Mammary adipocytes stimulate breast cancer invasion tumor cells

JCI Insight

2, e87489

DOI: 10.1172/jci.insight.87489

Citation Report

#	Article	IF	CITATIONS
1	Obesity and melanoma: could fat be fueling malignancy?. Pigment Cell and Melanoma Research, 2017, 30, 294-306.	3.3	50
2	Adipocyte–Tumor Cell Metabolic Crosstalk in Breast Cancer. Trends in Molecular Medicine, 2017, 23, 381-392.	6.7	105
3	MYC Controls Human Pluripotent Stem Cell Fate Decisions through Regulation of Metabolic Flux. Cell Stem Cell, 2017, 21, 502-516.e9.	11.1	113
4	Signals from the Adipose Microenvironment and the Obesity–Cancer Link—A Systematic Review. Cancer Prevention Research, 2017, 10, 494-506.	1.5	149
5	Glycerol-3-phosphate phosphatase/PGP: Role in intermediary metabolism and target for cardiometabolic diseases. Biochimie, 2017, 143, 18-28.	2.6	43
6	PDGFRÎ \pm / PDGFRÎ 2 signaling balance modulates progenitor cell differentiation into white and beige adipocytes. Development (Cambridge), 2018, 145, .	2.5	77
7	Contribution of Adipose Tissue to Development of Cancer. , 2017, 8, 237-282.		139
8	SDHB downregulation facilitates the proliferation and invasion of colorectal cancer through AMPK functions excluding those involved in the modulation of aerobic glycolysis. Experimental and Therapeutic Medicine, 2017, 15, 864-872.	1.8	8
9	Hints on ATGL implications in cancer: beyond bioenergetic clues. Cell Death and Disease, 2018, 9, 316.	6.3	59
10	A 3-Dimensional Biomimetic Platform to Interrogate the Safety of Autologous Fat Transfer in the Setting of Breast Cancer. Annals of Plastic Surgery, 2018, 80, S223-S228.	0.9	7
11	A new role for extracellular vesicles: how small vesicles can feed tumors' big appetite. Journal of Lipid Research, 2018, 59, 1793-1804.	4.2	35
12	A guide to studying human dermal adipocytes in situ. Experimental Dermatology, 2018, 27, 589-602.	2.9	20
13	Cancer as a Matter of Fat: The Crosstalk between Adipose Tissue and Tumors. Trends in Cancer, 2018, 4, 374-384.	7.4	286
14	Multifaceted Roles of Interleukin-6 in Adipocyte–Breast Cancer Cell Interaction. Translational Oncology, 2018, 11, 275-285.	3.7	70
15	Metabolic cooperation between cancer and non-cancerous stromal cells is pivotal in cancer progression. Tumor Biology, 2018, 40, 101042831875620.	1.8	21
16	Tumor-extrinsic discoidin domain receptor 1 promotes mammary tumor growth by regulating adipose stromal interleukin 6 production in mice. Journal of Biological Chemistry, 2018, 293, 2841-2849.	3.4	21
17	The impact on highâ€grade serous ovarian cancer of obesity and lipid metabolismâ€related gene expression patterns: the underestimated driving force affecting prognosis. Journal of Cellular and Molecular Medicine, 2018, 22, 1805-1815.	3.6	20
18	Anatomical, Physiological, and Functional Diversity of Adipose Tissue. Cell Metabolism, 2018, 27, 68-83.	16.2	298

#	ARTICLE	IF	Citations
19	Adipocyte biology in breast cancer: From silent bystander to active facilitator. Progress in Lipid Research, 2018, 69, 11-20.	11.6	180
20	Clinical implications of bone marrow adiposity. Journal of Internal Medicine, 2018, 283, 121-139.	6.0	159
21	Lipid droplets induced by secreted phospholipase A2 and unsaturated fatty acids protect breast cancer cells from nutrient and lipotoxic stress. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2018, 1863, 247-265.	2.4	99
22	Mitochondrial metabolism and cancer. Cell Research, 2018, 28, 265-280.	12.0	818
23	Comparative proteomics of soluble factors secreted by human breast adipose tissue from tumor and normal breast. Oncotarget, 2018, 9, 31007-31017.	1.8	7
26	Adipose PD-L1 Modulates PD-1/PD-L1 Checkpoint Blockade Immunotherapy Efficacy in Breast Cancer. Oncolmmunology, 2018, 7, e1500107.	4.6	66
27	The p53/Adipose-Tissue/Cancer Nexus. Frontiers in Endocrinology, 2018, 9, 457.	3. 5	16
28	Mutant GNAS drives pancreatic tumourigenesis by inducing PKA-mediated SIK suppression and reprogramming lipid metabolism. Nature Cell Biology, 2018, 20, 811-822.	10.3	124
29	Utilization of adipocyte-derived lipids and enhanced intracellular trafficking of fatty acids contribute to breast cancer progression. Cell Communication and Signaling, 2018, 16, 32.	6.5	48
30	Impact of pre-diagnostic triglycerides and HDL-cholesterol on breast cancer recurrence and survival by breast cancer subtypes. BMC Cancer, 2018, 18, 654.	2.6	52
31	Fatty acid oxidation: An emerging facet of metabolic transformation in cancer. Cancer Letters, 2018, 435, 92-100.	7.2	279
32	Dual Effects of Melanoma Cell-derived Factors on Bone Marrow Adipocytes Differentiation. Journal of Visualized Experiments, 2018, , .	0.3	0
33	Heterogeneity of fatty acid metabolism in breast cancer cells underlies differential sensitivity to palmitateâ€induced apoptosis. Molecular Oncology, 2018, 12, 1623-1638.	4.6	40
34	Discovery of long-chain salicylketoxime derivatives as monoacylglycerol lipase (MAGL) inhibitors. European Journal of Medicinal Chemistry, 2018, 157, 817-836.	5 . 5	30
35	Lipid Droplets in Cancer: Guardians of Fat in a Stressful World. Molecules, 2018, 23, 1941.	3.8	240
36	Adipocyte-Derived Lipids Mediate Melanoma Progression via FATP Proteins. Cancer Discovery, 2018, 8, 1006-1025.	9.4	248
37	Single cell study of adipose tissue mediated lipid droplet formation and biochemical alterations in breast cancer cells. Analyst, The, 2019, 144, 5558-5570.	3.5	12
38	Circulating lipids, mammographic density, and risk of breast cancer in the Nurses' Health Study and Nurses' Health Study II. Cancer Causes and Control, 2019, 30, 943-953.	1.8	6

#	Article	IF	Citations
39	The expanded role of fatty acid metabolism in cancer: new aspects and targets. Precision Clinical Medicine, 2019, 2, 183-191.	3.3	119
40	A Shifty Target: Tumor-Initiating Cells and Their Metabolism. International Journal of Molecular Sciences, 2019, 20, 5370.	4.1	11
41	Co-culture With Human Breast Adipocytes Differentially Regulates Protein Abundance in Breast Cancer Cells. Cancer Genomics and Proteomics, 2019, 16, 319-332.	2.0	11
42	Cancer-associated adipocytes: key players in breast cancer progression. Journal of Hematology and Oncology, 2019, 12, 95.	17.0	267
43	Metabolic crosstalk in the breast cancer microenvironment. European Journal of Cancer, 2019, 121, 154-171.	2.8	128
44	Tumor-secreted PAI-1 promotes breast cancer metastasis via the induction of adipocyte-derived collagen remodeling. Cell Communication and Signaling, 2019, 17, 58.	6.5	44
46	Low eicosapentaenoic acid and gamma-linolenic acid levels in breast adipose tissue are associated with inflammatory breast cancer. Breast, 2019, 45, 113-117.	2.2	17
47	Exosomes secreted by mesenchymal stromal/stem cell-derived adipocytes promote breast cancer cell growth via activation of Hippo signaling pathway. Stem Cell Research and Therapy, 2019, 10, 117.	5.5	97
48	Palmitic acid is an intracellular signaling molecule involved in disease development. Cellular and Molecular Life Sciences, 2019, 76, 2547-2557.	5.4	90
49	Drosophila melanogaster: A Model Organism to Study Cancer. Frontiers in Genetics, 2019, 10, 51.	2.3	158
50	Epinephrine Infiltration of Adipose Tissue Impacts MCF7 Breast Cancer Cells and Total Lipid Content. International Journal of Molecular Sciences, 2019, 20, 5626.	4.1	7
51	Bioprofiling TS/A Murine Mammary Cancer for a Functional Precision Experimental Model. Cancers, 2019, 11, 1889.	3.7	15
52	Breast-Associated Adipocytes Secretome Induce Fatty Acid Uptake and Invasiveness in Breast Cancer Cells via CD36 Independently of Body Mass Index, Menopausal Status and Mammary Density. Cancers, 2019, 11, 2012.	3.7	35
53	The Adipose Stem Cell as a Novel Metabolic Actor in Adrenocortical Carcinoma Progression: Evidence from an In Vitro Tumor Microenvironment Crosstalk Model. Cancers, 2019, 11, 1931.	3.7	17
54	Interleukin-8 Activates Breast Cancer-Associated Adipocytes and Promotes Their Angiogenesis- and Tumorigenesis-Promoting Effects. Molecular and Cellular Biology, 2019, 39, .	2.3	36
55	Extracellular Fatty Acids Are the Major Contributor to Lipid Synthesis in Prostate Cancer. Molecular Cancer Research, 2019, 17, 949-962.	3.4	65
56	Periprostatic Adipose Tissue Favors Prostate Cancer Cell Invasion in an Obesity-Dependent Manner: Role of Oxidative Stress. Molecular Cancer Research, 2019, 17, 821-835.	3.4	76
57	Adipocytes promote breast cancer resistance to chemotherapy, a process amplified by obesity: role of the major vault proteinÂ(MVP). Breast Cancer Research, 2019, 21, 7.	5.0	93

#	ARTICLE	IF	CITATIONS
58	Of mice and men: The physiological role of adipose triglyceride lipase (ATGL). Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2019, 1864, 880-899.	2.4	98
59	Stromal-induced mitochondrial re-education: Impact on epithelial-to-mesenchymal transition and cancer aggressiveness. Seminars in Cell and Developmental Biology, 2020, 98, 71-79.	5.0	7
60	Adipocyte extracellular vesicles carry enzymes and fatty acids that stimulate mitochondrial metabolism and remodeling in tumor cells. EMBO Journal, 2020, 39, e102525.	7.8	175
61	Identification of cadmium-produced lipid hydroperoxides, transcriptomic changes in antioxidant enzymes, xenobiotic transporters, and pro-inflammatory markers in human breast cancer cells (MCF7) and protection with fat-soluble vitamins. Environmental Science and Pollution Research, 2020, 27, 1978-1990.	5.3	15
62	Greasing the Wheels of the Cancer Machine: The Role of Lipid Metabolism in Cancer. Cell Metabolism, 2020, 31, 62-76.	16.2	493
63	Lipid Droplets in Cancer. Reviews of Physiology, Biochemistry and Pharmacology, 2020, , 53-86.	1.6	58
64	Coexpression Module Construction by Weighted Gene Coexpression Network Analysis and Identify Potential Prognostic Markers of Breast Cancer. Cancer Biotherapy and Radiopharmaceuticals, 2020, , .	1.0	1
65	Cellular Mechanisms of Circulating Tumor Cells During Breast Cancer Metastasis. International Journal of Molecular Sciences, 2020, 21, 5040.	4.1	28
66	The Lipid Metabolic Landscape of Cancers and New Therapeutic Perspectives. Frontiers in Oncology, 2020, 10, 605154.	2.8	58
67	Adipocyte Fatty Acid Transfer Supports Megakaryocyte Maturation. Cell Reports, 2020, 32, 107875.	6.4	29
68	Redox Imbalances in Ageing and Metabolic Alterations: Implications in Cancer and Cardiac Diseases. An Overview from the Working Group of Cardiotoxicity and Cardioprotection of the Italian Society of Cardiology (SIC). Antioxidants, 2020, 9, 641.	5.1	23
69	Lipids and cancer: Emerging roles in pathogenesis, diagnosis and therapeutic intervention. Advanced Drug Delivery Reviews, 2020, 159, 245-293.	13.7	316
70	Drilling for Oil: Tumor-Surrounding Adipocytes Fueling Cancer. Trends in Cancer, 2020, 6, 593-604.	7.4	38
71	Phytochemical Targeting of STAT3 Orchestrated Lipid Metabolism in Therapy-Resistant Cancers. Biomolecules, 2020, 10, 1118.	4.0	10
72	Lipids in the tumor microenvironment: From cancer progression to treatment. Progress in Lipid Research, 2020, 80, 101055.	11.6	191
73	Cancer-associated adipocytes: emerging supporters in breast cancer. Journal of Experimental and Clinical Cancer Research, 2020, 39, 156.	8.6	86
74	Lung mesenchymal cells elicit lipid storage in neutrophils that fuel breast cancer lung metastasis. Nature Immunology, 2020, 21, 1444-1455.	14.5	109
75	Adipose Tissue Properties in Tumor-Bearing Breasts. Frontiers in Oncology, 2020, 10, 1506.	2.8	6

#	ARTICLE	lF	Citations
76	Studying Adipose Tissue in the Breast Tumor Microenvironment In Vitro: Progress and Opportunities. Tissue Engineering and Regenerative Medicine, 2020, 17, 773-785.	3.7	13
77	Secreted Factors from Adipose Tissue Reprogram Tumor Lipid Metabolism and Induce Motility by Modulating PPARα/ANGPTL4 and FAK. Molecular Cancer Research, 2020, 18, 1849-1862.	3.4	22
78	OXPHOS-dependent metabolic reprogramming prompts metastatic potential of breast cancer cells under osteogenic differentiation. British Journal of Cancer, 2020, 123, 1644-1655.	6.4	25
79	Upregulation of CPT1A is essential for the tumor-promoting effect of adipocytes in colon cancer. Cell Death and Disease, 2020, 11, 736.	6.3	41
80	Lactate Metabolism in Breast Cancer Microenvironment: Contribution Focused on Associated Adipose Tissue and Obesity. International Journal of Molecular Sciences, 2020, 21, 9676.	4.1	18
81	Obesity and Cancer Metastasis: Molecular and Translational Perspectives. Cancers, 2020, 12, 3798.	3.7	42
82	Lipid-mediated regulation of the cancer-immune crosstalk. Pharmacological Research, 2020, 161, 105131.	7.1	12
83	The Targeted Impact of Flavones on Obesity-Induced Inflammation and the Potential Synergistic Role in Cancer and the Gut Microbiota. Molecules, 2020, 25, 2477.	3.8	22
84	Periprostatic adipose tissue: A heavy player in prostate cancer progression. Current Opinion in Endocrine and Metabolic Research, 2020, 10, 29-35.	1.4	25
85	Lipid droplets: platforms with multiple functions in cancer hallmarks. Cell Death and Disease, 2020, 11 , 105 .	6.3	273
86	Modeling chemical effects on breast cancer: the importance of the microenvironment in vitro. Integrative Biology (United Kingdom), 2020, 12, 21-33.	1.3	9
87	Lipid dropletâ€mediated scavenging as novel intrinsic and adaptive resistance factor against the multikinase inhibitor ponatinib. International Journal of Cancer, 2020, 147, 1680-1693.	5.1	16
88	Tissue Engineering Models for the Study of Breast Neoplastic Disease and the Tumor Microenvironment. Tissue Engineering - Part B: Reviews, 2020, 26, 423-442.	4.8	3
89	Adipocyte-Induced FABP4 Expression in Ovarian Cancer Cells Promotes Metastasis and Mediates Carboplatin Resistance. Cancer Research, 2020, 80, 1748-1761.	0.9	139
90	TGF \hat{I}^2 2-induced formation of lipid droplets supports acidosis-driven EMT and the metastatic spreading of cancer cells. Nature Communications, 2020, 11, 454.	12.8	184
91	MYC regulates fatty acid metabolism through a multigenic program in claudin-low triple negative breast cancer. British Journal of Cancer, 2020, 122, 868-884.	6.4	57
92	Identification of Metabolic Alterations in Breast Cancer Using Mass Spectrometry-Based Metabolomic Analysis. Metabolites, 2020, 10, 170.	2.9	16
93	Links between cancer metabolism and cisplatin resistance. International Review of Cell and Molecular Biology, 2020, 354, 107-164.	3.2	48

#	Article	IF	CITATIONS
94	Cancer-associated adipocyte-derived G-CSF promotes breast cancer malignancy via Stat3 signaling. Journal of Molecular Cell Biology, 2020, 12, 723-737.	3.3	28
95	Shedding New Light on Cancer Metabolism: A Metabolic Tightrope Between Life and Death. Frontiers in Oncology, 2020, 10, 409.	2.8	33
96	Metabolic Reprogramming in Triple-Negative Breast Cancer. Frontiers in Oncology, 2020, 10, 428.	2.8	137
97	Decreased Efficacy of Doxorubicin Corresponds With Modifications in Lipid Metabolism Markers and Fatty Acid Profiles in Breast Tumors From Obese vs. Lean Mice. Frontiers in Oncology, 2020, 10, 306.	2.8	21
98	Adipose Stromal Cell Expansion and Exhaustion: Mechanisms and Consequences. Cells, 2020, 9, 863.	4.1	26
99	Interaction between adipose tissue and cancer cells: role for cancer progression. Cancer and Metastasis Reviews, 2021, 40, 31-46.	5.9	41
100	Design, synthesis and biological evaluation of second-generation benzoylpiperidine derivatives as reversible monoacylglycerol lipase (MAGL) inhibitors. European Journal of Medicinal Chemistry, 2021, 209, 112857.	5.5	24
101	E2F Transcription Factors in Cancer, More than the Cell Cycle., 2021,,.		1
102	Cancer-associated adipocytes as immunomodulators in cancer. Biomarker Research, 2021, 9, 2.	6.8	44
103	Expression and affinity purification of recombinant mammalian mitochondrial ribosomal small subunit (MRPS) proteins and protein–protein interaction analysis indicate putative role in tumourigenic cellular processes. Journal of Biochemistry, 2021, 169, 675-692.	1.7	6
104	The metabolism of cancer cells during metastasis. Nature Reviews Cancer, 2021, 21, 162-180.	28.4	431
105	MicroRNA-Mediated Metabolic Shaping of the Tumor Microenvironment. Cancers, 2021, 13, 127.	3.7	11
106	The diversity and breadth of cancer cell fatty acid metabolism. Cancer & Metabolism, 2021, 9, 2.	5.0	107
107	Lipid Metabolism in Tumor-Infiltrating T Cells. Advances in Experimental Medicine and Biology, 2021, 1316, 149-167.	1.6	4
108	Bioactive lipids in cancers. , 2021, , 31-45.		0
109	Bad Cholesterol Uptake by CD36 in T-Cells Cripples Anti-Tumor Immune Response. Immunometabolism, 2021, 3, .	1.6	4
110	Intercellular and interorgan crosstalk through adipocyte extracellular vesicles. Reviews in Endocrine and Metabolic Disorders, 2022, 23, 61-69.	5.7	31
111	Cellular and physical microenvironments regulate the aggressiveness and sunitinib chemosensitivity of clear cell renal cell carcinoma. Journal of Pathology, 2021, 254, 46-56.	4.5	4

#	Article	IF	CITATIONS
112	Adipose triglyceride lipase promotes the proliferation of colorectal cancer cells via enhancing the lipolytic pathway. Journal of Cellular and Molecular Medicine, 2021, 25, 3963-3975.	3.6	18
113	Tumor Metabolic Reprogramming by Adipokines as a Critical Driver of Obesity-Associated Cancer Progression. International Journal of Molecular Sciences, 2021, 22, 1444.	4.1	31
114	The Tumor Promotional Role of Adipocytes in the Breast Cancer Microenvironment and Macroenvironment. American Journal of Pathology, 2021, 191, 1342-1352.	3.8	18
115	Obesity, Type 2 Diabetes, and Cancer Risk. Frontiers in Oncology, 2020, 10, 615375.	2.8	85
116	Long-chain fatty acyl-CoA synthetase 1 promotes prostate cancer progression by elevation of lipogenesis and fatty acid beta-oxidation. Oncogene, 2021, 40, 1806-1820.	5.9	43
117	Metastasis-on-a-chip reveals adipocyte-derived lipids trigger cancer cell migration via HIF- $1\hat{l}\pm$ activation in cancer cells. Biomaterials, 2021, 269, 120622.	11.4	21
118	Molecular insights into the interplay between adiposity, breast cancer and bone metastasis. Clinical and Experimental Metastasis, 2021, 38, 119-138.	3.3	9
119	Linking Metabolic Reprogramming, Plasticity and Tumor Progression. Cancers, 2021, 13, 762.	3.7	22
120	Adipocyteâ€derived extracellular vesicles in health and diseases: Nanoâ€packages with vast biological properties. FASEB BioAdvances, 2021, 3, 407-419.	2.4	9
121	Adipocytes Under Obese-Like Conditions Change Cell Cycle Distribution and Phosphorylation Profiles of Breast Cancer Cells: The Adipokine Receptor CAP1 Matters. Frontiers in Oncology, 2021, 11, 628653.	2.8	7
122	Elevated Expression of Glycerol-3-Phosphate Phosphatase as a Biomarker of Poor Prognosis and Aggressive Prostate Cancer. Cancers, 2021, 13, 1273.	3.7	4
123	Advances in biofabrication techniques for collagen-based 3D in vitro culture models for breast cancer research. Materials Science and Engineering C, 2021, 122, 111944.	7.3	29
124	ROS-dependent HIF1 \hat{l} ± activation under forced lipid catabolism entails glycolysis and mitophagy as mediators of higher proliferation rate in cervical cancer cells. Journal of Experimental and Clinical Cancer Research, 2021, 40, 94.	8.6	28
125	Identification of a Positive Association between Mammary Adipose Cholesterol Content and Indicators of Breast Cancer Aggressiveness in a French Population. Journal of Nutrition, 2021, 151, 1119-1127.	2.9	3
126	Hormone-sensitive lipase: sixty years later. Progress in Lipid Research, 2021, 82, 101084.	11.6	53
127	Cancer-Associated Adipocytes in Breast Cancer: Causes and Consequences. International Journal of Molecular Sciences, 2021, 22, 3775.	4.1	41
128	Metabolic pathways in obesity-related breast cancer. Nature Reviews Endocrinology, 2021, 17, 350-363.	9.6	87
129	Bioprinting and Differentiation of Adipose-Derived Stromal Cell Spheroids for a 3D Breast Cancer-Adipose Tissue Model. Cells, 2021, 10, 803.	4.1	46

#	Article	IF	CITATIONS
130	Metabolic Interdependency of Th2 Cell-Mediated Type 2 Immunity and the Tumor Microenvironment. Frontiers in Immunology, 2021, 12, 632581.	4.8	44
131	Redox profile of breast tumor and associated adipose tissue in premenopausal women - Interplay between obesity and malignancy. Redox Biology, 2021, 41, 101939.	9.0	7
132	3D bioprinting of engineered breast cancer constructs for personalized and targeted cancer therapy. Journal of Controlled Release, 2021, 333, 91-106.	9.9	24
133	The Fat-glandular Interface and Breast Tumor Locations: Appearances on Ultrasound Tomography Are Supported by Quantitative Peritumoral Analyses. Journal of Breast Imaging, 2021, 3, 455-464.	1.3	5
134	Lipid metabolism in cancer: New perspectives and emerging mechanisms. Developmental Cell, 2021, 56, 1363-1393.	7.0	207
135	A human multi-cellular model shows how platelets drive production of diseased extracellular matrix and tissue invasion. IScience, 2021, 24, 102676.	4.1	28
136	Tumor Microenvironment-Derived Metabolites: A Guide to Find New Metabolic Therapeutic Targets and Biomarkers. Cancers, 2021, 13, 3230.	3.7	17
137	Redox changes in obesity, metabolic syndrome, and diabetes. Redox Biology, 2021, 42, 101887.	9.0	62
138	Adipose Tissue-Derived Extracellular Vesicles and the Tumor Microenvironment: Revisiting the Hallmarks of Cancer. Cancers, 2021, 13, 3328.	3.7	17
139	CPT1A and fatty acid \hat{l}^2 -oxidation are essential for tumor cell growth and survival in hormone receptor-positive breast cancer. NAR Cancer, 2021, 3, zcab035.	3.1	19
140	The Adipose Tissue at the Crosstalk Between EDCs and Cancer Development. Frontiers in Endocrinology, 2021, 12, 691658.	3.5	14
141	Messing Up the Cancer Stem Cell Chemoresistance Mechanisms Supported by Tumor Microenvironment. Frontiers in Oncology, 2021, 11, 702642.	2.8	21
142	Tumour fatty acid metabolism in the context of therapy resistance and obesity. Nature Reviews Cancer, 2021, 21, 753-766.	28.4	167
143	Clinical study of the feasibility, complications, and cosmetic outcomes of immediate autologous fat grafting during breast-conserving surgery for early-stage breast cancer in China. Gland Surgery, 2021, 10, 2386-2397.	1.1	2
144	Adipocytes Promote Breast Cancer Cell Survival and Migration through Autophagy Activation. Cancers, 2021, 13, 3917.	3.7	7
145	Cytosolic lipolysis in nonâ€adipose tissues: energy provision and beyond. FEBS Journal, 2022, 289, 7385-7398.	4.7	2
146	Adipose Stroma Accelerates the Invasion and Escape of Human Breast Cancer Cells from an Engineered Microtumor. Cellular and Molecular Bioengineering, 2022, 15, 15-29.	2.1	4
147	Modulating cell differentiation in cancer models. Biochemical Society Transactions, 2021, 49, 1803-1816.	3.4	2

#	Article	IF	CITATIONS
148	Estrogen Receptor Beta (ER^2) Maintains Mitochondrial Network Regulating Invasiveness in an Obesity-Related Inflammation Condition in Breast Cancer. Antioxidants, 2021, 10, 1371.	5.1	5
149	Fatty acid mobilization from adipose tissue is mediated by CD36 posttranslational modifications and intracellular trafficking. JCI Insight, 2021, 6, .	5.0	34
150	Overview of the molecular mechanisms contributing to the formation of cancer†associated adipocytes (Review). Molecular Medicine Reports, 2021, 24, .	2.4	8
151	The Breast Tumor Microenvironment: A Key Player in Metastatic Spread. Cancers, 2021, 13, 4798.	3.7	26
152	The thermogenic activity of adjacent adipocytes fuels the progression of ccRCC and compromises anti-tumor therapeutic efficacy. Cell Metabolism, 2021, 33, 2021-2039.e8.	16.2	45
153	Adipocyte-derived extracellular vesicles promote breast cancer cell malignancy through HIF-1α activity. Cancer Letters, 2021, 521, 155-168.	7.2	27
154	Metabolic Remodeling as a Way of Adapting to Tumor Microenvironment (TME), a Job of Several Holders. Advances in Experimental Medicine and Biology, 2020, 1219, 1-34.	1.6	16
155	Multifaceted Oncogenic Role of Adipocytes in the Tumour Microenvironment. Advances in Experimental Medicine and Biology, 2020, 1219, 125-142.	1.6	7
156	CGI-58: Versatile Regulator of Intracellular Lipid Droplet Homeostasis. Advances in Experimental Medicine and Biology, 2020, 1276, 197-222.	1.6	17
157	Adipocyte lipolysis: from molecular mechanisms of regulation to disease and therapeutics. Biochemical Journal, 2020, 477, 985-1008.	3.7	116
161	Hepatic lipids promote liver metastasis. JCI Insight, 2020, 5, .	5.0	24
162	The fat and the bad: Mature adipocytes, key actors in tumor progression and resistance. Oncotarget, 2017, 8, 57622-57641.	1.8	135
163	Metabolite profiling identifies a signature of tumorigenicity in hepatocellular carcinoma. Oncotarget, 2018, 9, 26868-26883.	1.8	51
164	Metabolic Remodeling Induced by Adipocytes: A New Achilles' Heel in Invasive Breast Cancer?. Current Medicinal Chemistry, 2020, 27, 3984-4001.	2.4	20
165	Cancerâ€'associated adipocytes exhibit distinct phenotypes and facilitate tumor progression in pancreatic cancer. Oncology Reports, 2019, 42, 2537-2549.	2.6	31
166	Identification of aberrantly methylated-differentially expressed genes and potential agents for Ewing sarcoma. Annals of Translational Medicine, 2021, 9, 1557-1557.	1.7	0
167	A Mathematical Model of Breast Tumor Progression Based on Immune Infiltration. Journal of Personalized Medicine, 2021, 11, 1031.	2.5	18
168	Clinical Significance of Peritumoral Adipose Tissue PET/CT Imaging Features for Predicting Axillary Lymph Node Metastasis in Patients with Breast Cancer. Journal of Personalized Medicine, 2021, 11, 1029.	2.5	7

#	Article	IF	CITATIONS
169	Multiâ€'faceted role of cancerâ€'associated adipocytes in the tumor microenvironment (Review). Molecular Medicine Reports, 2021, 24, .	2.4	26
170	Lipid Catabolism and ROS in Cancer: A Bidirectional Liaison. Cancers, 2021, 13, 5484.	3.7	16
171	Triglyceride-Mimetic Structure-Gated Prodrug Nanoparticles for Smart Cancer Therapy. Journal of Medicinal Chemistry, 2021, 64, 15936-15948.	6.4	12
172	Tumour-directed microenvironment remodelling at a glance. Journal of Cell Science, 2020, 133, .	2.0	10
173	Adipose Tissueâ€"Breast Cancer Crosstalk Leads to Increased Tumor Lipogenesis Associated with Enhanced Tumor Growth. International Journal of Molecular Sciences, 2021, 22, 11881.	4.1	11
174	Fatty acid metabolism in cancer cells – the power of plasticity. Current Opinion in Lipidology, 2021, 32, 387-388.	2.7	0
175	The metabolic modulator PGC-1α in cancer. American Journal of Cancer Research, 2019, 9, 198-211.	1.4	55
176	Lipid Droplets and the Management of Cellular Stress. Yale Journal of Biology and Medicine, 2019, 92, 435-452.	0.2	89
177	Yin-yang effect of tumour cells in breast cancer: from mechanism of crosstalk between tumour-associated macrophages and cancer-associated adipocytes. American Journal of Cancer Research, 2020, 10, 383-392.	1.4	7
178	Adipose Tissue and Cancer Cachexia: What Nurses Need to Know. Asia-Pacific Journal of Oncology Nursing, 2021, 8, 445-449.	1.6	0
179	Aberrant lipid metabolism in cancer cells and tumor microenvironment: the player rather than bystander in cancer progression and metastasis. Journal of Cancer, 2021, 12, 7498-7506.	2.5	7
180	A System Pharmacology Model for Decoding the Synergistic Mechanisms of Compound Kushen Injection in Treating Breast Cancer. Frontiers in Pharmacology, 2021, 12, 723147.	3.5	0
181	MCF-7 Drug Resistant Cell Lines Switch Their Lipid Metabolism to Triple Negative Breast Cancer Signature. Cancers, 2021, 13, 5871.	3.7	4
182	Adipocyte-derived exosomes may promote breast cancer progression in type 2 diabetes. Science Signaling, 2021, 14, eabj2807.	3. 6	37
183	Elevated ATGL in colon cancer cells and cancer stem cells promotes metabolic and tumorigenic reprogramming reinforced by obesity. Oncogenesis, 2021, 10, 82.	4.9	20
184	Microenvironmental Factors Modulating Tumor Lipid Metabolism: Paving the Way to Better Antitumoral Therapy. Frontiers in Oncology, 2021, 11, 777273.	2.8	4
185	Key promoters of tumor hallmarks. International Journal of Clinical Oncology, 2022, 27, 45-58.	2.2	26
186	The Potential Role of the Fat–Glandular Interface (FGI) in Breast Carcinogenesis: Results from an Ultrasound Tomography (UST) Study. Journal of Clinical Medicine, 2021, 10, 5615.	2.4	2

#	Article	IF	CITATIONS
187	Close interactions between lncRNAs, lipid metabolism and ferroptosis in cancer. International Journal of Biological Sciences, 2021, 17, 4493-4513.	6.4	29
188	The paracrine effects of adipocytes on lipid metabolism in doxorubicin-treated triple negative breast cancer cells. Adipocyte, 2021, 10, 505-523.	2.8	6
189	DECR1 directly activates HSL to promote lipolysis in cervical cancer cells. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2022, 1867, 159090.	2.4	9
190	Tumor Metabolism Is Affected by Obesity in Preclinical Models of Triple-Negative Breast Cancer. Cancers, 2022, 14, 562.	3.7	7
191	Metabolic Reprogramming Underlying Brain Metastasis of Breast Cancer. Frontiers in Molecular Biosciences, 2021, 8, 791927.	3.5	5
192	Rewired lipid metabolism as an actionable vulnerability of aggressive colorectal carcinoma. Molecular and Cellular Oncology, 2022, 9, 2024051.	0.7	3
193	Lactate Rewires Lipid Metabolism and Sustains a Metabolic–Epigenetic Axis in Prostate Cancer. Cancer Research, 2022, 82, 1267-1282.	0.9	52
194	Organ-on-a-chip platforms as novel advancements for studying heterogeneity, metastasis, and drug efficacy in breast cancer., 2022, 237, 108156.		12
195	YAP Dictates Mitochondrial Redox Homeostasis to Facilitate Obesityâ€Associated Breast Cancer Progression. Advanced Science, 2022, 9, e2103687.	11.2	7
196	The Complex Biology of the Obesity-Induced, Metastasis-Promoting Tumor Microenvironment in Breast Cancer. International Journal of Molecular Sciences, 2022, 23, 2480.	4.1	11
197	Peri-tumoural spatial distribution of lipid composition and tubule formation in breast cancer. BMC Cancer, 2022, 22, 285.	2.6	4
198	Prognosis and Dissection of Immunosuppressive Microenvironment in Breast Cancer Based on Fatty Acid Metabolism-Related Signature. Frontiers in Immunology, 2022, 13, 843515.	4.8	44
199	Peroxisome Proliferator-activated Receptor Gamma Coactivator-1 Alpha: A Double-edged Sword in Prostate Cancer. Current Cancer Drug Targets, 2022, 22, 541-559.	1.6	7
200	Targeting mTOR in the Context of Diet and Whole-body Metabolism. Endocrinology, 2022, 163, .	2.8	4
201	Encapsulating Cas9 into extracellular vesicles by protein myristoylation. Journal of Extracellular Vesicles, 2022, 11, e12196.	12.2	22
202	Contribution of adipocytes in the tumor microenvironment to breast cancer metabolism. Cancer Letters, 2022, 534, 215616.	7.2	13
203	Adipose Triglyceride Lipase in Hepatic Physiology and Pathophysiology. Biomolecules, 2022, 12, 57.	4.0	18
204	Adipose Tissue and Cancer Cachexia: What Nurses Need to Know. Asia-Pacific Journal of Oncology Nursing, 2021, 8, 445-449.	1.6	1

#	ARTICLE	IF	CITATIONS
205	The Give-and-Take Interaction Between the Tumor Microenvironment and Immune Cells Regulating Tumor Progression and Repression. Frontiers in Immunology, 2022, 13, 850856.	4.8	20
211	Evaluation of miR-141-3p over-expression in ovarian cancer. Electronic Journal of Biotechnology, 2022,	2.2	1
212	Feedâ€forward loops between metastatic cancer cells and their microenvironmentâ€"the stage of escalation. EMBO Molecular Medicine, 2022, 14, e14283.	6.9	27
213	Targeting of the Peritumoral Adipose Tissue Microenvironment as an Innovative Antitumor Therapeutic Strategy. Biomolecules, 2022, 12, 702.	4.0	3
214	Investigation of the effects of overexpression of jumping translocation breakpoint (JTB) protein in MCF7 cells for potential use as a biomarker in breast cancer American Journal of Cancer Research, 2022, 12, 1784-1823.	1.4	0
215	C1QTNF3 is Upregulated During Subcutaneous Adipose Tissue Remodeling and Stimulates Macrophage Chemotaxis and M1-Like Polarization. Frontiers in Immunology, 2022, 13, .	4.8	7
216	Mammary adipocytes protect triple-negative breast cancer cells from ferroptosis. Journal of Hematology and Oncology, 2022, 15 , .	17.0	26
217	The role of bone marrow adipocytes in cancer progression: the impact of obesity. Cancer and Metastasis Reviews, 2022, 41, 589-605.	5.9	3
218	The pleiotropic roles of adipocyte secretome in remodeling breast cancer. Journal of Experimental and Clinical Cancer Research, 2022, 41, .	8.6	13
219	The RAGE/multiligand axis: a new actor in tumor biology. Bioscience Reports, 2022, 42, .	2.4	10
221	The obesity-breast cancer link: a multidisciplinary perspective. Cancer and Metastasis Reviews, 2022, 41, 607-625.	5.9	36
222	Endothelial TrkA coordinates vascularization and innervation in thermogenic adipose tissue and can be targeted to control metabolism. Molecular Metabolism, 2022, 63, 101544.	6.5	7
223	Recent Advances on the Role of ATGL in Cancer. Frontiers in Oncology, 0, 12, .	2.8	7
224	Metabolomics of Breast Cancer: A Review. Metabolites, 2022, 12, 643.	2.9	16
225	The role of liver kinase B1 in tumor progression through regulation of lipid metabolism. Clinical and Translational Oncology, 2022, 24, 2045-2054.	2.4	1
226	White adipose tissue-derived factors and prostate cancer progression: mechanisms and targets for interventions. Cancer and Metastasis Reviews, 2022, 41, 649-671.	5.9	2
227	Lipids in cancer: a global view of the contribution of lipid pathways to metastatic formation and treatment resistance. Oncogenesis, 2022, 11 , .	4.9	42
228	Network Pharmacology, Integrated Bioinformatics, and Molecular Docking Reveals the Anti-Ovarian Cancer Molecular Mechanisms of Cinnamon (<i>Cinnamomum cassia</i> Communications, 2022, 17, 1934578X2211191.	0.5	0

#	Article	IF	CITATIONS
229	The role of fatty acids metabolism on cancer progression and the rapeutics development. , 2023, , 101-132.		0
230	Adipocyte mesenchymal transition contributes to mammary tumor progression. Cell Reports, 2022, 40, 111362.	6.4	32
231	Adding fuel to the fire: The lipid droplet and its associated proteins in cancer progression. International Journal of Biological Sciences, 2022, 18, 6020-6034.	6.4	10
232	Insights behind the Relationship between Colorectal Cancer and Obesity: Is Visceral Adipose Tissue the Missing Link?. International Journal of Molecular Sciences, 2022, 23, 13128.	4.1	11
233	Hypoxia-driven metabolic reprogramming of adipocytes fuels cancer cell proliferation. Frontiers in Endocrinology, $0,13,.$	3.5	4
234	Crosstalk between Depression and Breast Cancer via Hepatic Epoxide Metabolism: A Central Comorbidity Mechanism. Molecules, 2022, 27, 7269.	3.8	1
235	Lcn2 mediates adipocyte-muscle-tumor communication and hypothermia in pancreatic cancer cachexia. Molecular Metabolism, 2022, 66, 101612.	6.5	8
236	Phytochemical Targeting of Mitochondria for Breast Cancer Chemoprevention, Therapy, and Sensitization. International Journal of Molecular Sciences, 2022, 23, 14152.	4.1	5
237	Cancer and Lipid Metabolism: Roles of Adipocytes on Tumor Microenvironment., 2022,, 1-22.		0
238	Breast adipose metabolites mediates the association of tetrabromobisphenol a with breast cancer: A case-control study in Chinese population. Environmental Pollution, 2023, 316, 120701.	7.5	2
239	Study of Drug Resistance in Chemotherapy Induced by Extracellular Vesicles on a Microchip. Analytical Chemistry, 2022, 94, 16919-16926.	6.5	1
240	The crosstalk within the breast tumor microenvironment in type II diabetes: Implications for cancer disparities. Frontiers in Endocrinology, $0,13,.$	3.5	4
241	Adipose Cells Induce Escape from an Engineered Human Breast Microtumor Independently of their Obesity Status. Cellular and Molecular Bioengineering, 0, , .	2.1	0
242	Adipocytes secretome from normal and tumor breast favor breast cancer invasion by metabolic reprogramming. Clinical and Translational Oncology, 2023, 25, 1389-1401.	2.4	2
243	Biological Role and Mechanism of Lipid Metabolism Reprogramming Related Gene ECHS1 in Cancer. Technology in Cancer Research and Treatment, 2022, 21, 153303382211406.	1.9	4
244	Breast cancer heterogeneity and its implication in personalized precision therapy. Experimental Hematology and Oncology, 2023, 12, .	5.0	31
245	Activation of \hat{I}^2 -Adrenoceptors Promotes Lipid Droplet Accumulation in MCF-7 Breast Cancer Cells via cAMP/PKA/EPAC Pathways. International Journal of Molecular Sciences, 2023, 24, 767.	4.1	4
246	The Adipocyte–Macrophage Relationship in Cancer: A Potential Target for Antioxidant Therapy. Antioxidants, 2023, 12, 126.	5.1	6

#	ARTICLE	IF	CITATIONS
247	BETi enhance ATGL expression and its lipase activity to exert their antitumoral effects in triple-negative breast cancer (TNBC) cells. Journal of Experimental and Clinical Cancer Research, 2023, 42, .	8.6	3
249	Cancer-Associated Adipocytes and Breast Cancer: Intertwining in the Tumor Microenvironment and Challenges for Cancer Therapy. Cancers, 2023, 15, 726.	3.7	6
250	The emerging role of PPAR-alpha in breast cancer. Biomedicine and Pharmacotherapy, 2023, 161, 114420.	5.6	7
251	Adipocytes reprogram prostate cancer stem cell machinery. Journal of Cell Communication and Signaling, 2023, 17, 915-924.	3.4	3
252	A novel 3D culture model for human primary mammary adipocytes to study their metabolic crosstalk with breast cancer in lean and obese conditions. Scientific Reports, 2023, 13, .	3.3	4
253	Targeting Mitochondria with ClpP Agonists as a Novel Therapeutic Opportunity in Breast Cancer. Cancers, 2023, 15, 1936.	3.7	6
254	Targeting adipocyte–immune cell crosstalk to control breast cancer progression. Journal of Cancer Research and Clinical Oncology, 0, , .	2.5	0
255	The Metabolic Landscape of Breast Cancer and Its Therapeutic Implications. Molecular Diagnosis and Therapy, 0, , .	3.8	2
257	Triple-negative breast cancer cells invade adipocyte/preadipocyte-encapsulating geometrically inverted mammary organoids. Integrative Biology (United Kingdom), 2023, 15, .	1.3	4
258	Key aspects for conception and construction of co-culture models of tumor-stroma interactions. Frontiers in Bioengineering and Biotechnology, 0, 11 , .	4.1	2
259	Fueling the Tumor Microenvironment with Cancer-Associated Adipocytes. Cancer Research, 2023, 83, 1170-1172.	0.9	7
260	Obesity-induced changes in cancer cells and their microenvironment: Mechanisms and therapeutic perspectives to manage dysregulated lipid metabolism. Seminars in Cancer Biology, 2023, 93, 36-51.	9.6	6
261	Identification of fatty acid-related subtypes, the establishment of a prognostic signature, and immune infiltration characteristics in lung adenocarcinoma. Aging, 0, , .	3.1	0
262	Peritumoral adipose tissue promotes lipolysis and white adipocytes browning by paracrine action. Frontiers in Endocrinology, 0, 14 , .	3.5	3
263	Lipid metabolism in tumor immunology and immunotherapy. Frontiers in Oncology, 0, 13, .	2.8	0
264	Obesity and prostate cancer â€" microenvironmental roles of adipose tissue. Nature Reviews Urology, 2023, 20, 579-596.	3.8	5
265	Role of Cancer-Associated Adipocytes in the Progression of Breast Cancer. , 2022, , 1-22.		0
266	Plasma metabolomics of oral squamous cell carcinomas based on NMR and MS approaches provides biomarker identification and survival prediction. Scientific Reports, 2023, 13, .	3.3	1

#	Article	IF	Citations
267	Effects of Obesity and Calorie Restriction on Cancer Development. International Journal of Molecular Sciences, 2023, 24, 9601.	4.1	2
268	Adipocytes promote pancreatic cancer migration and invasion through fatty acid metabolic reprogramming. Oncology Reports, 2023, 50, .	2.6	1
269	Emodin attenuates high lipid-induced liver metastasis through the AKT and ERK pathways in vitro in breast cancer cells and in a mouse xenograft model. Heliyon, 2023, 9, e17052.	3.2	2
270	Adipocyte-derived extracellular vesicles: bridging the communications between obesity and tumor microenvironment. Discover Oncology, 2023, 14, .	2.1	2
271	Metformin ameliorates BMP2 induced adipocyte-like property in breast cancer cells. Biochemical and Biophysical Research Communications, 2023, , .	2.1	0
272	PGC-1α Is a Master Regulator of Mitochondrial Lifecycle and ROS Stress Response. Antioxidants, 2023, 12, 1075.	5.1	26
273	The Ratio of Monocyte to Apolipoprotein A1 is an Independent Predictor of Breast Cancer: A Retrospective Study. Cancer Management and Research, 0, Volume 15, 423-432.	1.9	0
274	Exosomes-regulated lipid metabolism in tumorigenesis and cancer progression. Cytokine and Growth Factor Reviews, 2023, 73, 27-39.	7.2	7
275	Acidosis-induced regulation of adipocyte GOS2 promotes crosstalk between adipocytes and breast cancer cells as well as tumor progression. Cancer Letters, 2023, 569, 216306.	7.2	5
277	Breast cancers as ecosystems: a metabolic perspective. Cellular and Molecular Life Sciences, 2023, 80, .	5.4	2
278	Mature white adipocyte plasticity during mammary gland remodelling and cancer., 2023, 2, 100123.		0
279	Tumor-intrinsic metabolic reprogramming and how it drives resistance to anti-PD-1/PD-L1 treatment. Cancer Drug Resistance (Alhambra, Calif), 0, 6, 611-41.	2.1	3
280	Lipid metabolic reprogramming in tumor microenvironment: from mechanisms to therapeutics. Journal of Hematology and Oncology, 2023, 16, .	17.0	11
281	The role of three-dimensional in vitro models in modelling the inflammatory microenvironment associated with obesity in breast cancer. Breast Cancer Research, 2023, 25, .	5.0	1
282	The Physiological and Pathological Role of Acyl-CoA Oxidation. International Journal of Molecular Sciences, 2023, 24, 14857.	4.1	0
283	Toward a Unifying Hypothesis for Redesigned Lipid Catabolism as a Clinical Target in Advanced, Treatment-Resistant Carcinomas. International Journal of Molecular Sciences, 2023, 24, 14365.	4.1	0
284	The Significance of Microenvironmental and Circulating Lactate in Breast Cancer. International Journal of Molecular Sciences, 2023, 24, 15369.	4.1	1
285	Lipid metabolism in malignant tumor brain metastasis: reprogramming and therapeutic potential. Expert Opinion on Therapeutic Targets, 2023, 27, 861-878.	3.4	3

#	Article	IF	CITATIONS
286	Development of a novel peptide targeting GPR81 to suppress adipocyte-mediated tumor progression. Biochemical Pharmacology, 2023, 217, 115800.	4.4	1
287	Dietary fat and lipid metabolism in the tumor microenvironment. Biochimica Et Biophysica Acta: Reviews on Cancer, 2023, 1878, 188984.	7.4	2
288	Nuclear VCP drives colorectal cancer progression by promoting fatty acid oxidation. Proceedings of the National Academy of Sciences of the United States of America, 2023, 120, .	7.1	2
289	Fatty tissue as a modulator of cancer cell mechanics. , 2023, , .		0
290	LncRNAsâ€circRNAs as Rising Epigenetic Binary Superstars in Regulating Lipid Metabolic Reprogramming of Cancers. Advanced Science, 2024, 11, .	11.2	0
291	Targeting dysregulated lipid metabolism in the tumor microenvironment. Archives of Pharmacal Research, O, , .	6.3	0
292	ATGL promotes colorectal cancer growth by regulating autophagy process and SIRT1 expression. , 2023, 40, .		0
293	Endothelial cells metabolically regulate breast cancer invasion toward a microvessel. APL Bioengineering, 2023, 7, .	6.2	0
294	Two lncRNA signatures with cuproptosis as a novel prognostic model and clinicopathological value for endometrioid endometrial adenocarcinoma. Aging, 0 , , .	3.1	0
295	Are lipid droplets the picnic basket of brain tumours?. Cell Death Discovery, 2024, 10, .	4.7	0
296	MIIP downregulation drives colorectal cancer progression through inducing peri-cancerous adipose tissue browning. Cell and Bioscience, 2024, 14, .	4.8	1
297	<scp>SAA1</scp> â€dependent reprogramming of adipocytes by tumor cells is associated with triple negative breast cancer aggressiveness. International Journal of Cancer, 2024, 154, 1842-1856.	5.1	0
298	Vascularised cardiac spheroids-on-a-chip for testing the toxicity of therapeutics. Scientific Reports, 2024, 14, .	3.3	0
299	Hsa_circ_0021205 enhances lipolysis via regulating miR-195-5p/HSL axis and drives malignant progression of glioblastoma. Cell Death Discovery, 2024, 10, .	4.7	0
300	Spatial heterogeneity of peri-tumoural lipid composition in postmenopausal patients with oestrogen receptor positive breast cancer. Scientific Reports, 2024, 14, .	3.3	0
301	Adipose Tissue in Breast Cancer Microphysiological Models to Capture Human Diversity in Preclinical Models. International Journal of Molecular Sciences, 2024, 25, 2728.	4.1	0
302	The molecular crosstalk of the hippo cascade in breast cancer: A potential central susceptibility. Biochimie, 2024, 222, 132-150.	2.6	0
303	Role of carboxylesterase and arylacetamide deacetylase in drug metabolism, physiology, and pathology. Biochemical Pharmacology, 2024, 223, 116128.	4.4	0

ARTICLE IF CITATIONS

304 Modeling of Mouse Experiments Suggests that Optimal Anti-Hormonal Treatment for Breast Cancer is Diet-Dependent. Bulletin of Mathematical Biology, 2024, 86, .