The impact of star formation feedback on the circumgal

Monthly Notices of the Royal Astronomical Society 466, 3810-3826

DOI: 10.1093/mnras/stw3326

Citation Report

#	ARTICLE	IF	Citations
1	Quantifying Supernovae-driven Multiphase Galactic Outflows. Astrophysical Journal, 2017, 841, 101.	4.5	90
2	Simulations of AGN jets: magnetic kink instability versus conical shocks. Monthly Notices of the Royal Astronomical Society, 2017, 469, 4957-4978.	4.4	64
3	The Circumgalactic Medium. Annual Review of Astronomy and Astrophysics, 2017, 55, 389-432.	24.3	635
4	Trident: A Universal Tool for Generating Synthetic Absorption Spectra from Astrophysical Simulations. Astrophysical Journal, 2017, 847, 59.	4.5	61
5	GASP. III. JO36: A Case of Multiple Environmental Effects at Play?. Astrophysical Journal, 2017, 848, 132.	4.5	66
6	How supernovae launch galactic winds?. Monthly Notices of the Royal Astronomical Society: Letters, 2017, 470, L39-L43.	3.3	67
7	The Properties of the Galactic Hot Gaseous Halo from X-Ray Emission. Astrophysical Journal, 2017, 849, 105.	4.5	31
8	A characteristic scale for cold gas. Monthly Notices of the Royal Astronomical Society, 2018, 473, 5407-5431.	4.4	177
9	Implications of the Large O vi Columns around Low-redshift L _{â^—} Galaxies. Astrophysical Journal, 2018, 852, 33.	4.5	55
10	Andromeda's Parachute: A Bright Quadruply Lensed Quasar at zÂ=Â2.377. Astrophysical Journal, 2018, 859, 146.	4.5	32
11	Fast winds drive slow shells: a model for the circumgalactic medium as galactic wind-driven bubbles. Monthly Notices of the Royal Astronomical Society, 2018, 481, 1873-1896.	4.4	36
12	Galaxies Probing Galaxies in PRIMUS. II. The Coherence Scale of the Cool Circumgalactic Medium. Astrophysical Journal, 2018, 868, 142.	4.5	24
13	The Sources of Extreme Ultraviolet and Soft X-Ray Backgrounds. Astrophysical Journal, 2018, 869, 159.	4.5	18
14	The Complementary Roles of Feedback and Mergers in Building the Gaseous Halo and the X-Ray Corona of Milky-Way-sized Galaxies. Astrophysical Journal, 2018, 867, 73.	4.5	16
15	Deviations from hydrostatic equilibrium in the circumgalactic medium: spinning hot haloes and accelerating flows. Monthly Notices of the Royal Astronomical Society, 2018, 480, 2963-2975.	4.4	54
16	The Role of Cosmic-ray Transport in Shaping the Simulated Circumgalactic Medium. Astrophysical Journal, 2018, 868, 108.	4.5	89
17	Does Circumgalactic O vi Trace Low-pressure Gas Beyond the Accretion Shock? Clues from H i and Low-ion Absorption, Line Kinematics, and Dust Extinction. Astrophysical Journal, 2018, 865, 91.	4.5	41
18	Clustered supernovae drive powerful galactic winds after superbubble breakout. Monthly Notices of the Royal Astronomical Society, 2018, 481, 3325-3347.	4.4	105

ATION RED

CITATION REPORT

#	Article	IF	CITATIONS
19	X-ray and SZ constraints on the properties of hot CGM. Monthly Notices of the Royal Astronomical Society, 2018, 478, 2909-2914.	4.4	19
20	No assembly required: mergers are mostly irrelevant for the growth of low-mass dwarf galaxies. Monthly Notices of the Royal Astronomical Society, 2018, 479, 319-331.	4.4	48
21	The Extended Distribution of Baryons around Galaxies. Astrophysical Journal, 2018, 862, 3.	4.5	97
22	Introducing CGOLS: The Cholla Galactic Outflow Simulation Suite. Astrophysical Journal, 2018, 860, 135.	4.5	33
23	Gas kinematics, morphology and angular momentum in the FIRE simulations. Monthly Notices of the Royal Astronomical Society, 2018, 473, 1930-1955.	4.4	131
24	The growth of black holes from Population III remnants in the Renaissance simulations. Monthly Notices of the Royal Astronomical Society, 2018, 480, 3762-3773.	4.4	62
25	A single fast radio burst localized to a massive galaxy at cosmological distance. Science, 2019, 365, 565-570.	12.6	295
26	SDSS-IV MaNGA: Evidence for Enriched Accretion onto Satellite Galaxies in Dense Environments. Astrophysical Journal, 2019, 884, 156.	4.5	19
27	Ambient Column Densities of Highly Ionized Oxygen in Precipitation-limited Circumgalactic Media. Astrophysical Journal, 2019, 880, 139.	4.5	40
28	The Warm Gaseous Disk and the Anisotropic Circumgalactic Medium of the Milky Way. Astrophysical Journal, 2019, 880, 89.	4.5	15
29	The Impact of Enhanced Halo Resolution on the Simulated Circumgalactic Medium. Astrophysical Journal, 2019, 882, 156.	4.5	128
30	Cooling flow solutions for the circumgalactic medium. Monthly Notices of the Royal Astronomical Society, 2019, 488, 2549-2572.	4.4	61
31	Multiphase gas in the circumgalactic medium: relative role of tcool/tff and density fluctuations. Monthly Notices of the Royal Astronomical Society, 2019, 488, 3195-3210.	4.4	34
32	The low density and magnetization of a massive galaxy halo exposed by a fast radio burst. Science, 2019, 366, 231-234.	12.6	204
33	Measuring the Circumgalactic and Intergalactic Baryon Contents with Fast Radio Bursts. Astrophysical Journal, 2019, 872, 88.	4.5	35
34	Estimates for the impact of ultraviolet background fluctuations on galaxy clustering measurements. Monthly Notices of the Royal Astronomical Society, 2019, 485, 5059-5072.	4.4	11
35	CGM properties in VELA and NIHAO simulations; the OVI ionization mechanism: dependence on redshift, halo mass, and radius. Monthly Notices of the Royal Astronomical Society, 2019, 484, 3625-3645.	4.4	25
36	Baryons in the Cosmic Web of IllustrisTNG – I: gas in knots, filaments, sheets, and voids. Monthly Notices of the Royal Astronomical Society, 2019, 486, 3766-3787.	4.4	120

#	Article	IF	CITATIONS
37	A one-dimensional hydrodynamic model for accretion, cooling, and heating of gas in dark matter haloes from <i>z</i> Â= 6 to <i>z</i> Â= 0. Monthly Notices of the Royal Astronomical Society, 2019, 485, 3430-3445.	4.4	7
38	Radio wave scattering by circumgalactic cool gas clumps. Monthly Notices of the Royal Astronomical Society, 2019, 483, 971-984.	4.4	23
39	Probing Galactic Halos with Fast Radio Bursts. Monthly Notices of the Royal Astronomical Society, 0,	4.4	123
40	Instability of supersonic cold streams feeding Galaxies – III. Kelvin–Helmholtz instability in three dimensions. Monthly Notices of the Royal Astronomical Society, 2019, 484, 1100-1132.	4.4	37
41	Galactic Gas Flows from Halo to Disk: Tomography and Kinematics at the Milky Way's Disk–Halo Interface. Astrophysical Journal, 2019, 882, 76.	4.5	17
42	Column Density, Kinematics, and Thermal State of Metal-bearing Gas within the Virial Radius of zÂâ^1⁄4Â2 Star-forming Galaxies in the Keck Baryonic Structure Survey. Astrophysical Journal, 2019, 885, 61.	4.5	69
43	Zooming in on accretion – II. Cold circumgalactic gas simulated with a super-Lagrangian refinement scheme. Monthly Notices of the Royal Astronomical Society, 2019, 483, 4040-4059.	4.4	78
44	Hα Emission and the Dependence of the Circumgalactic Cool Gas Fraction on Halo Mass. Astrophysical Journal, 2020, 888, 33.	4.5	2
45	Properties of the circumgalactic medium in cosmic ray-dominated galaxy haloes. Monthly Notices of the Royal Astronomical Society, 2020, 496, 4221-4238.	4.4	99
46	Multiphase Gas and the Fractal Nature of Radiative Turbulent Mixing Layers. Astrophysical Journal Letters, 2020, 894, L24.	8.3	88
47	The circum-galactic medium of quasars: transverse and line-of-sight absorptions. Astrophysics and Space Science, 2020, 365, 1.	1.4	0
48	Probing the CGM of low-redshift dwarf galaxies using FIRE simulations. Monthly Notices of the Royal Astronomical Society, 2020, 500, 1038-1053.	4.4	8
49	Magnetizing the circumgalactic medium of disc galaxies. Monthly Notices of the Royal Astronomical Society, 2020, 498, 3125-3137.	4.4	40
50	LyÂα blobs from cold streams undergoing Kelvin–Helmholtz instabilities. Monthly Notices of the Royal Astronomical Society, 2020, 498, 2415-2427.	4.4	23
51	Resolving shocks and filaments in galaxy formation simulations: effects on gas properties and star formation in the circumgalactic medium. Monthly Notices of the Royal Astronomical Society, 2020, 499, 597-615.	4.4	29
52	Massive Warm/Hot Galaxy Coronae. II. Isentropic Model. Astrophysical Journal, 2020, 893, 82.	4.5	44
53	A census of baryons in the Universe from localized fast radio bursts. Nature, 2020, 581, 391-395.	27.8	341
54	The maximum accretion rate of hot gas in dark matter haloes. Monthly Notices of the Royal Astronomical Society, 2020, 492, 6042-6058.	4.4	42

#	Article	IF	CITATIONS
55	The fates of the circumgalactic medium in the FIRE simulations. Monthly Notices of the Royal Astronomical Society, 2020, 494, 3581-3595.	4.4	46
56	On the model of the circumgalactic mist: the implications of cloud sizes in galactic winds and haloes. Monthly Notices of the Royal Astronomical Society, 2020, 491, 5056-5072.	4.4	34
57	Global simulations of galactic discs: violent feedback from clustered supernovae during bursts of star formation. Monthly Notices of the Royal Astronomical Society, 2020, 492, 79-95.	4.4	17
58	The case for strangulation in low-mass hosts: DDO 113. Monthly Notices of the Royal Astronomical Society, 2020, 492, 1713-1730.	4.4	13
59	Properties of the simulated circumgalactic medium. Monthly Notices of the Royal Astronomical Society, 2020, 493, 1461-1478.	4.4	30
60	Slicing the cool circumgalactic medium along the major axis of a star-forming galaxy at <i>z</i> Â= 0.7. Monthly Notices of the Royal Astronomical Society, 2020, 491, 4442-4461.	4.4	28
61	Characterizing mass, momentum, energy, and metal outflow rates of multiphase galactic winds in the FIRE-2 cosmological simulations. Monthly Notices of the Royal Astronomical Society, 2021, 508, 2979-3008.	4.4	56
62	Efficiency of thermal conduction in a magnetized circumgalactic medium. Monthly Notices of the Royal Astronomical Society, 2021, 502, 1263-1278.	4.4	13
63	A Graphical Interpretation of Circumgalactic Precipitation. Astrophysical Journal Letters, 2021, 908, L16.	8.3	16
64	Origin of Weak Mg ii and Higher-ionization Absorption Lines in Outflows from Intermediate-redshift Dwarf Galaxies. Astrophysical Journal, 2021, 909, 157.	4.5	0
65	Circumgalactic Mg ii Emission from an Isotropic Starburst Galaxy Outflow Mapped by KCWI. Astrophysical Journal, 2021, 909, 151.	4.5	43
66	Probing the Universe with Fast Radio Bursts. Universe, 2021, 7, 85.	2.5	16
67	Virialization of the Inner CGM in the FIRE Simulations and Implications for Galaxy Disks, Star Formation, and Feedback. Astrophysical Journal, 2021, 911, 88.	4.5	66
68	CGM ² I: The Extent of the Circumgalactic Medium Traced by Neutral Hydrogen. Astrophysical Journal, 2021, 912, 9.	4.5	29
69	Virial shocks are suppressed in cosmic ray-dominated galaxy haloes. Monthly Notices of the Royal Astronomical Society, 2021, 505, 259-273.	4.4	23
70	Thermal instability in the CGM of <i>L</i> â<† galaxies: testing â€~precipitation' models with the FIRE simulations. Monthly Notices of the Royal Astronomical Society, 2021, 505, 1841-1862.	4.4	19
71	Kinematics of Mg ii absorbers from the redshift-space distortion around massive quiescent galaxies. Monthly Notices of the Royal Astronomical Society, 2021, 506, 115-127.	4.4	2
72	Mixing matters. Monthly Notices of the Royal Astronomical Society, 2021, 506, 2836-2852.	4.4	14

#	Article	IF	CITATIONS
73	Telltale signs of metal recycling in the circumgalactic medium of a <i>z</i> â^¼ 0.77 galaxy. Monthly Notices of the Royal Astronomical Society, 2021, 507, 663-679.	4.4	20
74	Neutral CGM as damped Ly α absorbers at high redshift. Monthly Notices of the Royal Astronomical Society, 2021, 507, 2869-2884.	4.4	17
75	The COS Absorption Survey of Baryon Harbors: unveiling the physical conditions of circumgalactic gas through multiphase Bayesian ionization modelling. Monthly Notices of the Royal Astronomical Society, 2021, 502, 4993-5037.	4.4	29
76	O <scp>vi</scp> traces photoionized streams with collisionally ionized boundaries in cosmological simulations of <i>z</i> â^¼ 1 massive galaxies. Monthly Notices of the Royal Astronomical Society, 2021, 501, 4948-4967.	4.4	16
77	Hydrodynamic Shielding and the Survival of Cold Streams. Astronomical Journal, 2019, 158, 124.	4.7	11
78	Tidal Destruction in a Low-mass Galaxy Environment: The Discovery of Tidal Tails around DDO 44*. Astrophysical Journal, 2019, 886, 109.	4.5	21
79	The Galactic Halo Contribution to the Dispersion Measure of Extragalactic Fast Radio Bursts. Astrophysical Journal, 2020, 888, 105.	4.5	45
80	Modeling Photoionized Turbulent Material in the Circumgalactic Medium. II. Effect of Turbulence within a Stratified Medium. Astrophysical Journal, 2020, 896, 136.	4.5	5
81	Figuring Out Gas & Galaxies in Enzo (FOGGIE). III. The Mocky Way: Investigating Biases in Observing the Milky Way's Circumgalactic Medium. Astrophysical Journal, 2020, 896, 143.	4.5	16
82	How Do Supernovae Impact the Circumgalactic Medium? I. Large-scale Fountains around a Milky Way–like Galaxy. Astrophysical Journal, 2020, 898, 148.	4.5	31
83	The Impact of Cosmic Rays on Thermal Instability in the Circumgalactic Medium. Astrophysical Journal, 2020, 903, 77.	4.5	66
84	First Results from SMAUG: Uncovering the Origin of the Multiphase Circumgalactic Medium with a Comparative Analysis of Idealized and Cosmological Simulations. Astrophysical Journal, 2020, 903, 32.	4.5	38
85	Joint <i>Suzaku</i> and <i>Chandra</i> observations of the MKW4 galaxy group out to the virial radius. Monthly Notices of the Royal Astronomical Society, 2021, 501, 3767-3780.	4.4	7
86	Figuring Out Gas & Galaxies In Enzo (FOGGIE). V. The Virial Temperature Does Not Describe Gas in a Virialized Galaxy Halo. Astrophysical Journal, 2021, 922, 121.	4.5	10
87	The Structure of Multiphase Galactic Winds. Astrophysical Journal, 2022, 924, 82.	4.5	58
88	The high-velocity clouds above the disc of the outer Milky Way: misty precipitating gas in a region roiled by stellar streams. Monthly Notices of the Royal Astronomical Society, 2022, 511, 1714-1749.	4.4	7
89	Exploring the Milky Way Circumgalactic Medium in a Cosmological Context with a Semianalytic Model. Astrophysical Journal, 2022, 928, 37.	4.5	11
90	Thermal Instabilities and Shattering in the High-redshift WHIM: Convergence Criteria and Implications for Low-metallicity Strong H i Absorbers. Astrophysical Journal, 2021, 923, 115.	4.5	16

#	Article	IF	CITATIONS
91	Cosmological evolution of gas and supermassive black holes in idealized isolated haloes. Monthly Notices of the Royal Astronomical Society, 0, , .	4.4	0
92	Hot-mode accretion and the physics of thin-discÂgalaxyÂformation. Monthly Notices of the Royal Astronomical Society, 2022, 514, 5056-5073.	4.4	32
93	The Circumgalactic Medium from the CAMELS Simulations: Forecasting Constraints on Feedback Processes from Future Sunyaev–Zeldovich Observations. Astrophysical Journal, 2022, 933, 133.	4.5	11
94	Absorption-based circumgalactic medium line emission estimates. Monthly Notices of the Royal Astronomical Society, 2022, 516, 3049-3067.	4.4	3
95	Signatures of extended disks and outflows in the circumgalactic medium using the Q0107 quasar triplet. Monthly Notices of the Royal Astronomical Society, 0, , .	4.4	1
96	CLEAR: The Evolution of Spatially Resolved Star Formation in Galaxies between 0.5 ≲ z ≲ 1.7 Using Hα Emission Line Maps. Astrophysical Journal, 2022, 937, 16.	4.5	13
97	Self-ionizing Galactic Winds. Astrophysical Journal, 2022, 940, 44.	4.5	6
98	The circumgalactic medium of Milky Way-like galaxies in the TNG50 simulation – I: halo gas properties and the role of SMBH feedback. Monthly Notices of the Royal Astronomical Society, 2022, 518, 5754-5777.	4.4	18
99	Stellar feedback-regulated black hole growth: driving factors from nuclear to halo scales. Monthly Notices of the Royal Astronomical Society, 2023, 520, 722-739.	4.4	10
100	X-Ray Properties of NGC 253's Starburst-driven Outflow. Astrophysical Journal, 2023, 942, 108.	4.5	7
101	Baryonic post-processing of <i>N</i> -body simulations, with application to fast radio bursts. Monthly Notices of the Royal Astronomical Society, 2023, 520, 3626-3640.	4.4	2
102	Asymmetric eROSITA bubbles as the evidence of a circumgalactic medium wind. Nature Communications, 2023, 14, .	12.8	4
103	The MUSE Ultra Deep Field (MUDF). III. Hubble Space Telescope WFC3 Grism Spectroscopy and Imaging. Astrophysical Journal, Supplement Series, 2023, 265, 40.	7.7	4
104	Star Formation Variability as a Probe for the Baryon Cycle within Galaxies. Astrophysical Journal, 2023, 947, 61.	4.5	3
105	Figuring Out Gas & Galaxies in Enzo (FOGGIE). VI. The Circumgalactic Medium of L ^{â^—} Galaxies Is Supported in an Emergent, Nonhydrostatic Equilibrium. Astrophysical Journal, 2023, 948, 43.	4.5	10
106	Regulation of Star Formation by a Hot Circumgalactic Medium. Astrophysical Journal, 2023, 949, 21.	4.5	5
107	The CGM ² Survey: Quenching and the Transformation of the Circumgalactic Medium. Astrophysical Journal, 2023, 949, 41.	4.5	3
108	Efficient formation of massive galaxies at cosmic dawn by feedback-free starbursts. Monthly Notices of the Royal Astronomical Society, 2023, 523, 3201-3218.	4.4	26

CITATION REPORT

CITATION REPORT

#	Article	IF	CITATIONS
109	The Anatomy of a Turbulent Radiative Mixing Layer: Insights from an Analytic Model with Turbulent Conduction and Viscosity. Astrophysical Journal, 2023, 950, 91.	4.5	2
110	CGM ² + CASBaH: The Mass Dependence of H i Lyα–Galaxy Clustering and the Extent of the CGM. Astrophysical Journal, 2023, 948, 114.	4.5	1
111	Seeking Self-regulating Simulations of Idealized Milky Way–like Galaxies. Astrophysical Journal, 2023, 951, 107.	4.5	1
112	Key Physical Processes in the Circumgalactic Medium. Annual Review of Astronomy and Astrophysics, 2023, 61, 131-195.	24.3	15
113	Constraining Circumgalactic Turbulence with QSO Absorption Line Measurements. Astrophysical Journal, 2023, 956, 54.	4.5	0
114	A Unified Model for the Coevolution of Galaxies and Their Circumgalactic Medium: The Relative Roles of Turbulence and Atomic Cooling Physics. Astrophysical Journal, 2023, 956, 118.	4.5	2
115	Azimuthal anisotropy of magnetic fields in the circumgalactic medium driven by galactic feedback processes. Monthly Notices of the Royal Astronomical Society, 2023, 526, 5483-5493.	4.4	3
116	Seeding the CGM: How satellites populate the cold phase of milky way halos. Monthly Notices of the Royal Astronomical Society, 0, , .	4.4	0
117	Cosmic ray feedback in galaxies and galaxy clusters. Astronomy and Astrophysics Review, 2023, 31, .	25.5	4
118	The structure and dynamics of massive high- <i>z</i> cosmic-web filaments: Three radial zones in filament cross-sections. Monthly Notices of the Royal Astronomical Society, 0, , .	4.4	0
119	Cloud atlas: navigating the multiphase landscape of tempestuous galactic winds. Monthly Notices of the Royal Astronomical Society, 2023, 527, 9683-9714.	4.4	1
120	The dual role of outflows in quenching satellites of low-mass hosts: NGC 3109. Monthly Notices of the Royal Astronomical Society, 2024, 528, 365-387.	4.4	0
121	Zooming in on the circumgalactic medium with GIBLE: Resolving small-scale gas structure in cosmological simulations. Monthly Notices of the Royal Astronomical Society, 2024, 528, 3320-3339.	4.4	0
122	Are odd radio circles virial shocks around massive galaxies? Implications for cosmic-ray diffusion in the circumgalactic medium. Monthly Notices of the Royal Astronomical Society, 2024, 528, 3854-3863.	4.4	0
123	Low- and High-velocity O vi in Milky Way-like Galaxies: The Role of Stellar Feedback. Astrophysical Journal, 2024, 962, 15.	4.5	0