Genome-wide mapping of transcriptional enhancer can features in maize

Genome Biology 18, 137 DOI: 10.1186/s13059-017-1273-4

Citation Report

#	Article	IF	CITATIONS
1	ChIP-ping the branches of the tree: functional genomics and the evolution of eukaryotic gene regulation. Briefings in Functional Genomics, 2018, 17, 116-137.	1.3	5
2	Identification of cis-regulatory elements by chromatin structure. Current Opinion in Plant Biology, 2018, 42, 90-94.	3.5	31
3	Plant Lineage-Specific Amplification of Transcription Factor Binding Motifs by Miniature Inverted-Repeat Transposable Elements (MITEs). Genome Biology and Evolution, 2018, 10, 1210-1220.	1.1	26
4	Adaptation in plant genomes: Bigger is different. American Journal of Botany, 2018, 105, 16-19.	0.8	50
6	Plant Protection by Benzoxazinoids—Recent Insights into Biosynthesis and Function. Agronomy, 2018, 8, 143.	1.3	69
7	Enhancer-Promoter Interaction of <i>SELF PRUNING 5G</i> Shapes Photoperiod Adaptation. Plant Physiology, 2018, 178, 1631-1642.	2.3	34
8	Evolutionary Impacts of Alternative Transposition. , 2018, , 113-130.		6
9	Three-dimensional chromatin packing and positioning of plant genomes. Nature Plants, 2018, 4, 521-529.	4.7	100
10	The bread wheat epigenomic map reveals distinct chromatin architectural and evolutionary features of functional genetic elements. Genome Biology, 2019, 20, 139.	3.8	90
11	Novel mRNAs 3′ end-associated <i>cis</i> -regulatory elements with epigenomic signatures of mammalian enhancers in the <i>Arabidopsis</i> genome. Rna, 2019, 25, 1242-1258.	1.6	6
12	Boosting Macroevolution: Genomic Changes Triggering Qualitative Expansions of Regulatory Potential. Fascinating Life Sciences, 2019, , 175-207.	0.5	0
13	Challenges of Translating Gene Regulatory Information into Agronomic Improvements. Trends in Plant Science, 2019, 24, 1075-1082.	4.3	34
14	Monitoring the interplay between transposable element families and DNA methylation in maize. PLoS Genetics, 2019, 15, e1008291.	1.5	56
15	Chromatin interaction maps reveal genetic regulation for quantitative traits in maize. Nature Communications, 2019, 10, 2632.	5.8	93
16	Long-range interactions between proximal and distal regulatory regions in maize. Nature Communications, 2019, 10, 2633.	5.8	79
17	Identification and functional evaluation of accessible chromatin associated with wood formation in <i>Eucalyptus grandis</i> . New Phytologist, 2019, 223, 1937-1951.	3.5	10
18	3D genome organization: a role for phase separation and loop extrusion?. Current Opinion in Plant Biology, 2019, 48, 36-46.	3.5	43
19	Rapid validation of transcriptional enhancers using agrobacterium-mediated transient assay. Plant Methods, 2019, 15, 21.	1.9	13

#	Article	IF	CITATIONS
20	Dynamic control of enhancer activity drives stage-specific gene expression during flower morphogenesis. Nature Communications, 2019, 10, 1705.	5.8	70
21	Opportunities to Use DNA Methylation to Distil Functional Elements in Large Crop Genomes. Molecular Plant, 2019, 12, 282-284.	3.9	12
22	Dynamic Patterns of Transcript Abundance of Transposable Element Families in Maize. G3: Genes, Genomes, Genetics, 2019, 9, 3673-3682.	0.8	32
23	Widespread long-range cis-regulatory elements in the maize genome. Nature Plants, 2019, 5, 1237-1249.	4.7	250
24	The prevalence, evolution and chromatin signatures of plant regulatory elements. Nature Plants, 2019, 5, 1250-1259.	4.7	219
25	Understanding epigenomics based on the rice model. Theoretical and Applied Genetics, 2020, 133, 1345-1363.	1.8	17
26	Chromatin domains in space and their functional implications. Current Opinion in Plant Biology, 2020, 54, 1-10.	3.5	26
27	Ectopic Expression of a Maize Gene Is Induced by Composite Insertions Generated Through Alternative Transposition. Genetics, 2020, 216, 1039-1049.	1.2	9
28	Differential chromatin accessibility landscape reveals structural and functional features of the allopolyploid wheat chromosomes. Genome Biology, 2020, 21, 176.	3.8	35
29	Global Role of Crop Genomics in the Face of Climate Change. Frontiers in Plant Science, 2020, 11, 922.	1.7	45
30	Mapping Regulatory Determinants in Plants. Frontiers in Genetics, 2020, 11, 591194.	1.1	15
31	Networkâ€based approaches for understanding gene regulation and function in plants. Plant Journal, 2020, 104, 302-317.	2.8	35
32	Chromatin-Level Differences Elucidate Potential Determinants of Contrasting Levels of Cold Sensitivity in Maize Lines. Plant Molecular Biology Reporter, 2021, 39, 335-350.	1.0	7
33	Evolutionary and functional genomics of DNA methylation in maize domestication and improvement. Nature Communications, 2020, 11, 5539.	5.8	59
34	Stable unmethylated DNA demarcates expressed genes and their cis-regulatory space in plant genomes. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 23991-24000.	3.3	67
35	Transposon insertions within alleles of BnaFLC.A10 and BnaFLC.A2 are associated with seasonal crop type in rapeseed. Journal of Experimental Botany, 2020, 71, 4729-4741.	2.4	32
36	Integrative analysis of reference epigenomes in 20 rice varieties. Nature Communications, 2020, 11, 2658.	5.8	86
37	3D genome architecture coordinates trans and cis regulation of differentially expressed ear and tassel genes in maize. Genome Biology, 2020, 21, 143.	3.8	60

#	Article	IF	CITATIONS
38	Genome–Phenome Wide Association in Maize and Arabidopsis Identifies a Common Molecular and Evolutionary Signature. Molecular Plant, 2020, 13, 907-922.	3.9	14
39	MH-seq for Functional Characterization of Open Chromatin in Plants. Trends in Plant Science, 2020, 25, 618-619.	4.3	6
40	The regulatory landscape of early maize inflorescence development. Genome Biology, 2020, 21, 165.	3.8	32
41	Integrative prediction of gene expression with chromatin accessibility and conformation data. Epigenetics and Chromatin, 2020, 13, 4.	1.8	21
42	Identification and evolution of gene regulatory networks: insights from comparative studies in plants. Current Opinion in Plant Biology, 2020, 54, 42-48.	3.5	43
43	Considerations in the analysis of plant chromatin accessibility data. Current Opinion in Plant Biology, 2020, 54, 69-78.	3.5	15
44	Genome-wide MNase hypersensitivity assay unveils distinct classes of open chromatin associated with H3K27me3 and DNA methylation in Arabidopsis thaliana. Genome Biology, 2020, 21, 24.	3.8	35
45	UNBRANCHED3 Expression and Inflorescence Development is Mediated by UNBRANCHED2 and the Distal Enhancer, KRN4, in Maize. PLoS Genetics, 2020, 16, e1008764.	1.5	31
46	Identification of Key Tissue-Specific, Biological Processes by Integrating Enhancer Information in Maize Gene Regulatory Networks. Frontiers in Genetics, 2020, 11, 606285.	1.1	11
48	An atlas of wheat epigenetic regulatory elements reveals subgenome divergence in the regulation of development and stress responses. Plant Cell, 2021, 33, 865-881.	3.1	48
49	Epigenomic atlas in wheat reveals regulatory elements specifying subgenome divergence. Plant Cell, 2021, 33, 783-785.	3.1	1
50	Technologies enabling rapid crop improvements for sustainable agriculture: example pennycress (<i>Thlaspi arvense</i> L.). Emerging Topics in Life Sciences, 2021, 5, 325-335.	1.1	11
53	Plant 3D genomics: the exploration and application of chromatin organization. New Phytologist, 2021, 230, 1772-1786.	3.5	23
54	Maize decrease in DNA methylation 1 targets RNA-directed DNA methylation on active chromatin. Plant Cell, 2021, 33, 2183-2196.	3.1	11
55	Genomic Features of Open Chromatin Regions (OCRs) in Wild Soybean and Their Effects on Gene Expressions. Genes, 2021, 12, 640.	1.0	9
57	Enhancers as potential targets for engineering salinity stress tolerance in crop plants. Physiologia Plantarum, 2021, 173, 1382-1391.	2.6	5
58	Mechanisms of enhancer action: the known and the unknown. Genome Biology, 2021, 22, 108.	3.8	146
59	A cis-regulatory atlas in maize at single-cell resolution. Cell, 2021, 184, 3041-3055.e21.	13.5	176

#	Article	IF	CITATIONS
60	Stability of DNA methylation and chromatin accessibility in structurally diverse maize genomes. G3: Genes, Genomes, Genetics, 2021, 11, .	0.8	3
61	Conserved noncoding sequences provide insights into regulatory sequence and loss of gene expression in maize. Genome Research, 2021, 31, 1245-1257.	2.4	29
62	CSCS: a chromatin state interface for Chinese Spring bread wheat. ABIOTECH, 2021, 2, 357-364.	1.8	3
63	Leveraging histone modifications to improve genome annotations. G3: Genes, Genomes, Genetics, 2021, 11, .	0.8	9
64	Open chromatin in grapevine marks candidate CREs and with other chromatin features correlates with gene expression. Plant Journal, 2021, 107, 1631-1647.	2.8	17
65	The native cistrome and sequence motif families of the maize ear. PLoS Genetics, 2021, 17, e1009689.	1.5	19
66	De novo assembly, annotation, and comparative analysis of 26 diverse maize genomes. Science, 2021, 373, 655-662.	6.0	282
67	RNA polymerase mapping in plants identifies intergenic regulatory elements enriched in causal variants. G3: Genes, Genomes, Genetics, 2021, 11, .	0.8	11
68	Transcriptional regulation in plants: Using omics data to crack the cis-regulatory code. Current Opinion in Plant Biology, 2021, 63, 102058.	3.5	9
69	Beyond the gene: epigenetic and cis-regulatory targets offer new breeding potential for the future. Current Opinion in Biotechnology, 2022, 73, 88-94.	3.3	13
70	Single-cell analysis of cis-regulatory elements. Current Opinion in Plant Biology, 2022, 65, 102094.	3.5	21
71	Photoperiod-responsive changes in chromatin accessibility in phloem companion and epidermis cells of Arabidopsis leaves. Plant Cell, 2021, 33, 475-491.	3.1	23
73	ATACgraph: Profiling Genome-Wide Chromatin Accessibility From ATAC-seq. Frontiers in Genetics, 2020, 11, 618478.	1.1	8
74	Accessible chromatin regions and their functional interrelations with gene transcription and epigenetic modifications in sorghum genome. Plant Communications, 2021, 2, 100140.	3.6	15
75	Assessing the regulatory potential of transposable elements using chromatin accessibility profiles of maize transposons. Genetics, 2021, 217, 1-13.	1.2	14
76	Anno genominis XX: 20 years of Arabidopsis genomics. Plant Cell, 2021, 33, 832-845.	3.1	11
87	Quality control and evaluation of plant epigenomics data. Plant Cell, 2022, 34, 503-513.	3.1	13
94	Prediction of conserved and variable heat and cold stress response in maize using cis-regulatory information. Plant Cell, 2022, 34, 514-534.	3.1	30

#	Article	IF	CITATIONS
95	Gene network simulations provide testable predictions for the molecular domestication syndrome. Genetics, 2022, 220, .	1.2	8
96	Epigenome guided crop improvement: current progress and future opportunities. Emerging Topics in Life Sciences, 2022, 6, 141-151.	1.1	5
97	Cis-regulatory sequences in plants: Their importance, discovery, and future challenges. Plant Cell, 2022, 34, 718-741.	3.1	125
98	Using iRNA-seq analysis to predict gene expression regulatory level and activity in <i>Zea mays</i> tissues. G3: Genes, Genomes, Genetics, 2022, , .	0.8	Ο
99	Enhancer transcription detected in the nascent transcriptomic landscape of bread wheat. Genome Biology, 2022, 23, 109.	3.8	14
100	Expression regulation of genes is linked to their CpG density distributions around transcription start sites. Life Science Alliance, 2022, 5, e202101302.	1.3	8
102	The maize gene <i>maternal derepression of r1</i> encodes a DNA glycosylase that demethylates DNA and reduces siRNA expression in the endosperm. Plant Cell, 2022, 34, 3685-3701.	3.1	16
104	Dynamic enhancer transcription associates with reprogramming of immune genes during pattern triggered immunity in Arabidopsis. BMC Biology, 2022, 20, .	1.7	4
105	Identifying transcription factor–DNA interactions using machine learning. In Silico Plants, 2022, 4, .	0.8	3
106	Characterization of Transposon-Derived Accessible Chromatin Regions in Rice (Oryza Sativa). International Journal of Molecular Sciences, 2022, 23, 8947.	1.8	2
107	Transposon insertions within alleles of BnaFT.A2 are associated with seasonal crop type in rapeseed. Theoretical and Applied Genetics, 2022, 135, 3469-3483.	1.8	3
108	Enhancers: Encoding Regulation Across Time. Cognitive Systems Monographs, 2022, , 39-57.	0.1	0
110	The chromatin accessibility landscape of pistils and anthers in rice. Plant Physiology, 2022, 190, 2797-2811.	2.3	1
111	Genome-wide chromatin accessibility analysis unveils open chromatin convergent evolution during polyploidization in cotton. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	13
113	Mapping responsive genomic elements to heat stress in a maize diversity panel. Genome Biology, 2022, 23, .	3.8	5
114	Transposable elements orchestrate subgenome-convergent and -divergent transcription in common wheat. Nature Communications, 2022, 13, .	5.8	16
115	Identification and functional validation of super-enhancers in <i>Arabidopsis thaliana</i> . Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	17
116	Inferring regulatory element landscapes and gene regulatory networks from integrated analysis in eight hulless barley varieties under abiotic stress. BMC Genomics, 2022, 23, .	1.2	2

#	Article	IF	CITATIONS
118	<i>cis</i> -Regulatory Elements in Plant Development, Adaptation, and Evolution. Annual Review of Plant Biology, 2023, 74, 111-137.	8.6	28
119	HSFA1a modulates plant heat stress responses and alters the 3D chromatin organization of enhancer-promoter interactions. Nature Communications, 2023, 14, .	5.8	18
120	Enhancer activation via TCP and HD-ZIP and repression by Dof transcription factors mediate giant cell-specific expression. Plant Cell, 2023, 35, 2349-2368.	3.1	2
121	Population analysis reveals the roles of DNA methylation in tomato domestication and metabolic diversity. Science China Life Sciences, 2023, 66, 1888-1902.	2.3	2