complexation and bonding studies on [Ru(NO)(H ₂ O) ₅] ³⁺ with nitrate ions by using density functional theory calculation. RSC Advances, 2020, 10, 24434-24443.	3.6	6
231	Recent Advances in Asymmetric Iron Catalysis. Molecules, 2020, 25, 3889.	3.8	37
232	Synergy between supported ionic liquid-like phases and immobilized palladium N-heterocyclic carbene–phosphine complexes for the Negishi reaction under flow conditions. Beilstein Journal of Organic Chemistry, 2020, 16, 1924-1935.	2.2	4
233	The regioselective coupling of 2-arylquinazolinone C–H with aldehydes and benzyl alcohols under oxidative conditions. New Journal of Chemistry, 2020, 44, 16697-16701.	2.8	3
234	Mesoporous-silica-coated palladium-nanocubes as recyclable nanocatalyst in C–C-coupling reaction – a green approach. RSC Advances, 2020, 10, 26504-26507.	3.6	4
235	Oxidative Addition of Water, Alcohols, and Amines in Palladium Catalysis. Angewandte Chemie, 2020, 132, 21274-21281.	2.0	4

ARTICLE IF CITATIONS # Scale-Up of a Heck Alkenylation Reaction: Application to the Synthesis of an Amino-Modifier 236 2.3 11 Nucleoside â€~Ruth Linkér'. Synthesis, 2020, 52, 3595-3603. Cul/2-Aminopyridine 1-Oxide Catalyzed Amination of Aryl Chlorides with Aliphatic Amines. Organic 4.6 Letters, 2020, 22, 7486-7490. Photo-mediated selective deconstructive geminal dihalogenation of trisubstituted alkenes. Nature 238 12.8 20 Communications, 2020, 11, 4462. Recent advances and prospects in the palladium-catalyzed cyanation of aryl halides. RSC Advances, 2020, 10, 33683-33699. Concatenating Suzuki Arylation and Buchwald–Hartwig Amination by A Sequentially Pdâ€Catalyzed Oneâ€Pot Processâ€"Consecutive Threeâ€Component Synthesis of <i>C</i>, <i>N</i>â€Diarylated Heterocycles. 3.3 240 10 Chemistry - A European Journal, 2020, 26, 15130-15134. Câ€"F Activation for C(sp²)â€"C(sp³) Cross-Coupling by a Secondary Phosphine Oxide (SPO)-Nickel Complex. Organic Letters, 2020, 22, 7034-7040. 4.6 Heterogeneous catalysis by ultra-small bimetallic nanoparticles surpassing homogeneous catalysis 242 5.6 33 for carbon–carbon bond forming reactions. Nanoscale, 2020, 12, 19191-19202. Catalytic influence of light element incorporation in the lattice of palladium. Catalysis Today, 2021, 371, 29-39. 4.4 Homocoupling Reactions of Azoles and Their Applications in Coordination Chemistry. Molecules, 244 3.8 11 2020, 25, 5950. Copper-Catalyzed Enantioconvergent Radical Suzukiâ€"Miyaura C(sp³)â€"C(sp²) 245 13.7 74 Cross-Coupling. Journal of the American Chemical Society, 2020, 142, 19652-19659. Characterization of heterogeneous arylâ€"Pd(<scp>ii</scp>)â€"oxo clusters as active species for Câ€"H 246 4.1 8 arylation. Chemical Communications, 2020, 56, 14404-14407. Development of Facile and Simple Processes for the Heterogeneous Pd-Catalyzed Ligand-Free 3.5 Continuous-Flow Suzuki–Miyaura Coupling. Catalysts, 2020, 10, 1209. Synthesis of Pda[^]Rh Bimetallic Nanoparticles with Different Morphologies in Reverse Micelles and 248 Characterization of Their Catalytic Properties. Protection of Metals and Physical Chemistry of 1.1 3 Surfaces, 2020, 56, 63-74. Trends in the Usage of Bidentate Phosphines as Ligands in Nickel Catalysis. Chemical Reviews, 2020, 120, 249 47.7 122 6124-6196. Metal-Mediated and Metal-Catalyzed Reactions Under Mechanochemical Conditions. ACS Catalysis, 250 11.2 188 2020, 10, 8344-8394. Polyvinylpyridine-Supported Palladium Nanoparticles: An Efficient Catalyst for Suzuki–Miyaura Coupling Reactions. Catalysts, 2020, 10, 330. Formation of quaternary carbons through cobalt-catalyzed C(sp3)–C(sp3) Negishi cross-coupling. 252 4.1 12 Chemical Communications, 2020, 56, 8210-8213. Homogeneous Pd-Catalyzed Heck Coupling in Î³-Valerolactone as a Green Reaction Medium: A Catalytic, Kinetic, and Computational Study. ACS Sustainable Chemistry and Engineering, 2020, 8, 9926-9936.

#	Article	IF	CITATIONS
254	Palladium-Catalyzed Intermolecular Heck-Type Dearomative [4 + 2] Annulation of 2 <i>H</i> -Isoindole Derivatives with Internal Alkynes. Organic Letters, 2020, 22, 5063-5067.	4.6	18
255	Application of Brown Cotton-Supported Palladium Nanoparticles in Suzuki–Miyaura Cross-Coupling Reactions. ACS Applied Nano Materials, 2020, 3, 6304-6309.	5.0	14
256	The key role of R–NHC coupling (R = C, H, heteroatom) and M–NHC bond cleavage in the evolution of M/NHC complexes and formation of catalytically active species. Chemical Science, 2020, 11, 6957-6977.	7.4	87
257	Effect of brush length of stabilizing grafted matrix on size and catalytic activity of metal nanoparticles. European Polymer Journal, 2020, 134, 109811.	5.4	13
258	Palladium-catalyzed dearomative 1,4-difunctionalization of naphthalenes. Chemical Science, 2020, 11, 6830-6835.	7.4	27
259	3D Printed Palladium Catalyst for Suzukiâ€Miyaura Crossâ€coupling Reactions. ChemCatChem, 2020, 12, 4831-4838.	3.7	21
260	A Path to More Sustainable Catalysis: The Critical Role of LiBr in Avoiding Catalyst Death and its Impact on Crossâ€Coupling. Chemistry - A European Journal, 2020, 26, 4861-4865.	3.3	9
261	On the Technology of Heterogenization of Transition Metal Catalysts towards the Synthetic Applications in Ionic Liquid Matrix. , 2020, , .		0
262	Reduced graphene oxide supported copper oxide nanocomposites: An efficient heterogeneous and reusable catalyst for the synthesis of ynones, 1,3â€diynes and 1,5â€benzodiazepines in oneâ€pot under sustainable reaction conditions. Applied Organometallic Chemistry, 2020, 34, e5646.	3.5	13
263	Total Synthesis of Asparenydiol by Two Sonogashira Cross-Coupling Reactions Promoted by Supported Pd and Cu Catalysts. Synthesis, 2020, 52, 1795-1803.	2.3	4
264	Synthesis of 3-trifluoromethylated 1,3-butadienes <i>via</i> a Pd(0)-catalyzed fluorinated Heck reaction. Reaction Chemistry and Engineering, 2020, 5, 961-966.	3.7	6
265	<scp>Ullmannâ€Ma</scp> Reaction: Development, Scope and Applications in Organic Synthesis ^{â€} . Chinese Journal of Chemistry, 2020, 38, 879-893.	4.9	74
266	BippyPhos: A Highly Versatile Ligand for Pd atalyzed Câ^'N, Câ^'O and Câ^'C Couplings. Israel Journal of Chemistry, 2020, 60, 294-302.	2.3	7
267	Preparation of Pd-loaded gels bearing a thiol group and their catalytic activities in the Suzuki-Miyaura cross-coupling reaction. Materials Today Communications, 2020, 24, 101084.	1.9	5
268	Boosting Photocatalytic Activity in Crossâ€Coupling Reactions by Constructing Pdâ€Oxide Heterostructures. ChemNanoMat, 2020, 6, 920-924.	2.8	5
269	Advances in Rhodium-Catalyzed Oxidative Arene Alkenylation. Accounts of Chemical Research, 2020, 53, 920-936.	15.6	58
270	CuBr-Catalyzed α-Arylation and Aerobic Oxidative Dehydrogenative C–N Coupling for the Synthesis of Spiro[cyclohexane-1,12′-isoindolo[1,2- <i>b</i>]quinazolin]-10′-one Derivatives. Organic Letters, 2020, 22, 2887-2891.	4.6	9
271	Kinetics of Palladium(0)â€Allyl Interactions in the Tsujiâ€Trost Reaction, derived from Singleâ€Molecule Fluorescence Microscopy. ChemCatChem, 2020, 12, 2630-2637.	3.7	5

#	Article	IF	CITATIONS
272	Visible light-driven Suzuki–Miyaura reaction by self-supported Pd nanocatalysts in the formation of Stille coupling-based photoactive microporous organic polymers. Catalysis Science and Technology, 2020, 10, 5535-5543.	4.1	11
273	Nickel(II)/ <i>N</i> â€Heterocyclic Carbene Catalyzed Desulfinylative Arylation by Câ^'S Cleavage of Aryl Sulfoxides with Phenylboronic Acids. Advanced Synthesis and Catalysis, 2020, 362, 4373-4377.	4.3	8
274	Earth-Abundant d-Block Metal Nanocatalysis for Coupling Reactions in Polyols. Molecular Catalysis, 2020, , 249-280.	1.3	2
275	Minimalization of Metallic Pd Formation in Suzuki Reaction with a Solid-State Organometallic Catalyst. ACS Applied Materials & Interfaces, 2020, 12, 33827-33837.	8.0	17
276	Palladium-catalyzed δ-selective reductive Heck reaction of alkenyl carbonyl compounds with aryl iodides and bromides. Organic Chemistry Frontiers, 2020, 7, 2216-2223.	4.5	10
277	Exploring the Mechanism of Catalysis with the Unified Reaction Valley Approach (URVA)—A Review. Catalysts, 2020, 10, 691.	3.5	20
278	Towards high-performance heterogeneous palladium nanoparticle catalysts for sustainable liquid-phase reactions. Reaction Chemistry and Engineering, 2020, 5, 1556-1618.	3.7	21
279	Utilization of Rh-carbenoid C H insertion reactions for the synthesis of bioactive natural products. Studies in Natural Products Chemistry, 2020, , 349-380.	1.8	3
280	Highly Active Heterogeneous PdCl 2 /MOF Catalyst for Suzuki–Miyaura Crossâ€Coupling Reactions of Aryl Chloride. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2020, 646, 1336-1341.	1.2	9
281	4-Amino-1,2,4-triazoles-3-thiones and 1,3,4-oxadiazoles-2-thionesÂ-palladium(II) recoverable complexes as catalysts in the sustainable Suzuki-Miyaura cross-coupling reaction. Journal of Organometallic Chemistry, 2020, 923, 121353.	1.8	4
282	Direct and Indirect Dynamic Nuclear Polarization Transfer Observed in Mesoporous Materials Impregnated with Nonionic Surfactant Solutions of Polar Polarizing Agents. Journal of Physical Chemistry C, 2020, 124, 5145-5156.	3.1	9
283	Electrochemical Synthesis of Biaryls via Oxidative Intramolecular Coupling of Tetra(hetero)arylborates. Journal of the American Chemical Society, 2020, 142, 4341-4348.	13.7	39
284	Imino Diels-Alder/transition metal catalyzed reactions to synthesise fused ring heterocycles. Journal of Organometallic Chemistry, 2020, 913, 121197.	1.8	2
285	A new approach to large scale production of dimethyl sulfone: a promising and strong recyclable solvent for ligand-free Cu-catalyzed C–C cross-coupling reactions. Green Chemistry, 2020, 22, 2069-2076.	9.0	23
286	Acid-Promoted Intramolecular Decarbonylative Coupling Reactions of Unstrained Ketones: A Modular Approach to Synthesis of Acridines and Diaryl Ketones. Organic Letters, 2020, 22, 1955-1960.	4.6	17
287	Photoactivated silicon–oxygen and silicon–nitrogen heterodehydrocoupling with a commercially available iron compound. Dalton Transactions, 2020, 49, 2972-2978.	3.3	15
288	Palladium Nanoparticles on Assorted Nanostructured Supports: Applications for Suzuki, Heck, and Sonogashira Cross-Coupling Reactions. ACS Applied Nano Materials, 2020, 3, 2070-2103.	5.0	196
290	Palladium nanoparticles stabilized by chitosan/PAAS nanofibers: A highly stable catalyst for Heck reaction. Applied Organometallic Chemistry, 2020, 34, e5619.	3.5	22

#	Article	IF	CITATIONS
291	Nickel or Palladium atalyzed Decarbonylative Transformations of Carboxylic Acid Derivatives. Chemistry - an Asian Journal, 2020, 15, 1234-1247.	3.3	39
292	Zeolite-Enhanced Sustainable Pd-Catalyzed C–C Cross-Coupling Reaction: Controlled Release and Capture of Palladium. ACS Applied Materials & Interfaces, 2020, 12, 11419-11427.	8.0	23
293	Design and Syntheses of Palladium Complexes of NNN/CNN Pincer Ligands: Catalyst for Cross Dehydrogenative Coupling Reaction of Heteroarenes. Organometallics, 2020, 39, 324-333.	2.3	33
294	Sustainable Ligandâ€Free Heterogeneous Palladiumâ€Catalyzed Sonogashira Crossâ€Coupling Reaction in Deep Eutectic Solvents. ChemCatChem, 2020, 12, 1979-1984.	3.7	55
295	Advances and prospects of rare earth metal-organic frameworks in catalytic applications. Journal of Rare Earths, 2020, 38, 801-818.	4.8	66
296	Synthesis of Pd(II) complexes with P-N-OH ligands derived from 2-(diphenylphosphine)-benzaldehyde and various aminoalcohols and their catalytic evaluation on Suzuki-Miyaura couplings in aqueous media. Inorganica Chimica Acta, 2020, 504, 119460.	2.4	12
297	Suzuki-Miyaura coupling catalyzed by a Ni(II) PNP pincer complex: Scope and mechanistic insights. Inorganica Chimica Acta, 2020, 504, 119457.	2.4	17
298	Fast Heck–Cassar–Sonogashira (HCS) Reactions in Green Solvents. Organic Letters, 2020, 22, 3969-3973.	4.6	26
299	Green Synthesis of Oxide-Supported Pd Nanocatalysts by Laser Methods for Room-Temperature Carbon–Carbon Cross-Coupling Reactions. ACS Applied Materials & Interfaces, 2020, 12, 23844-23852.	8.0	23
300	Nickel-catalyzed Suzuki Coupling of Cycloalkyl Silyl Peroxides with Boronic Acids. Journal of Organic Chemistry, 2020, 85, 7515-7525.	3.2	27
301	Metal–Organic Framework-Based Catalysts with Single Metal Sites. Chemical Reviews, 2020, 120, 12089-12174.	47.7	692
302	Leaching Mechanism of Different Palladium Surface Species in Heck Reactions of Aryl Bromides and Chlorides. ACS Catalysis, 2020, 10, 6030-6041.	11.2	36
303	In situ preparation of palladium nanoparticles in ionic liquid crystal microemulsion and their application in Heck reaction. Journal of Molecular Liquids, 2020, 310, 113241.	4.9	19
304	The use of control experiments as the sole route to correct the mechanistic interpretation of mercury poisoning test results: The case of P,C-palladacycle-catalysed reactions. Journal of Organometallic Chemistry, 2020, 916, 121245.	1.8	3
305	Toward the Design of Phosphorescent Emitters of Cyclometalated Earth-Abundant Nickel(II) and Their Supramolecular Study. Journal of the American Chemical Society, 2020, 142, 7638-7646.	13.7	51
306	Real-time fluorescence imaging of a heterogeneously catalysed Suzuki–Miyaura reaction. Nature Catalysis, 2020, 3, 427-437.	34.4	43
307	A one-pot protocol for the fluorosulfonation and Suzuki coupling of phenols and bromophenols, streamlined access to biaryls and terphenyls. Organic and Biomolecular Chemistry, 2020, 18, 4748-4753.	2.8	5
308	A dual light-driven palladium catalyst: Breaking the barriers in carbonylation reactions. Science, 2020, 368, 318-323.	12.6	185

#	Article	IF	CITATIONS
309	Metal―and Reagentâ€Free Electrochemical Synthesis of Alkyl Arylsulfonates in a Multi omponent Reaction. Chemistry - A European Journal, 2020, 26, 8358-8362.	3.3	27
310	Library Design Strategies To Accelerate Fragmentâ€Based Drug Discovery. Chemistry - A European Journal, 2020, 26, 11391-11403.	3.3	24
311	A Copperâ€Catalyzed Sonogashira Coupling Reaction of Diverse Activated Alkyl Halides with Terminal Alkynes Under Ambient Conditions. Advanced Synthesis and Catalysis, 2020, 362, 2280-2284.	4.3	24
312	Stereoselective Palladiumâ€Catalyzed Câ^'F Bond Alkynylation of Tetrasubstituted <i>gem</i> â€Difluoroalkenes. Angewandte Chemie, 2020, 132, 11389-11393.	2.0	13
313	Stereoselective Palladiumâ€Catalyzed Câ^'F Bond Alkynylation of Tetrasubstituted <i>gem</i> â€Difluoroalkenes. Angewandte Chemie - International Edition, 2020, 59, 11293-11297.	13.8	66
314	Lâ€lysineâ€Pd Complex Supported on Fe 3 O 4 MNPs: a novel recoverable magnetic nanocatalyst for Suzuki Câ€C Crossâ€Coupling reaction. Applied Organometallic Chemistry, 2020, 34, e5668.	3.5	7
315	New insights into catalysis for Heck reactions with fine supported Pd particles. Reaction Chemistry and Engineering, 2020, 5, 921-934.	3.7	2
316	Striking dual functionality of a novel Pd@Eu-MOF nanocatalyst in C(sp ²)–C(sp ²) bond-forming and CO ₂ fixation reactions. Dalton Transactions, 2020, 49, 6368-6376.	3.3	20
317	Unleash electron transfer in C–H functionalization by mesoporous carbon-supported palladium interstitial catalysts. National Science Review, 2021, 8, nwaa126.	9.5	23
318	Arylative Allenol Cyclization via Sequential Oneâ€pot Enzyme & Palladium Catalysis. ChemCatChem, 2021, 13, 763-769.	3.7	19
319	Role of Functionalized Pillararene Architectures in Supramolecular Catalysis. Angewandte Chemie - International Edition, 2021, 60, 9205-9214.	13.8	75
320	Pd nanoparticles fabricated cyano-functionalized mesoporous SBA-15: A novel heterogeneous catalyst for Suzuki–Miyaura coupling reactions and anti-human lung cancer effects. Materials Chemistry and Physics, 2021, 257, 123375.	4.0	9
321	Recyclable nanocellulose-confined palladium nanoparticles with enhanced room-temperature catalytic activity and chemoselectivity. Science China Materials, 2021, 64, 621-630.	6.3	19
322	Pd supported on clicked cellulose-modified magnetite-graphene oxide nanocomposite for C-C coupling reactions in deep eutectic solvent. Carbohydrate Polymers, 2021, 251, 117109.	10.2	49
323	Formateâ€Mediated Crossâ€Electrophile Reductive Coupling of Aryl Iodides and Bromopyridines. Israel Journal of Chemistry, 2021, 61, 298-301.	2.3	7
324	Ruthenium-catalyzed C–H bond functionalization in cascade and one-pot transformations. Coordination Chemistry Reviews, 2021, 428, 213602.	18.8	56
325	Selective recovery of silver and palladium from acidic waste solutions using dithiocarbamate-functionalized cellulose. Chemical Engineering Journal, 2021, 407, 127225.	12.7	36
326	Formateâ€Bicarbonate Cycle as a Vehicle for Hydrogen and Energy Storage. ChemSusChem, 2021, 14, 1258-1283.	6.8	31

#	Article	IF	CITATIONS
327	Easily synthesizable benzothiazole based designers palladium complexes for catalysis of Suzuki coupling: Controlling effect of aryl substituent of ligand on role and composition of insitu generated binary nanomaterial (PdS or Pd16S7). Catalysis Communications, 2021, 149, 106242.	3.3	18
328	Nonclassical cooperative mechanism in Suzuki-Miyaura reaction – Is it possible?. Molecular Catalysis, 2021, 499, 111321.	2.0	3
329	Recent advances in the development of palladium nanocatalysts for sustainable organic transformations. Inorganic Chemistry Frontiers, 2021, 8, 499-545.	6.0	30
330	Comparative study of aryl halides in Pd-mediated reactions: key factors beyond the oxidative addition step. Inorganic Chemistry Frontiers, 2021, 8, 620-635.	6.0	25
331	Chemodivergence between Electrophiles in Cross oupling Reactions. Chemistry - A European Journal, 2021, 27, 6161-6177.	3.3	44
332	Palladium catalyzed C–C and C–N bond forming reactions: an update on the synthesis of pharmaceuticals from 2015–2020. Organic Chemistry Frontiers, 2021, 8, 384-414.	4.5	97
333	Morphology effect of CeO2 on Ni/CeO2 catalysts for selective hydrogenation of cinnamaldehyde. Chemical Physics, 2021, 542, 111079.	1.9	20
334	Transfer hydrogenation catalysis in cells. RSC Chemical Biology, 2021, 2, 12-29.	4.1	50
335	Suzuki–Miyaura reaction of C–F bonds in fluorographene. Chemical Communications, 2021, 57, 351-354.	4.1	8
336	Green palladium nanoparticles prepared with glycerol and supported on maghemite for dye removal application. Journal of Environmental Chemical Engineering, 2021, 9, 104856.	6.7	12
337	Poly(dithieno[3,2-b:2',3'-d]pyrrole) twisting redox pendants enabling high current durability in all-organic proton battery. Energy Storage Materials, 2021, 36, 1-9.	18.0	54
338	Magnetic PdOx/NiFe2O4 hybrid nanofibers with high catalysis and reusability for Suzuki coupling reactions. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 610, 125914.	4.7	6
339	Cooperative photoredox and palladium catalysis: recent advances in various functionalization reactions. Catalysis Science and Technology, 2021, 11, 742-767.	4.1	30
340	Recent advances on the synthesis of flavans, isoflavans, and neoflavans. Journal of Heterocyclic Chemistry, 2021, 58, 415-441.	2.6	12
341	Role of Functionalized Pillararene Architectures in Supramolecular Catalysis. Angewandte Chemie, 2021, 133, 9289-9298.	2.0	8
342	Pd(<scp>ii</scp>)-Based polyoxometalate polymers as highly efficient heterogeneous catalysts for Suzuki–Miyaura reactions. Inorganic Chemistry Frontiers, 2021, 8, 1528-1538.	6.0	4
343	S(<scp>vi</scp>) in three-component sulfonamide synthesis: use of sulfuric chloride as a linchpin in palladium-catalyzed Suzuki–Miyaura coupling. Chemical Science, 2021, 12, 6437-6441.	7.4	16
344	Magnetic metal–organic framework composites: structurally advanced catalytic materials for organic transformations. Materials Advances, 2021, 2, 2153-2187.	5.4	42

#	Article	IF	CITATIONS
345	<i>In Situ</i> Strong Metal–Support Interaction (SMSI) Affects Catalytic Alcohol Conversion. ACS Catalysis, 2021, 11, 1938-1945.	11.2	50
346	Synthesis and catalytic activity of palladium complexes bearing <i>N</i> -heterocyclic carbenes (NHCs) and 1,4,7-triaza-9-phosphatricyclo[5.3.2.1]tridecane (CAP) ligands. Dalton Transactions, 2021, 50, 9491-9499.	3.3	12
347	Towards the rational design of ylide-substituted phosphines for gold(<scp>i</scp>)-catalysis: from inactive to ppm-level catalysis. Chemical Science, 2021, 12, 4329-4337.	7.4	33
348	Carbon black nanoparticle trapping: a strategy to realize the true energy storage potential of redox-active conjugated microporous polymers. Journal of Materials Chemistry A, 2021, 9, 17978-17984.	10.3	4
349	Si-Gly-CD-PdNPs as a hybrid heterogeneous catalyst for environmentally friendly continuous flow Sonogashira cross-coupling. Green Chemistry, 2021, 23, 7210-7218.	9.0	14
350	Nickel-catalyzed coupling of R ₂ P(O)Me (R = aryl or alkoxy) with (hetero)arylmethyl alcohols. Organic and Biomolecular Chemistry, 2021, 19, 2233-2242.	2.8	4
351	Samarium-based Grignard-type addition of organohalides to carbonyl compounds under catalysis of Cul. Chemical Communications, 2021, 57, 6169-6172.	4.1	13
352	Valorisation of urban waste to access low-cost heterogeneous palladium catalysts for cross-coupling reactions in biomass-derived γ-valerolactone. Green Chemistry, 2021, 23, 5887-5895.	9.0	22
353	Enantioselective synthesis of 3-aryl-phthalides through a nickel-catalyzed stereoconvergent cross-coupling reaction. Organic and Biomolecular Chemistry, 2021, 19, 4492-4496.	2.8	9
354	Direct access to tetrasubstituted cyclopentenyl scaffolds through a diastereoselective isocyanide-based multicomponent reaction. Chemical Science, 2021, 12, 15862-15869.	7.4	2
355	Biogenic synthesis of Pd-nanoparticles using Areca Nut Husk Extract: a greener approach to access α-keto imides and stilbenes. New Journal of Chemistry, 2021, 45, 16213-16222.	2.8	20
356	Pd/C-catalyzed transfer hydrogenation of aromatic nitro compounds using methanol as a hydrogen source. Journal of the Indian Chemical Society, 2021, 98, 100014.	2.8	9
357	Lipids as versatile solvents for chemical synthesis. Green Chemistry, 2021, 23, 7219-7227.	9.0	9
358	Metal-catalyzed C–S bond formation using sulfur surrogates. Organic and Biomolecular Chemistry, 2021, 19, 1459-1482.	2.8	65
359	Embedded homogeneous ultra-fine Pd nanoparticles within MOF ultra-thin nanosheets for heterogeneous catalysis. Dalton Transactions, 2021, 50, 1774-1779.	3.3	24
360	Palladium nanoparticles on amino-modified silica-catalyzed C–C bond formation with carbonyl insertion. Journal of the Iranian Chemical Society, 2021, 18, 1891-1903.	2.2	1
361	Photoinduced Palladium atalyzed Dicarbofunctionalization of Terminal Alkynes. Chemistry - A European Journal, 2021, 27, 3694-3699.	3.3	27
362	Recent Progress in Plasmonic Hybrid Photocatalysis for CO2 Photoreduction and C–C Coupling Reactions. Catalysts, 2021, 11, 155.	3.5	6

#	Article	IF	CITATIONS
363	Sequential Insertion of Alkynes, Alkenes, and CO into the Pd–C Bond of <i>ortho</i> -Palladated Primary Phenethylamines: from η ³ -Allyl Complexes and Enlarged Palladacycles to Functionalized Arylalkylamines. Organometallics, 2021, 40, 539-556.	2.3	5
364	Palladium-catalysed cyclisation of ynamides and propargyl tethered iodosulfonamides with boronic acids leading to benzosultams. Organic and Biomolecular Chemistry, 2021, 19, 6871-6882.	2.8	3
365	The carbon–carbon triple bond as a tool to design organic semiconductors for photovoltaic applications: an assessment of prospects and challenges. Journal of Materials Chemistry C, 2021, 9, 16164-16186.	5.5	14
366	Fe3O4@HcdMeen-Pd(0) Organic–Inorganic Hybrid: As a Novel Heterogeneous Nanocatalyst for Chemo and Homoselective Heck C–C Cross-Coupling Synthesis of Butyl Cinnamates. Catalysis Letters, 2021, 151, 2207.	2.6	4
367	â€~Pre-optimization' of the solvent of nanoparticle synthesis for superior catalytic efficiency: a case study with Pd nanocrystals. Nanoscale Advances, 2021, 3, 2366-2376.	4.6	3
368	Silver nanomaterials: synthesis and (electro/photo) catalytic applications. Chemical Society Reviews, 2021, 50, 11293-11380.	38.1	79
369	Perspectives on palladium-based nanomaterials: green synthesis, ecotoxicity, and risk assessment. Environmental Science: Nano, 2021, 8, 20-36.	4.3	18
370	Recent advances in pincer–nickel catalyzed reactions. Dalton Transactions, 2021, 50, 3394-3428.	3.3	32
371	A fluorescent probe for the discrimination of oxidation states of palladium. Chemical Science, 2021, 12, 9977-9982.	7.4	10
372	Expanding the synthetic scope of biocatalysis by enzyme discovery and protein engineering. Tetrahedron, 2021, 82, 131926.	1.9	29
373	Metalâ€Free Electrochemical Synthesis of Sulfonamides Directly from (Hetero)arenes, SO ₂ , and Amines. Angewandte Chemie - International Edition, 2021, 60, 5056-5062.	13.8	54
374	Homoleptic Lanthanide Amide Catalysts for Organic Synthesis: Experiment and Theory. ACS Catalysis, 2021, 11, 2715-2734.	11.2	37
375	Co(III), Rh(III) & Ir(III) atalyzed Direct Câ^'H Alkylation/Alkenylation/Arylation with Carbene Precursors. Chemistry - an Asian Journal, 2021, 16, 443-459.	3.3	62
376	Synthesis of 1â€Naphtholâ€based Unsymmetrical Triarylmethanes: Heckâ€type Desulfitative Reaction of Arylsulfonyl Chlorides with Tetraloneâ€derived Chalcones. Asian Journal of Organic Chemistry, 2021, 10, 576-581.	2.7	2
377	Effects of new NHC derivatives as ligands in the Suzuki–Miyaura reaction. Synthetic Communications, 0, , 1-13.	2.1	0
378	Effect of Palladiumâ€Tetrakis(Triphenylphosphine) Catalyst Traces on Charge Recombination and Extraction in Nonâ€Fullereneâ€based Organic Solar Cells. Advanced Functional Materials, 2021, 31, 2009363.	14.9	27
379	3D Porous Polymeric-Foam-Supported Pd Nanocrystal as a Highly Efficient and Recyclable Catalyst for Organic Transformations. ACS Applied Materials & Interfaces, 2021, 13, 10120-10130.	8.0	14
380	Metallfreie, elektrochemische Synthese von Sulfonamiden direkt aus (Hetero)arenen, SO ₂ und Aminen. Angewandte Chemie, 2021, 133, 5114-5120.	2.0	15

#	Article	IF	CITATIONS
381	Synthesis of Multideuterated (Hetero)aryl Bromides by Ag(I)-Catalyzed H/D Exchange. Organic Letters, 2021, 23, 1554-1560.	4.6	17
382	Photochemical synthesis and radical generation of the nickel-tin dimer [Ni(SnBut3)(CNBut)2(CO)]2. Journal of Organometallic Chemistry, 2021, 936, 121715.	1.8	0
383	Hydroarylation of Activated Alkenes Enabled by Proton-Coupled Electron Transfer. ACS Catalysis, 2021, 11, 4422-4429.	11.2	51
384	Agro-Waste Generated Pd/CAP-Ash Catalyzed Ligand-Free Approach for Suzuki–Miyaura Coupling Reaction. Catalysis Letters, 2021, 151, 3617-3631.	2.6	4
385	Enhanced Performance of Palladium Catalyst Confined Within Carbon Nanotubes for Heck Reaction. Catalysis Letters, 2021, 151, 3230-3238.	2.6	6
386	Confining Palladium Nanoparticles in Microporous Tetrastyrene Polymer Enables Efficient Size-Selective Heterogeneous Catalysis. ACS Applied Nano Materials, 2021, 4, 3869-3876.	5.0	19
387	Discrimination of the mechanistic hypotheses for two- and three-component cross-coupling reactions by using mathematical modeling of the differential selectivity patterns. Journal of Physics: Conference Series, 2021, 1847, 012055.	0.4	0
388	Aerobic Cu and amine free Sonogashira and Stille couplings of aryl bromides/chlorides with a magnetically recoverable Fe3O4@SiO2 immobilized Pd(II)-thioether containing NHC. Tetrahedron Letters, 2021, 67, 152844.	1.4	9
389	Artificial Organelles: Towards Adding or Restoring Intracellular Activity. ChemBioChem, 2021, 22, 2051-2078.	2.6	38
390	Earthâ€Abundant Transition Metalâ€Based Mulliteâ€Type Oxide Catalysts for Heterogeneous Oxidation Reactions. Advanced Energy and Sustainability Research, 2021, 2, 2000075.	5.8	8
391	Enhancing stability by trapping palladium inside N-heterocyclic carbene-functionalized hypercrosslinked polymers for heterogeneous C-C bond formations. Nature Communications, 2021, 12, 1875.	12.8	41
392	Ultrasound assisted synthesis of Pd NPs decorated chitosan-starch functionalized Fe3O4 nanocomposite catalyst towards Suzuki-Miyaura coupling and reduction of 4-nitrophenol. International Journal of Biological Macromolecules, 2021, 172, 104-113.	7.5	85
393	Advances in C(<i>sp</i> ²)â^H/C(<i>sp</i> ²)â^H Oxidative Coupling of (Hetero)arenes Using 3d Transition Metal Catalysts. Advanced Synthesis and Catalysis, 2021, 363, 1998-2022.	4.3	36
394	Pd2+-induced quenching of the UV emission from Gd3+ ions in phosphate glass. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2021, 249, 119357.	3.9	5
395	Continuous Flow Synthesis of Metal–NHC Complexes**. Chemistry - A European Journal, 2021, 27, 5653-5657.	3.3	34
396	MMT Intercalated Pd Nanocatalyst for Heck (Mizoroki-Heck) Reaction. , 2021, , 109-129.		1
397	Bifunctional reagents in organic synthesis. Nature Reviews Chemistry, 2021, 5, 301-321.	30.2	119
398	Mechanistic Studies of Styrene Production from Benzene and Ethylene Using [(Î- ² -C ₂ H ₄) ₂ Rh(μ-OAc)] ₂ as Catalyst Precursor: Identification of a Bis-Rh ^I Mono-Cu ^{II} Complex As the Catalyst. ACS Catalysis. 2021, 11, 5688-5702.	11.2	9

#	ARTICLE	IF	CITATIONS
399	Editorial Catalysts: Special Issue on Transition Metal Catalyzed Cross-Coupling Reactions. Catalysts, 2021, 11, 473.	3.5	2
401	Palladium Nanoparticles from Different Reducing Systems as Heck Catalysts. Catalysis Letters, 0, , 1.	2.6	0
402	From Bench to Plant: An Opportunity for Transition Metal Paired Electrocatalysis. Organic Process Research and Development, 2021, 25, 2581-2586.	2.7	24
403	Activation of Aryl Chlorides in the Suzuki-Miyaura Reaction by "Ligand-Free―Pd Species through a Homogeneous Catalytic Mechanism: Distinguishing between Homogeneous and Heterogeneous Catalytic Mechanisms. Organic Process Research and Development, 2021, 25, 916-925.	2.7	6
405	Nickel-Fe3O4 Magnetic Nanoparticles Supported on Multiwalled Carbon Nanotubes: Effective Catalyst in Suzuki Cross Coupling Reactions. Catalysts, 2021, 11, 495.	3.5	12
406	Phenanthroline functionalized polyacrylonitrile fiber with Pd(0) nanoparticles as a highly active catalyst for the Heck reaction. Reactive and Functional Polymers, 2021, 161, 104843.	4.1	19
407	Water-Soluble Noble Metal Nanoparticle Catalysts Capped with Small Organic Molecules for Organic Transformations in Water. ACS Applied Nano Materials, 2021, 4, 3294-3318.	5.0	13
408	Direct Iodination of Electron-Deficient Benzothiazoles: Rapid Access to Two-Photon Absorbing Fluorophores with Quadrupolar D-ï€-A-ï€-D Architecture and Tunable Heteroaromatic Core. Organic Letters, 2021, 23, 3460-3465.	4.6	19
409	Preparation and Investigation of Pd and Bimetallic Pd-Sn Nanocrystals on \hat{I}^3 -Al2O3. Crystals, 2021, 11, 444.	2.2	7
410	Ionic Liquid Mediated Graphene-Based Pd Nanocomposites For Coupling Reactions. Current Organocatalysis, 2021, 08, .	0.5	0
411	Copperâ€Free Oneâ€Pot Sonogashiraâ€Type Coupling for the Efficient Preparation of Symmetric Diarylalkyne Ligands for Metalâ€Organic Cages**. European Journal of Organic Chemistry, 2021, 2021, 2728-2735.	2.4	6
412	Superhydrophobic conjugated microporous polymer-coated sponges: Synthesis and application for highly efficient oil/water separation and the recovery of palladium ions. Separation and Purification Technology, 2021, 261, 118291.	7.9	21
413	Unraveling Halogen Effects in Supramolecular Polymerization. Journal of the American Chemical Society, 2021, 143, 7164-7175.	13.7	39
414	Design strategy and recent progress of fluorescent probe for noble metal ions (Ag, Au, Pd, and Pt). Coordination Chemistry Reviews, 2021, 432, 213712.	18.8	46
415	Facile d-band tailoring in Sub-10Ânm Pd cubes by in-situ grafting on nitrogen-doped graphene for highly efficient organic transformations. Journal of Colloid and Interface Science, 2021, 590, 175-185.	9.4	12
416	Vinyl Groups Containing Tetraphenylethylene Derivatives as Fluorescent Probes Specific for Palladium and the Quenching Mechanism ^{â€} . Chinese Journal of Chemistry, 2021, 39, 1599-1605.	4.9	12
417	Palladium Catalyst Recycling for Heckâ€Cassarâ€Sonogashira Crossâ€Coupling Reactions in Green Solvent/Base Blend. ChemSusChem, 2021, 14, 2591-2600.	6.8	21
418	Aryl(TMP)iodonium Tosylate Reagents as a Strategic Entry Point to Diverse Aryl Intermediates: Selective Access to Arynes. Organic Letters, 2021, 23, 4813-4817.	4.6	22

#	Article	IF	CITATIONS
419	Pd atalyzed Sonogashira Cross oupling Reactions of gem â€Ðibromovinyl BODIPY Derivatives. European Journal of Organic Chemistry, 2021, 2021, 3123-3132.	2.4	2
420	Functionalized chitosan as a novel support for stabilizing palladium in Suzuki reactions. Carbohydrate Polymers, 2021, 260, 117815.	10.2	39
421	A highly controllable, effective, and recyclable magnetic-nanoparticle-supported palladium catalyst for the Suzuki–Miyaura cross-coupling reaction. Journal of Catalysis, 2021, 397, 36-43.	6.2	9
422	Revealing the Structure Evolution of Heterogeneous Pd Catalyst in Suzuki Reaction via the Identical Location Transmission Electron Microscopy. ACS Nano, 2021, 15, 8621-8637.	14.6	15
423	I - Ecologically responsible and efficient recycling of Pd from aqueous effluents using biosorption on biomass feedstock. Journal of Cleaner Production, 2021, 299, 126895.	9.3	9
424	A general copper-catalyzed radical C(sp3)â^'C(sp2) cross-coupling to access 1,1-diarylalkanes under ambient conditions. Tetrahedron, 2021, 89, 132152.	1.9	3
425	Aryl Radical Activation of C–O Bonds: Copper-Catalyzed Deoxygenative Difluoromethylation of Alcohols. Journal of the American Chemical Society, 2021, 143, 9952-9960.	13.7	43
426	The Rich Legacy and Bright Future of Transitionâ€Metal Catalyzed Peroxide Based Radical Reactions. Chemical Record, 2021, , .	5.8	3
427	Schiff Bases as Inspirational Motif for the Production of Ni(II) and Pd(II) Coordination and Novel Nonâ€Symmetric Ni(II)â€POCOP Pincer Complexes. European Journal of Inorganic Chemistry, 2021, 2021, 2452-2463.	2.0	2
428	Easily Prepared Mono(N,Nâ€dialkylamino)phosphine Palladium(II) Complexes: Structural and Catalytic Evaluation. European Journal of Inorganic Chemistry, 2021, 2021, 2578-2582.	2.0	4
429	Coordination from Heteroscorpionate Ligand Towards Pd(II) via Pdâ‹â‹â‹HÎ'â^'C(sp3) Interaction: Structural and Catalytic Studies. European Journal of Inorganic Chemistry, 2021, 2021, 2661-2668.	2.0	3
430	Formation and stabilization of nanosized Pd particles in catalytic systems: lonic nitrogen compounds as catalytic promoters and stabilizers of nanoparticles. Coordination Chemistry Reviews, 2021, 437, 213860.	18.8	36
431	A Practice of Reticular Chemistry: Construction of a Robust Mesoporous Palladium Metal–Organic Framework via Metal Metathesis. Journal of the American Chemical Society, 2021, 143, 9901-9911.	13.7	60
432	Ligand-Enabled Copper(I)-Catalyzed Asymmetric Radical C(sp ³)–C Cross-Coupling Reactions. ACS Catalysis, 2021, 11, 7978-7986.	11.2	43
433	Xantphosâ€coordinated palladium dithiolates: Highly efficient catalyst for decarboxylative Sonogashira reaction into corresponding alkynes. Applied Organometallic Chemistry, 2021, 35, e6328.	3.5	10
434	Synthesis of Trinuclear Benzimidazoleâ€Fused Hybrid Scaffolds by Transition Metalâ€Free Tandem C(sp ²)â^`N Bond Formation under Microwave Irradiation. European Journal of Organic Chemistry, 2021, 2021, 4088-4098.	2.4	9
435	Metalâ€Based Catalytic Drug Development for Nextâ€Generation Cancer Therapy. ChemMedChem, 2021, 16, 2480-2486.	3.2	15
436	Substituted nitrogen-bridged diazocines. Beilstein Journal of Organic Chemistry, 2021, 17, 1503-1508.	2.2	9

#	Article	IF	CITATIONS
437	Cooperative Bond Activation and Facile Intramolecular Aryl Transfer of Nickel–Aluminum Pincerâ€ŧype Complexes. Angewandte Chemie - International Edition, 2021, 60, 15087-15094.	13.8	31
438	Cooperative Bond Activation and Facile Intramolecular Aryl Transfer of Nickel–Aluminum Pincerâ€ŧype Complexes. Angewandte Chemie, 2021, 133, 15214-15221.	2.0	4
439	The emerging applications of pillararene architectures in supramolecular catalysis. Chinese Chemical Letters, 2022, 33, 89-96.	9.0	44
440	Charge Neutral [Cu ₂ L ₂] and [Pd ₂ L ₂] Metallocycles: Self-Assembly, Aggregation, and Catalysis. Inorganic Chemistry, 2021, 60, 9673-9679.	4.0	12
441	Fundamental Basis for Implementing Oxidantâ€Free Au(I)/Au(III) Catalysis. European Journal of Inorganic Chemistry, 2021, 2021, 2556-2569.	2.0	47
442	Aerobic Heterogeneous Palladium-Catalyzed Oxidative Allenic Câ^'H Arylation: Benzoquinone as a Direct Redox Mediator between O ₂ and Pd. CCS Chemistry, 2021, 3, 1127-1137.	7.8	6
443	Synthetic Opportunities and Challenges for Macrocyclic Kinase Inhibitors. Journal of Medicinal Chemistry, 2021, 64, 7991-8009.	6.4	39
444	Suzuki coupling of aroyl-MIDA boronate esters – A preliminary report on scope and limitations. Tetrahedron Letters, 2021, 74, 153147.	1.4	2
445	Impact of Ligands and Metals on the Formation of Metallacyclic Intermediates and a Nontraditional Mechanism for Group VI Alkyne Metathesis Catalysts. Journal of the American Chemical Society, 2021, 143, 9026-9039.	13.7	17
446	Complexes LNi(Cp)X with alkylamino-substituted N-heterocyclic carbene ligands (L) and their catalytic activity in the Suzuki—Miyaura reaction. Russian Chemical Bulletin, 2021, 70, 1281-1289.	1.5	10
447	B(C ₆ F ₅) ₃ atalyzed Hydroarylation of Terminal Alkynes with Phenols. Advanced Synthesis and Catalysis, 2021, 363, 3962-3967.	4.3	10
448	Confined synthesis of homogeneous Tetrakis(triphenyl phosphine) palladium within hollow porous polymeric nanospheres for catalysis application. Microporous and Mesoporous Materials, 2021, 322, 111155.	4.4	5
449	Palladium-Catalyzed Aryl-Furanylation of Alkenes: Synthesis of Benzofuran-Containing 3,3-Disubstituted Oxindoles. Journal of Organic Chemistry, 2021, 86, 9384-9395.	3.2	16
450	Nickel/β D atalyzed Suzuki–Miyaura cross oupling of aryl boronic acids with aryl halides in water. Applied Organometallic Chemistry, 2021, 35, e6378.	3.5	5
451	Photoinduced ruthenium-catalyzed alkyl-alkyl cross-coupling reactions. Chem Catalysis, 2021, 1, 467-479.	6.1	19
452	A Facile Construction of Bisheterocyclic Methane Scaffolds through <scp>Palladium atalyzed</scp> Domino Cyclization. Chinese Journal of Chemistry, 2021, 39, 2699-2704.	4.9	11
453	Highly efficient and recyclable amorphous Pd(II)/crystal Pd(0) catalyst for boosting Suzuki reaction in aqueous solution. Nano Research, 2022, 15, 1193-1198.	10.4	10
454	Structural and catalytic properties of the [Ni(BIPHEP)X2] complexes, BIPHEPÂ=Â2,2-diphenylphosphino-1,1-biphenyl; XÂ=ÂCl, Br. Inorganica Chimica Acta, 2021, 522, 120300.	2.4	0

#	Article	IF	CITATIONS
455	Diboron-Promoted Reduction of Ni(II) Salts: Precatalyst Activation Studies Relevant to Ni-Catalyzed Borylation Reactions. Organometallics, 2021, 40, 2691-2700.	2.3	15
456	C–H Bond Functionalization of (Hetero)aryl Bromide Enabled Synthesis of Brominated Biaryl Compounds. Organic Letters, 2021, 23, 5626-5630.	4.6	7
457	A new nanomagnetic Pd-Co bimetallic alloy as catalyst in the Mizoroki–Heck and Buchwald–Hartwig amination reactions in aqueous media. Scientific Reports, 2021, 11, 17025.	3.3	9
458	Catalytic performance of palladium nanoparticles encapsulated within nitrogen-doped carbon during Heck reaction. Journal of Catalysis, 2021, 400, 20-27.	6.2	14
459	Site-Selective Cross-Coupling of Polyhalogenated Arenes and Heteroarenes with Identical Halogen Groups. Chemical Reviews, 2022, 122, 10126-10169.	47.7	62
460	Triethanolamineâ€Mediated Magnetically Separable Fe ₃ O ₄ â^'Pd Nanoparticles Catalyzed Heck Reaction under Ligandâ€Free Conditions. ChemistrySelect, 2021, 6, 7944-7949.	1.5	4
461	Microgels as Soluble Scaffolds for the Preparation of Noble Metal Nanoparticles Supported on Nanostructured Metal Oxides. ACS Applied Nano Materials, 2021, 4, 8343-8351.	5.0	4
462	From Waste to Green Applications: The Use of Recovered Gold and Palladium in Catalysis. Molecules, 2021, 26, 5217.	3.8	8
463	Synthesis, Properties, and Applications of Bio-Based Cyclic Aliphatic Polyesters. Biomacromolecules, 2021, 22, 3649-3667.	5.4	27
464	Main-group metalated heterocycles through Lewis acid cyclization. Trends in Chemistry, 2021, 3, 645-659.	8.5	3
465	Metal-organic frameworks bonded with metal <i>N</i> -heterocyclic carbenes for efficient catalysis. National Science Review, 2022, 9, .	9.5	92
466	Heteroleptic Palladium(II) Complexes of Thiazolinylâ€picolinamide Derived N ^{â^©} N ^{â^©} N Pincer Ligand: An Efficient Catalyst for Acylative Suzuki Coupling Reactions. Asian Journal of Organic Chemistry, 2021, 10, 2982-2992.	2.7	4
467	In vivo organic synthesis by metal catalysts. Bioorganic and Medicinal Chemistry, 2021, 46, 116353.	3.0	16
468	The Anionic Pathway in the Nickelâ€Catalysed Crossâ€Coupling of Aryl Ethers. Angewandte Chemie - International Edition, 2021, 60, 24659-24667.	13.8	30
469	Carbon–Carbon Bond Formation for the Synthesis of 5-Aryl-2-Substituted Furans Catalyzed by K3[Fe(CN)6]. Catalysis Letters, 0, , 1.	2.6	1
470	Redoxâ€active BIANâ€based Diimine Ligands in Metal atalyzed Small Molecule Syntheses**. ChemCatChem, 2022, 14, .	3.7	34
471	A translation of the twelve principles of green chemistry to guide the development of cross-coupling reactions. Catalysis Today, 2022, 397-399, 265-271.	4.4	17
472	Nanowire Networks of Metal–Organosilicates as Reversible Pd(II) Reservoirs for Suzuki Coupling Reactions. ACS Applied Nano Materials, 2021, 4, 10886-10901.	5.0	6

#	Article	IF	CITATIONS
473	The Anionic Pathway in Nickelâ€Catalysed Crossâ€Coupling of Aryl Ethers. Angewandte Chemie, 2021, 133, 24864.	2.0	4
474	In situ grown palladium nanoparticles on polyester fabric as easy-separable and recyclable catalyst for Suzuki-Miyaura reaction. Catalysis Communications, 2021, 157, 106328.	3.3	9
475	Improving the efficiency and sustainability of catalysts for direct arylation polymerization (DArP). Journal of Polymer Science, 2022, 60, 393-428.	3.8	26
476	Photocatalytic aldehydes/alcohols/toluenes oxidative amidation over bifunctional Pd/MOFs: Effect of Fe-O clusters and Lewis acid sites. Journal of Catalysis, 2021, 401, 279-287.	6.2	25
477	Palladium-Catalyzed Arylation of C(sp2)–H Bonds with 2-(1-Methylhydrazinyl)pyridine as the Bidentate Directing Group. ACS Omega, 2021, 6, 25151-25161.	3.5	0
478	An Environment-Friendly Dip-Catalyst with Xylan-based Catalytic Paper Coatings. Carbohydrate Polymers, 2021, 275, 118707.	10.2	2
479	Advances in mercury(II)-salt-mediated cyclization reactions of unsaturated bonds. Beilstein Journal of Organic Chemistry, 2021, 17, 2348-2376.	2.2	2
480	Sustainable nano fibrillated cellulose supported in situ biogenic Pd nanoparticles as heterogeneous catalyst for C–C cross coupling reactions. Sustainable Chemistry and Pharmacy, 2021, 23, 100502.	3.3	1
481	Preparation of magnetic chitosan-supported palladium-5-amino-1H-tetrazole complex as a magnetically recyclable catalyst for Suzuki-Miyaura coupling reaction in green media. Journal of Molecular Structure, 2021, 1244, 130873.	3.6	19
482	Multifunctional catalysts based on palladium nanoparticles supported on functionalized halloysites: Applications in catalytic C-C coupling, selective oxidation and dehalogenation reactions. Applied Clay Science, 2021, 214, 106272.	5.2	13
483	Anchoring of palladium onto the surface of porous MCM-41 modified with DL-pyroglutamic acid as a novel heterogeneous catalyst for Suzuki–Miyaura coupling reactions. Journal of Organometallic Chemistry, 2021, 953, 122064.	1.8	15
484	DFT studies on the mechanisms of enantioselective Ni-catalyzed reductive coupling reactions to form 1,1-diarylalkanes. Journal of Organometallic Chemistry, 2021, 952, 122042.	1.8	4
485	Phosphonate functionalized N-heterocyclic carbene Pd(II) complexes as efficient catalysts for Suzuki-Miyaura cross coupling reaction. Journal of Organometallic Chemistry, 2021, 953, 122067.	1.8	6
486	Inclusion of bidentate phosphine molecules in the supercage of FAU zeolite. Microporous and Mesoporous Materials, 2021, 327, 111387.	4.4	0
487	A new avenue for the preparation of organoboron compounds via nickel catalysis. Coordination Chemistry Reviews, 2021, 448, 214165.	18.8	27
488	Tannic Acid: A green and efficient stabilizer of Au, Ag, Cu and Pd nanoparticles for the 4-Nitrophenol Reduction, Suzuki–Miyaura coupling reactions and click reactions in aqueous solution. Journal of Colloid and Interface Science, 2021, 604, 281-291.	9.4	23
489	Advances in deep eutectic solvents and water: applications in metal- and biocatalyzed processes, in the synthesis of APIs, and other biologically active compounds. Organic and Biomolecular Chemistry, 2021, 19, 2558-2577.	2.8	87
490	Solid, Noncovalent Formulation of Biocatalysts for Rapid and Accurate Submilligram Dosing to Microtiter Plates. Organic Process Research and Development, 2021, 25, 337-341.	2.7	3

ARTICLE IF CITATIONS Synthesis of 3-aryl-1-phosphinoimidazo[1,5-<i>a</i>)pyridine ligands for use in Suzukiâ€"Miyaura 491 3.6 5 cross-coupling reactions. RSC Advances, 2021, 11, 28347-28351. Organic synthesis with the most abundant transition metal–iron: from rust to multitasking catalysts. 38.1 Chemical Society Reviews, 2021, 50, 243-472. Nickel-Catalyzed Reductive 2-Pyridination of Aryl Iodides with Difluoromethyl 2-Pyridyl Sulfone. 493 4.6 28 Organic Letters, 2021, 23, 711-715. Monosubstituted, Anionic Imidazolyl Ligands from Nâ[^]H NHC Precursors and Their Activity in 494 Pdâ€Catalyzed Crossâ€Coupling Reactions. Advanced Synthesis and Catalysis, 2020, 362, 2876-2881. <scp>Pdâ€Catalyzed</scp> Intermolecular Dearomative Heck Reaction of Indole Derivatives. Chinese 495 4.9 4 Journal of Chemistry, 2020, 38, 525-526. High Activity and Stability of PdO<i>_x</i> Anchored in Porous NiO Nanofibers for Catalyzing Suzuki Coupling Reactions. Journal of Physical Chemistry C, 2020, 124, 22539-22549. 496 3.1 Understanding and Improving Photocatalytic Activity of Pd-Loaded BiVO₄ Microspheres: 497 Application to Visible Light-Induced Suzuki–Miyaura Coupling Reaction. ACS Applied Materials & amp; 8.0 16 Interfaces, 2021, 13, 1714-1722. Effect of the Structure of C,N-Chelate Diaminocarbene Palladium(II) Complexes on Their Catalytic 498 0.8 Activity in the Sonogashira Reaction. Russian Journal of Organic Chemistry, 2020, 56, 1937-1941. Transition-metal Nanoparticles Catalyzed Carbon-Carbon Coupling Reactions in Water. Current 499 1.6 6 Organic Chemistry, 2019, 23, 689-703. Palladium-Catalyzed Cascade Reactions for Annulative i€ -Extension of Indoles to Carbazoles through 1.6 Câ€"H Bond Activation. Current Organic Chemistry, 2020, 24, 2612-2633. Magnetic Decoration of Escherichia coli Loaded with Palladium Nanoparticles. , 2021, , . 501 2 The adequacy of the observed kinetic order in catalyst and the differential selectivity patterns to the hypothesis of the cooperative mechanism of catalysis of the Suzukiâ€"Miyaura reaction. Russian 1.5 Chemical Bulletin, 2021, 70, 1657-1664. Recent Progress of Metal Nanoparticle Catalysts for Câ€"C Bond Forming Reactions. Catalysts, 2021, 11, 503 3.5 15 1266. Toolbox for Distal C–H Bond Functionalizations in Organic Molecules. Chemical Reviews, 2022, 122, 504 47.7 5682-5841. Sterically enhanced 2â€iminopyridylpalladium chlorides as recyclable ppmâ€palladium catalyst for 505 3.5 3 Suzukia€"Miyaura coupling in aqueous solution. Applied Organometallic Chemistry, 0, , e6474. Accelerating Hydrogen Absorption and Desorption Rates in Palladium Nanocubes with an Ultrathin 9.1 Surface Modification. Nano Letters, 2021, 21, 9131-9137. Nickel-Catalyzed Reductive Cross-Coupling of Heteroaryl Chlorides and Aryl Chlorides. ACS Catalysis, 507 11.2 23 2021, 11, 12785-12793. [(NHC)PdCl₂(Aniline)] Complexes: Easily Synthesized, Highly Active Pd(II)–NHC Precatalysts for Cross-Coupling Reactions. Journal of Organic Chemistry, 2021, 86, 15648-15657.

#	Article	IF	CITATIONS
509	Transcriptomic Response Analysis of Escherichia coli to Palladium Stress. Frontiers in Microbiology, 2021, 12, 741836.	3.5	6
510	Pd Doped on TCH@SBA-15 Nanocomposites: Fabrication and Application as a New Organometallic Catalyst in the Three-Component Synthesis of N-Benzo-imidazo- or -thiazole-1,3-thiazolidinones. Frontiers in Chemistry, 2021, 9, 723207.	3.6	2
511	Concave Double-Walled AgAuPd Nanocubes for Surface-Enhanced Raman Spectroscopy Detection and Catalysis Applications. ACS Applied Nano Materials, 2021, 4, 10103-10115.	5.0	15
512	Computational asymmetric catalysis: On the origin of stereoselectivity in catalytic reactions. Advances in Physical Organic Chemistry, 2019, 53, 1-27.	0.5	2
513	Transient Directing Group Strategy as a Unified Method for Site Selective Direct C4–H Halogenation of Indoles. Organic Letters, 2021, 23, 8402-8406.	4.6	19
514	Visible-Light-Promoted Cross-Coupling of <i>N</i> -Alkylpyridinium Salts and Nitrostyrenes. Organic Letters, 2021, 23, 8705-8710.	4.6	12
516	Microflowers formed by complexation-driven self-assembly between palladium(<scp>ii</scp>) and bis-theophyllines: immortal catalyst for C–C cross-coupling reactions. RSC Advances, 2021, 11, 35311-35320.	3.6	3
517	<i>N</i> -Heterocyclic Carbene Ligands Having Planar Chiral Ferrocene Structure. Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry, 2020, 78, 28-40.	0.1	1
518	Pd immobilization biguanidine modified Zr-UiO-66 MOF as a reusable heterogeneous catalyst in Suzuki–Miyaura coupling. Scientific Reports, 2021, 11, 21883.	3.3	32
519	Non-C2-Symmetric Bis-Benzimidazolium Salt Applied in the Synthesis of Sterically Hindered Biaryls. Molecules, 2021, 26, 6703.	3.8	2
520	A Simple Synthetic Route to Wellâ€Defined [Pd(NHC)Cl(1â€ ^t Buâ€indenyl)] Preâ€catalysts for Crossâ€Coupling Reactions. European Journal of Inorganic Chemistry, 2022, 2022, .	2.0	9
521	C–H activation by immobilized heterogeneous photocatalysts. Photochemical and Photobiological Sciences, 2021, 20, 1563-1572.	2.9	6
522	Ionic Cyclopropenium-Derived Triplatinum Cluster Complex [(Ph ₃ C ₃) ₂ Pt ₃ (MeCN) ₄] ²⁺ (BF <su Synthesis, Structure, and Perspectives for Use as a Catalyst for Hydrosilylation Reactions. Organometallics, 2021, 40, 3876-3885.</su 	b>4	> ^{–<!--</td-->}
523	Monodentate Transient Directing Group-Assisted Palladium-Catalyzed Direct <i>ortho</i> -C–H Iodination of Benzaldehydes for Total Synthesis of Hernandial. Organic Letters, 2021, 23, 9184-9188.	4.6	6
524	Polyethylene glycol as a green chemical solvent. Current Opinion in Colloid and Interface Science, 2022, 57, 101537.	7.4	24
525	The Chosen Few: Parallel Library Reaction Methodologies for Drug Discovery. Journal of Organic Chemistry, 2022, 87, 1880-1897.	3.2	28
526	Biogenic palladium nanoparticles: An effectual environmental benign catalyst for organic coupling reactions. Journal of Industrial and Engineering Chemistry, 2022, 106, 52-68.	5.8	10
527	Total Synthesis of Entrectinib with Key Photoâ€Redox Mediated Crossâ€Coupling in Flow. European Journal of Organic Chemistry, 2022, 2022, .	2.4	1

#	Article	IF	CITATIONS
528	Iron-Catalyzed Ring Opening of Cyclopropanols and Their 1,6-Conjugate Addition to <i>p</i> -Quinone Methides. Journal of Organic Chemistry, 2021, 86, 17774-17781.	3.2	14
529	Functional Group Tolerance of a Micellar on-DNA Suzuki–Miyaura Cross-Coupling Reaction for DNA-Encoded Library Design. Journal of Organic Chemistry, 2021, 86, 17930-17935.	3.2	12
530	Striding the threshold of an atom era of organic synthesis by single-atom catalysis. CheM, 2022, 8, 119-140.	11.7	71
531	Cobalt-Catalyzed Kumada Coupling Forming Sterically Encumbered C–C Bonds. Organometallics, 2022, 41, 1769-1776.	2.3	9
532	Palladium-catalyzed borylation of aryl bromides and chlorides using phosphatrioxa-adamantane ligands. Tetrahedron Letters, 2022, 88, 153572.	1.4	5
533	Sterically Crowded Tris(2â€(trimethylsilyl)phenyl)phosphine – Is it Still a Ligand?. Chemistry - A European Journal, 2022, 28, .	3.3	5
534	The regioselective Arylation of 1,3â \in Benzodioxoles. Advanced Synthesis and Catalysis, 0, , .	4.3	3
535	Synthesis of palladium supported on mesoporous hydroxyapatite from oyster shells for use as efficient, green, and recyclable catalyst for Heck reactions. Journal of Nanoparticle Research, 2021, 24, 1.	1.9	1
536	Metal-catalyzed biomimetic aerobic oxidation of organic substrates. Advances in Catalysis, 2021, 69, 1-57.	0.2	1
537	Direct ink writing of Pd-Decorated Al2O3 ceramic based catalytic reduction continuous flow reactor. Ceramics International, 2022, 48, 10843-10851.	4.8	9
538	Recent advances in γ-C(sp3)–H bond activation of amides, aliphatic amines, sulfanilamides and amino acids. Coordination Chemistry Reviews, 2022, 455, 214255.	18.8	18
539	Green-monodispersed Pd-nanoparticles for improved mitigation of pathogens and environmental pollutant. Materials Today Communications, 2022, 30, 103106.	1.9	6
540	Prediction of reaction conditions by deep learning techniques. Scientific and Technical Journal of Information Technologies, Mechanics and Optics, 2020, 20, 863-870.	0.2	0
541	Cyanobacteria as Renewable Sources of Bioenergy (Biohydrogen, Bioethanol, and Bio-Oil Production). , 2021, , 431-454.		2
542	Carboxylate-Assisted Palladium-Catalyzed Regio- and Stereoselective Mizoroki–Heck Arylation of β-Cyclohexadienyl Acrylates and Styrenes. Organic Letters, 2021, 23, 9468-9473.	4.6	7
543	Pilot Study to Quantify Palladium Impurities in Lead-like Compounds Following Commonly Used Purification Techniques. ACS Medicinal Chemistry Letters, 2022, 13, 262-270.	2.8	15
544	Pd-Catalyzed cross-coupling synthesis of 4-aryl-3-formylcoumarins. Organic and Biomolecular Chemistry, 2022, 20, 1053-1057.	2.8	1
545	Nickel and Palladium Catalysis: Stronger Demand than Ever. ACS Catalysis, 2022, 12, 1180-1200.	11.2	77

ARTICLE IF CITATIONS NOx reduction in IC engines through after treatment catalytic converter., 2022, , 223-253. 2 546 Graphitic carbon nitride for organic transformation., 2022, , 393-456. 547 One-pot synthesis of a highly disperse coreâ€"shell CuOâ€"alginate nanocomposite and the investigation 548 2.8 3 of its antibacterial and catalytic properties. New Journal of Chemistry, 2021, 46, 199-211. Enzyme-metal nanobiohybrids in chemobiocatalytic cascade processes. , 2022, , 189-210. 549 Heteropolymetallic Architectures as Snapshots of Transmetallation Processes at Different Degrees of 550 3.3 8 Transfer. Chemistry - A European Journal, 2022, 28, . Application of a Ferroceneâ€Based Palladacycle Precatalyst to Enantioselective Arylâ€Aryl Kumada Coupling. European Journal of Inorganic Chemistry, 2022, 2022, . An Imidazoleâ€Rich Pd(II)â€Polymer Preâ€catalyst for the Suzukiâ€Miyaura Coupling: Stability Influenced by 552 3.7 2 Dissolved Oxygen and Reactants Concentration. ChemCatChem, 0, , . Eucalyptol, an All-Purpose Product. Catalysts, 2022, 12, 48. 3.5 Ironâ€Catalyzed Ringâ€Opening/Allylation of Cycloalkyl Hydroperoxides with Allylic Sulfones. Asian 554 2.7 2 Journal of Organic Chemistry, 0, , . Unraveling the Mechanism of Palladium-Catalyzed Base-Free Cross-Coupling of Vinyl Carboxylates: Dual Role of Arylboronic Acids as a Reducing Agent and a Coupling Partner. ACS Catalysis, 2022, 12, 11.2 1809-1817. Enzymatic Bromocyclization of α―and γâ€Allenols by Chloroperoxidase from Curvularia inaequalis. 556 1.9 5 ChemistryOpen, 2022, 11, e202100236. Sustainable protocols for direct Câ€"H bond arylation of (hetero)arenes. Green Chemistry, 2022, 24, 9.0 1809-1894. Recent Advancement in Pd-Decorated Nanostructures for Its Catalytic and Chemiresistive Gas Sensing 558 2.8 7 Applications: A Review. Topics in Catalysis, 0, , 1. Green Synthesis of Chitosan Supported Magnetic Palladium Nanoparticles Using Epiphyllum oxypetalum Leaf Extract (Pd-CsEo/Fe3O4 NPs) as Hybrid Nanocatalyst for Suzuki–Miyaura Coupling of 2.8 Thiophene. Topics in Catalysis, 0, , 1. Mechanistic insight into deep holes from interband transitions in Palladium nanoparticle 560 4.1 5 photocatalysts. IScience, 2022, 25, 103737. Palladium-catalyzed stereospecific C–P coupling toward diverse PN-heterocycles. CheM, 2022, 8, 569-579. Development of anthrazoline photocatalysts for promoting amination and amidation reactions. 562 4.1 7 Chemical Communications, 2022, 58, 3529-3532. Mizorokiâ€"Heck coupling reaction on the surface of sepiolite clay-supported Pd/Cu nanoalloy. 2.1 Synthetic Communications, 2022, 52, 521-534.

#	Article	IF	Citations
564	Iron-catalyzed domino coupling reactions of ï€-systems. Beilstein Journal of Organic Chemistry, 2021, 17, 2848-2893.	2.2	9
565	<i>o</i> -Acetoxylation of oxo-benzoxazines <i>via</i> C–H activation by palladium(<scp>ii</scp>)/aluminium oxide. New Journal of Chemistry, 2022, 46, 5719-5724.	2.8	2
566	Organosulphur and organoselenium compounds as emerging building blocks for catalytic systems for <i>O</i> -arylation of phenols, a C–O coupling reaction. Dalton Transactions, 2022, 51, 8103-8132.	3.3	14
567	2,5-Diisopropenylthiophene by Suzuki–Miyaura cross-coupling reaction and its exploitation in inverse vulcanization: a case study. RSC Advances, 2022, 12, 8924-8935.	3.6	3
568	Total synthesis of monoterpenoid indole alkaloid ($\hat{a} \in$ ")-arbophyllidine. Organic Chemistry Frontiers, 0, , .	4.5	0
569	A review on the synthesis and applications of sustainable copper-based nanomaterials. Green Chemistry, 2022, 24, 3502-3573.	9.0	23
570	Palladium supported on ethylenediaminetetraacetic acid functionalized cellulose: synthesis, characterization, and its application in carbon–carbon cross-coupling reactions. Cellulose, 2022, 29, 2159-2173.	4.9	10
572	Isotope Effects Reveal the Catalytic Mechanism of the Archetypical Suzuki-Miyaura Reaction. ACS Catalysis, 2022, 12, 2959-2966.	11.2	13
573	Merging Late-Stage Diversification with Solid-Phase Peptide Synthesis Enabled by High-Throughput On-Resin Reaction Screening. ACS Catalysis, 2022, 12, 3201-3210.	11.2	4
574	Synthesis of 5â€Alkynyl and 2,5â€Dialkynyl‣â€histidines. ChemistrySelect, 2022, 7, .	1.5	2
575	Iron-catalysed reductive cross-coupling of glycosyl radicals for the stereoselective synthesis of C-glycosides. , 2022, 1, 235-244.		49
576	Traditional and sustainable approaches for the construction of C–C bonds by harnessing C–H arylation. Nature Communications, 2022, 13, 1085.	12.8	42
577	A Practically Unified Electrochemical Strategy for Ni-Catalyzed Decarboxylative Cross-Coupling of Aryl Trimethylammonium Salts. Organic Letters, 2022, 24, 2137-2142.	4.6	19
578	Recent Advances in C(sp ³)–C(sp ³) Cross-Coupling Chemistry: A Dominant Performance of Nickel Catalysts. Organometallics, 2022, 41, 667-679.	2.3	28
579	Water-Soluble Palladium Nanoclusters as Catalysts in Ligand-Free Suzuki–Miyaura Cross-Coupling Reactions. ACS Applied Nano Materials, 2022, 5, 3188-3193.	5.0	3
580	Copper-Free Halodediazoniation of Arenediazonium Tetrafluoroborates in Deep Eutectic Solvents-like Mixtures. Molecules, 2022, 27, 1909.	3.8	9
581	Iridium-catalyzed hydroacylation reactions of C1-substituted oxabenzonorbornadienes with salicylaldehyde: an experimental and computational study. Beilstein Journal of Organic Chemistry, 2022, 18, 251-261.	2.2	2
582	Designing Sites in Heterogeneous Catalysis: Are We Reaching Selectivities Competitive With Those of Homogeneous Catalysts?. Chemical Reviews, 2022, 122, 8594-8757.	47.7	118

#	Article	IF	CITATIONS
583	Enhanced Stability of the Metal–Organic Framework MIL-101(Cr) by Embedding Pd Nanoparticles for Densification through Compression. ACS Applied Nano Materials, 2022, 5, 4196-4203.	5.0	5
584	Enantioselective Nickel-Catalyzed Reductive Aryl/Alkenyl–Cyano Cyclization Coupling to All-Carbon Quaternary Stereocenters. Journal of the American Chemical Society, 2022, 144, 4776-4782.	13.7	23
585	Câ^'l Selective Sonogashira and Heck Coupling Reactions Catalyzed by Aromatic Triangular Triâ€palladium. European Journal of Organic Chemistry, 2022, 2022, .	2.4	5
586	Palladium-Catalyzed Miyaura Borylation of Overly Crowded Aryl Chlorides Enabled by a Complementary Localized/Remote Steric Bulk of Ligand Chassis. ACS Catalysis, 2022, 12, 3507-3515.	11.2	10
587	C–Cl Oxidative Addition and C–C Reductive Elimination Reactions in the Context of the Rhodium-Promoted Direct Arylation. Organometallics, 2022, 41, 716-732.	2.3	4
588	Weak-Coordination in C–H Bond Functionalizations Catalyzed by 3d Metals. ACS Catalysis, 2022, 12, 3452-3506.	11.2	72
589	Transition Metal Nanoparticles atalyzed Organic Reactions within Porous Organic Cages. ChemCatChem, 0, , .	3.7	3
590	Phenazineâ€based supramolecular photosensitizing assemblies: A "smart―selectivity control on catalytic activity of Pd(II) nanoparticles. Aggregate, 2023, 4, .	9.9	4
591	Chemoenzymatic Hunsdiecker-Type Decarboxylative Bromination of Cinnamic Acids. ACS Catalysis, 2022, 12, 4554-4559.	11.2	8
592	Mesoporous Carbon-Supported Pd Nanoparticles in the Metallic State-Catalyzed Acylation of Amides with Aryl Esters via Câ ϵ ⁴ O Activation. ACS Omega, 2022, 7, 12779-12786.	3.5	2
593	Shed-Snakeskin valorisation into highly porous Co-containing nanocomposites for sustainable aqueous C–C bond formation reactions. Journal of Industrial and Engineering Chemistry, 2022, 111, 236-246.	5.8	1
594	Leaching of palladium atoms from small cluster models during Heck reactions – An experimental and theoretical study. Catalysis Communications, 2022, 165, 106441.	3.3	4
595	Synthesis of Unsymmetrical Biheteroarenes <i>via</i> Dehydrogenative and Decarboxylative Coupling: a Decade Update. Chemical Record, 2022, 22, e202100288.	5.8	7
596	DFT study on the mechanisms of αâ€C cross coupling of ï€â€bonds catalyzed by iron complexes. Applied Organometallic Chemistry, 2022, 36, .	3.5	6
597	Palladium Nanoparticles Supported on Cellulosic Paper as Multifunctional Catalyst for Coupling and Hydrogenation Reactions. Chemistry - an Asian Journal, 2022, 17, e202101195.	3.3	8
598	Mechanistic and Electronic Insights into a Working NiAu Single-Atom Alloy Ethanol Dehydrogenation Catalyst. Journal of the American Chemical Society, 2021, 143, 21567-21579.	13.7	28
599	Predesigned Covalent Organic Frameworks as Effective Platforms for Pd(II) Coordination Enabling Cross oupling Reactions under Sustainable Conditions. Advanced Sustainable Systems, 2022, 6, .	5.3	11
600	XPSÂand structural studies of Fe3O4-PTMS-NAS@Cu as a novel magnetic natural asphalt base network and recoverable nanocatalyst for the synthesis of biaryl compounds. Scientific Reports, 2021, 11, 24508.	3.3	31

#	Article	IF	CITATIONS
601	Expedient Ni-catalyzed C–H/C–H cross-dehydrogenative coupling of aryl amides with azoles. Chemical Communications, 2022, 58, 5980-5983.	4.1	3
602	Can perovskites be efficient photocatalysts in organic transformations?. Journal of Materials Chemistry A, 2022, 10, 12317-12333.	10.3	9
603	Discovery of Tenapanor: A First-in-Class Minimally Systemic Inhibitor of Intestinal Na ⁺ /H ⁺ Exchanger Isoform 3. ACS Medicinal Chemistry Letters, 2022, 13, 1043-1051.	2.8	6
604	Magnetically recyclable Schiff-based palladium nanocatalyst [Fe3O4@SiNSB-Pd] and its catalytic applications in Heck reaction. Arabian Journal of Chemistry, 2022, 15, 103914.	4.9	9
605	Exporting Homogeneous Transition Metal Catalysts to Biological Habitats. European Journal of Organic Chemistry, 2022, 2022, .	2.4	17
606	A rare example of the in situ formation of palladium nanoparticles: The emergence of catalytically active palladium nanoparticles from Pd (II) phosphine complexes in the Suzuki–Miyaura coupling reaction. Applied Organometallic Chemistry, 2022, 36, .	3.5	2
607	Fast reversible oxidative addition of demanding aryl chlorides to Pd under real conditions of catalysis in the Mizoroki-Heck reaction: The kinetic proof. Molecular Catalysis, 2022, 524, 112260.	2.0	2
610	The solvent-controlled Rh(<scp>iii</scp>)-catalyzed switchable [4+2] annulation of 2-arylIndoles with iodonium ylides. Chemical Communications, 2022, 58, 6140-6143.	4.1	22
611	Cobalt-catalyzed tandem one-pot synthesis of polysubstituted imidazo[1,5- <i>a</i>]pyridines and imidazo[1,5- <i>a</i>]isoquinolines. Organic and Biomolecular Chemistry, 2022, 20, 4215-4223.	2.8	3
612	Palladium nanoparticles decorated Chitosan-Pectin modified Kaolin: It's catalytic activity for Suzuki-Miyaura coupling reaction, reduction of the 4-nitrophenol, and treatment of lung cancer. Inorganic Chemistry Communication, 2022, 141, 109523.	3.9	28
613	Performance descriptors of nanostructured metal catalysts for acetylene hydrochlorination. Nature Nanotechnology, 2022, 17, 606-612.	31.5	39
614	Pd Nanoparticles Embedded Into MOF‑808: An efficient and reusable catalyst for Sonogashira and Heck cross-coupling reactions. Tetrahedron Letters, 2022, , 153849.	1.4	3
615	Supported Palladium Nanoparticles Catalyzed Intermolecular Carbopalladation of Nitriles and Organoboron Compounds. Frontiers in Chemistry, 2022, 10, .	3.6	0
616	Magnetically separable nickel ferrite supported palladium nanoparticles: Highly reusable catalyst in Sonogashira cross-coupling reaction. Journal of Colloid and Interface Science, 2022, 623, 574-583.	9.4	6
617	DFT studies on the mechanisms of nickel-catalyzed reductive-coupling cyanation of aryl bromide. Journal of Organometallic Chemistry, 2022, 970-971, 122368.	1.8	2
618	Tailoring delicate pore environment of 2D Covalent organic frameworks for selective palladium recovery. Chemical Engineering Journal, 2022, 446, 136823.	12.7	33
619	Construction of chemoenzymatic linear cascades for the synthesis of chiral compounds. European Journal of Organic Chemistry, 0, , .	2.4	14
620	C–C Bond Forming Reactions Enabled by VitaminÂB ₁₂ ─Opportunities and Challenges. ACS Catalysis, 2022, 12, 6517-6531.	11.2	23

#	Article	IF	CITATIONS
621	Bromoâ€Substituted Diazenylâ€pyrazolo[1,5â€ <i>a</i>]pyrimidinâ€2â€amines: Sonogashira Crossâ€Coupling Reaction, Photophysical Properties, Bioâ€interaction and HSA Lightâ€Up Sensor. ChemBioChem, 2022, 23, .	2.6	4
622	A Shuttle Catalysis: Elucidating a True Reaction Mechanism Involved in the Palladium Xantphos-Assisted Transposition of Aroyl Chloride and Aryl Iodide Functional Groups. Journal of Organic Chemistry, 2022, 87, 12547-12557.	3.2	2
623	Synergy between homogeneous and heterogeneous catalysis. Catalysis Science and Technology, 2022, 12, 6623-6649.	4.1	29
624	Mechanism-based ligand design for copper-catalysed enantioconvergent C(sp3)–C(sp) cross-coupling of tertiary electrophiles with alkynes. Nature Chemistry, 2022, 14, 949-957.	13.6	68
625	Surface reconstruction, modification and functionalization of natural diatomites for miniaturization of shaped heterogeneous catalysts. Nano Materials Science, 2023, 5, 293-311.	8.8	7
626	A Recent Progress for the Synthesis ofÂThioester Compounds. European Journal of Organic Chemistry, 0, , .	2.4	4
627	Recent Advances in the Functionalization of Azulene Through Rhâ€; Irâ€; Ruâ€; Auâ€; Feâ€; Niâ€; and Cuâ€cataly Reactions. Applied Organometallic Chemistry, 0, , .	zed 3.5	3
628	Construction and application of base-stable MOFs: a critical review. Chemical Society Reviews, 2022, 51, 6417-6441.	38.1	147
629	Copper supported silica-based nanocatalysts for CuAAC and cross-coupling reactions. Reaction Chemistry and Engineering, 2022, 7, 1891-1920.	3.7	2
630	Hybrid Pd-Nanoparticles within Polymeric Network in Selective Hydrogenation of Alkynols: Influence of Support Porosity. Molecules, 2022, 27, 3842.	3.8	1
631	Investigation of the activity of palladium nanoparticles supported on mesoporous graphitic carbon nitride in Heck and Suzuki cross-coupling reactions. Synthetic Communications, 2022, 52, 1290-1305.	2.1	6
632	Palladium-Catalyzed Organic Reactions Involving Hypervalent Iodine Reagents. Molecules, 2022, 27, 3900.	3.8	10
633	Bimetallic PdRh-Fe3O4 nanoparticle-catalyzed highly selective quinoline hydrogenation using ammonia borane. Applied Catalysis A: General, 2022, 642, 118709.	4.3	8
634	Pd and Ni NPs@Eu-MOF, an economically advantageous nanocatalyst for C(sp2)-C(sp2) cross-coupling reactions. Key role of Ni and of the metal nanoparticles. Polyhedron, 2022, 223, 115950.	2.2	3
635	Sonogashira coupling of the ethynyl monocarborane [CB ₁₁ H ₁₁ -12-Cî€,CH] ^{â^'} . Dalton Transactions, 0, , .	3.3	1
636	Assessing the environmental benefit of palladium-based single-atom heterogeneous catalysts for Sonogashira coupling. Green Chemistry, 2022, 24, 6879-6888.	9.0	10
637	Well-Ordered Surface Metal Atoms Complexation by Deposition of Pd Cyclometallated Compounds on Ag (110). SSRN Electronic Journal, 0, , .	0.4	0
638	Recent Advances Review on Iron Complexes as Catalyst in Oxidation Reactions of Organic Compounds. Asian Journal of Chemistry, 2022, 34, 1921-1938.	0.3	1

C	 Depart
	Report
CII/(I)	KEI OKI

#	Article	IF	CITATIONS
639	Biogenic Synthesis of Magnetic Palladium Nanoparticles Decorated Over Reduced Graphene Oxide Using Piper Betle Petiole Extract (Pd-rGO@Fe3O4 NPs) as Heterogeneous Hybrid Nanocatalyst for Applications in Suzuki-Miyaura Coupling Reactions of Biphenyl Compounds. Topics in Catalysis, 0, , .	2.8	12
640	Selective palladium recovery by a highly porous polyisothiocyanurate. CheM, 2022, 8, 1793-1796.	11.7	4
641	Transitionâ€metal atalyzed Heteroannulation Reactions in Aqueous Medium. Asian Journal of Organic Chemistry, 2022, 11, .	2.7	3
642	Self-assembly of a quadrangular prismatic covalent cage templated by zinc ions: A selective fluorescent sensor for palladium ions. Chinese Chemical Letters, 2023, 34, 107686.	9.0	5
643	Activating Pd nanoparticles via the Mott-Schottky effect in Ni doped CeO2 nanotubes for enhanced catalytic Suzuki reaction. Molecular Catalysis, 2022, 528, 112452.	2.0	3
644	Novel trans iodo(2-(N-alkylsulfamoyl)phenyl)bis(-triphenylphosphine palladium) complexes: Synthesis, mass spectrometry, X-ray structural description, steric map, near infrared analyses and catalytic activities evaluation. Polyhedron, 2022, 224, 116013.	2.2	3
645	Metal–Organic Framework: An Emergent Catalyst in C–N Cross-Coupling Reactions. Coordination Chemistry Reviews, 2022, 469, 214667.	18.8	23
646	Homogeneous Catalysis of The Suzuki–Miyaura Reaction with Aryl Chlorides. Russian Journal of Physical Chemistry B, 2022, 16, 407-410.	1.3	1
647	Light-Promoted Nickel-Catalyzed Aromatic Halogen Exchange. ACS Catalysis, 2022, 12, 11089-11096.	11.2	19
648	Palladiumâ€Based Metal Organic Frameworks as Heterogeneous Catalysts for Câ^'C Couplings. ChemCatChem, 2022, 14, .	3.7	7
649	Robust C-PdNi-CNF Sandwich-Structured Catalyst for Suzuki Reactions and Experimental Study on the Mechanism. ACS Omega, 2022, 7, 29747-29754.	3.5	2
650	Titanium atalyzed Intermolecular Hydroaminoalkylation of Allenes and Methylenecyclopropanes. European Journal of Organic Chemistry, 0, , .	2.4	6
651	Synthesis of 3-aryl- and 3-alkynyl benzofurans in the presence of a supported palladium catalyst. Synthesis, 0, , .	2.3	0
652	An asymmetric sp3–sp3 cross-electrophile coupling using â€~ene'-reductases. Nature, 2022, 610, 302-307.	27.8	61
653	Supramolecular Catalysts for Organic Synthesis: Preparation and Applications of Cyclodextrins and Calixarenes in Câ^'C Cross oupling Reactions. European Journal of Organic Chemistry, 2022, 2022, .	2.4	5
654	Benzimidazole-based Nheterocyclic carbene ruthenium(II) complexes: Synthesis and C H bond activation properties. Journal of Molecular Structure, 2022, 1270, 133999.	3.6	1
655	Caffeine and theophylline as sustainable, biosourced NHC ligand precursors for efficient palladium-catalyzed Suzuki–Miyaura cross-coupling reactions. Journal of Organometallic Chemistry, 2022, 978, 122489.	1.8	8
656	Intraligand Charge Transfer Enables Visibleâ€Lightâ€Mediated Nickelâ€Catalyzed Crossâ€Coupling Reactions**. Angewandte Chemie - International Edition, 2022, 61, .	13.8	19

#	Article	IF	CITATIONS
657	One-Pot Synthesis of Pyreno[2,1-b]furan Molecules with Two-Photon Absorption Properties. Journal of Organic Chemistry, 2022, 87, 12741-12748.	3.2	6
658	Synthesis of nanocatalyst Pd immobilized on ZPD as efficient and reusable for Sonogashira cross-coupling reaction. Journal of Organometallic Chemistry, 2022, 980-981, 122497.	1.8	3
659	Well-ordered surface metal atoms complexation by deposition of Pd cyclometallated compounds on Ag (1 1 0). Applied Surface Science, 2022, 606, 154960.	6.1	1
660	Preparation of a pyridyl covalent organic framework via Heck cross-coupling for solid-phase microextraction of perfluoropolyether carboxylic acids in food. Food Chemistry, 2023, 403, 134310.	8.2	8
661	Mechanistic study of the bismuth mediated fluorination of arylboronic esters and further rational design. RSC Advances, 2022, 12, 24208-24216.	3.6	2
662	Ullmann homocoupling of arenediazonium salts in a deep eutectic solvent. Synthetic and mechanistic aspects. RSC Advances, 2022, 12, 26640-26647.	3.6	6
663	Catalyst-controlled regioselective Sonogashira coupling of 9-substituted-6-chloro-2,8-diiodopurines. Organic Chemistry Frontiers, 2022, 9, 5536-5543.	4.5	1
664	CHAPTER 4. Difluoromethyl 2-Pyridyl Sulfone: A Versatile Reagent for the Synthesis of Organofluorine Compounds. , 2022, , 113-145.		0
665	Switchable construction of oxa-heterocycles with diverse ring sizes <i>via</i> chemoselective cyclization controlled by dibrominated compounds. Organic Chemistry Frontiers, 2022, 9, 6187-6193.	4.5	4
666	Synthesis of ultrasmall metal nanoparticles and continuous shells at the liquid/liquid interface in Ouzo emulsions. Nanoscale, 2022, 14, 13514-13519.	5.6	3
667	Modulation of the photocatalytic activity and crystallinity of F-TiO ₂ nanoparticles by using green natural carboxylic acids. CrystEngComm, 2022, 24, 6454-6467.	2.6	2
668	Pd12ag1 Nanoalloy on Dendritic Cnfs Catalyst for Boosting Formic Acid Oxidation. SSRN Electronic Journal, 0, , .	0.4	0
669	3D printed tetrakis(triphenylphosphine)palladium (0) impregnated stirrer devices for Suzuki–Miyaura cross-coupling reactions. Reaction Chemistry and Engineering, 2023, 8, 752-757.	3.7	5
670	Intraligand Charge Transfer Enables Visibleâ€Lightâ€Mediated Nickel atalyzed Cross oupling Reactions**. Angewandte Chemie, 2022, 134, .	2.0	5
671	Recent Advances in Room-Temperature Direct C–H Arylation Methodologies. Synthesis, 2023, 55, 1-26.	2.3	7
672	Catalyst-Tuned Electrophilic Chlorination of Diverse Aromatic Compounds with Sulfuryl Chloride and Regioselective Chlorination of Phenols with Organocatalysts. Journal of Organic Chemistry, 2022, 87, 12558-12573.	3.2	2
673	Molecular Organosulphur, Organoselenium and Organotellurium Complexes as Homogeneous Transition Metal Catalytic Systems for Suzuki Coupling. ChemistrySelect, 2022, 7, .	1.5	6
674	Capping Arene Ligated Rhodium-Catalyzed Olefin Hydrogenation: A Model Study of the Ligand Influence on a Catalytic Process That Incorporates Oxidative Addition and Reductive Elimination. Organometallics, 2022, 41, 3373-3386.	2.3	0

#	Article	IF	CITATIONS
675	Pd12Ag1 nanoalloy on dendritic CNFs catalyst for boosting formic acid oxidation. Applied Surface Science, 2023, 608, 155131.	6.1	11
676	The Role of Nanocrystal Facets in Sustainable Organic Synthesis. ChemNanoMat, 2022, 8, .	2.8	1
677	Postâ€Modification of Amino Acids and Peptides for the Rapid Synthesis of <i>C</i> â€Clycoamino Acids and <i>C</i> â€Clycopeptides. European Journal of Organic Chemistry, 2022, 2022, .	2.4	4
680	Boronic Ester Enabled [2 + 2]-Cycloadditions by Temporary Coordination: Synthesis of Artochamin J and Piperarborenine B. Journal of the American Chemical Society, 2022, 144, 18790-18796.	13.7	11
683	Organosulphur, organoselenium and organotellurium compounds for the development of heterogeneous and nanocatalytic systems for Suzuki coupling. Dalton Transactions, 0, , .	3.3	4
684	Transition metal-catalysed directed C–H functionalization with nucleophiles. , 2022, 1, 841-853.		9
685	Tm ³⁺ Ion Blue Emission Quenching by Pd ²⁺ Ions in Barium Phosphate Glasses: Fundamental Analysis toward Sensing Applications. Journal of Physical Chemistry B, 2022, 126, 8579-8587.	2.6	8
686	Asymmetric Photochemical [2 + 2]-Cycloaddition of Acyclic Vinylpyridines through Ternary Complex Formation and an Uncontrolled Sensitization Mechanism. Journal of the American Chemical Society, 2022, 144, 20109-20117.	13.7	8
687	A Novel Utilization of Water Extract of Suaeda Salsa in the Pd/C Catalyzed Suzuki–Miyaura Coupling Reaction. Molecules, 2022, 27, 6623.	3.8	1
688	2,3â€Ðiodocarbazoles by a Domino Iodocyclization/Iodoâ€Translocation of (3â€Iodoindolyl)butynols. Advanced Synthesis and Catalysis, 0, , .	4.3	1
689	N,S-heterocyclic carbene containing benzothiazol-2-ylidene-Ru(II) and Pd(II) new complexes functionalized with butyl linked carbazole moiety: Synthesis, characterization and their catalytic efficiency and electropolymerizations. European Polymer Journal, 2022, 181, 111630.	5.4	3
690	Recent advances in transition metal-catalyzed reactions of chloroquinoxalines: Applications in bioorganic chemistry. Bioorganic Chemistry, 2022, 129, 106195.	4.1	2
691	Theoretical Insight into the Multiple Roles of LiHMDS in Pd-Catalyzed Borylation of Fluorobenzene. Journal of Organic Chemistry, 2022, 87, 16039-16046.	3.2	2
692	Asymmetric total synthesis of (+)-tubingensin A. Organic Chemistry Frontiers, 2022, 10, 189-192.	4.5	4
693	Synthesis methods and applications of palladium nanoparticles: A review. Frontiers in Nanotechnology, 0, 4, .	4.8	14
694	lodonium ylides: an emerging and alternative carbene precursor for C–H functionalizations. Organic and Biomolecular Chemistry, 2022, 21, 24-38.	2.8	11
695	Multi-active sites in situ formed on Schiff-base Pd(II)/Cu(II) self-assembly monolayer supported on graphene oxide: A simple protocol to enhance the catalytic activity. Molecular Catalysis, 2023, 535, 112846.	2.0	3
696	The role of acetonitrile in the direct synthesis of hydrogen peroxide over palladium supported by ion-exchange resins. Catalysis Communications, 2023, 174, 106585.	3.3	1

	CITATION R	EPORT	
#	Article	IF	CITATIONS
697	What is a cross-coupling? An argument for a universal definition. Tetrahedron, 2023, 130, 133176.	1.9	2
698	Temperature-induced formation of Pd nanoparticles in heterogeneous nanobiohybrids: application in C–H activation catalysis. Nanoscale Advances, 2023, 5, 513-521.	4.6	2
699	Pd-functionalized polydopamine-coated polyurethane foam: a readily prepared and highly reusable structured catalyst for selective alkyne semi-hydrogenation and Suzuki coupling under air. Green Chemistry, 2023, 25, 264-279.	9.0	10
700	Sustainable and practical formation of carbon–carbon and carbon–heteroatom bonds employing organo-alkali metal reagents. Chemical Science, 2023, 14, 1342-1362.	7.4	7
701	Fabrication and catalytic performance of a new diaminopyridine Pd(II) monolayer supported on graphene oxide for catalyzing Suzuki coupling reaction. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2023, 659, 130758.	4.7	3
702	Highly Efficient Fabrication of Kilogram-Scale Palladium Single-Atom Catalysts for the Suzuki–Miyaura Cross-Coupling Reaction. ACS Applied Materials & Interfaces, 2022, 14, 53755-53760.	8.0	5
703	Palladium-Anchored N-Heterocyclic Carbenes in a Porous Organic Polymer: A Heterogeneous Composite Catalyst for Eco-Friendly C–C Coupling. Journal of Organic Chemistry, 2022, 87, 16655-16664.	3.2	10
704	Recent progress in copper-free Sonogashira-Hagihara cross-couplings in water. Chem Catalysis, 2023, 3, 100485 Insights into the surface catalysis of CeO <mml:math< td=""><td>6.1</td><td>8</td></mml:math<>	6.1	8
705	xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si84.svg" display="inline" id="d1e394"> <mml:msub><mml:mrow /><mml:mrow><mml:mn>2</mml:mn><mml:mo>â^'</mml:mo><mml:mi>δ</mml:mi></mml:mrow>supported Pd<mml:math <="" altimg="si83.svg" td="" xmlns:mml="http://www.w3.org/1998/Math/MathML"><td>ɔ><¢anml:n</td><td>natlo></td></mml:math></mml:mrow </mml:msub>	ɔ>< ¢ anml:n	nat lo >
706	display="inline" id="d1e406"> <mml:msub><mml:mrow /, mml:mrow ><mml:mi> Divergent Functionalization of Styrenes via Radical/Polar Crossover with CO₂ and Sodium Sulfinates. Chemistry - A European Journal, 2023, 29, .</mml:mi></mml:mrow </mml:msub>	3.3	5
707	Construction of a MOF‣upported Palladium Catalyst via Metal Metathesis. Chemistry - an Asian Journal, 0, , .	3.3	1
708	1,3â€Diynes: A Versatile Precursor in Transitionâ€Metal Catalyzed (Mediated) Câ^'H Functionalizations. Chemical Record, 2023, 23, .	5.8	4
709	Anthrazoline Photocatalyst for Promoting Esterification and Etherification Reactions via Photoredox/Nickel Dual Catalysis. Chinese Journal of Chemistry, 2023, 41, 411-416.	4.9	1
710	Recent Developments in Enantioselective Domino Reactions. Part A: Noble Metal Catalysts. Advanced Synthesis and Catalysis, 2023, 365, 620-681.	4.3	11
711	A convenient protocol for a zinc-catalysed synthesis of electron-poor indoles. Tetrahedron Letters, 2023, , 154340.	1.4	0
712	In Tandem Enantioselective Intramolecular Heckâ€Matsuda Reactions directly from Anilines. Advanced Synthesis and Catalysis, 2023, 365, 211-223.	4.3	5
713	Novel hybrid phosphinite-theophylline ligands and their Pd(II) complexes. Synthesis, characterization and catalytic evaluation in Suzuki-Miyaura couplings. Inorganica Chimica Acta, 2023, 548, 121365.	2.4	0
714	Palladium-Catalyzed C-N Coupling in the Synthesis of 1,4-Benzodiazepines Fused with 5-Membered Carbo- and Heterocycles. Current Organic Chemistry, 2023, 26, 1827-1847.	1.6	2

#	Article	IF	CITATIONS
715	<i>N</i> -Pyridylimidates as Traceless Acyl Equivalents for Directed C–O Bond Functionalization. Organic Letters, 2023, 25, 146-151.	4.6	4
716	Mechanically Robust Hybrid Gel Beads Loaded with "Naked―Palladium Nanoparticles as Efficient, Reusable, and Sustainable Catalysts for the Suzuki–Miyaura Reaction. ACS Sustainable Chemistry and Engineering, 2023, 11, 1678-1689.	6.7	11
717	Imidazolium organometallic complex of palladium on Fe ₃ O ₄ nanoparticles as selective and magnetically recoverable nanocatalyst for C cross oupling reactions. Applied Organometallic Chemistry, 2023, 37, .	3.5	1
718	Steric and electronic effects of arsa-Buchwald ligands on Suzuki–Miyaura coupling reaction. Dalton Transactions, 2023, 52, 2838-2844.	3.3	2
719	Photocatalytic Late-Stage C–H Functionalization. Chemical Reviews, 2023, 123, 4237-4352.	47.7	112
720	Pd(<scp>ii</scp>)-catalyzed coupling of C–H bonds of carboxamides with iodoazobenzenes toward modified azobenzenes. Organic and Biomolecular Chemistry, 2023, 21, 1793-1813.	2.8	2
721	Improving the sustainability of the ruthenium-catalysed <i>N</i> -directed C–H arylation of arenes with aryl halides. Green Chemistry, 2023, 25, 2394-2400.	9.0	5
722	Domino Sequences Involving Stereoselective Hydrazone-Type Heck Reaction and Denitrogenative [1,5]-Sigmatropic Rearrangement. Journal of the American Chemical Society, 2023, 145, 7621-7627.	13.7	8
723	Visible light induced palladium-catalyzed reactions involving halogenated hydrocarbon (RX). Molecular Catalysis, 2023, 541, 113073.	2.0	1
724	Sustainable utilization of palladium from industrial catalytic waste by a smart magnetic nano stirring robot. Separation and Purification Technology, 2023, 315, 123536.	7.9	6
725	Magnetic nanoparticles embedded hexagonal boron nitride tethered N-heterocyclic carbene-palladium(II): An efficient and reusable magnetic catalyst for fluoride-free Hiyama cross-coupling and 4-nitrophenol reduction reactions. Journal of Physics and Chemistry of Solids, 2023, 177, 111283.	4.0	6
726	Molecular Amplification as an Affordable Strategy for Trace‣evel Detection of Ionic Analytes with Fluorimetric or Colorimetric Readout. ChemPhotoChem, 2023, 7, .	3.0	3
727	Pd nanometal inclusion in phosphate glass via PdO and Si: Impact on Sm3+ photoluminescence. Physics Letters, Section A: General, Atomic and Solid State Physics, 2023, 462, 128666.	2.1	2
728	Heck Reactions. , 2022, , 74-89.		0
729	Suzuki Reactions. , 2022, , 155-173.		0
730	Recent advances in the chemistry of aryltriazene. Organic and Biomolecular Chemistry, 2023, 21, 2059-2068.	2.8	7
731	Synthesis of Arynes via Formal Dehydrogenation of Arenes. Journal of the American Chemical Society, 2023, 145, 3306-3311.	13.7	14
732	Microwave-assisted copper catalyzed decarboxylative reductive coupling of <i>para</i> -quinone methides with 3-indoleacetic acids: rapid access to polycyclic spiroindolequinone derivatives. Organic Chemistry Frontiers, 2023, 10, 1512-1520.	4.5	3

#	Article	IF	CITATIONS
733	Masuda Borylation–Suzuki Coupling (MBSC) Sequence: A One-Pot Process to Access Complex (hetero)Biaryls. Catalysts, 2023, 13, 350.	3.5	4
734	Recent Advances in the Synthesis of 3,n-Fused Tricyclic Indole Skeletons via Palladium-Catalyzed Domino Reactions. Molecules, 2023, 28, 1647.	3.8	2
735	Recent trends and developments in the asymmetric synthesis of profens. Green Synthesis and Catalysis, 2023, 4, 89-103.	6.8	4
736	Electrochemical Cross-Coupling Reactions between Arylboronic Esters and Aryllithiums Using NaBr as a Halogen Mediator. Synthesis, 0, , .	2.3	1
737	Synthesis of novel phenothiazine, phenoxazine and carbazole derivatives via Suzuki-Miyaura reaction. Journal of Organometallic Chemistry, 2023, 989, 122648.	1.8	0
738	Deaminative bromination, chlorination, and iodination of primary amines. IScience, 2023, 26, 106255.	4.1	2
739	Stabilization of Palladium-Nanoparticle-Decorated Postsynthesis-Modified Zr-UiO-66 MOF as a Reusable Heterogeneous Catalyst in C–C Coupling Reaction. ACS Omega, 2023, 8, 8505-8518.	3.5	7
740	Synthesis of mono-, di- and tripalladated 1,3,5-benzenetristyryl complexes. CO insertion to give a dipalladated indenone. Dalton Transactions, 2023, 52, 3786-3794.	3.3	0
741	Urethane functions can reduce metal salts under hydrothermal conditions: synthesis of noble metal nanoparticles on flexible sponges applied in semi-automated organic reduction. Journal of Materials Chemistry A, 0, , .	10.3	1
742	Aryl-, Akynyl-, and Alkenylbenziodoxoles: Synthesis and Synthetic Applications. Molecules, 2023, 28, 2136.	3.8	6
743	C–C Bond Formation Reaction Catalyzed by a Lithium Atom: Benzene-to-Biphenyl Coupling. ACS Omega, 2023, 8, 10600-10606.	3.5	2
744	Closing the Cycle as It Begins: Synthesis of <i>ortho</i> â€lodobiaryls via Catellani Reaction. Angewandte Chemie, 2023, 135, .	2.0	0
745	Closing the Cycle as It Begins: Synthesis of <i>ortho</i> â€iodobiaryls via Catellani Reaction. Angewandte Chemie - International Edition, 2023, 62, .	13.8	3
746	Designing versatile nanocatalysts based on PdNPs decorated on metal oxides for selective hydrogenolysis of biomass derived γ-valerolactone and reduction of nitro aromatics. Catalysis Communications, 2023, 177, 106637.	3.3	0
748	Palladium oxide nanofibers: an efficient catalyst for cross-coupling of challenging aromatic nitriles. Chemical Papers, 0, , .	2.2	0
749	A color-tunable single-benzene fluorophore-based sensor for sensitive detection of palladium in solution and living cells. Analyst, The, 2023, 148, 2058-2063.	3.5	4
750	Water-Soluble Copper(I) Hydroxide Catalyst and Its Formation in Ligand-Free Suzuki–Miyaura Cross-Coupling Reactions. Journal of Physical Chemistry C, 2023, 127, 5791-5799.	3.1	0
751	Kinetic Aspects of Suzuki Cross-Coupling Using Ligandless Pd Nanoparticles Embedded in Aromatic Polymeric Matrix. Processes, 2023, 11, 878.	2.8	1

#	Article	IF	CITATIONS
752	Atomically Dispersed Pd Sites on ZrO2 Hybridized N-Doped Carbon for Efficient Suzuki–Miyaura Reaction. Catalysts, 2023, 13, 651.	3.5	0
753	Active Pd intermediates of the Suzuki-Miyaura reaction with low reactive aryl chlorides under "ligand-free―conditions. Molecular Catalysis, 2023, 541, 113101.	2.0	3
754	Synthesis of Chiral Heterocycles from Asymmetric Cascade Palladium Catalysis. Current Organic Chemistry, 2023, 27, .	1.6	0
756	Metadynamics simulations of R–NHC reductive elimination in intermediate palladium complexes of cross-coupling and Mizoroki–Heck reactions. Mendeleev Communications, 2023, 33, 153-156.	1.6	1
757	Advanced heterogeneous Pd catalysts for the Suzuki–Miyaura reaction with aryl bromides. Mendeleev Communications, 2023, 33, 177-179.	1.6	0
758	Transannular Functionalization of Multiple C(sp ³)–H Bonds of Tropane via an Alkene-Bridged Palladium(I) Dimer. Organometallics, 0, , .	2.3	0
759	New Developments of Chiral Palladiumâ€Aqua Complexes as Cooperative BrÃ,nsted Acidâ€Base Catalysts in Organic Synthesis. ChemCatChem, 0, , .	3.7	1
760	Biological and Catalytic Applications of Pd(II)â€Indenyl Complexes Bearing Phosphine and <i>N</i> â€Heterocyclic Carbene Ligands. European Journal of Inorganic Chemistry, 2023, 26, .	2.0	2
761	A highly efficient and selective fluorescent probe for Pd (II) based on benzotriazole-coumarin derivative and its catalytic application in Sonogashira reaction. Journal of Industrial and Engineering Chemistry, 2023, , .	5.8	0
762	K ₂ CO ₃ /18-Crown-6-Catalyzed Selective H/D Exchange of Heteroarenes with Bromide as a Removable Directing Group. Organic Letters, 2023, 25, 3055-3059.	4.6	1
763	Research Progress of Functional Polyacrylonitrile Fiber in Promoting Organic Reaction. Chinese Journal of Organic Chemistry, 2023, 43, 1241.	1.3	0
764	Pd-catalysed hydrodehalogenation of aryl chlorides: a mild method for deuteration and detoxification. Catalysis Science and Technology, 2023, 13, 3545-3550.	4.1	1
765	Bimetallic Pd/Cuâ€Catalyzed Sonogashira Couplingâ€Elimination Reaction: An Efficient Synthesis of 2â€Unsubstituted Terminal 1, 3â€Enynes. Asian Journal of Organic Chemistry, 0, , .	2.7	0
766	Regioselective Formal βâ€Allylation of Carbonyl Compounds Enabled by Cooperative Nickel and Photoredox Catalysis. Angewandte Chemie - International Edition, 2023, 62, .	13.8	7
767	Pd(<scp>ii</scp>), Ni(<scp>ii</scp>), and Cu(<scp>ii</scp>) complexes of α,α′-ditolylmethanone dipyrroethene. Dalton Transactions, 2023, 52, 6882-6889.	3.3	0
768	Continuousâ€Flow Suzukiâ€Miyaura Coupling in Water and Organic Solvents Promoted by Blends of Stabilized Convoluted Polymeric Palladium Catalysts and Polymeric Auxiliary Materials. Chemistry - A European Journal, 2023, 29, .	3.3	1
769	Effect of electron transfer in Pd on nitrogen-doped carbon nanotube catalysts in the Heck reaction. Chemical Physics Letters, 2023, 824, 140542.	2.6	2
771	Palladium-catalyzed micellar cross-couplings: An outlook. Coordination Chemistry Reviews, 2023, 488, 215158.	18.8	12

#	Article	IF	CITATIONS
772	Regioselective Formal βâ€Allylation of Carbonyl Compounds Enabled by Cooperative Nickel and Photoredox Catalysis. Angewandte Chemie, 2023, 135, .	2.0	0
773	Abnormal NHC Palladium(II) Complex Containing CNN Pincer Skeleton and Its Application to Suzukiâ€Miyaura Coupling of Aryl Chlorides in Water. Asian Journal of Organic Chemistry, 2023, 12, .	2.7	0
774	X-Ray Absorption Spectroscopy (XAS) Combined with Other Spectroscopic Techniques. Springer Handbooks, 2023, , 739-753.	0.6	0
775	Heterostructured PHIâ€PTI/Li ⁺ Cl ^{â^'} Carbon Nitrides for Multiple Photocatalytic Applications. Solar Rrl, 0, , .	5.8	2
776	Ni-Catalyzed Electro-Reductive Cross-Electrophile Couplings of Alkyl Amine-Derived Radical Precursors with Aryl Iodides. Journal of Organic Chemistry, 0, , .	3.2	2
778	A palladium nanoparticle implanted polymer membrane for reusable dip-catalysis of diverse C–C and C–heteroatom (O/S/N) coupling reactions. New Journal of Chemistry, 0, , .	2.8	0
779	New Function of Metal–Organic Framework: Structurally Ordered Metal Promoter. Advanced Materials, 2023, 35, .	21.0	3
780	A highly sensitive and selective fluorescent probe for rapid detection and intracellular imaging of Pd(II). Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2023, 302, 122967.	3.9	2
781	A palladium(0)–threonine complex immobilized on the surface of magnetic mesocellular foam: an efficient, stable, and magnetically separable nanocatalyst for Suzuki, Stille, and Heck cross-coupling reactions. RSC Advances, 2023, 13, 17449-17464.	3.6	2
782	Iron-palladium supported graphene as an efficient bimetallic catalyst for the selective oxidation of benzyl alcohol to benzaldehyde. Journal of Saudi Chemical Society, 2023, 27, 101671.	5.2	1
783	The Features of Action of Supported Pd Catalysts in the Suzuki–Miyaura Reaction. Kinetics and Catalysis, 2023, 64, 32-43.	1.0	1
784	Applications of palladium-catalyzed C–N cross-coupling reactions in pharmaceutical compounds. RSC Advances, 2023, 13, 18715-18733.	3.6	8
785	lodine Anion Catalyzed Cross-Dehydrogenative Aromatization for Access to Aromatic Amines. Journal of Organic Chemistry, 0, , .	3.2	1
786	An Unusual Microdomain Factor Controls Interaction of Organic Halides with the Palladium Phase and Influences Catalytic Activity in the Mizorokiâ€Heck Reaction. Small, 2023, 19, .	10.0	2
787	Aggregationâ€enabled alkene insertion into carbon–halogen bonds. Aggregate, 2023, 4, .	9.9	3
788	Probing Intermediates of Ion/Molecule Reactions by their Independent Gasâ€Phase Synthesis and Fragmentation – The Thiomethoxymethyl Complexes [(bipy)M(CH ₂ SCH ₃)] ⁺ (M=Pt, Pd, Ni). Israel Journal of Chemistry, 0,	2.3	0
789	Transition-Metal-Catalyzed C–H Bond Activation for the Formation of C–C Bonds in Complex Molecules. Chemical Reviews, 2023, 123, 7692-7760.	47.7	39
790	(CAAC)Pd(py) Catalysts Disproportionate to Pd(CAAC) ₂ . Organometallics, 2023, 42, 1567-1572.	2.3	1

~			~		
C1	ΤΑΤΙ	ON	NE	DO	DT
\sim				. F O	

#	Article	IF	CITATIONS
791	Naphthalene-Based Polymers as Catalytic Supports for Suzuki Cross-Coupling. Molecules, 2023, 28, 4938.	3.8	0
792	Pd(II) and Rh(I) Catalytic Precursors for Arene Alkenylation: Comparative Evaluation of Reactivity and Mechanism Based on Experimental and Computational Studies. Journal of the American Chemical Society, 2023, 145, 15507-15527.	13.7	3
793	Synthetically Tuned Composition in PdCu Bimetallic Nanoparticles with Effective Catalytic Properties for Nitrobenzene Reduction. Russian Journal of Physical Chemistry A, 2023, 97, 1239-1244.	0.6	0
794	Force-Modulated C–C Reductive Elimination from Nickel Bis(polyfluorophenyl) Complexes. Organometallics, 2023, 42, 1918-1926.	2.3	1
795	Synthesis, characterization, and catalytic evaluation of palladium PEPPSI complexes bearing unsymmetrical NHC ligands in Suzuki–Miyaura reactions. Inorganica Chimica Acta, 2023, 556, 121676.	2.4	3
796	Circulation reactor system for Suzuki-Miyaura coupling reaction with robust palladium-bistheophyllines catalyst in presence of NaCl. Catalysis Communications, 2023, 181, 106727.	3.3	1
797	Recent advances in porous molecular cages for photocatalytic organic conversions. Dalton Transactions, 2023, 52, 15216-15232.	3.3	1
798	Synthesis of Fluorescent C–C Bonded Triazole-Purine Conjugates. Journal of Fluorescence, 0, , .	2.5	1
799	Discrimination between the Homogeneous and Heterogeneous Mechanisms of Catalysis in the Copper- and Ligand-Free Sonogashira Reaction Using Phase Trajectory Analysis. Kinetics and Catalysis, 2023, 64, 431-438.	1.0	0
800	Deterministic Synthesis of Pd Nanocrystals Enclosed by High-Index Facets and Their Enhanced Activity toward Formic Acid Oxidation. , 0, , .		1
801	Synthesis of palladium nanoparticles stabilized on Schiff base-modified ZnO particles as a nanoscale catalyst for the phosphine-free Heck coupling reaction and 4-nitrophenol reduction. Scientific Reports, 2023, 13, .	3.3	2
802	Palladium Nanoparticles Supported on Porous Silica Materials as Heterogeneous Catalysts of Câ^C Coupling and Crossâ€Coupling Reactions. ChemCatChem, 2023, 15, .	3.7	5
803	Palladium-catalyzed coupling of amides and cyclopropanols for the synthesis of Î ³ -diketones. Chemical Communications, 2023, 59, 10392-10395.	4.1	0
804	Pdâ€catalyzed Tandem Pathway for Stereoâ€selective Synthesis of (E)â€1,3â€Enyne from βâ€Nitroalkenes by usi Sacrificial Directing Group. Chemistry - A European Journal, 0, , .	ng a 9.3	0
805	Ultraâ€5elective and Efficient Static/Dynamic Palladium Capture from Highly Acidic Solution with Robust Macrocycleâ€Based Polymers. Advanced Functional Materials, 2023, 33, .	14.9	2
806	Copper-catalyzed propargylic C–H functionalization for allene syntheses. Chemical Science, 2023, 14, 9191-9196.	7.4	2
807	Recent advances in electrocatalytic generation of indole-derived radical cations and their applications in organic synthesis. Chinese Chemical Letters, 2024, 35, 108902.	9.0	2
808	Recent Progress in Pd-Catalyzed Tandem Processes. Catalysts, 2023, 13, 1213.	3.5	2

#	Article	IF	CITATIONS
809	Dioxin-Linked Covalent Organic Framework-Supported Palladium Complex for Rapid Room-Temperature Suzuki–Miyaura Coupling Reaction. Crystals, 2023, 13, 1268.	2.2	1
810	Mono and Dinuclear Palladium Pincer Complexes of NNSe Ligand as a Catalyst for Decarboxylative Direct Câ°'H Heteroarylation of (Hetero)arenes. Chemistry - an Asian Journal, 2023, 18, .	3.3	2
811	Classic <i>vs.</i> C–H functionalization strategies in the synthesis of APIs: a sustainability comparison. Green Chemistry, 2023, 25, 7916-7933.	9.0	2
812	Direct synthesis of haloaromatics from nitroarenes <i>via</i> a sequential one-pot Mo-catalyzed reduction/Sandmeyer reaction. Organic and Biomolecular Chemistry, 2023, 21, 7791-7798.	2.8	0
813	An Overview of αâ€Aminoalkyl Radical Mediated Halogenâ€Atom Transfer. ChemCatChem, 0, , .	3.7	3
814	Transition metal-catalyzed reactivity of carbenes with boronic acid derivatives for arylation (alkylation) and beyond. Organic and Biomolecular Chemistry, 2023, 21, 7062-7078.	2.8	2
815	Geminal-atom catalysis for cross-coupling. Nature, 2023, 622, 754-760.	27.8	32
816	Fabrication of Pd NPs/Mg–Al LDH via a facile one-step hydrothermal method as highly active and stable heterogeneous catalyst for Heck coupling reaction. Journal of Materials Science, 2023, 58, 14299-14314.	3.7	0
817	Adsorption of palladium from chloride aqueous solution using silica alginate nanomaterial. International Journal of Biological Macromolecules, 2023, 253, 126754.	7.5	0
818	Crossâ€Coupling Reactions between Arenediazonium <i>o</i> â€Benzenedisulfonimides and Organolithium Reagents in a Deep Eutectic Solvent. ChemistrySelect, 2023, 8, .	1.5	1
819	Oxidative Cross Dehydrogenative Coupling of <i>N</i> -Heterocycles with Aldehydes through C(<i>sp</i> ³)–H Functionalization. Journal of the American Chemical Society, 2023, 145, 20176-20181.	13.7	2
820	Advances in the Synthesis and Applications of <i>N</i> -Heterocyclic Carbene Metal Complexes with a Focus on the Weak Base Route. Organometallics, 2023, 42, 2692-2730.	2.3	4
821	Experimental and computational study of the catalytic activity of Pd and PdCu nanoparticle catalysts and clusters supported on reduced graphene oxide and graphene acid for the suzuki cross-coupling reaction. Applied Catalysis A: General, 2023, 667, 119448.	4.3	3
822	Heterolytic versus Homolytic: Theoretical Insight into the Ni ⁰ -Catalyzed Ph–F Bond Activation. Organometallics, 2023, 42, 2771-2783.	2.3	0
823	Chemical Modification of Silk Proteins via Palladiumâ€Mediated Suzukiâ^'Miyaura Reactions. Macromolecular Chemistry and Physics, 0, , .	2.2	0
824	Recent developments on the potential biological applications of transition metal complexes of thiosemicarbazone derivatives. Polyhedron, 2023, 245, 116658.	2.2	4
825	Overcoming the Low Reactivity of Aryl Chlorides: Amination via Reusable Polymeric Nickel–Iridium Dual Catalysis under Microwave and Visible Light. ACS Catalysis, 2023, 13, 12665-12672.	11.2	2
826	When transition-metal-catalyzed C–H activation meets allene chemistry. , 2023, 8, 100049.		1

ARTICLE

[IPr# $\hat{a} \in PEPPSI$]: A Well-Defined, Highly Hindered and Broadly Applicable Pd(II) $\hat{a} \in NHC$ (NHC =) Tj ETQq0 0 0 rgBT $\frac{10}{3.8}$ verlock 10 Tf 50 74

828	Well-defined (NHC)PdCl2(azetidine) complexes: Synthesis, characterization and catalytic activities. Journal of Molecular Structure, 2023, 1294, 136463.	3.6	0
829	Schiff base stabilized palladium nanoparticles: Synthesis, characterization, catalytic degradation of organophosphorus pesticides, and fluorometric detection of Cr6+ in aqueous media. Inorganic Chemistry Communication, 2023, 156, 111279.	3.9	0
830	Pd(0) incorporated silica nanocapsules as robust and efficient catalyst for Mizoroki-Heck and sequential Mizoroki-Heck and epoxidation reactions. Inorganic Chemistry Communication, 2023, 156, 111261.	3.9	0
831	C(sp)–C(sp ³) Bond Formation through Ligand- and Additive-Free CuO-Mediated Decarboxylative Direct Cross-Coupling of Coumarin-/Chromone-3-carboxylic Acids and Terminal Alkynes. Organic Letters, 2023, 25, 7095-7099.	4.6	1
832	Recent Progress in the Application of Palladium Nanoparticles: A Review. Catalysts, 2023, 13, 1343.	3.5	1
833	A stereoselective nontraditional Heck reaction mechanism: Origins of enantioselectivity and diastereoselectivity. Journal of Catalysis, 2023, 428, 115158.	6.2	1
834	A Green, Recyclable and Carrier-Free Study for the Coupling Reaction of Alkenes with Aryl Iodides in H ₂ O-Polyethylene Glycol (PEG-200). Chinese Journal of Organic Chemistry, 2023, 43, 3210.	1.3	0
835	Palladium PEPPSI NHC Complexes Bearing 5,6-dimethylbenzimidazol-2-: Effcient Precatalysts for the Direct C5 Arylation of of furan,2-acetylthiophene and N-methylpyrrole-2- carboxaldehyde derivatives. New Journal of Chemistry, 0, , .	2.8	0
836	Orthogonal Dual Photocatalysis of Single Atoms on Carbon Nitrides for One-Pot Relay Organic Transformation. ACS Nano, 2023, 17, 21470-21479.	14.6	1
837	Eco-Friendly Production of Palladium-Modified γ-Cyclodextrin and Its Methyl Cinnamate Inclusion Complex: Catalyst for Reduction and Antibacterial Properties. Materials Today Communications, 2023, , 107367.	1.9	0
838	Pd "Kills Two Birds with One Stone―for the Synthesis of Catalyst: Dual Active Sites of Pd Triggers the Kinetics of O ₂ Electrocatalysis. Small, 2024, 20, .	10.0	1
839	Self-supportive Pd0.2Ni58Fe30O11.8 nanowires for solar-driven self-powered water/seawater splitting with large current density. Chemical Engineering Journal, 2023, 476, 146778.	12.7	0
840	Polyaniline-Supported Tungsten-Catalyzed α-H Alkylation Reaction of Ketone with Alcohol. Organic Letters, 2023, 25, 7928-7932.	4.6	1
841	Tridentate ONO hydrazone Schiff base complexes in organic transformations: Catalytic and mechanistic studies. Inorganica Chimica Acta, 2024, 560, 121835.	2.4	3
842	Plausible PEPPSI catalysts for direct C–H functionalization of five-membered heterocyclic bioactive motifs: synthesis, spectral, X-ray crystallographic characterizations and catalytic activity. RSC Advances, 2023, 13, 31386-31410.	3.6	0
843	Copper-Free Heck–Cassar–Sonogashira and Suzuki–Miyaura Reactions of Aryl Chlorides: A Sustainable Approach. ACS Sustainable Chemistry and Engineering, 2023, 11, 15994-16004.	6.7	1
844	Highly effective photoativation Pd catalyst for Suzuki coupling reaction. Molecular Catalysis, 2023, 551, 113659.	2.0	1

#	Article	IF	CITATIONS
845	Molecular precursor approach to develop catalytically relevant nanosized metals, palladium chalcogenides and ternary/quaternary metal chalcogenides. New Journal of Chemistry, 2023, 47, 20688-20702.	2.8	1
846	Recent advances in synthesis of isocoumarins: An overview. Tetrahedron, 2024, 150, 133740.	1.9	0
847	Computational Determination of the Mechanism of the Palladium-Catalyzed Domino Reaction of <i>ortho</i> -lodostyrene, Oxanorbornadiene, and Phenylboronic Acid. Journal of Organic Chemistry, 2023, 88, 15608-15614.	3.2	0
848	Ï€-Extension of Indoles Using Acrolein Linker: Synthesis of Indolo[3,2- <i>a</i>]carbazole-6-carbaldehydes and Racemosin B. Organic Letters, 2023, 25, 8284-8289.	4.6	1
849	One-pot synthesis of ligand-free highly active Pd catalyst supported on NiFe spinel oxide for Suzuki–Miyaura cross-coupling reaction. Journal of Molecular Structure, 2024, 1299, 137136.	3.6	1
850	Electrochemically Driven Nickel atalyzed Halogenation of Unsaturated Halide and Triflate Derivatives. Angewandte Chemie - International Edition, 0, , .	13.8	0
851	Recent Progress on Phase Engineering of Nanomaterials. Chemical Reviews, 2023, 123, 13489-13692.	47.7	3
852	Pd nanoparticles embedded in nanolignin (Pd@LNP) as a water dispersible catalytic nanoreactor for Cr(VI), 4-nitrophenol reduction and C C coupling reactions. International Journal of Biological Macromolecules, 2024, 254, 127695.	7.5	1
853	Pd-PEPPSI catalysts bearing N-heterocyclic carbene ligands derived from caffeine and theophylline for Mizoroki–Heck and C(sp2)–H arylation reactions. Journal of Organometallic Chemistry, 2024, 1003, 122928.	1.8	0
854	Assembling of Polyaryls (Terphenyls, Tetraphenyls, Pentaphenyls, and Hexaphenyls) through Pd(II)â€catalyzed Câ~H Arylation of Biaryl Carboxamides with Iodobiaryls. Asian Journal of Organic Chemistry, 0, , .	2.7	Ο
855	Electrochemically Driven Nickel atalyzed Halogenation of Unsaturated Halide and Triflate Derivatives. Angewandte Chemie, 0, , .	2.0	0
856	Evidence of Fast Activation of Unreactive Aryl Chlorides in Cross-Coupling Reactions. Russian Journal of General Chemistry, 2023, 93, S19-S30.	0.8	Ο
857	Homogenous nickel-catalyzed chemoselective transfer hydrogenation of functionalized nitroarenes with ammonia–borane. Chemical Communications, 2023, 59, 14709-14712.	4.1	1
859	Geminal-atom catalysts: Advanced single-atom catalysis for cross-coupling reactions. Chem Catalysis, 2023, 3, 100814.	6.1	0
860	Merging Photocatalytic Doublyâ€Decarboxylative C _{sp} ² â~C _{sp} ² Crossâ€Coupling for Stereoâ€Selective (<i>E</i>)â€ <i>α</i> , <i>Î2</i> â€Unsaturated Ketones Synthesis. Chemistry - A European Journal, 0, , .	3.3	0
861	Firstâ€Row Transition Metal atalyzed Single Hydroelementation of Nâ€Heteroarenes. ChemCatChem, 0, , .	3.7	0
862	Palladium Complexes with N,Oâ€bidentate Ligands Based on <scp>Nâ€Oxide</scp> Units from Cyclic Secondary Amines:Synthesis and Catalytic Application in <scp>Mizorokiâ€Heck</scp> Reaction. Chinese Journal of Chemistry, 0, , .	4.9	0
863	Arylâ€Bridged Thienonaphthalimides: Synthesis, Characterization and Optoelectronic Properties. European Journal of Organic Chemistry, 2024, 27, .	2.4	0

#	Article	IF	CITATIONS
864	Distinguishing Between Linear and Nonlinear (Cooperative) Mechanisms of Substrate Activation Under "Ligand- and Copper-Free―Conditions of the Sonogashira Reaction. Kinetics and Catalysis, 2023, 64, 793-803.	1.0	0
865	Time-Resolved 3D Hammett Correlation to Monitor Catalyst Behavior with No Differential Data in Hand. Organometallics, 0, , .	2.3	0
866	Telomerization of butadiene with ethanol mediated by palladium N-heterocyclic carbene catalysts. Journal of Catalysis, 2024, 429, 115216.	6.2	1
867	Pd-catalyzed oxidative functionalization of alkenes, arenes, and 1,3-dienes using molecular oxygen as the terminal oxidant. Synlett, 0, , .	1.8	Ο
868	Comparative Study of Pd-Mediated Carbon–Carbon, Carbon–Heteroatom, and Heteroatom–Heteroatom Bond Formation/Breakage (C ╕C _{sp³} ,) Tj ETQq0 0 0 rgBT	O ₂e rlock	10oTf 50 577
869	Stability of Pd/C Catalysts in Solvents for Organic Synthesis. Doklady Chemistry, 2023, 512, 292-297.	0.9	0
870	One-step Mo-doped praseodymium oxide construction of oxygen vacancies for efficient photothermal co-catalytic Suzuki coupling reaction. Molecular Catalysis, 2024, 553, 113803.	2.0	0
872	Continuous flow coupling reaction of bromopyridine and styrene catalyzed by amidoxime fiber supported-palladium. Tetrahedron, 2023, , 133816.	1.9	0
873	Stability of Zr-Based UiO-66 Metal–Organic Frameworks in Basic Solutions. Nanomaterials, 2024, 14, 110.	4.1	1
874	Platinum group metal (PGM) complexes having acylthiourea ligand system as catalysts or anticancer agents. Coordination Chemistry Reviews, 2024, 503, 215620.	18.8	0
875	The first-row transition metal-catalysed enantioconvergent radical Suzuki–Miyaura C(sp ³)–C coupling of racemic alkyl halides. Green Chemistry, 2024, 26, 2525-2533.	9.0	0
876	Transition-Metal Catalyzed Synthesis of Pyrimidines: Recent Advances, Mechanism, Scope and Future Perspectives. Topics in Current Chemistry, 2024, 382, .	5.8	0
877	Advances in Cross-Coupling Reactions Catalyzed by Aromatic Pincer Complexes Based on Earth-Abundant 3d Metals (Mn, Fe, Co, Ni, Cu). Catalysts, 2024, 14, 69.	3.5	0
878	A Comparative Kinetic and Computational Investigation of the Carbonâ€Sulfur Cross Coupling of Potassium Thioacetate and 2â€Bromo Thiophene Using Palladium/Bisphosphine Complexes. European Journal of Organic Chemistry, 2024, 27, .	2.4	0
879	Bis(2-hydroxy-2,3-dihydro-1 <i>H</i> -inden-1-aminium) tetrachloridopalladate(II) hemihydrate. IUCrData, 2024, 9, .	0.3	0
880	A New and Efficient Electro Organic Method for Synthesis of Methyl Cinnamate Derivatives via Heck Reaction Under Green Conditions. Catalysis Surveys From Asia, 0, , .	2.6	0
881	Aryl sulfonium salt electron donor-acceptor complexes for halogen atom transfer: Isocyanides as tunable coupling partners. CheM, 2024, 10, 1240-1251.	11.7	0
882	Palladium-platinum nanostructures from fenugreek extract for Suzuki coupling reaction. Inorganic Chemistry Communication, 2024, 162, 112177.	3.9	0

#	Article	IF	CITATIONS
883	Light-induced arylation (alkylation) of <i>N</i> -sulfonylhydrazones with boronic acids. Chemical Communications, 2024, 60, 2796-2799.	4.1	0
884	Functionalized Cyclic Polymers and Network Gels. Macromolecules, 2024, 57, 1779-1787.	4.8	0
885	Iron-Catalyzed C(sp ³)–C(sp ³) Coupling to Construct Quaternary Carbon Centers. Journal of the American Chemical Society, 2024, 146, 5051-5055.	13.7	0
886	Nitrogen cuts in during C–C cross-coupling. Science, 2024, 383, 954-954.	12.6	0
887	Regioselective Arylation of Amidoaryne Precursors via Agâ€Mediated Intramolecular Oxyâ€Argentation. Advanced Science, 2024, 11, .	11.2	0
888	Red Light–Blue Light Chromoselective C(sp ²)–X Bond Activation by Organic Helicenium-Based Photocatalysis. Journal of the American Chemical Society, 2024, 146, 7922-7930.	13.7	0
889	Optimal exploitation of supported heterogenized Pd nanoparticles for C-C cross-coupling reactions. Coordination Chemistry Reviews, 2024, 507, 215763.	18.8	0
890	Palladium nanoparticles (Pd NPs) immobilized over polydopamine-functionalized Zn-Al mixed metal oxide as a novel nanocatalyst for synthesis of C-C bond via Suzuki-Miyaura coupling reactions. Inorganic Chemistry Communication, 2024, 163, 112308.	3.9	0
891	Mechanistic Investigation into Single-Electron Oxidative Addition of Single-Atom Cu(I)-N ₄ Site: Revealing the Cu(I)–Cu(II)–Cu(I) Catalytic Cycle in Photochemical Hydrophosphinylation. Journal of the American Chemical Society, 2024, 146, 8668-8676.	13.7	0
892	Base-mediated Transition-metal Free Regiospecific Substitution with Nitroarenes: Vicarious Nucleophilic Substitution of Hydrogen in Nitroarenes. Reviews and Advances in Chemistry, 2023, 13, 416-430.	0.5	0