Multi-omics of 34 colorectal cancer cell lines - a resourc

Molecular Cancer 16, 116

DOI: 10.1186/s12943-017-0691-y

Citation Report

#	Article	IF	CITATIONS
1	CMScaller: an R package for consensus molecular subtyping of colorectal cancer pre-clinical models. Scientific Reports, 2017, 7, 16618.	1.6	229
2	AKT as a key target for growth promoting functions of neutral ceramidase in colon cancer cells. Oncogene, 2018, 37, 3852-3863.	2.6	27
3	Apoptosis induction by Pleurotus sajor-caju (Fr.) Singer extracts on colorectal cancer cell lines. Food and Chemical Toxicology, 2018, 112, 383-392.	1.8	20
4	A robust internal control for high-precision DNA methylation analyses by droplet digital PCR. Clinical Epigenetics, 2018, 10, 24.	1.8	26
5	Colorectal Cancer Consensus Molecular Subtypes Translated to Preclinical Models Uncover Potentially Targetable Cancer Cell Dependencies. Clinical Cancer Research, 2018, 24, 794-806.	3.2	177
6	Integration of metabolomics and transcriptomics in nanotoxicity studies. BMB Reports, 2018, 51, 14-20.	1.1	59
7	A Systems-Level Analysis Reveals Circadian Regulation of Splicing in Colorectal Cancer. EBioMedicine, 2018, 33, 68-81.	2.7	32
8	The polypeptide N â€acetylgalactosaminyltransferase 4 exhibits stageâ€dependent expression in colorectal cancer and affects tumorigenesis, invasion and differentiation. FEBS Journal, 2018, 285, 3041-3055.	2.2	9
9	Prognostic, predictive, and pharmacogenomic assessments of <scp>CDX</scp> 2 refine stratification of colorectal cancer. Molecular Oncology, 2018, 12, 1639-1655.	2.1	40
10	Molecular subtyping of colorectal cancer: Recent progress, new challenges and emerging opportunities. Seminars in Cancer Biology, 2019, 55, 37-52.	4.3	125
11	Colorectal cancer cells respond differentially to autophagy inhibition in vivo. Scientific Reports, 2019, 9, 11316.	1.6	43
12	Validation of Microsatellite Instability Detection Using a Comprehensive Plasma-Based Genotyping Panel. Clinical Cancer Research, 2019, 25, 7035-7045.	3.2	152
13	Gene expression profiles of CMS2-epithelial/canonical colorectal cancers are largely driven by DNA copy number gains. Oncogene, 2019, 38, 6109-6122.	2.6	20
14	Intercellular Transfer of Oncogenic KRAS via Tunneling Nanotubes Introduces Intracellular Mutational Heterogeneity in Colon Cancer Cells. Cancers, 2019, 11, 892.	1.7	43
15	Mithramycin A Inhibits Colorectal Cancer Growth by Targeting Cancer Stem Cells. Scientific Reports, 2019, 9, 15202.	1.6	44
16	Analytical Evaluation of an NGS Testing Method for Routine Molecular Diagnostics on Melanoma Formalin-Fixed, Paraffin-Embedded Tumor-Derived DNA. Diagnostics, 2019, 9, 117.	1.3	6
17	Identification of Eph receptor signaling as a regulator of autophagy and a therapeutic target in colorectal carcinoma. Molecular Oncology, 2019, 13, 2441-2459.	2.1	11
18	Visualization of epithelial-mesenchymal transition in an inflammatory microenvironment–colorectal cancer network. Scientific Reports, 2019, 9, 16378.	1.6	29

#	ARTICLE	IF	CITATIONS
19	Targeting bromodomain-containing protein 4 (BRD4) inhibits MYC expression in colorectal cancer cells. Neoplasia, 2019, 21, 1110-1120.	2.3	40
20	Novel chemotherapeutic agent, FND-4b, activates AMPK and inhibits colorectal cancer cell proliferation. PLoS ONE, 2019, 14, e0224253.	1.1	5
21	The microRNAâ€'200 family acts as an oncogene in colorectal cancer by inhibiting the tumor suppressor RASSF2. Oncology Letters, 2019, 18, 3994-4007.	0.8	26
22	N6-Isopentenyladenosine Inhibits Colorectal Cancer and Improves Sensitivity to 5-Fluorouracil Targeting FBXW7 Tumor Suppressor. Cancers, 2019, 11, 1456.	1.7	11
23	MCT1, MCT4 and CD147 expression and 3-bromopyruvate toxicity in colorectal cancer cells are modulated by the extracellular conditions. Biological Chemistry, 2019, 400, 787-799.	1.2	11
24	Back to the Colorectal Cancer Consensus Molecular Subtype Future. Current Gastroenterology Reports, 2019, 21, 5.	1.1	50
25	The response of five intestinal cell lines to anoxic conditions in vitro. Biology of the Cell, 2019, 111, 232-244.	0.7	11
26	An Fc-Optimized CD133 Antibody for Induction of Natural Killer Cell Reactivity Against Colorectal Cancer. Cancers, 2019, 11, 789.	1.7	9
27	Effects of Copper Chelation on BRAFV600E Positive Colon Carcinoma Cells. Cancers, 2019, 11, 659.	1.7	43
28	Paracrine Induction of Epithelial-Mesenchymal Transition Between Colorectal Cancer Cells and its Suppression by a p53/miR-192/215/NID1 Axis. Cellular and Molecular Gastroenterology and Hepatology, 2019, 7, 783-802.	2.3	19
29	Rab5C enhances resistance to ionizing radiation in rectal cancer. Journal of Molecular Medicine, 2019, 97, 855-869.	1.7	16
30	Noncanonical TGF \hat{l}^2 Pathway Relieves the Blockade of IL1 \hat{l}^2 /TGF \hat{l}^2 -Mediated Crosstalk between Tumor and Stroma: TGFBR1 and TAK1 Inhibition in Colorectal Cancer. Clinical Cancer Research, 2019, 25, 4466-4479.	3.2	32
31	Synergy with $TGF\hat{l}^2$ ligands switches WNT pathway dynamics from transient to sustained during human pluripotent cell differentiation. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 4989-4998.	3.3	47
32	Characterization of cancer omics and drug perturbations in panels of lung cancer cells. Scientific Reports, 2019, 9, 19529.	1.6	13
33	Focused screening reveals functional effects of microRNAs differentially expressed in colorectal cancer. BMC Cancer, 2019, 19, 1239.	1.1	16
34	MiR-566 mediates cell migration and invasion in colon cancer cells by direct targeting of PSKH1. Cancer Cell International, 2019, 19, 333.	1.8	10
35	Butyrate-Induced <i>In Vitro</i> Colonocyte Differentiation Network Model Identifies <i>ITGB1, SYK, CDKN2A, CHAF1A,</i> and <i>LRP1</i> sas the Prognostic Markers for Colorectal Cancer Recurrence. Nutrition and Cancer, 2019, 71, 257-271.	0.9	6
36	Long noncoding RNA <i>MIR31HG</i> is a <i>bona fide</i> prognostic marker with colorectal cancer cellâ€intrinsic properties. International Journal of Cancer, 2019, 144, 2843-2853.	2.3	33

3

#	ARTICLE	IF	CITATIONS
37	The c-MYC/NAMPT/SIRT1 feedback loop is activated in early classical and serrated route colorectal cancer and represents a therapeutic target. Medical Oncology, 2019, 36, 5.	1.2	19
38	miR675 Accelerates Malignant Transformation of Mesenchymal Stem Cells by Blocking DNA Mismatch Repair. Molecular Therapy - Nucleic Acids, 2019, 14, 171-183.	2.3	8
39	Pathway Analysis of Fucoidan Activity Using a Yeast Gene Deletion Library Screen. Marine Drugs, 2019, 17, 54.	2.2	10
40	Cellular Target of a Rhodium Metalloinsertor is the DNA Base Pair Mismatch. Chemistry - A European Journal, 2019, 25, 3014-3019.	1.7	9
41	Niclosamide-induced Wnt signaling inhibition in colorectal cancer is mediated by autophagy. Biochemical Journal, 2019, 476, 535-546.	1.7	44
42	Development of a Colorectal Cancer 3D Micro-tumor Construct Platform From Cell Lines and Patient Tumor Biospecimens for Standard-of-Care and Experimental Drug Screening. Annals of Biomedical Engineering, 2020, 48, 940-952.	1.3	29
43	Molecular signature of interleukin-22 in colon carcinoma cells and organoid models. Translational Research, 2020, 216, 1-22.	2.2	6
44	Characterization of Macrophage Galactose-type Lectin (MGL) ligands in colorectal cancer cell lines. Biochimica Et Biophysica Acta - General Subjects, 2020, 1864, 129513.	1.1	22
45	Analysis of Colorectal Cancer-Associated Alternative Splicing Based on Transcriptome. DNA and Cell Biology, 2020, 39, 16-24.	0.9	9
46	Identification of candidate genes and miRNAs for sensitizing resistant colorectal cancer cells to oxaliplatin and irinotecan. Cancer Chemotherapy and Pharmacology, 2020, 85, 153-171.	1.1	9
47	A Biosensor for the Mitotic Kinase MPS1 Reveals Spatiotemporal Activity Dynamics and Regulation. Current Biology, 2020, 30, 3862-3870.e6.	1.8	20
48	Exploring and modelling colon cancer inter-tumour heterogeneity: opportunities and challenges. Oncogenesis, 2020, 9, 66.	2.1	52
49	Identification of Two Novel Circular RNAs Deriving from BCL2L12 and Investigation of Their Potential Value as a Molecular Signature in Colorectal Cancer. International Journal of Molecular Sciences, 2020, 21, 8867.	1.8	24
50	Integrated Analysis of Gene Expression and Metabolite Data Reveals Candidate Molecular Markers in Colorectal Carcinoma. Cancer Biotherapy and Radiopharmaceuticals, 2020, , .	0.7	5
51	<p>3,6-Disubstituted 1,2,4-Triazolo[3,4-b]Thiadiazoles with Anticancer Activity Targeting Topoisomerase II Alpha</p> . OncoTargets and Therapy, 2020, Volume 13, 7369-7386.	1.0	5
52	N-Glycoproteins Have a Major Role in MGL Binding to Colorectal Cancer Cell Lines: Associations with Overall Proteome Diversity. International Journal of Molecular Sciences, 2020, 21, 5522.	1.8	11
53	Unique genomic and neoepitope landscapes across tumors: a study across time, tissues, and space within a single lynch syndrome patient. Scientific Reports, 2020, 10, 12190.	1.6	3
54	Distant Metastasis in Colorectal Cancer Patientsâ€"Do We Have New Predicting Clinicopathological and Molecular Biomarkers? A Comprehensive Review. International Journal of Molecular Sciences, 2020, 21, 5255.	1.8	38

#	ARTICLE	IF	CITATIONS
55	Diarylurea derivatives comprising 2,4-diarylpyrimidines: Discovery of novel potential anticancer agents via combined failed-ligands repurposing and molecular hybridization approaches. Bioorganic Chemistry, 2020, 103, 104121.	2.0	20
56	S-Adenosylmethionine Treatment of Colorectal Cancer Cell Lines Alters DNA Methylation, DNA Repair and Tumor Progression-Related Gene Expression. Cells, 2020, 9, 1864.	1.8	16
57	Analysis of Cross-Association between mRNA Expression and RNAi Efficacy for Predictive Target Discovery in Colon Cancers. Cancers, 2020, 12, 3091.	1.7	12
58	A Middle-Out Modeling Strategy to Extend a Colon Cancer Logical Model Improves Drug Synergy Predictions in Epithelial-Derived Cancer Cell Lines. Frontiers in Molecular Biosciences, 2020, 7, 502573.	1.6	13
59	Investigation of colorectal cancer in accordance with consensus molecular subtype classification. Annals of Gastroenterological Surgery, 2020, 4, 528-539.	1.2	30
60	Molecular correlates of sensitivity to PARP inhibition beyond homologous recombination deficiency in pre-clinical models of colorectal cancer point to wild-type TP53 activity. EBioMedicine, 2020, 59, 102923.	2.7	22
61	Omics technologies for improved diagnosis and treatment of colorectal cancer: Technical advancement and major perspectives. Biomedicine and Pharmacotherapy, 2020, 131, 110648.	2.5	42
62	Differential Expression of PEG10 Contributes to Aggressive Disease in Early Versus Late-Onset Colorectal Cancer. Diseases of the Colon and Rectum, 2020, 63, 1610-1620.	0.7	10
63	NADPH oxidase 1 is highly expressed in human large and small bowel cancers. PLoS ONE, 2020, 15 , e0233208.	1.1	11
64	Drug-Drug Interactions of Irinotecan, 5-Fluorouracil, Folinic Acid and Oxaliplatin and Its Activity in Colorectal Carcinoma Treatment. Molecules, 2020, 25, 2614.	1.7	30
65	miR-23a-3p is a Key Regulator of IL-17C-Induced Tumor Angiogenesis in Colorectal Cancer. Cells, 2020, 9, 1363.	1.8	26
66	Computational Analysis of Transcriptomic and Proteomic Data for Deciphering Molecular Heterogeneity and Drug Responsiveness in Model Human Hepatocellular Carcinoma Cell Lines. Genes, 2020, 11, 623.	1.0	3
67	Loss of the nuclear Wnt pathway effector TCF7L2 promotes migration and invasion of human colorectal cancer cells. Oncogene, 2020, 39, 3893-3909.	2.6	45
68	Perturbation of phosphoglycerate kinase 1 (PGK1) only marginally affects glycolysis in cancer cells. Journal of Biological Chemistry, 2020, 295, 6425-6446.	1.6	21
69	Similarities in the General Chemical Composition of Colon Cancer Cells and Their Microvesicles Investigated by Spectroscopic Methods-Potential Clinical Relevance. International Journal of Molecular Sciences, 2020, 21, 1826.	1.8	4
70	Syntenin-1 promotes colorectal cancer stem cell expansion and chemoresistance by regulating prostaglandin E2 receptor. British Journal of Cancer, 2020, 123, 955-964.	2.9	14
71	Synthesis, CYP24A1-Dependent Metabolism and Antiproliferative Potential against Colorectal Cancer Cells of 1,25-Dihydroxyvitamin D2 Derivatives Modified at the Side Chain and the A-Ring. International Journal of Molecular Sciences, 2020, 21, 642.	1.8	6
72	Prognostic and Predictive Molecular Biomarkers for Colorectal Cancer: Updates and Challenges. Cancers, 2020, 12, 319.	1.7	141

#	Article	IF	Citations
73	Canonical BMP Signaling Executes Epithelial-Mesenchymal Transition Downstream of SNAIL1. Cancers, 2020, 12, 1019.	1.7	17
74	Xanthohumol, a Prenylated Flavonoid from Hops, Induces DNA Damages in Colorectal Cancer Cells and Sensitizes SW480 Cells to the SN38 Chemotherapeutic Agent. Cells, 2020, 9, 932.	1.8	27
75	Colorectal cancer cell lines show striking diversity of their O-glycome reflecting the cellular differentiation phenotype. Cellular and Molecular Life Sciences, 2021, 78, 337-350.	2.4	34
76	Postâ€ŧranslational Wnt receptor regulation: Is the fog slowly clearing?. BioEssays, 2021, 43, e2000297.	1.2	10
77	Dual inhibition of $TGF\hat{l}^2$ and AXL as a novel therapy for human colorectal adenocarcinoma with mesenchymal phenotype. Medical Oncology, 2021, 38, 24.	1.2	7
78	Research progress on O-GlcNAcylation in the occurrence, development, and treatment of colorectal cancer. World Journal of Gastrointestinal Surgery, 2021, 13, 96-115.	0.8	2
79	Recent Updates on the Significance of KRAS Mutations in Colorectal Cancer Biology. Cells, 2021, 10, 667.	1.8	27
80	Long non-coding RNA ZFAS1 is a major regulator of epithelial-mesenchymal transition through miR-200/ZEB1/E-cadherin, vimentin signaling in colon adenocarcinoma. Cell Death Discovery, 2021, 7, 61.	2.0	23
81	Exploration of the Associations of lncRNA Expression Patterns with Tumor Mutation Burden and Prognosis in Colon Cancer. OncoTargets and Therapy, 2021, Volume 14, 2893-2909.	1.0	13
82	Olaparib-mediated enhancement of 5-fluorouracil cytotoxicity in mismatch repair deficient colorectal cancer cells. BMC Cancer, 2021, 21, 448.	1.1	8
83	Colorectal Cancer and Immunity: From the Wet Lab to Individuals. Cancers, 2021, 13, 1713.	1.7	1
84	Clinicopathological Association of Autophagy Related 5 Protein with Prognosis of Colorectal Cancer. Diagnostics, 2021, 11, 782.	1.3	7
85	Pro-Apoptotic Activity of Artichoke Leaf Extracts in Human HT-29 and RKO Colon Cancer Cells. International Journal of Environmental Research and Public Health, 2021, 18, 4166.	1.2	11
86	High-throughput microscopy reveals the impact of multifactorial environmental perturbations on colorectal cancer cell growth. GigaScience, 2021, 10, .	3.3	7
87	Anticancer Activity of Triazolo-Thiadiazole Derivatives and Inhibition of AKT1 and AKT2 Activation. Pharmaceutics, 2021, 13, 493.	2.0	3
88	ZNF37A promotes tumor metastasis through transcriptional control of THSD4/TGF- \hat{l}^2 axis in colorectal cancer. Oncogene, 2021, 40, 3394-3407.	2.6	15
89	Weighted Gene Co-expression Network Analysis Identifies CALD1 as a Biomarker Related to M2 Macrophages Infiltration in Stage III and IV Mismatch Repair-Proficient Colorectal Carcinoma. Frontiers in Molecular Biosciences, 2021, 8, 649363.	1.6	10
90	Inhibition of Liver Metastasis in Colorectal Cancer by Targeting IL-13/IL13Rα2 Binding Site with Specific Monoclonal Antibodies. Cancers, 2021, 13, 1731.	1.7	7

#	ARTICLE	IF	CITATIONS
91	Morphological and molecular characteristics of spheroid formation in HT-29 and Caco-2 colorectal cancer cell lines. Cancer Cell International, 2021, 21, 204.	1.8	41
92	Effects of Chemotherapy for Metastatic Colorectal Cancer on the TGF- \hat{I}^2 Signaling and Related miRNAs hsa-miR-17-5p, hsa-miR-21-5p and hsa-miR-93-5p. Cell Biochemistry and Biophysics, 2021, 79, 757-767.	0.9	9
93	Anchorâ€MPACT: A standardized microfluidic platform for highâ€throughput antiangiogenic drug screening. Biotechnology and Bioengineering, 2021, 118, 2524-2535.	1.7	13
94	Challenges in bioinformatics approaches to tumor mutation burden analysis. Oncology Letters, 2021, 22, 555.	0.8	4
95	HNF1A regulates colorectal cancer progression and drug resistance as a downstream of POU5F1. Scientific Reports, 2021, 11, 10363.	1.6	11
96	Chromatin state dynamics confers specific therapeutic strategies in enhancer subtypes of colorectal cancer. Gut, 2022, 71, 938-949.	6.1	25
97	Oncogenic RAS drives the CRAFâ€dependent extracellular vesicle uptake mechanism coupled with metastasis. Journal of Extracellular Vesicles, 2021, 10, e12091.	5.5	15
98	Pro-Health and Anti-Cancer Activity of Fungal Fractions Isolated from Milk-Supplemented Cultures of Lentinus (Pleurotus) Sajor-caju. Biomolecules, 2021, 11, 1089.	1.8	6
99	KRAS phosphorylation regulates cell polarization and tumorigenic properties in colorectal cancer. Oncogene, 2021, 40, 5730-5740.	2.6	5
100	Low-Molecular-Weight Fucoidan as Complementary Therapy of Fluoropyrimidine-Based Chemotherapy in Colorectal Cancer. International Journal of Molecular Sciences, 2021, 22, 8041.	1.8	7
101	SPTAN1 Expression Predicts Treatment and Survival Outcomes in Colorectal Cancer. Cancers, 2021, 13, 3638.	1.7	2
102	Metastatic heterogeneity of the consensus molecular subtypes of colorectal cancer. Npj Genomic Medicine, 2021, 6, 59.	1.7	29
103	YY1 Silencing Induces 5-Fluorouracil-Resistance and BCL2L15 Downregulation in Colorectal Cancer Cells: Diagnostic and Prognostic Relevance. International Journal of Molecular Sciences, 2021, 22, 8481.	1.8	8
104	Comprehensive polar metabolomics and lipidomics profiling discriminates the transformed from the non-transformed state in colon tissue and cell lines. Scientific Reports, 2021, 11, 17249.	1.6	5
105	Rigosertib elicits potent anti-tumor responses in colorectal cancer by inhibiting Ras signaling pathway. Cellular Signalling, 2021, 85, 110069.	1.7	9
106	Analysis of Nanotoxicity with Integrated Omics and Mechanobiology. Nanomaterials, 2021, 11, 2385.	1.9	24
107	MicroRNA Interactome Multiomics Characterization for Cancer Research and Personalized Medicine: An Expert Review. OMICS A Journal of Integrative Biology, 2021, 25, 545-566.	1.0	5
108	De novo transcriptomic subtyping of colorectal cancer liver metastases in the context of tumor heterogeneity. Genome Medicine, 2021, 13, 143.	3.6	10

#	Article	IF	CITATIONS
109	Neuromedin U induces an invasive phenotype in CRC cells expressing the NMUR2 receptor. Journal of Experimental and Clinical Cancer Research, 2021, 40, 283.	3.5	8
110	The expressed mutational landscape of microsatellite stable colorectal cancers. Genome Medicine, 2021, 13, 142.	3.6	4
111	KAP1 Is a Chromatin Reader that Couples Steps of RNA Polymerase II Transcription to Sustain Oncogenic Programs. Molecular Cell, 2020, 78, 1133-1151.e14.	4.5	26
112	Colorectal cancer (CRC) as a multifactorial disease and its causal correlations with multiple signaling pathways. Bioscience Reports, 2020, 40, .	1.1	58
113	Overexpression of sortilin is associated with 5â€FU resistance and poor prognosis in colorectal cancer. Journal of Cellular and Molecular Medicine, 2021, 25, 47-60.	1.6	14
114	Evaluation of colorectal cancer subtypes and cell lines using deep learning. Life Science Alliance, 2019, 2, e201900517.	1.3	65
115	Sulforaphane suppresses carcinogenesis of colorectal cancer through the ERK/Nrf2‑UDP glucuronosyltransferase 1A metabolic axis activation. Oncology Reports, 2020, 43, 1067-1080.	1,2	21
116	Lycorine inhibits cell proliferation, migration and invasion, and primarily exerts <i>inÂvitro</i> cytostatic effects in human colorectal cancer via activating the ROS/p38 and AKT signaling pathways. Oncology Reports, 2021, 45, .	1.2	17
117	AHA1 regulates cell migration and invasion via the EMT pathway in colorectal adenocarcinomas. Scientific Reports, 2021, 11, 19946.	1.6	3
119	Eicosapentaenoic acid and/or aspirin for preventing colorectal adenomas during colonoscopic surveillance in the NHS Bowel Cancer Screening Programme: the seAFOod RCT. Efficacy and Mechanism Evaluation, 2019, 6, 1-154.	0.9	7
120	Etil Piruvatın ÇeÅŸitli Kanser Hücre Hatları Üzerindeki Sitotoksik Etkisinin İncelenmesi. KahramanmaraÅ Sütçü İmam Üniversitesi Tarım Ve Doğa Dergisi, 2021, 24, 49-56.	ζΫ 0.2	1
121	Long nonâ€'coding RNA LINC00858 promotes TP53â€'wildâ€'type colorectal cancer progression by regulating the microRNAâ€'25â€'3p/SMAD7 axis. Oncology Reports, 2020, 43, 1267-1277.	1,2	5
122	Proteomic Research on the Antitumor Properties of Medicinal Mushrooms. Molecules, 2021, 26, 6708.	1.7	11
123	KMT9 Controls Stemness and Growth of Colorectal Cancer. Cancer Research, 2022, 82, 210-220.	0.4	11
124	Etanol ve Dimetil Sülfoksidin Çeşitli İnsan Hücre Hatları Üzerindeki in vitro Sitotoksik Etkisi. Kahramanmaraş Sütçü İmam Üniversitesi Tarım Ve Doğa Dergisi, 2020, 23, 1119-1124.	0.2	7
125	Inhibition of Colorectal Cancer Cell Survival by Paclitaxel Combined with Olaparib. Adıyaman University Journal of Science, 0, , .	0.0	O
128	Effects of a Novel Thiadiazole Derivative with High Anticancer Activity on Cancer Cell Immunogenic Markers: Mismatch Repair System, PD-L1 Expression, and Tumor Mutation Burden. Pharmaceutics, 2021, 13, 885.	2.0	1
129	Addition of bromelain and acetylcysteine to gemcitabine potentiates tumor inhibition in human colon cancer cell line LS174T. American Journal of Cancer Research, 2021, 11, 2252-2263.	1.4	1

#	Article	IF	Citations
130	NEBL and AKT1 maybe new targets to eliminate the colorectal cancer cells resistance to oncolytic effect of vesicular stomatitis virus M-protein. Molecular Therapy - Oncolytics, 2021, 23, 593-601.	2.0	0
131	Stromal Cells Promote Matrix Deposition, Remodelling and an Immunosuppressive Tumour Microenvironment in a 3D Model of Colon Cancer. Cancers, 2021, 13, 5998.	1.7	8
132	Oxidative Distress Induces Wnt/ \hat{l}^2 -Catenin Pathway Modulation in Colorectal Cancer Cells: Perspectives on APC Retained Functions. Cancers, 2021, 13, 6045.	1.7	9
133	Expression of neurofibromin 1 in colorectal cancer and cetuximab resistance. Oncology Reports, 2021, 47, .	1.2	3
134	25-hydroxycholesterol–induced cell death via activation of ROCK/LIMK/cofilin axis in colorectal cancer cell spheroids. Journal of Steroid Biochemistry and Molecular Biology, 2022, 216, 106037.	1.2	6
135	CCL20 induces colorectal cancer neoplastic epithelial cell proliferation, migration, and further CCL20 production through autocrine HGF-c-Met and MSP-MSPR signaling pathways. Oncotarget, 2021, 12, 2323-2337.	0.8	5
137	Strategies for developing complex multi-component in vitro tumor models: Highlights in glioblastoma. Advanced Drug Delivery Reviews, 2022, 180, 114067.	6.6	10
138	MLH1 mediates cytoprotective nucleophagy to resist 5-Fluorouracil-induced cell death in colorectal carcinoma. Neoplasia, 2022, 24, 76-85.	2.3	3
139	SMAD4–201 transcript as a putative biomarker in colorectal cancer. BMC Cancer, 2022, 22, 72.	1.1	2
140	Assessment of Dendrigrafts of Poly- <scp>l</scp> -lysine Cytotoxicity and Cell Penetration in Cancer Cells. ACS Applied Polymer Materials, 2022, 4, 908-919.	2.0	4
142	Acute aerobic exerciseâ€conditioned serum reduces colon cancer cell proliferation in vitro through interleukinâ€6â€induced regulation of <scp>DNA</scp> damage. International Journal of Cancer, 2022, 151, 265-274.	2.3	20
143	Transcriptomics Reveals the Mevalonate and Cholesterol Pathways Blocking as Part of the Bacterial Cyclodipeptides Cytotoxic Effects in HeLa Cells of Human Cervix Adenocarcinoma. Frontiers in Oncology, 2022, 12, 790537.	1.3	5
144	The autocrine loop of ALK receptor and ALKAL2 ligand is an actionable target in consensus molecular subtype 1 colon cancer. Journal of Experimental and Clinical Cancer Research, 2022, 41, 113.	3.5	9
145	Testisâ€specific <scp>hnRNP</scp> is expressed in colorectal cancer cells and accelerates cell growth mediating <scp>ZDHHC11 mRNA</scp> stabilization. Cancer Medicine, 2022, , .	1.3	2
146	Immunopeptidomic Analyses of Colorectal Cancers With and Without Microsatellite Instability. Molecular and Cellular Proteomics, 2022, 21, 100228.	2.5	20
147	Folic Acid Treatment Directly Influences the Genetic and Epigenetic Regulation along with the Associated Cellular Maintenance Processes of HT-29 and SW480 Colorectal Cancer Cell Lines. Cancers, 2022, 14, 1820.	1.7	5
148	Identification and functional validation of HLA-C as a potential gene involved in colorectal cancer in the Korean population. BMC Genomics, 2022, 23, 261.	1.2	3
150	Vitamin D treatment induces in vitro and ex vivo transcriptomic changes indicating antiâ€ŧumor effects. FASEB Journal, 2022, 36, e22082.	0.2	6

#	Article	IF	CITATIONS
153	Multi-OMICs data analysis identifies molecular features correlating with tumor immunity in colon cancer. Cancer Biomarkers, 2022, 33, 261-271.	0.8	3
154	Patient-Derived Organoids of Colorectal Cancer: A Useful Tool for Personalized Medicine. Journal of Personalized Medicine, 2022, 12, 695.	1.1	3
155	High Diversity of Glycosphingolipid Glycans of Colorectal Cancer Cell Lines Reflects the Cellular Differentiation Phenotype. Molecular and Cellular Proteomics, 2022, 21, 100239.	2.5	9
156	Nitric-Oxide Synthase trafficking inducer (NOSTRIN) is an emerging negative regulator of colon cancer progression. BMC Cancer, 2022, 22, .	1.1	0
157	Ficus dubia Latex Extract Induces Cell Cycle Arrest and Apoptosis by Regulating the NF-κB Pathway in Inflammatory Human Colorectal Cancer Cell Lines. Cancers, 2022, 14, 2665.	1.7	3
158	Mutant KRAS-Associated Proteome Is Mainly Controlled by Exogenous Factors. Cells, 2022, 11, 1988.	1.8	2
159	BidSi6 and BidEL isoforms as a potential marker for predicting colorectal adenomatous polyps. BMC Medical Genomics, 2022, 15, .	0.7	1
160	The Use of Endo-Cellulase and Endo-Xylanase for the Extraction of Apple Pectins as Factors Modifying Their Anticancer Properties and Affecting Their Synergy with the Active Form of Irinotecan. Pharmaceuticals, 2022, 15, 732.	1.7	5
161	Natural Products from Actinobacteria as a Potential Source of New Therapies Against Colorectal Cancer: A Review. Frontiers in Pharmacology, $0, 13, \ldots$	1.6	12
162	<scp>RNA</scp> polymerase I inhibition induces terminal differentiation, growth arrest, and vulnerability to senolytics in colorectal cancer cells. Molecular Oncology, 2022, 16, 2788-2809.	2.1	0
163	Neogambogic acid suppresses characteristics and growth of colorectal cancer stem cells by inhibition of DLK1 and Wnt/ \hat{l}^2 -catenin pathway. European Journal of Pharmacology, 2022, 929, 175112.	1.7	1
164	Kallikrein-Related Peptidase 6 (KLK6) as a Contributor toward an Aggressive Cancer Cell Phenotype: A Potential Role in Colon Cancer Peritoneal Metastasis. Biomolecules, 2022, 12, 1003.	1.8	7
165	Regulation of the <code><scp> <i>THRA</i> </scp> gene, encoding the thyroid hormone nuclear receptor TRÎ± 1, in intestinal lesions. Molecular Oncology, 0, , .</code>	2.1	0
167	Crosstalk between PI3K/Akt and Wnt/ \hat{l}^2 -catenin pathways promote colorectal cancer progression regardless of mutational status. Cancer Biology and Therapy, 2022, 23, 1-13.	1.5	15
168	Myogenetic Oligodeoxynucleotide Restores Differentiation and Reverses Inflammation of Myoblasts Aggravated by Cancer-Conditioned Medium., 2022, 1, 111-120.		6
169	A prognostic sixâ€gene expression riskâ€score derived from proteomic profiling of the metastatic colorectal cancer secretome. Journal of Pathology: Clinical Research, 2022, 8, 495-508.	1.3	3
170	FOLFOXIRI Resistance Induction and Characterization in Human Colorectal Cancer Cells. Cancers, 2022, 14, 4812.	1.7	4
171	Tumour Organoids from Multifocal Metastatic Colorectal Cancers for Personalised Oncology. European Medical Journal Oncology, 0, , 30-31.	0.0	0

#	Article	IF	CITATIONS
172	Dual inhibition of BET and HAT/p300 suppresses colorectal cancer via DR5- and p53/PUMA-mediated cell death. Frontiers in Oncology, 0, 12, .	1.3	4
173	Dysregulation of miR-1-3p: An Early Event in Colitis-Associated Dysplasia. International Journal of Molecular Sciences, 2022, 23, 13024.	1.8	1
174	Bufalin Inhibits Tumorigenesis, Stemness, and Epithelial–Mesenchymal Transition in Colorectal Cancer through a C-Kit/Slug Signaling Axis. International Journal of Molecular Sciences, 2022, 23, 13354.	1.8	5
175	Single-cell RNA sequencing highlights the functional role of human endogenous retroviruses in gallbladder cancer. EBioMedicine, 2022, 85, 104319.	2.7	7
176	N-glycosylation Regulates Intrinsic IFN- \hat{l}^3 Resistance in Colorectal Cancer: Implications for Immunotherapy. Gastroenterology, 2023, 164, 392-406.e5.	0.6	10
177	Modulatory Effect of Chlorogenic Acid and Coffee Extracts on Wnt/β-Catenin Pathway in Colorectal Cancer Cells. Nutrients, 2022, 14, 4880.	1.7	9
178	Multiomics of Colorectal Cancer Organoids Reveals Putative Mediators of Cancer Progression Resulting from SMAD4 Inactivation. Journal of Proteome Research, 2023, 22, 138-151.	1.8	8
179	Comprehensive microRNA analysis across genome-edited colorectal cancer organoid models reveals miR-24 as a candidate regulator of cell survival. BMC Genomics, 2022, 23, .	1.2	2
180	Classification and characterization of alternative promoters in 26 lung adenocarcinoma cell lines. Japanese Journal of Clinical Oncology, 0, , .	0.6	1
181	Extracellular Vesicle Antibody Microarray for Multiplexed Inner and Outer Protein Analysis. ACS Sensors, 2022, 7, 3817-3828.	4.0	2
182	Differential Uridyl-diphosphate-Glucuronosyl Transferase 1A enzymatic arsenal explains the specific cytotoxicity of resveratrol towards tumor colorectal cells. Journal of Functional Foods, 2022, 99, 105345.	1.6	2
183	Cytotoxic Labdane Diterpenes, Norlabdane Diterpenes and Bis-Labdanic Diterpenes from the Zingiberaceae: A Systematic Review. Pharmaceuticals, 2022, 15, 1517.	1.7	3
184	Neuromedin U secreted by colorectal cancer cells promotes a tumour-supporting microenvironment. Cell Communication and Signaling, 2022, 20, .	2.7	2
185	Multi-Omics Data Analysis for Cancer Research: Colorectal Cancer, Liver Cancer and Lung Cancer. Translational Bioinformatics, 2023, , 77-99.	0.0	0
186	A novel application of hectorite nanoclay for preparation of colorectal cancer spheroids with malignant potential. Lab on A Chip, 0 , , .	3.1	0
187	BMX, a specific HDAC8 inhibitor, with TMZ for advanced CRC therapy: a novel synergic effect to elicit p53-, \hat{I}^2 -catenin- and MGMT-dependent apoptotic cell death. Cell Communication and Signaling, 2022, 20, .	2.7	3
188	Regorafenib and Ruthenium Complex Combination Inhibit Cancer Cell Growth by Targeting PI3K/AKT/ERK Signalling in Colorectal Cancer Cells. International Journal of Molecular Sciences, 2023, 24, 686.	1.8	0
189	The Combination of ATM and Chk1 Inhibitors Induces Synthetic Lethality in Colorectal Cancer Cells. Cancers, 2023, 15, 735.	1.7	0

#	Article	IF	CITATIONS
190	RAF1 contributes to cell proliferation and STAT3 activation in colorectal cancer independently of microsatellite and KRAS status. Oncogene, 2023, 42, 1649-1660.	2.6	6
191	Microphysiological systems to study colorectal cancer: state-of-the-art. Biofabrication, 2023, 15, 032001.	3.7	4
192	Transcriptomic analysis reveals differential adaptation of colorectal cancer cells to low and acute doses of cisplatin. Gene, 2023, 864, 147304.	1.0	1
193	An antibody–drug conjugate targeting GPR56 demonstrates efficacy in preclinical models of colorectal cancer. British Journal of Cancer, 2023, 128, 1592-1602.	2.9	4
194	In Vitro and In Silico Study on the Impact of Chlorogenic Acid in Colorectal Cancer Cells: Proliferation, Apoptosis, and Interaction with \hat{I}^2 -Catenin and LRP6. Pharmaceuticals, 2023, 16, 276.	1.7	4
195	In-Depth Analysis of the N-Glycome of Colorectal Cancer Cell Lines. International Journal of Molecular Sciences, 2023, 24, 4842.	1.8	0
196	Differential CMS-Related Expression of Cell Surface Carbonic Anhydrases IX and XII in Colorectal Cancer Modelsâ€"Implications for Therapy. International Journal of Molecular Sciences, 2023, 24, 5797.	1.8	3
197	Bioinformatics screening of colorectal-cancer causing molecular signatures through gene expression profiles to discover therapeutic targets and candidate agents. BMC Medical Genomics, $2023, 16, \ldots$	0.7	5
198	Trichostatin A inhibits expression of the human SLC2A5 gene via SNAI1/SNAI2 transcription factors and sensitizes colon cancer cells to platinum compounds. European Journal of Pharmacology, 2023, 949, 175728.	1.7	2
199	Repurposing Sulfasalazine as a Radiosensitizer in Hypoxic Human Colorectal Cancer. Cancers, 2023, 15, 2363.	1.7	4