Camelina Seed Yield and Fatty Acids as Influenced by G

Agronomy Journal 109, 947-956 DOI: 10.2134/agronj2016.05.0256

Citation Report

#	Article	IF	CITATIONS
1	Camelina sativa as a fallow replacement crop in wheat-based crop production systems in the US Great Plains. Industrial Crops and Products, 2018, 111, 22-29.	2.5	34
2	Winter camelina seed yield and quality responses to harvest time. Industrial Crops and Products, 2018, 124, 765-775.	2.5	32
3	Analysis of yield and genetic similarity of Polish and Ukrainian Camelina sativa genotypes. Industrial Crops and Products, 2018, 123, 667-675.	2.5	28
4	Winter Camelina: Crop Growth, Seed Yield, and Quality Response to Cultivar and Seeding Rate. Crop Science, 2018, 58, 2089-2098.	0.8	42
5	Sowing date and sowing method influence on camelina cultivars grain yield, oil concentration, and biodiesel production. Food and Energy Security, 2019, 8, e00166.	2.0	15
6	Seed yield and oil quality as affected by Camelina cultivar and planting date. Journal of Crop Improvement, 2019, 33, 202-222.	0.9	21
7	Shifting sowing of camelina from spring to autumn enhances the oil quality for bio-based applications in response to temperature and seed carbon stock. Industrial Crops and Products, 2019, 137, 66-73.	2.5	48
8	Simulating oilseed fatty acid composition through a stochastic modelling approach. Industrial Crops and Products, 2020, 150, 112381.	2.5	4
9	Spring Camelina sativa – Perspective cultivation as biofuel feedstock in Slovakia. Industrial Crops and Products, 2020, 154, 112634.	2.5	9
10	The Characterization of 10 Spring Camelina Genotypes Grown in Environmental Conditions in North-Eastern Poland. Agronomy, 2020, 10, 64.	1.3	18
11	Camelina production parameters response to different irrigation regimes. Industrial Crops and Products, 2020, 148, 112286.	2.5	15
12	Five-Year Field Trial of Eight Camelina sativa Cultivars for Biomass to be Used in Biofuel under Irrigated Conditions in a Semi-Arid Climate. Agronomy, 2020, 10, 562.	1.3	14
13	Winter camelina root characteristics and yield performance under contrasting environmental conditions. Field Crops Research, 2020, 252, 107794.	2.3	22
14	Characterization of physiological responses and fatty acid compositions of Camelina sativa genotypes under water deficit stress and symbiosis with Micrococcus yunnanensis. Symbiosis, 2021, 83, 79-90.	1.2	14
15	Diagnosis of camelina seed yield and quality across an on-farm experimental network. European Journal of Agronomy, 2021, 122, 126190.	1.9	16
16	Foliar Applied Thiourea Improved Physiological Traits and Yield of Camelina and Canola Under Normal and Heat Stress Conditions. Journal of Soil Science and Plant Nutrition, 2021, 21, 1666-1678.	1.7	19
17	Nitrogen and sulfur application effects on camelina seed yield, fatty acid composition, and nutrient removal. Canadian Journal of Plant Science, 2021, 101, 353-365.	0.3	2
18	Agroclimatic effects over physicochemical characteristics of Moringa seed oil for biodiesel production in two subtropical sites. Agronomy Journal, 0, , .	0.9	0

#	Article	IF	CITATIONS
19	Winter camelina seed quality in different growing environments across Northern America and Europe. Industrial Crops and Products, 2021, 169, 113639.	2.5	19
20	Camelina seed yield and quality in different growing environments in northern China. Industrial Crops and Products, 2021, 172, 114071.	2.5	14
21	Water-deficit stress and genotype variation induced alteration in seed characteristics of Camelina sativa. Rhizosphere, 2021, 20, 100427.	1.4	7
22	Agricultural, Economic and Societal Importance of Brassicaceae Plants. , 2020, , 45-128.		7
23	Effects of climate on fatty acid profile in Camelina sativa. Cellular and Molecular Biology, 2018, 64, 91.	0.3	19
24	Realizing the Potential of Camelina sativa as a Bioenergy Crop for a Changing Global Climate. Plants, 2022, 11, 772.	1.6	24
25	Camelina germination under osmotic stress â^' Trend lines, time-courses and critical points. Industrial Crops and Products, 2022, 181, 114761.	2.5	2
26	Maturity selection but not sowing date enhances soybean productivity and land use in a winter camelina–soybean relay system. Food and Energy Security, 2022, 11, .	2.0	9
27	Use of Camelina sativa and By-Products in Diets for Dairy Cows: A Review. Animals, 2022, 12, 1082.	1.0	11
28	Agronomic evaluation of a Chinese camelina [Camelina sativa (L.) Crantz] cultivar in multiple semi-arid locations of northern China. Italian Journal of Agronomy, 2022, 17, .	0.4	1
29	Evaluation of Ukrainian Camelina sativa germplasm productivity and analysis of its amenability for efficient biodiesel production. Industrial Crops and Products, 2022, 187, 115477.	2.5	9
30	Camelina sativa. Status quo and future perspectives. Industrial Crops and Products, 2022, 187, 115531.	2.5	11
31	Changing Climate Scenario: Perspectives of Camelina sativa as Low-Input Biofuel and Oilseed Crop. , 2022, , 197-236.		0
32	Correlation and sequential path analysis of oil yield and related characteristics in camelina under seasonal variations. OCL - Oilseeds and Fats, Crops and Lipids, 2023, 30, 2.	0.6	0
33	Genetic Improvement of Camelina sativa (L.) Crantz: Opportunities and Challenges. Plants, 2023, 12, 570.	1.6	8
34	Seed and Straw Characterization of Nine New Varieties of Camelina sativa (L.) Crantz. Land, 2023, 12, 328.	1.2	1
35	Effect of the dietary inclusion of Camelina sativa cake into quail diet on live performance, carcass traits, and meat quality. Poultry Science, 2023, 102, 102650.	1.5	6
36	Exogenous Application of Thiourea Improves the Growth, Seed Yield, and Seed Fatty Acid Profile in Late Sown Camelina. Journal of Soil Science and Plant Nutrition, 2023, 23, 1306-1325.	1.7	7

CITATION REPORT

#	Article	IF	CITATIONS
37	Influence of Organic Fertilization and Soil Tillage on the Yield and Quality of Cold-Pressed Camelina [Camelina sativa (L.) Crantz] Seed Cake: An Alternative Feed Ingredient. Applied Sciences (Switzerland), 2023, 13, 3759.	1.3	1