The Human Cell Atlas

ELife

6,

DOI: 10.7554/elife.27041

Citation Report

#	Article	IF	Citations
1	The BRAIN Initiative Cell Census Consortium: Lessons Learned toward Generating a Comprehensive Brain Cell Atlas. Neuron, 2017, 96, 542-557.	3.8	235
2	Usage of cell nomenclature in biomedical literature. BMC Bioinformatics, 2017, 18, 561.	1.2	1
3	Big knowledge from big data in functional genomics. Emerging Topics in Life Sciences, 2017, 1, 245-248.	1.1	4
4	Mapping the Mouse Cell Atlas by Microwell-Seq. Cell, 2018, 172, 1091-1107.e17.	13.5	1,068
5	Cell type atlas and lineage tree of a whole complex animal by single-cell transcriptomics. Science, 2018, 360, .	6.0	381
6	Exploring intermediate cell states through the lens of single cells. Current Opinion in Systems Biology, 2018, 9, 32-41.	1.3	65
7	Transcript-indexed ATAC-seq for precision immune profiling. Nature Medicine, 2018, 24, 580-590.	15.2	124
8	Systems Immunology: Learning the Rules of the Immune System. Annual Review of Immunology, 2018, 36, 813-842.	9.5	70
9	Using singleâ€cell genomics to understand developmental processes and cell fate decisions. Molecular Systems Biology, 2018, 14, e8046.	3.2	190
10	The Body-wide Transcriptome Landscape of Disease Models. IScience, 2018, 2, 238-268.	1.9	18
11	Opportunities and obstacles for deep learning in biology and medicine. Journal of the Royal Society Interface, 2018, 15, 20170387.	1.5	1,282
12	Defining Cell Identity with Singleâ€Cell Omics. Proteomics, 2018, 18, e1700312.	1.3	52
13	Crosstalk between YAP/TAZ and Notch Signaling. Trends in Cell Biology, 2018, 28, 560-573.	3.6	104
14	Statistical single cell multi-omics integration. Current Opinion in Systems Biology, 2018, 7, 54-59.	1.3	61
15	Microfluidic channel optimization to improve hydrodynamic dissociation of cell aggregates and tissue. Scientific Reports, 2018, 8, 2774.	1.6	33
16	Meet some code-breakers of noncoding RNAs. Nature Methods, 2018, 15, 103-106.	9.0	2
17	Mapping human development at single-cell resolution. Development (Cambridge), 2018, 145, .	1,2	30
18	Brain Transcriptome Databases: A User's Guide. Journal of Neuroscience, 2018, 38, 2399-2412.	1.7	68

#	ARTICLE	IF	CITATIONS
19	A general and flexible method for signal extraction from single-cell RNA-seq data. Nature Communications, 2018, 9, 284.	5.8	540
21	Strength in numbers from integrated single-cell neuroscience. Nature Biotechnology, 2018, 36, 41-42.	9.4	1
22	Methods and challenges in the analysis of single-cell RNA-sequencing data. Current Opinion in Systems Biology, 2018, 7, 47-53.	1.3	19
23	Somatic mutations in neurons during aging and neurodegeneration. Acta Neuropathologica, 2018, 135, 811-826.	3.9	35
24	bigSCale: an analytical framework for big-scale single-cell data. Genome Research, 2018, 28, 878-890.	2.4	76
25	Integrated Single-Cell Analysis Maps the Continuous Regulatory Landscape of Human Hematopoietic Differentiation. Cell, 2018, 173, 1535-1548.e16.	13.5	545
26	The ontogeny, activation and function of the epicardium during heart development and regeneration. Development (Cambridge), 2018, 145, .	1.2	73
27	Integrating single-cell transcriptomic data across different conditions, technologies, and species. Nature Biotechnology, 2018, 36, 411-420.	9.4	8,878
28	scmap: projection of single-cell RNA-seq data across data sets. Nature Methods, 2018, 15, 359-362.	9.0	533
29	Entering the post-epigenomic age: back to epigenetics. Open Biology, 2018, 8, 180013.	1.5	5
30	Human bone marrow assessment by single-cell RNA sequencing, mass cytometry, and flow cytometry. JCI Insight, 2018, 3, .	2.3	135
31	Statistical Analysis Can Fail to Reveal Underlying True Biological Mechanism: A Demonstration of Expression Profile Generation. , 2018 , , .		0
32	Recent advances in functional genome analysis. F1000Research, 2018, 7, 1968.	0.8	16
33	Dissecting human disease with single-cell omics: application in model systems and in the clinic. DMM Disease Models and Mechanisms, $2018,11,11$	1.2	39
34	Tutorial: guidelines for the experimental design of single-cell RNA sequencing studies. Nature Protocols, 2018, 13, 2742-2757.	5 . 5	153
35	Force Spectroscopy and Beyond: Innovations and Opportunities. Biophysical Journal, 2018, 115, 2279-2285.	0.2	16
36	Cell types behaving in their natural habitat. Science, 2018, 362, 749-750.	6.0	0
37	Revealing the Critical Regulators of Cell Identity in the Mouse Cell Atlas. Cell Reports, 2018, 25, 1436-1445.e3.	2.9	185

#	Article	IF	CITATIONS
38	An integrative approach for building personalized gene regulatory networks for precision medicine. Genome Medicine, 2018, 10, 96.	3.6	49
39	Single-nucleus and single-cell transcriptomes compared in matched cortical cell types. PLoS ONE, 2018, 13, e0209648.	1.1	400
40	Promoter-enhancer looping and shadow enhancers of the mouse $\hat{l}\pm A$ -crystallin locus. Biology Open, 2018, 7, .	0.6	6
41	Automated in situ chromatin profiling efficiently resolves cell types and gene regulatory programs. Epigenetics and Chromatin, $2018, 11, 74$.	1.8	53
42	Cell Hashing with barcoded antibodies enables multiplexing and doublet detection for single cell genomics. Genome Biology, 2018, 19, 224.	3.8	674
43	Deep generative modeling for single-cell transcriptomics. Nature Methods, 2018, 15, 1053-1058.	9.0	1,227
44	Bayesian deep learning for single-cell analysis. Nature Methods, 2018, 15, 1009-1010.	9.0	21
45	Understanding dynamic tissue organization by studying the human body one cell at a time: the human cell atlas (HCA) project. Cardiovascular Research, 2018, 114, e93-e95.	1.8	4
46	Advanced model systems and tools for basic and translational human immunology. Genome Medicine, 2018, 10, 73.	3.6	68
47	A Single-Cell Sequencing Guide for Immunologists. Frontiers in Immunology, 2018, 9, 2425.	2.2	167
48	Modeling and analysis of RNAâ€seq data: a review from a statistical perspective. Quantitative Biology, 2018, 6, 195-209.	0.3	49
49	Spatial Reconstruction of Single Enterocytes Uncovers Broad Zonation along the Intestinal Villus Axis. Cell, 2018, 175, 1156-1167.e15.	13.5	282
50	Dynamic DNA methylation: In the right place at the right time. Science, 2018, 361, 1336-1340.	6.0	469
51	Writing, Reading, and Translating the Clustered Protocadherin Cell Surface Recognition Code for Neural Circuit Assembly. Annual Review of Cell and Developmental Biology, 2018, 34, 471-493.	4.0	84
52	Single Cell Gene Expression to Understand the Dynamic Architecture of the Heart. Frontiers in Cardiovascular Medicine, 2018, 5, 167.	1.1	16
53	Multi-Omics Profiling of the Tumor Microenvironment: Paving the Way to Precision Immuno-Oncology. Frontiers in Oncology, 2018, 8, 430.	1.3	57
54	Identification of spatially associated subpopulations by combining scRNAseq and sequential fluorescence in situ hybridization data. Nature Biotechnology, 2018, 36, 1183-1190.	9.4	179
55	Paired-cell sequencing enables spatial gene expression mapping of liver endothelial cells. Nature Biotechnology, 2018, 36, 962-970.	9.4	262

#	Article	IF	Citations
56	Quantitative single-cell transcriptomics. Briefings in Functional Genomics, 2018, 17, 220-232.	1.3	50
57	A 2018 Reference Guide to the Banff Classification of Renal Allograft Pathology. Transplantation, 2018, 102, 1795-1814.	0.5	479
58	Bridging the Data Gap From in vitro Toxicity Testing to Chemical Safety Assessment Through Computational Modeling. Frontiers in Public Health, 2018, 6, 261.	1.3	54
59	Deciphering the Evolution of Vertebrate Immune Cell Types with Single-Cell RNA-Seq. , 2018, , 95-111.		1
60	Identification of the RNA polymerase I-RNA interactome. Nucleic Acids Research, 2018, 46, 11002-11013.	6.5	19
61	The impact of genome-wide association studies on biomedical research publications. Human Genomics, 2018, 12, 38.	1.4	11
62	CellAtlasSearch: a scalable search engine for single cells. Nucleic Acids Research, 2018, 46, W141-W147.	6.5	39
63	Interpretable dimensionality reduction of single cell transcriptome data with deep generative models. Nature Communications, 2018, 9, 2002.	5.8	271
64	Single-cell RNA sequencing for the study of development, physiology and disease. Nature Reviews Nephrology, 2018, 14, 479-492.	4.1	369
65	An artificial intelligent single cell is part of the cell dream world. Cell Biology and Toxicology, 2018, 34, 247-249.	2.4	19
66	Diverse mechanisms for endogenous regeneration and repair in mammalian organs. Nature, 2018, 557, 322-328.	13.7	129
67	Cellular diversity in the Drosophila midbrain revealed by single-cell transcriptomics. ELife, 2018, 7, .	2.8	222
68	Single-cell sequencing leads a new era of profiling transcriptomic landscape. Journal of Bio-X Research, 2018, 1, 2-6.	0.3	2
69	Prioritizing network communities. Nature Communications, 2018, 9, 2544.	5.8	37
70	A revised airway epithelial hierarchy includes CFTR-expressing ionocytes. Nature, 2018, 560, 319-324.	13.7	878
71	Microfluidic filter device with nylon mesh membranes efficiently dissociates cell aggregates and digested tissue into single cells. Lab on A Chip, 2018, 18, 2776-2786.	3.1	24
72	Sharing and reusing cell image data. Molecular Biology of the Cell, 2018, 29, 1274-1280.	0.9	17
73	Revealing routes of cellular differentiation by single-cell RNA-seq. Current Opinion in Systems Biology, 2018, 11, 9-17.	1.3	10

#	ARTICLE	IF	Citations
74	From the Human Cell Atlas to dynamic immune maps in human disease. Nature Reviews Immunology, 2018, 18, 597-598.	10.6	23
75	Translating GWAS Findings to Novel Therapeutic Targets for Coronary Artery Disease. Frontiers in Cardiovascular Medicine, 2018, 5, 56.	1.1	21
76	5-Hydroxymethylcytosine (5hmC), or How to Identify Your Favorite Cell. Epigenomes, 2018, 2, 3.	0.8	17
77	Single-cell biology: resolving biological complexity, one cell at a time. Development (Cambridge), 2018, 145, .	1.2	7
78	NeuroSystematics and Periodic System of Neurons: Model vs Reference Species at Single-Cell Resolution. ACS Chemical Neuroscience, 2018, 9, 1884-1903.	1.7	31
79	Genomic mosaicism in the developing and adult brain. Developmental Neurobiology, 2018, 78, 1026-1048.	1.5	81
80	CRISPR-based reagents to study the influence of the epigenome on gene expression. Clinical and Experimental Immunology, 2018, 194, 9-16.	1.1	9
81	Single-Cell (Multi)omics Technologies. Annual Review of Genomics and Human Genetics, 2018, 19, 15-41.	2.5	149
82	SCANPY: large-scale single-cell gene expression data analysis. Genome Biology, 2018, 19, 15.	3.8	3,958
83	Boosting the power of single-cell analysis. Nature Biotechnology, 2018, 36, 408-409.	9.4	43
84	Manipulating Macrophage Polarization to Fix the Broken Heart. Journal of the American College of Cardiology, 2018, 72, 905-907.	1.2	9
85	Co-expression in Single-Cell Analysis: Saving Grace or Original Sin?. Trends in Genetics, 2018, 34, 823-831.	2.9	34
86	Molecular Architecture of the Mouse Nervous System. Cell, 2018, 174, 999-1014.e22.	13.5	2,002
87	Neuro-evo-devo in the single cell sequencing era. Current Opinion in Systems Biology, 2018, 11, 32-40.	1.3	9
88	Single-cell RNA sequencing technologies and bioinformatics pipelines. Experimental and Molecular Medicine, 2018, 50, 1-14.	3.2	1,087
89	First Giant Steps Toward a Cell Atlas of Atherosclerosis. Circulation Research, 2018, 122, 1632-1634.	2.0	6
90	zUMIs - A fast and flexible pipeline to process RNA sequencing data with UMIs. GigaScience, 2018, 7, .	3.3	265
91	Generalizable and Scalable Visualization of Single-Cell Data Using Neural Networks. Cell Systems, 2018, 7, 185-191.e4.	2.9	49

#	Article	IF	CITATIONS
92	A Single-Cell Transcriptome Atlas of the Aging Drosophila Brain. Cell, 2018, 174, 982-998.e20.	13.5	616
93	Expansion microscopy: enabling single cell analysis in intact biological systems. FEBS Journal, 2019, 286, 1482-1494.	2.2	31
94	Bioinformatic and biological avenues for understanding alcohol use disorder. Alcohol, 2019, 74, 65-71.	0.8	3
95	Landscape of Intercellular Crosstalk in Healthy and NASH Liver Revealed by Single-Cell Secretome Gene Analysis. Molecular Cell, 2019, 75, 644-660.e5.	4.5	488
96	A serum protein signature of <i>APOE</i> genotypes in centenarians. Aging Cell, 2019, 18, e13023.	3.0	27
97	Immuno-SABER enables highly multiplexed and amplified protein imaging in tissues. Nature Biotechnology, 2019, 37, 1080-1090.	9.4	301
98	TeraVR empowers precise reconstruction of complete 3-D neuronal morphology in the whole brain. Nature Communications, 2019, 10, 3474.	5.8	64
99	RNA sequencing: the teenage years. Nature Reviews Genetics, 2019, 20, 631-656.	7.7	1,192
100	scGen predicts single-cell perturbation responses. Nature Methods, 2019, 16, 715-721.	9.0	290
101	Global prediction of chromatin accessibility using small-cell-number and single-cell RNA-seq. Nucleic Acids Research, 2019, 47, e121-e121.	6.5	24
102	Progress on Identifying and Characterizing the Human Proteome: 2019 Metrics from the HUPO Human Proteome Project. Journal of Proteome Research, 2019, 18, 4098-4107.	1.8	41
103	Reconstructing complex lineage trees from scRNA-seq data using MERLoT. Nucleic Acids Research, 2019, 47, 8961-8974.	6.5	18
104	CellSIUS provides sensitive and specific detection of rare cell populations from complex single-cell RNA-seq data. Genome Biology, 2019, 20, 142.	3.8	41
105	Joint analysis of heterogeneous single-cell RNA-seq dataset collections. Nature Methods, 2019, 16, 695-698.	9.0	219
106	Deconvolution of autoencoders to learn biological regulatory modules from single cell mRNA sequencing data. BMC Bioinformatics, 2019, 20, 379.	1.2	22
107	Single-Cell Signature Explorer for comprehensive visualization of single cell signatures across scRNA-seq datasets. Nucleic Acids Research, 2019, 47, e133-e133.	6.5	96
108	Polled Digital Cell Sorter (p-DCS): Automatic identification of hematological cell types from single cell RNA-sequencing clusters. BMC Bioinformatics, 2019, 20, 369.	1,2	22
109	Genetic mapping of cell type specificity for complex traits. Nature Communications, 2019, 10, 3222.	5.8	212

#	Article	IF	CITATIONS
110	The IL4I1 Enzyme: A New Player in the Immunosuppressive Tumor Microenvironment. Cells, 2019, 8, 757.	1.8	52
111	Pathobiology of cardiovascular diseases: an update. Cardiovascular Pathology, 2019, 42, 44-53.	0.7	26
112	Microfluidics towards single cell resolution protein analysis. TrAC - Trends in Analytical Chemistry, 2019, 117, 2-12.	5.8	56
113	The evolving concept of cell identity in the single cell era. Development (Cambridge), 2019, 146, .	1.2	115
114	Best Practices for Illumina Library Preparation. Current Protocols in Human Genetics, 2019, 102, e86.	3.5	24
115	A periodic table of cell types. Development (Cambridge), 2019, 146, .	1.2	54
116	Concepts and limitations for learning developmental trajectories from single cell genomics. Development (Cambridge), 2019, 146, .	1.2	177
117	Immunology Driven by Large-Scale Single-Cell Sequencing. Trends in Immunology, 2019, 40, 1011-1021.	2.9	62
119	The human body at cellular resolution: the NIH Human Biomolecular Atlas Program. Nature, 2019, 574, 187-192.	13.7	393
120	Single cell ecology. Philosophical Transactions of the Royal Society B: Biological Sciences, 2019, 374, 20190076.	1.8	11
121	Informing disease modelling with brain-relevant functional genomic annotations. Brain, 2019, 142, 3694-3712.	3.7	8
122	Integrative Analysis Reveals Across-Cancer Expression Patterns and Clinical Relevance of Ribonucleotide Reductase in Human Cancers. Frontiers in Oncology, 2019, 9, 956.	1.3	13
123	A Systems-Based Map of Human Brain Cell-Type Enriched Genes and Malignancy-Associated Endothelial Changes. Cell Reports, 2019, 29, 1690-1706.e4.	2.9	22
124	Modelling heterogeneous intracellular networks at the cellular scale. Current Opinion in Systems Biology, 2019, 16, 10-16.	1.3	0
125	Sequencing the Human Brain at Single-Cell Resolution. Current Behavioral Neuroscience Reports, 2019, 6, 197-208.	0.6	5
126	Transcriptional Signature Derived from Murine Tumor-Associated Macrophages Correlates with Poor Outcome in Breast Cancer Patients. Cell Reports, 2019, 29, 1221-1235.e5.	2.9	47
127	TSEA-DB: a trait–tissue association map for human complex traits and diseases. Nucleic Acids Research, 2019, 48, D1022-D1030.	6.5	23
128	SpatialDB: a database for spatially resolved transcriptomes. Nucleic Acids Research, 2020, 48, D233-D237.	6.5	37

#	Article	IF	CITATIONS
129	Combinatorial prediction of marker panels from singleâ€eell transcriptomic data. Molecular Systems Biology, 2019, 15, e9005.	3.2	73
130	The Mononuclear Phagocytic System. Generation of Diversity. Frontiers in Immunology, 2019, 10, 1893.	2.2	59
131	The future of otology. Journal of Laryngology and Otology, 2019, 133, 747-758.	0.4	7
132	Data denoising with transfer learning in single-cell transcriptomics. Nature Methods, 2019, 16, 875-878.	9.0	152
133	Current best practices in singleâ€cell RNAâ€seq analysis: a tutorial. Molecular Systems Biology, 2019, 15, e8746.	3.2	1,322
134	Multiplexed laser particles for spatially resolved single-cell analysis. Light: Science and Applications, 2019, 8, 74.	7.7	28
135	Convergence of human cellular models and genetics to study neural stem cell signaling to enhance central nervous system regeneration and repair. Seminars in Cell and Developmental Biology, 2019, 95, 84-92.	2.3	4
136	Conserved cell types with divergent features in human versus mouse cortex. Nature, 2019, 573, 61-68.	13.7	1,198
137	CNS myeloid cell heterogeneity at the single-cell level. Neuroforum, 2019, 25, 195-204.	0.2	0
138	Spatial and temporal tools for building a human cell atlas. Molecular Biology of the Cell, 2019, 30, 2435-2438.	0.9	3
139	Single-Cell Transcriptomic Map of the Human and Mouse Bladders. Journal of the American Society of Nephrology: JASN, 2019, 30, 2159-2176.	3.0	90
140	Simultaneous profiling of 3D genome structure and DNA methylation in single human cells. Nature Methods, 2019, 16, 999-1006.	9.0	200
141	Next-generation computational tools for interrogating cancer immunity. Nature Reviews Genetics, 2019, 20, 724-746.	7.7	131
142	Cancer biology as revealed by the research autopsy. Nature Reviews Cancer, 2019, 19, 686-697.	12.8	54
143	Mapping human cell phenotypes to genotypes with single-cell genomics. Science, 2019, 365, 1401-1405.	6.0	71
144	IKAPâ€"Identifying K mAjor cell Population groups in single-cell RNA-sequencing analysis. GigaScience, 2019, 8, .	3.3	16
145	Deciphering Brain Complexity Using Single-cell Sequencing. Genomics, Proteomics and Bioinformatics, 2019, 17, 344-366.	3.0	52
146	The Human Cell Atlas: making â€~cell space' for disease. DMM Disease Models and Mechanisms, 2019, 12, .	1.2	9

#	Article	IF	Citations
147	Quantitative imaging of lipid droplets in single cells. Analyst, The, 2019, 144, 753-765.	1.7	24
148	Integrative single-cell analysis. Nature Reviews Genetics, 2019, 20, 257-272.	7.7	932
149	Single-Cell RNA Sequencing to Understand Host–Pathogen Interactions. ACS Infectious Diseases, 2019, 5, 336-344.	1.8	36
150	Revolutionizing Cancer Immunology: The Power of Next-Generation Sequencing Technologies. Cancer Immunology Research, 2019, 7, 168-173.	1.6	10
151	Deep learning for cellular image analysis. Nature Methods, 2019, 16, 1233-1246.	9.0	754
153	Rational Reprogramming of Cellular States by Combinatorial Perturbation. Cell Reports, 2019, 27, 3486-3499.e6.	2.9	18
154	MULTI-seq: sample multiplexing for single-cell RNA sequencing using lipid-tagged indices. Nature Methods, 2019, 16, 619-626.	9.0	421
155	CHETAH: a selective, hierarchical cell type identification method for single-cell RNA sequencing. Nucleic Acids Research, 2019, 47, e95-e95.	6.5	169
156	Comprehensive Integration of Single-Cell Data. Cell, 2019, 177, 1888-1902.e21.	13.5	9,755
157	Single-Cell Analysis of the Normal Mouse Aorta Reveals Functionally Distinct Endothelial Cell Populations. Circulation, 2019, 140, 147-163.	1.6	231
158	Genomic Imprinting As a Window into Human Language Evolution. BioEssays, 2019, 41, 1800212.	1.2	5
159	A case study on the detailed reproducibility of a Human Cell Atlas project. Quantitative Biology, 2019, 7, 162-169.	0.3	6
160	Single-cell RNA sequencing unveils the shared and the distinct cytotoxic hallmarks of human TCRVδ1 and TCRVδ2 γδT lymphocytes. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 11906-11915.	3.3	152
161	A review on the pathophysiology of asthma remission. , 2019, 201, 8-24.		36
162	diffcyt: Differential discovery in high-dimensional cytometry via high-resolution clustering. Communications Biology, 2019, 2, 183.	2.0	162
163	Computational Methods for Mapping, Assembly and Quantification for Coding and Non-coding Transcripts. Computational and Structural Biotechnology Journal, 2019, 17, 628-637.	1.9	25
164	Molecular recording of mammalian embryogenesis. Nature, 2019, 570, 77-82.	13.7	257
165	Biomolecular Data Resources: Bioinformatics Infrastructure for Biomedical Data Science. Annual Review of Biomedical Data Science, 2019, 2, 199-222.	2.8	8

#	ARTICLE	IF	CITATIONS
166	MARS-seq2.0: an experimental and analytical pipeline for indexed sorting combined with single-cell RNA sequencing. Nature Protocols, 2019, 14, 1841-1862.	5.5	200
167	Modeling Spatial Correlation of Transcripts with Application to Developing Pancreas. Scientific Reports, 2019, 9, 5592.	1.6	7
168	Biologically inspired approaches to enhance human organoid complexity. Development (Cambridge), 2019, 146, .	1.2	68
169	PAGA: graph abstraction reconciles clustering with trajectory inference through a topology preserving map of single cells. Genome Biology, 2019, 20, 59.	3.8	911
170	The Human Lung Cell Atlas: A High-Resolution Reference Map of the Human Lung in Health and Disease. American Journal of Respiratory Cell and Molecular Biology, 2019, 61, 31-41.	1.4	178
171	Selective vulnerability in α-synucleinopathies. Acta Neuropathologica, 2019, 138, 681-704.	3.9	58
172	Noninvasive Subcellular Imaging Using Atomic Force Acoustic Microscopy (AFAM). Cells, 2019, 8, 314.	1.8	6
173	A Bioinformatic Toolkit for Single-Cell mRNA Analysis. Methods in Molecular Biology, 2019, 1979, 433-455.	0.4	2
174	Single-Cell Tagged Reverse Transcription (STRT-Seq). Methods in Molecular Biology, 2019, 1979, 133-153.	0.4	21
175	Characterization of cell fate probabilities in single-cell data with Palantir. Nature Biotechnology, 2019, 37, 451-460.	9.4	393
176	EmptyDrops: distinguishing cells from empty droplets in droplet-based single-cell RNA sequencing data. Genome Biology, 2019, 20, 63.	3.8	608
177	Cell composition analysis of bulk genomics using single-cell data. Nature Methods, 2019, 16, 327-332.	9.0	94
178	Expanding the CRISPR Toolbox in Zebrafish for Studying Development and Disease. Frontiers in Cell and Developmental Biology, 2019, 7, 13.	1.8	102
179	â€~Building a perfect body': control of vertebrate organogenesis by PBX-dependent regulatory networks. Genes and Development, 2019, 33, 258-275.	2.7	38
180	In situ 10-cell RNA sequencing in tissue and tumor biopsy samples. Scientific Reports, 2019, 9, 4836.	1.6	23
181	Simplified Drop-seq workflow with minimized bead loss using a bead capture and processing microfluidic chip. Lab on A Chip, 2019, 19, 1610-1620.	3.1	22
182	Systems immunology: Integrating multi-omics data to infer regulatory networks and hidden drivers of immunity. Current Opinion in Systems Biology, 2019, 15, 19-29.	1.3	32
183	Thirty Years of Counting Cancer Cases: The Collective Effort and Efficacy of the National Cancer Database. Annals of Surgical Oncology, 2019, 26, 1583-1584.	0.7	0

#	Article	IF	Citations
184	2018 William Allan Award: Discovering the Genes for Common Disease: From Families to Populations. American Journal of Human Genetics, 2019, 104, 375-383.	2.6	0
185	Evaluating measures of association for single-cell transcriptomics. Nature Methods, 2019, 16, 381-386.	9.0	109
186	Deep learning: new computational modelling techniques for genomics. Nature Reviews Genetics, 2019, 20, 389-403.	7.7	717
187	Integrated transcriptomic–genomic tool Texomer profiles cancer tissues. Nature Methods, 2019, 16, 401-404.	9.0	7
188	Strategies for Converting RNA to Amplifiable cDNA for Single-Cell RNA Sequencing Methods. Advances in Experimental Medicine and Biology, 2019, 1129, 1-17.	0.8	6
189	Opportunities and challenges for transcriptome-wide association studies. Nature Genetics, 2019, 51, 592-599.	9.4	592
190	A spatially dynamic network underlies the generation of inspiratory behaviors. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 7493-7502.	3.3	49
191	A comparison of single-cell trajectory inference methods. Nature Biotechnology, 2019, 37, 547-554.	9.4	1,038
192	The Pediatric Cell Atlas: Defining the Growth Phase of Human Development at Single-Cell Resolution. Developmental Cell, 2019, 49, 10-29.	3.1	57
193	Regenerative pharmacology for COPD: breathing new life into old lungs. Thorax, 2019, 74, 890-897.	2.7	25
194	A component overlapping attribute clustering (COAC) algorithm for single-cell RNA sequencing data analysis and potential pathobiological implications. PLoS Computational Biology, 2019, 15, e1006772.	1.5	14
195	New insights into hematopoietic differentiation landscapes from single-cell RNA sequencing. Blood, 2019, 133, 1415-1426.	0.6	60
196	Bayesian statistical learning for big data biology. Biophysical Reviews, 2019, 11, 95-102.	1.5	15
197	CellFishing.jl: an ultrafast and scalable cell search method for single-cell RNA sequencing. Genome Biology, 2019, 20, 31.	3.8	22
198	Multimodal Single-Cell Analysis Reveals Physiological Maturation in the Developing Human Neocortex. Neuron, 2019, 102, 143-158.e7.	3.8	61
199	Combined quantification of intracellular (phospho-)proteins and transcriptomics from fixed single cells. Scientific Reports, 2019, 9, 1469.	1.6	73
200	Lineage Tracing in Humans Enabled by Mitochondrial Mutations and Single-Cell Genomics. Cell, 2019, 176, 1325-1339.e22.	13.5	345
201	Machine learning analysis of gene expression data reveals novel diagnostic and prognostic biomarkers and identifies therapeutic targets for soft tissue sarcomas. PLoS Computational Biology, 2019, 15, e1006826.	1.5	75

#	Article	IF	CITATIONS
202	Interferon-induced guanylate-binding proteins: Guardians of host defense in health and disease. Journal of Experimental Medicine, 2019, 216, 482-500.	4.2	184
203	Towards Building a Plant Cell Atlas. Trends in Plant Science, 2019, 24, 303-310.	4.3	86
204	Single-cell regulatory network inference and clustering from high-dimensional sequencing data. , 2019, , .		3
205	Integrative Modeling and Novel Technologies in Human Genomics. , 2019, , 155-189.		O
206	Dropout imputation and batch effect correction for single-cell RNA sequencing data. Journal of Bio-X Research, 2019, 2, 169-177.	0.3	2
207	Classification of Five Cell Types from PBMC Samples using Single Cell Transcriptomics and Artificial Neural Networks. , 2019, , .		13
208	Decoding the body language of immunity: Tackling the immune system at the organism level. Current Opinion in Systems Biology, 2019, 18, 19-26.	1.3	6
209	Genome-Wide Study Updates in the International Genetics and Translational Research in Transplantation Network (iGeneTRAiN). Frontiers in Genetics, 2019, 10, 1084.	1.1	13
210	A genome-wide transcriptomic analysis of protein-coding genes in human blood cells. Science, 2019, 366, .	6.0	329
211	The Tumor Suppressor Role of Zinc Finger Protein 671 (ZNF671) in Multiple Tumors Based on Cancer Single-Cell Sequencing. Frontiers in Oncology, 2019, 9, 1214.	1.3	11
212	Reconstruction of Cell-type-Specific Interactomes at Single-Cell Resolution. Cell Systems, 2019, 9, 559-568.e4.	2.9	51
213	Personalised analytics for rare disease diagnostics. Nature Communications, 2019, 10, 5274.	5.8	15
214	Learning stable and predictive structures in kinetic systems. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 25405-25411.	3.3	20
215	DNA methylation aging clocks: challenges and recommendations. Genome Biology, 2019, 20, 249.	3.8	552
216	Artificial intelligence for precision medicine in neurodevelopmental disorders. Npj Digital Medicine, 2019, 2, 112.	5.7	121
218	Emerging deep learning methods for singleâ€cell RNAâ€seq data analysis. Quantitative Biology, 2019, 7, 247-254.	0.3	25
219	Theory of cell fate. Wiley Interdisciplinary Reviews: Systems Biology and Medicine, 2020, 12, e1471.	6.6	19
220	Exploring single-cell data with deep multitasking neural networks. Nature Methods, 2019, 16, 1139-1145.	9.0	222

#	Article	IF	CITATIONS
221	Association of Myoinositol Transporters with Schizophrenia and Bipolar Disorder: Evidence from Human and Animal Studies. Molecular Neuropsychiatry, 2019, 5, 200-211.	3.0	7
222	scPred: accurate supervised method for cell-type classification from single-cell RNA-seq data. Genome Biology, 2019, 20, 264.	3.8	263
223	Early Transcriptional Landscapes of Chlamydia trachomatis-Infected Epithelial Cells at Single Cell Resolution. Frontiers in Cellular and Infection Microbiology, 2019, 9, 392.	1.8	14
224	Toward a Common Coordinate Framework for the Human Body. Cell, 2019, 179, 1455-1467.	13.5	81
225	A Spatiotemporal Organ-Wide Gene Expression and Cell Atlas of the Developing Human Heart. Cell, 2019, 179, 1647-1660.e19.	13.5	470
226	Accuracy, robustness and scalability of dimensionality reduction methods for single-cell RNA-seq analysis. Genome Biology, 2019, 20, 269.	3.8	140
227	Single-cell connectomic analysis of adult mammalian lungs. Science Advances, 2019, 5, eaaw3851.	4.7	156
228	Dynamic Microfluidic Cytometry for Single-Cell Cellomics: High-Throughput Probing Single-Cell-Resolution Signaling. Analytical Chemistry, 2019, 91, 1619-1626.	3.2	17
229	Decoding cell type diversity within the spinal cord. Current Opinion in Physiology, 2019, 8, 1-6.	0.9	19
230	Single-Cell Transcriptomic Analysis of Human Lung Provides Insights into the Pathobiology of Pulmonary Fibrosis. American Journal of Respiratory and Critical Care Medicine, 2019, 199, 1517-1536.	2.5	866
231	High-Throughput Sequencing in Respiratory, Critical Care, and Sleep Medicine Research. An Official American Thoracic Society Workshop Report. Annals of the American Thoracic Society, 2019, 16, 1-16.	1.5	9
232	Constructing and Deconstructing Cancers using Human Pluripotent Stem Cells and Organoids. Cell Stem Cell, 2019, 24, 12-24.	5.2	59
233	A test metric for assessing single-cell RNA-seq batch correction. Nature Methods, 2019, 16, 43-49.	9.0	278
234	The biology of the cell – insights from mass cytometry. FEBS Journal, 2019, 286, 1514-1522.	2.2	20
235	From single cells to tissue selfâ€organization. FEBS Journal, 2019, 286, 1495-1513.	2,2	52
236	Transcriptional Heterogeneity of Beta Cells in the Intact Pancreas. Developmental Cell, 2019, 48, 115-125.e4.	3.1	70
237	Communicating Genome Architecture: Biovisualization of the Genome, from Data Analysis and Hypothesis Generation to Communication and Learning. Journal of Molecular Biology, 2019, 431, 1071-1087.	2.0	3
238	BioSamples database: an updated sample metadata hub. Nucleic Acids Research, 2019, 47, D1172-D1178.	6.5	46

#	Article	IF	CITATIONS
239	Linking Scattered Stem Cell-Based Data to Advance Therapeutic Development. Trends in Molecular Medicine, 2019, 25, 8-19.	3.5	6
240	Spatial proteomics: a powerful discovery tool for cell biology. Nature Reviews Molecular Cell Biology, 2019, 20, 285-302.	16.1	316
241	Single cell RNA-sequencing: replicability of cell types. Current Opinion in Neurobiology, 2019, 56, 69-77.	2.0	13
242	Single-Cell RNA Sequencing of Blood and Ileal T Cells From Patients With Crohn's Disease Reveals Tissue-Specific Characteristics and Drug Targets. Gastroenterology, 2019, 156, 812-815.e22.	0.6	58
243	GENCODE reference annotation for the human and mouse genomes. Nucleic Acids Research, 2019, 47, D766-D773.	6.5	2,350
244	Multi-omics at single-cell resolution: comparison of experimental and data fusion approaches. Current Opinion in Biotechnology, 2019, 55, 159-166.	3.3	25
245	Perspectives on defining cell types in the brain. Current Opinion in Neurobiology, 2019, 56, 61-68.	2.0	44
246	Nanoscale tweezers for single-cell biopsies. Nature Nanotechnology, 2019, 14, 80-88.	15.6	147
247	Machine learning for integrating data in biology and medicine: Principles, practice, and opportunities. Information Fusion, 2019, 50, 71-91.	11.7	340
248	CellMarker: a manually curated resource of cell markers in human and mouse. Nucleic Acids Research, 2019, 47, D721-D728.	6.5	856
249	Single-cell RNA-Seq: a next generation sequencing tool for a high-resolution view of the individual cell. Journal of Biomolecular Structure and Dynamics, 2020, 38, 3730-3735.	2.0	2
250	Bringing Microscopy-By-Sequencing into View. Trends in Biotechnology, 2020, 38, 154-162.	4.9	10
251	Identifying causal variants and genes using functional genomics in specialized cell types and contexts. Human Genetics, 2020, 139, 95-102.	1.8	16
252	VirtualCytometry: a webserver for evaluating immune cell differentiation using single-cell RNA sequencing data. Bioinformatics, 2020, 36, 546-551.	1.8	8
253	Cellular resolution in clinical MALDI mass spectrometry imaging: the latest advancements and current challenges. Clinical Chemistry and Laboratory Medicine, 2020, 58, 914-929.	1.4	84
254	Initiating Multiomics Approach to Understand Neonatal Chronic Lung Disease., 2020,, 45-59.		1
255	Phenotype molding of T cells in colorectal cancer by singleâ€cell analysis. International Journal of Cancer, 2020, 146, 2281-2295.	2.3	30
256	Multiscale modelling of drug mechanism and safety. Drug Discovery Today, 2020, 25, 519-534.	3.2	15

#	ARTICLE	IF	CITATIONS
257	A brief history of human disease genetics. Nature, 2020, 577, 179-189.	13.7	441
258	Systems biology and big data in asthma and allergy: recent discoveries and emerging challenges. European Respiratory Journal, 2020, 55, 1900844.	3.1	22
259	Single cell RNA-sequencing reveals cellular heterogeneity and trajectories of lineage specification during murine embryonic limb development. Matrix Biology, 2020, 89, 1-10.	1.5	53
260	Evaluation of single-cell classifiers for single-cell RNA sequencing data sets. Briefings in Bioinformatics, 2020, 21, 1581-1595.	3.2	63
261	Tumor Functional Heterogeneity Unraveled by scRNA-seq Technologies. Trends in Cancer, 2020, 6, 13-19.	3.8	130
262	Harnessing big â€~omics' data and Al for drug discovery in hepatocellular carcinoma. Nature Reviews Gastroenterology and Hepatology, 2020, 17, 238-251.	8.2	90
263	Single-cell sequencing in hematology. Current Opinion in Oncology, 2020, 32, 139-145.	1.1	15
264	Using single-cell technologies to map the human immune system — implications for nephrology. Nature Reviews Nephrology, 2020, 16, 112-128.	4.1	39
265	Orchestrating single-cell analysis with Bioconductor. Nature Methods, 2020, 17, 137-145.	9.0	488
266	The pathogenesis of systemic lupus erythematosus: Harnessing big data to understand the molecular basis of lupus. Journal of Autoimmunity, 2020, 110, 102359.	3.0	89
267	Single-Cell Transcriptomics: A High-Resolution Avenue for Plant Functional Genomics. Trends in Plant Science, 2020, 25, 186-197.	4.3	128
268	A single-cell transcriptome atlas for zebrafish development. Developmental Biology, 2020, 459, 100-108.	0.9	191
269	The Human Immunopeptidome Project: A Roadmap to Predict and Treat Immune Diseases. Molecular and Cellular Proteomics, 2020, 19, 31-49.	2.5	65
270	LASP1 promotes proliferation, metastasis, invasion in head and neck squamous cell carcinoma and through direct interaction with HSPA1A. Journal of Cellular and Molecular Medicine, 2020, 24, 1626-1639.	1.6	16
271	Modeling population heterogeneity from microbial communities to immune response in cells. Cellular and Molecular Life Sciences, 2020, 77, 415-432.	2.4	5
272	Single-cell RNA sequencing of human kidney. Scientific Data, 2020, 7, 4.	2.4	156
273	Hybridization-based <i>in situ</i> sequencing (HybISS) for spatially resolved transcriptomics in human and mouse brain tissue. Nucleic Acids Research, 2020, 48, e112-e112.	6.5	145
274	Predicting cell-to-cell communication networks using NATMI. Nature Communications, 2020, 11, 5011.	5.8	137

#	Article	IF	CITATIONS
275	Improved detection of tumor suppressor events in single-cell RNA-Seq data. Npj Genomic Medicine, 2020, 5, 43.	1.7	15
276	MARS: discovering novel cell types across heterogeneous single-cell experiments. Nature Methods, 2020, 17, 1200-1206.	9.0	90
277	Single-Cell Analyses Identify Brain Mural Cells Expressing CD19 as Potential Off-Tumor Targets for CAR-T Immunotherapies. Cell, 2020, 183, 126-142.e17.	13.5	269
278	A high-stringency blueprint of the human proteome. Nature Communications, 2020, 11, 5301.	5.8	152
279	Singleâ€cell molecular profiling provides a highâ€resolution map of basophil and mast cell development. Allergy: European Journal of Allergy and Clinical Immunology, 2021, 76, 1731-1742.	2.7	42
280	Northstar enables automatic classification of known and novel cell types from tumor samples. Scientific Reports, 2020, 10, 15251.	1.6	11
281	Perturbation-Driven Entropy as a Source of Cancer Cell Heterogeneity. Trends in Cancer, 2020, 6, 454-461.	3.8	15
282	The Human Cell Atlas and equity: lessons learned. Nature Medicine, 2020, 26, 1509-1511.	15.2	7
283	Validation of a Combined Transcriptome and T Cell Receptor Alpha/Beta (TRA/TRB) Repertoire Assay at the Single Cell Level for Paucicellular Samples. Frontiers in Immunology, 2020, 11, 1999.	2.2	3
284	EpiMogrify Models H3K4me3 Data to Identify Signaling Molecules that Improve Cell Fate Control and Maintenance. Cell Systems, 2020, 11, 509-522.e10.	2.9	10
285	Alignment of Cell Lineage Trees Elucidates Genetic Programs for the Development and Evolution of Cell Types. IScience, 2020, 23, 101273.	1.9	23
286	An era of single-cell genomics consortia. Experimental and Molecular Medicine, 2020, 52, 1409-1418.	3.2	12
287	Single-cell RNA cap and tail sequencing (scRCAT-seq) reveals subtype-specific isoforms differing in transcript demarcation. Nature Communications, 2020, 11, 5148.	5.8	14
288	Special Article: Translational Science Update. Pharmacological Implications of Emerging Schizophrenia Genetics. Journal of Clinical Psychopharmacology, 2020, 40, 323-329.	0.7	10
289	Untangling early embryo development using single cell genomics. Theriogenology, 2020, 150, 55-58.	0.9	1
290	Factorized embeddings learns rich and biologically meaningful embedding spaces using factorized tensor decomposition. Bioinformatics, 2020, 36, i417-i426.	1.8	5
291	Recent advances in computational-based approaches in epigenetics studies., 2020,, 569-590.		1
292	DISC: a highly scalable and accurate inference of gene expression and structure for single-cell transcriptomes using semi-supervised deep learning. Genome Biology, 2020, 21, 170.	3.8	26

#	Article	IF	CITATIONS
293	Opportunities for Singleâ€Cell Sequencing in Synthetic Biology. ChemSystemsChem, 2020, 2, e2000016.	1.1	2
294	Single cell characterization of B-lymphoid differentiation and leukemic cell states during chemotherapy in ETV6-RUNX1-positive pediatric leukemia identifies drug-targetable transcription factor activities. Genome Medicine, 2020, 12, 99.	3.6	22
295	gCAnno: a graph-based single cell type annotation method. BMC Genomics, 2020, 21, 823.	1.2	0
296	Deconvolution of cellular subsets in human tissue based on targeted DNA methylation analysis at individual CpG sites. BMC Biology, 2020, 18, 178.	1.7	28
297	SSMD: a semi-supervised approach for a robust cell type identification and deconvolution of mouse transcriptomics data. Briefings in Bioinformatics, 2021, 22, .	3.2	3
298	Enhanced Validation of Antibodies Enables the Discovery of Missing Proteins. Journal of Proteome Research, 2020, 19, 4766-4781.	1.8	19
299	A curated database reveals trends in single-cell transcriptomics. Database: the Journal of Biological Databases and Curation, 2020, 2020, .	1.4	148
300	Fibrosis: from mechanisms to medicines. Nature, 2020, 587, 555-566.	13.7	746
301	Decoding DMD transcriptional networks using singleâ€nucleus RNA sequencing. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 32192-32194.	3.3	1
302	LifeTime and improving European healthcare through cell-based interceptive medicine. Nature, 2020, 587, 377-386.	13.7	108
303	A comparative genomics multitool for scientific discovery and conservation. Nature, 2020, 587, 240-245.	13.7	216
304	Integrative analyses of single-cell transcriptome and regulome using MAESTRO. Genome Biology, 2020, 21, 198.	3.8	126
305	Integration of GWAS Summary Statistics and Gene Expression Reveals Target Cell Types Underlying Kidney Function Traits. Journal of the American Society of Nephrology: JASN, 2020, 31, 2326-2340.	3.0	23
306	The intersectional genetics landscape for humans. GigaScience, 2020, 9, .	3.3	1
307	Network Approaches for Dissecting the Immune System. IScience, 2020, 23, 101354.	1.9	28
308	Purifying Selection against Pathogenic Mitochondrial DNA in Human T Cells. New England Journal of Medicine, 2020, 383, 1556-1563.	13.9	62
309	Neurogenesis From Embryo to Adult – Lessons From Flies and Mice. Frontiers in Cell and Developmental Biology, 2020, 8, 533.	1.8	38
310	Unraveling the Complexity of the Cancer Microenvironment With Multidimensional Genomic and Cytometric Technologies. Frontiers in Oncology, 2020, 10, 1254.	1.3	45

#	Article	IF	Citations
311	Genetics and Epigenetics of Sex Bias: Insights from Human Cancer and Autoimmunity. Trends in Genetics, 2020, 36, 650-663.	2.9	23
312	Detecting sample swaps in diverse NGS data types using linkage disequilibrium. Nature Communications, 2020, 11, 3697.	5. 8	12
313	Perspectives on ENCODE. Nature, 2020, 583, 693-698.	13.7	123
314	Cell-Type Specificity of Genomic Imprinting in Cerebral Cortex. Neuron, 2020, 107, 1160-1179.e9.	3.8	33
315	A limited set of transcriptional programs define major cell types. Genome Research, 2020, 30, 1047-1059.	2.4	32
316	Knowledge-primed neural networks enable biologically interpretable deep learning on single-cell sequencing data. Genome Biology, 2020, 21, 190.	3 . 8	67
317	Comparative transcriptomics of primary cells in vertebrates. Genome Research, 2020, 30, 951-961.	2.4	29
318	Circulating Cell-Free Nucleic Acids as Epigenetic Biomarkers in Precision Medicine. Frontiers in Genetics, 2020, 11, 844.	1.1	32
319	Unraveling the Enigmatic Origin of Neuroblastoma. Cancer Cell, 2020, 38, 618-620.	7.7	4
320	Probing infectious disease by single-cell RNA sequencing: Progresses and perspectives. Computational and Structural Biotechnology Journal, 2020, 18, 2962-2971.	1.9	32
321	Automated identification of the mouse brain's spatial compartments from in situ sequencing data. BMC Biology, 2020, 18, 144.	1.7	16
322	A review of computational strategies for denoising and imputation of single-cell transcriptomic data. Briefings in Bioinformatics, 2021, 22, .	3.2	27
323	Interactions between lineageâ€associated transcription factors govern haematopoietic progenitor states. EMBO Journal, 2020, 39, e104983.	3.5	20
324	A single-cell RNA-sequencing training and analysis suite using the Galaxy framework. GigaScience, 2020, 9, .	3.3	14
325	EPISCORE: cell type deconvolution of bulk tissue DNA methylomes from single-cell RNA-Seq data. Genome Biology, 2020, 21, 221.	3.8	58
326	Single-cell genomics technology: perspectives. Experimental and Molecular Medicine, 2020, 52, 1407-1408.	3.2	11
327	Untangling Data in Precision Oncology – A Model for Chronic Diseases?. Yearbook of Medical Informatics, 2020, 29, 184-187.	0.8	0
328	Applying Single-Cell Analysis to Gonadogenesis and DSDs (Disorders/Differences of Sex Development). International Journal of Molecular Sciences, 2020, 21, 6614.	1.8	19

#	Article	IF	CITATIONS
329	Human Cell Atlas and cell-type authentication for regenerative medicine. Experimental and Molecular Medicine, 2020, 52, 1443-1451.	3.2	22
330	Modelling kidney disease using ontology: insights from the Kidney Precision Medicine Project. Nature Reviews Nephrology, 2020, 16, 686-696.	4.1	45
331	Infrapatellar Fat Pad/Synovium Complex in Early-Stage Knee Osteoarthritis: Potential New Target and Source of Therapeutic Mesenchymal Stem/Stromal Cells. Frontiers in Bioengineering and Biotechnology, 2020, 8, 860.	2.0	49
332	A systematic evaluation of single-cell RNA-sequencing imputation methods. Genome Biology, 2020, 21, 218.	3.8	188
333	A Statistical Method for Association Analysis of Cell Type Compositions. Statistics in Biosciences, 2021, 13, 373-385.	0.6	0
334	Single-Cell RNA Sequencing Unveils Unique Transcriptomic Signatures of Organ-Specific Endothelial Cells. Circulation, 2020, 142, 1848-1862.	1.6	157
335	Autism spectrum disorder at the crossroad between genes and environment: contributions, convergences, and interactions in ASD developmental pathophysiology. Molecular Autism, 2020, 11, 69.	2.6	125
336	Single-cell sequencing techniques from individual to multiomics analyses. Experimental and Molecular Medicine, 2020, 52, 1419-1427.	3.2	136
337	\hat{l}^{1} 4CB-seq: microfluidic cell barcoding and sequencing for high-resolution imaging and sequencing of single cells. Lab on A Chip, 2020, 20, 3899-3913.	3.1	16
338	Decoding Susceptibility to Respiratory Viral Infections and Asthma Inception in Children. International Journal of Molecular Sciences, 2020, 21, 6372.	1.8	11
339	The protein expression profile of ACE2 in human tissues. Molecular Systems Biology, 2020, 16, e9610.	3.2	769
340	The Application of Single-Cell RNA Sequencing in Vaccinology. Journal of Immunology Research, 2020, 2020, 1-19.	0.9	30
341	A community-based transcriptomics classification and nomenclature of neocortical cell types. Nature Neuroscience, 2020, 23, 1456-1468.	7.1	183
342	PTRH2: an adhesion regulated molecular switch at the nexus of life, death, and differentiation. Cell Death Discovery, 2020, 6, 124.	2.0	9
343	FR-Match: robust matching of cell type clusters from single cell RNA sequencing data using the Friedman–Rafsky non-parametric test. Briefings in Bioinformatics, 2020, 22, .	3.2	12
344	A New Era for Space Life Science: International Standards for Space Omics Processing. Patterns, 2020, 1, 100148.	3.1	28
345	Neuronal differentiation strategies: insights from single-cell sequencing and machine learning. Development (Cambridge), 2020, 147, .	1.2	12
346	Advances and challenges in single-cell RNA-seq of microbial communities. Current Opinion in Microbiology, 2020, 57, 102-110.	2.3	24

#	Article	IF	CITATIONS
347	Single-cell genomic profile-based analysis of tissue differentiation in colorectal cancer. Science China Life Sciences, 2021, 64, 1311-1325.	2.3	4
348	Genome-Wide Association Study of Metamizole-Induced Agranulocytosis in European Populations. Genes, 2020, 11, 1275.	1.0	6
349	Spatially Resolved Transcriptomesâ€"Next Generation Tools for Tissue Exploration. BioEssays, 2020, 42, e1900221.	1.2	332
350	Single-cell RNA counting at allele and isoform resolution using Smart-seq3. Nature Biotechnology, 2020, 38, 708-714.	9.4	399
351	Kidney dendritic cells: fundamental biology and functional roles in health and disease. Nature Reviews Nephrology, 2020, 16, 391-407.	4.1	60
352	Cigarette Smoke Exposure and Inflammatory Signaling Increase the Expression of the SARS-CoV-2 Receptor ACE2 in the Respiratory Tract. Developmental Cell, 2020, 53, 514-529.e3.	3.1	346
353	Putative cell type discovery from single-cell gene expression data. Nature Methods, 2020, 17, 621-628.	9.0	91
354	Comprehensive analyses of 723 transcriptomes enhance genetic and biological interpretations for complex traits in cattle. Genome Research, 2020, 30, 790-801.	2.4	97
355	Single-cell RNA sequencing at isoform resolution. Nature Biotechnology, 2020, 38, 697-698.	9.4	1
356	Single-cell RNA-seq with spike-in cells enables accurate quantification of cell-specific drug effects in pancreatic islets. Genome Biology, 2020, 21, 106.	3.8	30
357	The March of Monocytes in Atherosclerosis. Circulation Research, 2020, 126, 1324-1326.	2.0	17
358	Deep learning enables accurate clustering with batch effect removal in single-cell RNA-seq analysis. Nature Communications, 2020, 11, 2338.	5.8	180
359	Multiplex bioimaging of single-cell spatial profiles for precision cancer diagnostics and therapeutics. Npj Precision Oncology, 2020, 4, 11.	2.3	53
360	BIOMEX: an interactive workflow for (single cell) omics data interpretation and visualization. Nucleic Acids Research, 2020, 48, W385-W394.	6.5	43
361	Sampling time-dependent artifacts in single-cell genomics studies. Genome Biology, 2020, 21, 112.	3.8	55
362	A Quantitative Framework for Evaluating Single-Cell Data Structure Preservation by Dimensionality Reduction Techniques. Cell Reports, 2020, 31, 107576.	2.9	49
363	Single-cell technologies in hepatology: new insights into liver biology and disease pathogenesis. Nature Reviews Gastroenterology and Hepatology, 2020, 17, 457-472.	8.2	152
364	Computational Methods for Single-Cell RNA Sequencing. Annual Review of Biomedical Data Science, 2020, 3, 339-364.	2.8	81

#	ARTICLE	IF	CITATIONS
365	Transcriptional and Cellular Diversity of the Human Heart. Circulation, 2020, 142, 466-482.	1.6	326
366	From GWAS to Function: Using Functional Genomics to Identify the Mechanisms Underlying Complex Diseases. Frontiers in Genetics, 2020, 11, 424.	1.1	335
367	Sparsity-Penalized Stacked Denoising Autoencoders for Imputing Single-Cell RNA-seq Data. Genes, 2020, 11, 532.	1.0	8
368	Tools and Concepts for Interrogating and Defining Cellular Identity. Cell Stem Cell, 2020, 26, 632-656.	5.2	24
369	Cell Lineage Tracing and Cellular Diversity in Humans. Annual Review of Genomics and Human Genetics, 2020, 21, 101-116.	2.5	10
370	Single-cell genomic analysis of human cerebral organoids. Methods in Cell Biology, 2020, 159, 229-256.	0.5	14
371	A Multiplexed Barcodelet Single-Cell RNA-Seq Approach Elucidates Combinatorial Signaling Pathways that Drive ESC Differentiation. Cell Stem Cell, 2020, 26, 938-950.e6.	5.2	12
372	ASAP 2020 update: an open, scalable and interactive web-based portal for (single-cell) omics analyses. Nucleic Acids Research, 2020, 48, W403-W414.	6.5	17
373	Enhancers, development, and evolution. Development Growth and Differentiation, 2020, 62, 265-268.	0.6	1
374	Transcript expression-aware annotation improves rare variant interpretation. Nature, 2020, 581, 452-458.	13.7	142
375	Epithelial cell dysfunction, a major driver of asthma development. Allergy: European Journal of Allergy and Clinical Immunology, 2020, 75, 1902-1917.	2.7	151
376	Immunological fortification at our barrier organs: Protecting us as we age. Immunology, 2020, 160, 103-105.	2.0	2
377	A hybrid deep clustering approach for robust cell type profiling using single-cell RNA-seq data. Rna, 2020, 26, 1303-1319.	1.6	12
378	Determinants of Resident Tissue Macrophage Identity and Function. Immunity, 2020, 52, 957-970.	6.6	280
379	The liver as an immunological barrier redefined by singleâ€cell analysis. Immunology, 2020, 160, 157-170.	2.0	28
380	Latent periodic process inference from single-cell RNA-seq data. Nature Communications, 2020, 11, 1441.	5.8	23
381	Deciphering Cell Fate Decision by Integrated Single-Cell Sequencing Analysis. Annual Review of Biomedical Data Science, 2020, 3, 1-22.	2.8	30
382	N-degron-mediated degradation and regulation of mitochondrial PINK1 kinase. Current Genetics, 2020, 66, 693-701.	0.8	22

#	Article	IF	CITATIONS
383	Singleâ€Cell Transcriptomic Analysis. , 2020, 10, 767-783.		8
384	An atlas of the protein-coding genes in the human, pig, and mouse brain. Science, 2020, 367, .	6.0	517
385	Computational methods in tumor immunology. Methods in Enzymology, 2020, 636, 209-259.	0.4	3
386	Integrated single-cell analysis of multicellular immune dynamics during hyperacute HIV-1 infection. Nature Medicine, 2020, 26, 511-518.	15.2	100
387	Single-cell RNA sequencing in cardiovascular development, disease and medicine. Nature Reviews Cardiology, 2020, 17, 457-473.	6.1	174
388	Tools for the analysis of high-dimensional single-cell RNA sequencing data. Nature Reviews Nephrology, 2020, 16, 408-421.	4.1	80
389	Benchmarking single-cell RNA-sequencing protocols for cell atlas projects. Nature Biotechnology, 2020, 38, 747-755.	9.4	313
390	National Cancer Institute Think-Tank Meeting Report on Proteomic Cartography and Biomarkers at the Single-Cell Level: Interrogation of Premalignant Lesions. Journal of Proteome Research, 2020, 19, 1900-1912.	1.8	8
391	Applying singleâ€eell technologies to clinical pathology: progress in nephropathology. Journal of Pathology, 2020, 250, 693-704.	2.1	15
392	Multi-lineage Human iPSC-Derived Platforms for Disease Modeling and Drug Discovery. Cell Stem Cell, 2020, 26, 309-329.	5.2	174
393	The Connection Between Minor H Antigens and Neoantigens and the Missing Link in Their Prediction. Frontiers in Immunology, 2020, 11, 1162.	2.2	6
394	Human neurogenesis., 2020,, 751-767.		0
395	Vascular Homeostasis and Inflammation in Health and Diseaseâ€"Lessons from Single Cell Technologies. International Journal of Molecular Sciences, 2020, 21, 4688.	1.8	17
396	A cell type annotation Jamboree—Revival of а communal science forum. Genesis, 2020, 58, e23383.	0.8	3
397	ImmGen at 15. Nature Immunology, 2020, 21, 700-703.	7.0	55
398	Breathing fresh air into respiratory research with single-cell RNA sequencing. European Respiratory Review, 2020, 29, 200060.	3.0	11
399	Single-cell ATAC-seq signal extraction and enhancement with SCATE. Genome Biology, 2020, 21, 161.	3.8	34
400	Interplay of EMT and CSC in Cancer and the Potential Therapeutic Strategies. Frontiers in Pharmacology, 2020, 11, 904.	1.6	99

#	Article	IF	CITATIONS
401	Determining sequencing depth in a single-cell RNA-seq experiment. Nature Communications, 2020, 11, 774.	5.8	74
402	Eleven grand challenges in single-cell data science. Genome Biology, 2020, 21, 31.	3.8	742
403	Data libraries – the missing element for modeling biological systems. FEBS Journal, 2020, 287, 4594-4601.	2.2	3
404	Linked optical and gene expression profiling of single cells at high-throughput. Genome Biology, 2020, 21, 49.	3.8	19
405	A Synthesis Concerning Conservation and Divergence of Cell Types across Epithelia. Cold Spring Harbor Perspectives in Biology, 2020, 12, a035733.	2.3	6
406	Conversion of chemical to mechanical energy by the nucleotide binding domains of ABCB1. Scientific Reports, 2020, 10, 2589.	1.6	6
407	SurfaceGenie: a web-based application for prioritizing cell-type-specific marker candidates. Bioinformatics, 2020, 36, 3447-3456.	1.8	37
408	Cellular deconvolution of GTEx tissues powers discovery of disease and cell-type associated regulatory variants. Nature Communications, 2020, 11, 955.	5.8	96
409	Immunology in the Era of Single-Cell Technologies. Annual Review of Immunology, 2020, 38, 727-757.	9.5	57
410	Plasma membrane receptors of tissue macrophages: functions and role in pathology. Journal of Pathology, 2020, 250, 656-666.	2.1	14
411	Adaptive Landscape Shaped by Core Endogenous Network Coordinates Complex Early Progenitor Fate Commitments in Embryonic Pancreas. Scientific Reports, 2020, 10, 1112.	1.6	7
412	Reconstructing temporal and spatial dynamics from single-cell pseudotime using prior knowledge of real scale cell densities. Scientific Reports, 2020, 10, 3619.	1.6	5
413	New approaches to the study of immune responses in humans. Human Genetics, 2020, 139, 795-799.	1.8	5
414	CellTagging: combinatorial indexing to simultaneously map lineage and identity at single-cell resolution. Nature Protocols, 2020, 15, 750-772.	5.5	49
415	Machine learning for active matter. Nature Machine Intelligence, 2020, 2, 94-103.	8.3	164
416	scCATCH: Automatic Annotation on Cell Types of Clusters from Single-Cell RNA Sequencing Data. IScience, 2020, 23, 100882.	1.9	178
417	scID Uses Discriminant Analysis to Identify Transcriptionally Equivalent Cell Types across Single-Cell RNA-Seq Data with Batch Effect. IScience, 2020, 23, 100914.	1.9	47
418	Advancing Stem Cell Research through Multimodal Single-Cell Analysis. Cold Spring Harbor Perspectives in Biology, 2020, 12, a035725.	2.3	7

#	Article	IF	CITATIONS
419	Differential network analysis of multiple human tissue interactomes highlights tissue-selective processes and genetic disorder genes. Bioinformatics, 2020, 36, 2821-2828.	1.8	28
420	The Interchromatin Compartment Participates in the Structural and Functional Organization of the Cell Nucleus. BioEssays, 2020, 42, e1900132.	1.2	65
421	Quantitative immunology for physicists. Physics Reports, 2020, 849, 1-83.	10.3	39
422	Techniques converge to map the developing human heart at single-cell level. Nature, 2020, 577, 629-630.	13.7	5
423	PARC: ultrafast and accurate clustering of phenotypic data of millions of single cells. Bioinformatics, 2020, 36, 2778-2786.	1.8	75
424	Picking a nucleosome lock: Sequence- and structure-specific recognition of the nucleosome. Journal of Biosciences, 2020, 45, 1.	0.5	9
425	Benchmarking principal component analysis for large-scale single-cell RNA-sequencing. Genome Biology, 2020, 21, 9.	3.8	71
426	Surface protein imputation from single cell transcriptomes by deep neural networks. Nature Communications, 2020, 11, 651.	5.8	47
427	Applications of singleâ€cell sequencing for the field of otolaryngology: A contemporary review. Laryngoscope Investigative Otolaryngology, 2020, 5, 404-431.	0.6	6
428	Single-cell omics in ageing: a young and growing field. Nature Metabolism, 2020, 2, 293-302.	5.1	67
429	Advances of single-cell genomics and epigenomics in human disease: where are we now?. Mammalian Genome, 2020, 31, 170-180.	1.0	9
430	Advancing Cancer Research and Medicine with Single-Cell Genomics. Cancer Cell, 2020, 37, 456-470.	7.7	187
431	A reference map of the human binary protein interactome. Nature, 2020, 580, 402-408.	13.7	724
432	Systematic comparison of single-cell and single-nucleus RNA-sequencing methods. Nature Biotechnology, 2020, 38, 737-746.	9.4	527
433	Identifying cell types to interpret scRNA-seq data: how, why and more possibilities. Briefings in Functional Genomics, 2020, 19, 286-291.	1.3	28
434	SARS-CoV-2 Receptor ACE2 Is an Interferon-Stimulated Gene in Human Airway Epithelial Cells and Is Detected in Specific Cell Subsets across Tissues. Cell, 2020, 181, 1016-1035.e19.	13.5	1,956
435	Scedar: A scalable Python package for single-cell RNA-seq exploratory data analysis. PLoS Computational Biology, 2020, 16, e1007794.	1.5	9
436	The Human Tumor Atlas Network: Charting Tumor Transitions across Space and Time at Single-Cell Resolution. Cell, 2020, 181, 236-249.	13.5	334

#	Article	IF	Citations
437	Consistent RNA sequencing contamination in GTEx and other data sets. Nature Communications, 2020, 11, 1933.	5.8	43
438	Dissecting the Tumor–Immune Landscape in Chimeric Antigen Receptor T-cell Therapy: Key Challenges and Opportunities for a Systems Immunology Approach. Clinical Cancer Research, 2020, 26, 3505-3513.	3.2	18
439	Considerations for Using the Vasculature as a Coordinate System to Map All the Cells in the Human Body. Frontiers in Cardiovascular Medicine, 2020, 7, 29.	1.1	19
440	Advances and challenges in epigenomic single-cell sequencing applications. Current Opinion in Chemical Biology, 2020, 57, 17-26.	2.8	13
441	Systems Biochemistry Approaches to Defining Mitochondrial Protein Function. Cell Metabolism, 2020, 31, 669-678.	7.2	16
442	Automation of Spatial Transcriptomics library preparation to enable rapid and robust insights into spatial organization of tissues. BMC Genomics, 2020, 21, 298.	1.2	19
443	Rodent models for psychiatric disorders: problems and promises. Laboratory Animal Research, 2020, 36, 9.	1.1	15
444	Single Cell Sequencing and Kidney Organoids Generated from Pluripotent Stem Cells. Clinical Journal of the American Society of Nephrology: CJASN, 2020, 15, 550-556.	2.2	19
445	Systems Biology and Kidney Disease. Clinical Journal of the American Society of Nephrology: CJASN, 2020, 15, 695-703.	2.2	15
446	Dimension Reduction and Clustering Models for Single-Cell RNA Sequencing Data: A Comparative Study. International Journal of Molecular Sciences, 2020, 21, 2181.	1.8	33
447	Resources for functional genomic studies of health and development in nonhuman primates. American Journal of Physical Anthropology, 2020, 171, 174-194.	2.1	7
448	SciBet as a portable and fast single cell type identifier. Nature Communications, 2020, 11, 1818.	5.8	90
449	Emerging Methods and Resources for BiologicalÂInterrogation of Neuropsychiatric Polygenic Signal. Biological Psychiatry, 2021, 89, 41-53.	0.7	38
450	CRISPR Tools for Physiology and Cell State Changes: Potential of Transcriptional Engineering and Epigenome Editing. Physiological Reviews, 2021, 101, 177-211.	13.1	13
451	The Human Protein Atlasâ€"Spatial localization of the human proteome in health and disease. Protein Science, 2021, 30, 218-233.	3.1	102
452	Overview of PAX gene family: analysis of human tissue-specific variant expression and involvement in human disease. Human Genetics, 2021, 140, 381-400.	1.8	25
453	Defining the Skin Cellular Community Using Single-Cell Genomics to Advance Precision Medicine. Journal of Investigative Dermatology, 2021, 141, 255-264.	0.3	16
454	Cancer diagnostics based on plasma protein biomarkers: hard times but great expectations. Molecular Oncology, 2021, 15, 1715-1726.	2.1	46

#	Article	IF	CITATIONS
455	CaliPro: A Calibration Protocol That Utilizes Parameter Density Estimation to Explore Parameter Space and Calibrate Complex Biological Models. Cellular and Molecular Bioengineering, 2021, 14, 31-47.	1.0	19
456	A multimodal and integrated approach to interrogate human kidney biopsies with rigor and reproducibility: guidelines from the Kidney Precision Medicine Project. Physiological Genomics, 2021, 53, 1-11.	1.0	59
457	Applying high-dimensional single-cell technologies to the analysis of cancer immunotherapy. Nature Reviews Clinical Oncology, 2021, 18, 244-256.	12.5	138
458	A hyperacute immune map of ischaemic stroke patients reveals alterations to circulating innate and adaptive cells. Clinical and Experimental Immunology, 2021, 203, 458-471.	1.1	7
459	Cell-cell junctions: structure and regulation in physiology and pathology. Tissue Barriers, 2021, 9, 1848212.	1.6	51
460	Benchmarking Computational Doublet-Detection Methods for Single-Cell RNA Sequencing Data. Cell Systems, 2021, 12, 176-194.e6.	2.9	99
461	Spage2vec: Unsupervised representation of localized spatial gene expression signatures. FEBS Journal, 2021, 288, 1859-1870.	2.2	30
462	STACAS: Sub-Type Anchor Correction for Alignment in Seurat to integrate single-cell RNA-seq data. Bioinformatics, 2021, 37, 882-884.	1.8	29
463	SCDC: bulk gene expression deconvolution by multiple single-cell RNA sequencing references. Briefings in Bioinformatics, 2021, 22, 416-427.	3.2	156
465	Expansion sequencing: Spatially precise in situ transcriptomics in intact biological systems. Science, 2021, 371, .	6.0	197
466	Single-cell RNA sequencing in cardiovascular science. , 2021, , 377-394.		0
467	Transcriptomics in rare diseases. , 2021, , 215-228.		0
468	scDA: Single cell discriminant analysis for single-cell RNA sequencing data. Computational and Structural Biotechnology Journal, 2021, 19, 3234-3244.	1.9	3
469	Spatially resolved 3D metabolomic profiling in tissues. Science Advances, 2021, 7, .	4.7	29
470	Data types and resources. , 2021, , 27-60.		3
471	Inference of Networks from Large Datasets. , 2021, , 17-25.		0
473	Unified Classification of Mouse Retinal Ganglion Cells Using Function, Morphology, and Gene Expression. SSRN Electronic Journal, 0, , .	0.4	1
474	Lung Gene Expression Analysis Web Portal Version 3: Lung-at-a-Glance. American Journal of Respiratory Cell and Molecular Biology, 2021, 64, 146-149.	1.4	17

#	Article	IF	Citations
476	Building a high-quality Human Cell Atlas. Nature Biotechnology, 2021, 39, 149-153.	9.4	48
477	Hydrogel, a novel therapeutic and delivery strategy, in the treatment of intrauterine adhesions. Journal of Materials Chemistry B, 2021, 9, 6536-6552.	2.9	17
479	Statistical and machine learning methods for spatially resolved transcriptomics with histology. Computational and Structural Biotechnology Journal, 2021, 19, 3829-3841.	1.9	52
480	Stratified Test Accurately Identifies Differentially Expressed Genes Under Batch Effects in Single-Cell Data. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2021, 18, 2072-2079.	1.9	3
482	Aneuploidy: An opportunity within single-cell RNA sequencing analysis. Biocell, 2021, 45, 1167-1170.	0.4	2
483	scAdapt: virtual adversarial domain adaptation network for single cell RNA-seq data classification across platforms and species. Briefings in Bioinformatics, 2021, 22, .	3.2	13
485	System-Wide Pollution of Biomedical Data: Consequence of the Search for Hub Genes of Hepatocellular Carcinoma Without Spatiotemporal Consideration. Molecular Diagnosis and Therapy, 2021, 25, 9-27.	1.6	4
486	Opportunities and Perspectives of NGS Applications in Cancer Research. Learning Materials in Biosciences, 2021, , 17-38.	0.2	0
487	What machine learning can do for developmental biology. Development (Cambridge), 2021, 148, .	1.2	16
488	A cross-platform informatics system for the Gut Cell Atlas: integrating clinical, anatomical and histological data. , 2021, 11601, .		4
489	Robust decomposition of cell type mixtures in spatial transcriptomics. Nature Biotechnology, 2022, 40, 517-526.	9.4	376
490	SPOTlight: seeded NMF regression to deconvolute spatial transcriptomics spots with single-cell transcriptomes. Nucleic Acids Research, 2021, 49, e50-e50.	6.5	338
491	Joint probabilistic modeling of single-cell multi-omic data with totalVI. Nature Methods, 2021, 18, 272-282.	9.0	246
492	Exploring the secrets of brain transcriptional regulation: developing methodologies, recent significant findings, and perspectives. Brain Structure and Function, 2021, 226, 313-322.	1.2	1
493	Optimized Culture Conditions for Improved Growth and Functional Differentiation of Mouse and Human Colon Organoids. Frontiers in Immunology, 2020, 11, 547102.	2.2	21
494	Omics in immunology. Immunology and Cell Biology, 2021, 99, 133-134.	1.0	0
496	Evaluating Capture Sequence Performance for Single-Cell CRISPR Activation Experiments. ACS Synthetic Biology, 2021, 10, 640-645.	1.9	3
497	Constructing and optimizing 3D atlases from 2D data with application to the developing mouse brain. ELife, 2021, 10, .	2.8	15

#	Article	IF	Citations
499	Potential applications of deep learning in single-cell RNA sequencing analysis for cell therapy and regenerative medicine. Stem Cells, 2021, 39, 511-521.	1.4	16
500	ArchR is a scalable software package for integrative single-cell chromatin accessibility analysis. Nature Genetics, 2021, 53, 403-411.	9.4	610
501	Skin organoids: A new human model for developmental and translational research. Experimental Dermatology, 2021, 30, 613-620.	1.4	34
502	Single-cell RNA sequencing: An overview for the ophthalmologist. Seminars in Ophthalmology, 2021, 36, 191-197.	0.8	3
503	Three-dimensional imaging and reconstruction of the whole ovary and testis: a new frontier for the reproductive scientist. Molecular Human Reproduction, 2021, 27, .	1.3	8
504	Molecular classification of zebrafish retinal ganglion cells links genes to cell types to behavior. Neuron, 2021, 109, 645-662.e9.	3.8	49
506	Singleâ€cell sequencing in translational cancer research and challenges to meet clinical diagnostic needs. Genes Chromosomes and Cancer, 2021, 60, 504-524.	1.5	10
507	Translational insights from single-cell technologies across the cardiovascular disease continuum. Trends in Cardiovascular Medicine, 2021, , .	2.3	4
508	Human Pluripotent Stem Cells to Model Islet Defects in Diabetes. Frontiers in Endocrinology, 2021, 12, 642152.	1.5	24
509	Exploring the human lacrimal gland using organoids and single-cell sequencing. Cell Stem Cell, 2021, 28, 1221-1232.e7.	5.2	55
510	Correction for both common and rare cell types in blood is important to identify genes that correlate with age. BMC Genomics, 2021, 22, 184.	1.2	5
511	Transcriptional bursts explain autosomal random monoallelic expression and affect allelic imbalance. PLoS Computational Biology, 2021, 17, e1008772.	1.5	20
513	Advances in bulk and single-cell multi-omics approaches for systems biology and precision medicine. Briefings in Bioinformatics, 2021, 22, .	3.2	31
514	Singleâ€ell <scp>RNA</scp> sequencing: A new opportunity for retinal research. Wiley Interdisciplinary Reviews RNA, 2021, 12, e1652.	3.2	2
515	ShinyCell: simple and sharable visualization of single-cell gene expression data. Bioinformatics, 2021, 37, 3374-3376.	1.8	83
516	Noise regularization removes correlation artifacts in single-cell RNA-seq data preprocessing. Patterns, 2021, 2, 100211.	3.1	9
519	Single Cell Analysis of Blood Mononuclear Cells Stimulated Through Either LPS or Anti-CD3 and Anti-CD28. Frontiers in Immunology, 2021, 12, 636720.	2.2	32
520	Single-Cell Toolkits Opening a New Era for Cell Engineering. Molecules and Cells, 2021, 44, 127-135.	1.0	11

#	ARTICLE	IF	CITATIONS
521	History and Future Perspectives on the Discipline of Quantitative Systems Pharmacology Modeling and Its Applications. Frontiers in Physiology, 2021, 12, 637999.	1.3	44
522	Stochastic models for singleâ€cell data: Current challenges and the way forward. FEBS Journal, 2022, 289, 647-658.	2.2	6
523	Alignment of single-cell RNA-seq samples without overcorrection using kernel density matching. Genome Research, 2021, 31, 698-712.	2.4	4
524	Algorithmic advances in machine learning for single-cell expression analysis. Current Opinion in Systems Biology, 2021, 25, 27-33.	1.3	20
525	Multiomics uncovers developing immunological lineages in human. European Journal of Immunology, 2021, 51, 764-772.	1.6	8
526	Fast searches of large collections of single-cell data using scfind. Nature Methods, 2021, 18, 262-271.	9.0	10
527	Giotto: a toolbox for integrative analysis and visualization of spatial expression data. Genome Biology, 2021, 22, 78.	3.8	367
531	The Role of Cell Tracing and Fate Mapping Experiments in Cardiac Outflow Tract Development, New Opportunities through Emerging Technologies. Journal of Cardiovascular Development and Disease, 2021, 8, 47.	0.8	2
532	Cell-type-aware analysis of RNA-seq data. Nature Computational Science, 2021, 1, 253-261.	3.8	12
533	Targeting pan-essential genes in cancer: Challenges and opportunities. Cancer Cell, 2021, 39, 466-479.	7.7	88
535	Integration, exploration, and analysis of highâ€dimensional singleâ€cell cytometry data using Spectre. Cytometry Part A: the Journal of the International Society for Analytical Cytology, 2022, 101, 237-253.	1,1	78
537	Taming Cell-to-Cell Heterogeneity in Acute Myeloid Leukaemia With Machine Learning. Frontiers in Oncology, 2021, 11, 666829.	1.3	3
538	Advances in Genomic Discovery and Implications for Personalized Prevention and Medicine: Estonia as Example. Journal of Personalized Medicine, 2021, 11, 358.	1.1	6
540	Using CRISPR to understand and manipulate gene regulation. Development (Cambridge), 2021, 148, .	1.2	9
541	Single-Cell Transcriptomics: Current Methods and Challenges in Data Acquisition and Analysis. Frontiers in Neuroscience, 2021, 15, 591122.	1.4	53
542	RNA Dysregulation: An Expanding Source of Cancer Immunotherapy Targets. Trends in Pharmacological Sciences, 2021, 42, 268-282.	4.0	39
543	Spatial transcriptomics for respiratory research and medicine. European Respiratory Journal, 2021, 58, 2004314.	3.1	3
545	Iterative single-cell multi-omic integration using online learning. Nature Biotechnology, 2021, 39, 1000-1007.	9.4	53

#	Article	IF	CITATIONS
549	Discussion of "Exponential-Family Embedding With Application to Cell Developmental Trajectories for Single-Cell RNA-seq Data― Journal of the American Statistical Association, 2021, 116, 471-474.	1.8	0
551	Statistical mechanics meets single-cell biology. Nature Reviews Genetics, 2021, 22, 459-476.	7.7	65
552	Artificial Intelligence in Cancer Research and Precision Medicine. Cancer Discovery, 2021, 11, 900-915.	7.7	209
554	Gene signature extraction and cell identity recognition at the single-cell level with Cell-ID. Nature Biotechnology, 2021, 39, 1095-1102.	9.4	7 5
555	Mapping the molecular and structural specialization of the skin basement membrane for inter-tissue interactions. Nature Communications, 2021, 12, 2577.	5.8	31
556	A high-resolution cell atlas of the domestic pig lung and an online platform for exploring lung single-cell data. Journal of Genetics and Genomics, 2021, 48, 411-425.	1.7	19
557	Employing core regulatory circuits to define cell identity. EMBO Journal, 2021, 40, e106785.	3.5	23
558	Dendritic Cells: Versatile Players in Renal Transplantation. Frontiers in Immunology, 2021, 12, 654540.	2.2	10
559	Interpretation of T cell states from single-cell transcriptomics data using reference atlases. Nature Communications, 2021, 12, 2965.	5.8	210
560	Recent Advances in Cellular and Molecular Bioengineering for Building and Translation of Biological Systems. Cellular and Molecular Bioengineering, 2021, 14, 293-308.	1.0	2
561	Evolution of proteomics technologies for understanding respiratory syncytial virus pathogenesis. Expert Review of Proteomics, 2021, 18, 379-394.	1.3	3
562	Stress relief: emerging methods to mitigate dissociation-induced artefacts. Trends in Cell Biology, 2021, 31, 888-897.	3.6	20
563	Unraveling Root Development Through Single-Cell Omics and Reconstruction of Gene Regulatory Networks. Frontiers in Plant Science, 2021, 12, 661361.	1.7	4
564	Microfluidic platform accelerates tissue processing into single cells for molecular analysis and primary culture models. Nature Communications, 2021, 12, 2858.	5.8	29
565	SARS-CoV-2 infects human adult donor eyes and hESC-derived ocular epithelium. Cell Stem Cell, 2021, 28, 1205-1220.e7.	5.2	44
566	Exosomes provide unappreciated carrier effects that assist transfers of their miRNAs to targeted cells; I. They are †The Elephant in the Room'. RNA Biology, 2021, 18, 1-16.	1.5	8
567	Noncontact Multiphysics Probe for Spatiotemporal Resolved Single ell Manipulation and Analyses. Small, 2021, 17, 2100801.	5.2	9
568	Single-cell manifold-preserving feature selection for detecting rare cell populations. Nature Computational Science, $2021, 1, 374-384$.	3.8	20

#	Article	IF	CITATIONS
569	Ultra-high-throughput single-cell RNA sequencing and perturbation screening with combinatorial fluidic indexing. Nature Methods, 2021, 18, 635-642.	9.0	129
570	Integrating multiple references for single-cell assignment. Nucleic Acids Research, 2021, 49, e80-e80.	6.5	14
571	Pseudocell Tracerâ€"A method for inferring dynamic trajectories using scRNAseq and its application to B cells undergoing immunoglobulin class switch recombination. PLoS Computational Biology, 2021, 17, e1008094.	1.5	5
573	Mapping single-cell atlases throughout Metazoa unravels cell type evolution. ELife, 2021, 10, .	2.8	124
574	Isolation of Nuclei from Mammalian Cells and Tissues for Singleâ€Nucleus Molecular Profiling. Current Protocols, 2021, 1, e132.	1.3	21
575	FBA: feature barcoding analysis for single cell RNA-Seq. Bioinformatics, 2021, 37, 4266-4268.	1.8	9
576	Big data analytics in singleâ€cell transcriptomics: Five grand opportunities. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 2021, 11, e1414.	4.6	1
577	The neutrotime transcriptional signature defines a single continuum of neutrophils across biological compartments. Nature Communications, 2021, 12, 2856.	5.8	149
578	Deep generative model embedding of single-cell RNA-Seq profiles on hyperspheres and hyperbolic spaces. Nature Communications, 2021, 12, 2554.	5.8	48
579	Population-scale tissue transcriptomics maps long non-coding RNAs to complex disease. Cell, 2021, 184, 2633-2648.e19.	13.5	94
580	Tutorial: guidelines for annotating single-cell transcriptomic maps using automated and manual methods. Nature Protocols, 2021, 16, 2749-2764.	5.5	100
581	Understanding extracellular vesicle and nanoparticle heterogeneity: Novel methods and considerations. Proteomics, 2021, 21, e2000118.	1.3	38
582	The Known Unknowns of the Immune Response to Coccidioides. Journal of Fungi (Basel, Switzerland), 2021, 7, 377.	1.5	6
583	Single-cell sequencing links multiregional immune landscapes and tissue-resident Tâcells in ccRCC to tumor topology and therapy efficacy. Cancer Cell, 2021, 39, 662-677.e6.	7.7	179
584	Discovering Cellular Mitochondrial Heteroplasmy Heterogeneity with Single Cell RNA and ATAC Sequencing. Biology, 2021, 10, 503.	1.3	6
586	A machine learning method for the discovery of minimum marker gene combinations for cell type identification from single-cell RNA sequencing. Genome Research, 2021, 31, 1767-1780.	2.4	50
587	60 Years Young: The Evolving Role of Allogeneic Hematopoietic Stem Cell Transplantation in Cancer Immunotherapy. Cancer Research, 2021, 81, 4373-4384.	0.4	19
588	The Comprehensive "Omics―Approach from Metabolomics to Advanced Omics for Development of Immune Checkpoint Inhibitors: Potential Strategies for Next Generation of Cancer Immunotherapy. International Journal of Molecular Sciences, 2021, 22, 6932.	1.8	9

#	Article	IF	CITATIONS
591	scNetViz: from single cells to networks using Cytoscape. F1000Research, 2021, 10, 448.	0.8	1
593	Dissecting the common and compartment-specific features of COVID-19 severity in the lung and periphery with single-cell resolution. IScience, 2021, 24, 102738.	1.9	6
594	Visual Genomics Analysis Studio as a Tool to Analyze Multiomic Data. Frontiers in Genetics, 2021, 12, 642012.	1.1	14
595	High-resolution transcriptional landscape of xeno-free human induced pluripotent stem cell-derived cerebellar organoids. Scientific Reports, 2021, 11, 12959.	1.6	32
596	Optimizing expression quantitative trait locus mapping workflows for single-cell studies. Genome Biology, 2021, 22, 188.	3.8	36
598	An integrated analysis of human myeloid cells identifies gaps in inÂvitro models of inÂvivo biology. Stem Cell Reports, 2021, 16, 1629-1643.	2.3	14
599	Advances and Opportunities in Single-Cell Transcriptomics for Plant Research. Annual Review of Plant Biology, 2021, 72, 847-866.	8.6	101
603	Single-cell technologies and analyses in hematopoiesis and hematological malignancies. Experimental Hematology, 2021, 98, 1-13.	0.2	11
604	Machine learning for perturbational single-cell omics. Cell Systems, 2021, 12, 522-537.	2.9	52
605	scGCN is a graph convolutional networks algorithm for knowledge transfer in single cell omics. Nature Communications, 2021, 12, 3826.	5.8	40
606	Single-Cell Transcriptome Analysis as a Promising Tool to Study Pluripotent Stem Cell Reprogramming. International Journal of Molecular Sciences, 2021, 22, 5988.	1.8	3
607	Prioritization of cell types responsive to biological perturbations in single-cell data with Augur. Nature Protocols, 2021, 16, 3836-3873.	5.5	22
609	Idiopathic pulmonary fibrosis and systemic sclerosis: pathogenic mechanisms and therapeutic interventions. Cellular and Molecular Life Sciences, 2021, 78, 5527-5542.	2.4	22
610	The FAANG Data Portal: Global, Open-Access, "FAIRâ€, and Richly Validated Genotype to Phenotype Data for High-Quality Functional Annotation of Animal Genomes. Frontiers in Genetics, 2021, 12, 639238.	1.1	8
611	A Bayesian inference transcription factor activity model for the analysis of single-cell transcriptomes. Genome Research, 2021, 31, 1296-1311.	2.4	7
612	Unbiased Identification of Extracellular Protein–Protein Interactions for Drug Target and Biologic Drug Discovery. , 0, , .		1
613	Integrating single-cell and spatial transcriptomics to elucidate intercellular tissue dynamics. Nature Reviews Genetics, 2021, 22, 627-644.	7.7	423
614	Breast cancer heterogeneity through the lens of single-cell analysis and spatial pathologies. Seminars in Cancer Biology, 2022, 82, 3-10.	4.3	23

#	Article	IF	CITATIONS
615	A single–cell type transcriptomics map of human tissues. Science Advances, 2021, 7, .	4.7	632
616	Gaining insight into metabolic diseases from human genetic discoveries. Trends in Genetics, 2021, 37, 1081-1094.	2.9	11
617	MERFISH Enables Mapping of Cellular Diversity with Spatial Context at Subcellular Resolution. Microscopy Today, 2021, 29, 30-33.	0.2	0
619	Epigenomics in the single cell era, an important read out for genome function and cell identity. Epigenomics, 2021, 13, 981-984.	1.0	3
620	Multiplexing Methods for Simultaneous Largeâ€Scale Transcriptomic Profiling of Samples at Singleâ€Cell Resolution. Advanced Science, 2021, 8, e2101229.	5.6	29
621	Multiomic technologies for analyses of inborn errors of immunity: from snapshot of the average cell to dynamic temporal picture at single-cell resolution. Inflammation and Regeneration, 2021, 41, 19.	1.5	0
622	Applications and analytical tools of cell communication based on ligand-receptor interactions at single cell level. Cell and Bioscience, 2021, 11, 121.	2.1	21
623	Towards a Human Cell Atlas: Taking Notes from the Past. Trends in Genetics, 2021, 37, 625-630.	2.9	59
624	An unsupervised method for physical cell interaction profiling of complex tissues. Nature Methods, 2021, 18, 912-920.	9.0	20
626	UCSC Cell Browser: visualize your single-cell data. Bioinformatics, 2021, 37, 4578-4580.	1.8	105
627	Machine learning methods to model multicellular complexity and tissue specificity. Nature Reviews Materials, 2021, 6, 717-729.	23.3	13
628	ChrNet: A re-trainable chromosome-based 1D convolutional neural network for predicting immune cell types. Genomics, 2021, 113, 2023-2031.	1.3	5
629	Multi-resolution characterization of molecular taxonomies in bulk and single-cell transcriptomics data. Nucleic Acids Research, 2021, 49, e98-e98.	6.5	4
630	scLink: Inferring Sparse Gene Co-expression Networks from Single-cell Expression Data. Genomics, Proteomics and Bioinformatics, 2021, 19, 475-492.	3.0	23
632	Tissue Multiplex Analyte Detection in Anatomic Pathology – Pathways to Clinical Implementation. Frontiers in Molecular Biosciences, 2021, 8, 672531.	1.6	20
633	The Potential of OMICs Technologies for the Treatment of Immune-Mediated Inflammatory Diseases. International Journal of Molecular Sciences, 2021, 22, 7506.	1.8	6
634	SAILER: scalable and accurate invariant representation learning for single-cell ATAC-seq processing and integration. Bioinformatics, 2021, 37, i317-i326.	1.8	9
635	HITS: Harnessing a Collaborative Training Network to Create Case Studies that Integrate High-Throughput, Complex Datasets into Curricula. Frontiers in Education, 2021, 6, .	1.2	4

#	Article	IF	CITATIONS
636	The Power of Systems Biology. Rheumatic Disease Clinics of North America, 2021, 47, 335-350.	0.8	9
637	High-speed laser-scanning biological microscopy using FACED. Nature Protocols, 2021, 16, 4227-4264.	5.5	9
638	Selecting gene features for unsupervised analysis of single-cell gene expression data. Briefings in Bioinformatics, 2021, 22, .	3.2	20
639	Community-wide hackathons to identify central themes in single-cell multi-omics. Genome Biology, 2021, 22, 220.	3.8	9
640	Mapping single-cell data to reference atlases by transfer learning. Nature Biotechnology, 2022, 40, 121-130.	9.4	236
642	Exploring the Biological Activity and Mechanism of Xenoestrogens and Phytoestrogens in Cancers: Emerging Methods and Concepts. International Journal of Molecular Sciences, 2021, 22, 8798.	1.8	19
643	scASK: A Novel Ensemble Framework for Classifying Cell Types Based on Single-cell RNA-seq Data. IEEE Journal of Biomedical and Health Informatics, 2021, 25, 3230-3239.	3.9	1
644	Metabolic modeling of single Th17 cells reveals regulators of autoimmunity. Cell, 2021, 184, 4168-4185.e21.	13.5	203
646	Supervised application of internal validation measures to benchmark dimensionality reduction methods in scRNA-seq data. Briefings in Bioinformatics, 2021, 22, .	3.2	9
647	Genome-wide association studies. Nature Reviews Methods Primers, 2021, 1, .	11.8	529
649	Decoding disease: from genomes to networks to phenotypes. Nature Reviews Genetics, 2021, 22, 774-790.	7.7	46
650	Leveraging Neuroimaging Tools to Assess Precision and Accuracy in an Alzheimer's Disease Neuropathologic Sampling Protocol. Frontiers in Neuroscience, 2021, 15, 693242.	1.4	1
651	Use of Linear Ion Traps in Data-Independent Acquisition Methods Benefits Low-Input Proteomics. Analytical Chemistry, 2021, 93, 11649-11653.	3.2	15
652	Comprehensive in situ mapping of human cortical transcriptomic cell types. Communications Biology, 2021, 4, 998.	2.0	18
653	Cross-tissue single-cell landscape of human monocytes and macrophages in health and disease. Immunity, 2021, 54, 1883-1900.e5.	6.6	233
654	Computational reconstruction of the signalling networks surrounding implanted biomaterials from single-cell transcriptomics. Nature Biomedical Engineering, 2021, 5, 1228-1238.	11.6	40
655	A prevalent neglect of environmental control in mammalian cell culture calls for best practices. Nature Biomedical Engineering, 2021, 5, 787-792.	11.6	24
656	A network of core and subtype-specific gene expression programs in myositis. Acta Neuropathologica, 2021, 142, 887-898.	3.9	13

#	Article	IF	Citations
658	Massively parallel quantification of phenotypic heterogeneity in single-cell drug responses. Science Advances, 2021, 7, eabf9840.	4.7	9
659	Complex Organ Construction from Human Pluripotent Stem Cells for Biological Research and Disease Modeling with New Emerging Techniques. International Journal of Molecular Sciences, 2021, 22, 10184.	1.8	4
660	Gene Expression Nebulas (GEN): a comprehensive data portal integrating transcriptomic profiles across multiple species at both bulk and single-cell levels. Nucleic Acids Research, 2022, 50, D1016-D1024.	6.5	18
661	Neuronal Cell-type Engineering by Transcriptional Activation. Frontiers in Genome Editing, 2021, 3, 715697.	2.7	5
662	The basis of easy controllability in Boolean networks. Nature Communications, 2021, 12, 5227.	5.8	20
664	A versatile and scalable single-cell data integration algorithm based on domain-adversarial and variational approximation. Briefings in Bioinformatics, 2022, 23, .	3.2	17
665	"SLC-omics―of the kidney: solute transporters along the nephron. American Journal of Physiology - Cell Physiology, 2021, 321, C507-C518.	2.1	22
666	Toward a unified information framework for cell atlas assembly. National Science Review, 2022, 9, nwab179.	4.6	9
667	Systems Biology of the Vasopressin V2 Receptor: New Tools for Discovery of Molecular Actions of a GPCR. Annual Review of Pharmacology and Toxicology, 2022, 62, 595-616.	4.2	5
668	Applying Machine Learning to Stem Cell Culture and Differentiation. Current Protocols, 2021, 1, e261.	1.3	11
669	Vision, challenges and opportunities for a Plant Cell Atlas. ELife, 2021, 10, .	2.8	31
673	Single-cell technologies to dissect heterogenous immune cell therapy products. Current Opinion in Biomedical Engineering, 2021, 20, 100343.	1.8	1
674	Genetic demultiplexing of pooled single-cell RNA-sequencing samples in cancer facilitates effective experimental design. GigaScience, 2021, 10, .	3.3	17
675	Single-cell approaches to dissect adaptive immune responses involved in autoimmunity: the case of celiac disease. Mucosal Immunology, 2022, 15, 51-63.	2.7	3
677	Singleâ€nucleus RNA sequencing of plant tissues using a nanowellâ€based system. Plant Journal, 2021, 108, 859-869.	2.8	27
678	Cell–cell communication networks in tissue: Toward quantitatively linking structure with function. Current Opinion in Systems Biology, 2021, 27, 100341.	1.3	2
679	Leveraging the Cell Ontology to classify unseen cell types. Nature Communications, 2021, 12, 5556.	5.8	21
680	From GWAS to Gene: Transcriptome-Wide Association Studies and Other Methods to Functionally Understand GWAS Discoveries. Frontiers in Genetics, 2021, 12, 713230.	1.1	55

#	Article	IF	CITATIONS
681	Learning interpretable cellular and gene signature embeddings from single-cell transcriptomic data. Nature Communications, 2021, 12, 5261.	5.8	38
682	A single-cell tumor immune atlas for precision oncology. Genome Research, 2021, 31, 1913-1926.	2.4	87
683	Integrating single-cell datasets with ambiguous batch information by incorporating molecular network features. Briefings in Bioinformatics, 2022, 23, .	3.2	5
684	A roadmap for the Human Developmental Cell Atlas. Nature, 2021, 597, 196-205.	13.7	114
685	Integration of functional genomics data to uncover cell type-specific pathways affected in Parkinson's disease. Biochemical Society Transactions, 2021, 49, 2091-2100.	1.6	1
686	Evaluation of some aspects in supervised cell type identification for single-cell RNA-seq: classifier, feature selection, and reference construction. Genome Biology, 2021, 22, 264.	3.8	21
687	The legacy of the Human Genome Project. Science, 2021, 373, 1442-1443.	6.0	18
688	Genetic Deficiency of TRAF5 Promotes Adipose Tissue Inflammation and Aggravates Diet-Induced Obesity in Mice. Arteriosclerosis, Thrombosis, and Vascular Biology, 2021, 41, 2563-2574.	1.1	8
689	Evolutionary cell type mapping with single-cell genomics. Trends in Genetics, 2021, 37, 919-932.	2.9	43
690	Stem/progenitor cells in normal physiology and disease of the pancreas. Molecular and Cellular Endocrinology, 2021, 538, 111459.	1.6	6
691	Machine learning for profile prediction in genomics. Current Opinion in Chemical Biology, 2021, 65, 35-41.	2.8	11
692	Power of Transcriptomics in Lung Biology. , 2022, , 763-772.		0
693	GENCODE Pseudogenes. Methods in Molecular Biology, 2021, 2324, 67-82.	0.4	1
695	UCell: Robust and scalable single-cell gene signature scoring. Computational and Structural Biotechnology Journal, 2021, 19, 3796-3798.	1.9	232
696	scMRMA: single cell multiresolution marker-based annotation. Nucleic Acids Research, 2022, 50, e7-e7.	6.5	16
697	Probabilistic harmonization and annotation of singleâ€eell transcriptomics data with deep generative models. Molecular Systems Biology, 2021, 17, e9620.	3.2	211
698	Analytics methods and tools for integration of biomedical data in medicine., 2021,, 113-129.		0
699	Using single-cell cytometry to illustrate integrated multi-perspective evaluation of clustering algorithms using Pareto fronts. Bioinformatics, 2021, 37, 1972-1981.	1.8	2

#	Article	IF	CITATIONS
700	DeepHistoClass: A Novel Strategy for Confident Classification of Immunohistochemistry Images Using Deep Learning. Molecular and Cellular Proteomics, 2021, 20, 100140.	2.5	11
701	Redefining Microglial Identity in Health and Disease at Single-Cell Resolution. Trends in Molecular Medicine, 2021, 27, 47-59.	3.5	18
703	Supervised Adversarial Alignment of Single-Cell RNA-seq Data. Journal of Computational Biology, 2021, 28, 501-513.	0.8	18
704	Genomic sequencing of rare diseases. , 2021, , 61-95.		6
705	Microfluidic single-cell transcriptomics: moving towards multimodal and spatiotemporal omics. Lab on A Chip, 2021, 21, 3829-3849.	3.1	17
706	Computational strategies for single-cell multi-omics integration. Computational and Structural Biotechnology Journal, 2021, 19, 2588-2596.	1.9	46
707	HiDeF: identifying persistent structures in multiscale â€~omics data. Genome Biology, 2021, 22, 21.	3.8	29
708	Understanding embryonic development at single-cell resolution. Cell Regeneration, 2021, 10, 10.	1.1	2
709	ISG15 protects human Tregs from interferon alphaâ€induced contraction in a cellâ€intrinsic fashion. Clinical and Translational Immunology, 2020, 9, e1221.	1.7	11
710	Single Cell Sequencing in Cancer Diagnostics. Advances in Experimental Medicine and Biology, 2020, 1255, 175-193.	0.8	9
711	Methods for isolation and transcriptional profiling of individual cells from the human heart. Heliyon, 2020, 6, e05810.	1.4	10
712	Map clusters of diseases to tackle multimorbidity. Nature, 2020, 579, 494-496.	13.7	55
713	An antiviral response beyond immune cells. Nature, 2020, 583, 206-207.	13.7	5
714	Expanded ENCODE delivers invaluable genomic encyclopedia. Nature, 2020, 583, 685-686.	13.7	7
715	The Organoid Cell Atlas. Nature Biotechnology, 2021, 39, 13-17.	9.4	96
716	Single-cell genomic approaches for developing the next generation of immunotherapies. Nature Medicine, 2020, 26, 171-177.	15.2	84
717	Multiplexed single-cell proteomics using SCoPE2. Nature Protocols, 2021, 16, 5398-5425.	5 . 5	108
718	Heterogeneity and â€~memory' in stem cell populations. Physical Biology, 2020, 17, 065013.	0.8	4

#	Article	IF	CITATIONS
719	<i>Atlas</i> : automatic modeling of regulation of bacterial gene expression and metabolism using rule-based languages. Bioinformatics, 2021, 36, 5473-5480.	1.8	7
720	SoupX removes ambient RNA contamination from droplet-based single-cell RNA sequencing data. GigaScience, 2020, 9, .	3.3	578
808	Data Denoising and Post-Denoising Corrections in Single Cell RNA Sequencing. Statistical Science, 2020, 35, .	1.6	6
809	scClustViz – Single-cell RNAseq cluster assessment and visualization. F1000Research, 2018, 7, 1522.	0.8	32
810	scClustViz – Single-cell RNAseq cluster assessment and visualization. F1000Research, 2018, 7, 1522.	0.8	28
811	A simple, scalable approach to building a cross-platform transcriptome atlas. PLoS Computational Biology, 2020, 16, e1008219.	1.5	12
812	Genomic data sharing in Europe is stumblingâ€"Could a code of conduct prevent its fall?. EMBO Molecular Medicine, 2020, 12, e11421.	3.3	22
813	Enhancing scientific discoveries in molecular biology with deep generative models. Molecular Systems Biology, 2020, 16, e9198.	3.2	44
814	A single cell atlas of the human liver tumor microenvironment. Molecular Systems Biology, 2020, 16, e9682.	3.2	99
815	A quantitative analysis of the interplay of environment, neighborhood, and cell state in 3D spheroids. Molecular Systems Biology, 2020, 16, e9798.	3.2	17
817	Single-cell RNA sequencing of human breast tumour-infiltrating immune cells reveals a $\hat{I}^3\hat{I}^7$ T-cell subtype associated with good clinical outcome. Life Science Alliance, 2021, 4, e202000680.	1.3	6
819	Striking circadian neuron diversity and cycling of Drosophila alternative splicing. ELife, 2018, 7, .	2.8	24
820	Computational 3D histological phenotyping of whole zebrafish by X-ray histotomography. ELife, 2019, 8, .	2.8	79
821	Proximity labeling of protein complexes and cell-type-specific organellar proteomes in Arabidopsis enabled by TurbolD. ELife, 2019, 8, .	2.8	163
822	Single cell transcriptome atlas of the Drosophila larval brain. ELife, 2019, 8, .	2.8	101
823	A genetic, genomic, and computational resource for exploring neural circuit function. ELife, 2020, 9, .	2.8	159
824	Probe-Seq enables transcriptional profiling of specific cell types from heterogeneous tissue by RNA-based isolation. ELife, 2019, 8, .	2.8	26
825	The single-cell eQTLGen consortium. ELife, 2020, 9, .	2.8	150

#	Article	IF	Citations
826	Inter- and intra-animal variation in the integrative properties of stellate cells in the medial entorhinal cortex. ELife, 2020, 9, .	2.8	18
827	SCelVis: exploratory single cell data analysis on the desktop and in the cloud. PeerJ, 2020, 8, e8607.	0.9	8
828	BioSamples database: FAIRer samples metadata to accelerate research data management. Nucleic Acids Research, 2022, 50, D1500-D1507.	6.5	28
829	OUP accepted manuscript. Nucleic Acids Research, 2022, 50, D402-D412.	6.5	12
831	Automatic cell type identification methods for single-cell RNA sequencing. Computational and Structural Biotechnology Journal, 2021, 19, 5874-5887.	1.9	30
833	Cell segmentation in imaging-based spatial transcriptomics. Nature Biotechnology, 2022, 40, 345-354.	9.4	113
836	Beyond sequencing: machine learning algorithms extract biology hidden in Nanopore signal data. Trends in Genetics, 2022, 38, 246-257.	2.9	42
837	Time to map single cell transcriptome for a whole organism. Blood Science, 2018, .	0.4	0
851	Single-Cell Technologies for Cancer Therapy. , 2019, , 1-84.		0
872	Microfluidic Applications in Single-cell Genomic, Transcriptomic and Proteomic Analysis. RSC Soft Matter, 2020, , 122-146.	0.2	0
883	Building an Interactive Workbench Environment for Single Cell Genomics Applications. , 2020, , .		1
886	A novel computational architecture for large-scale genomics. Nature Biotechnology, 2020, 38, 1239-1241.	9.4	4
887	The Cellular Composition of the Uveal Immune Environment. Frontiers in Medicine, 2021, 8, 721953.	1.2	8
888	The immune niche of the liver. Clinical Science, 2021, 135, 2445-2466.	1.8	39
889	Integrative analysis methods for spatial transcriptomics. Nature Methods, 2021, 18, 1282-1283.	9.0	4
890	Deep learning and alignment of spatially resolved single-cell transcriptomes with Tangram. Nature Methods, 2021, 18, 1352-1362.	9.0	276
891	Over 1000 tools reveal trends in the single-cell RNA-seq analysis landscape. Genome Biology, 2021, 22, 301.	3.8	85
892	Single-Cell Technologies for Cancer Therapy. , 2022, , 767-850.		O

#	Article	IF	CITATIONS
893	MapCell: Learning a Comparative Cell Type Distance Metric With Siamese Neural Nets With Applications Toward Cell-Type Identification Across Experimental Datasets. Frontiers in Cell and Developmental Biology, 2021, 9, 767897.	1.8	3
894	Weighted K-Means Clustering with Observation Weight for Single-Cell Epigenomic Data. Emerging Topics in Statistics and Biostatistics, 2020, , 37-64.	0.1	0
897	Nonparametric Bayesian multiarmed bandits for single-cell experiment design. Annals of Applied Statistics, 2020, 14, .	0.5	4
898	Regulating innovation in the early development of cell therapies. Immunotherapy Advances, 2021, $1, \dots$	1.2	2
900	Feature Selection for Topological Proximity Prediction of Single-Cell Transcriptomic Profiles in Drosophila Embryo Using Genetic Algorithm. Genes, 2021, 12, 28.	1.0	3
901	Interpretation of Biological Data at a Glance. Journal of Biotechnology and Bioindustry, 2020, 8, 38-47.	0.1	0
903	Antibody Validation. Learning Materials in Biosciences, 2021, , 363-382.	0.2	0
906	Using single cell transcriptomics to study the complexity of human retina. Neural Regeneration Research, 2020, 15, 2045.	1.6	2
908	Recent Machine Learning Approaches for Single-Cell RNA-seq Data Analysis. Studies in Computational Intelligence, 2020, , 65-79.	0.7	3
909	Regulation of aquaporin-2 by RNA interference. Vitamins and Hormones, 2020, 112, 119-145.	0.7	1
910	Stratified Test Alleviates Batch Effects in Single-Cell Data. Lecture Notes in Computer Science, 2020, , 167-177.	1.0	3
911	The 8th Canadian Symposium on Hepatitis C virus: "lmproving diagnosis and linkage to care― Canadian Liver Journal, 2020, 3, 3-14.	0.3	1
916	Besca, a single-cell transcriptomics analysis toolkit to accelerate translational research. NAR Genomics and Bioinformatics, 2021, 3, lqab102.	1.5	13
917	Multiplexed droplet single-cell sequencing (Mux-Seq) of normal and transplant kidney. American Journal of Transplantation, 2022, 22, 876-885.	2.6	7
918	Narrative online guides for the interpretation of digital-pathology images and tissue-atlas data. Nature Biomedical Engineering, 2022, 6, 515-526.	11.6	17
919	Anatomical structures, cell types and biomarkers of the Human Reference Atlas. Nature Cell Biology, 2021, 23, 1117-1128.	4.6	68
920	Cell type ontologies of the Human Cell Atlas. Nature Cell Biology, 2021, 23, 1129-1135.	4.6	71
921	What sequencing technologies can teach us about innate immunity*. Immunological Reviews, 2022, 305, 9-28.	2.8	3

#	Article	IF	CITATIONS
922	Sculpting the Future of Biobanking Base by Base. Biopreservation and Biobanking, 2021, , .	0.5	1
923	Imaging intact human organs with local resolution of cellular structures using hierarchical phase-contrast tomography. Nature Methods, 2021, 18, 1532-1541.	9.0	113
929	Iterative point set registration for aligning scRNA-seq data. PLoS Computational Biology, 2020, 16, e1007939.	1.5	3
932	Aneuploidy: An Opportunity Within Single-Cell RNA Sequencing Analysis. Biocell, 2021, 45, 1167-1170.	0.4	O
933	Targeting monocytes/macrophages in fibrosis and cancer diseases: Therapeutic approaches., 2022, 234, 108031.		17
935	A commitment to scientific equity from a philanthropic funder. Nature Medicine, 2021, 27, 1866-1867.	15.2	1
936	Single-Cell Genomics: Enabling the Functional Elucidation of Infectious Diseases in Multi-Cell Genomes. Pathogens, 2021, 10, 1467.	1.2	1
938	Nested Stochastic Block Models applied to the analysis of single cell data. BMC Bioinformatics, 2021, 22, 576.	1.2	8
939	Expression Atlas update: gene and protein expression in multiple species. Nucleic Acids Research, 2022, 50, D129-D140.	6.5	78
941	Modeling the ACVR1R206H mutation in human skeletal muscle stem cells. ELife, 2021, 10, .	2.8	5
942	Identification of Lipid Heterogeneity and Diversity in the Developing Human Brain. Jacs Au, 2021, 1, 2261-2270.	3.6	23
943	Maximizing statistical power to detect differentially abundant cell states with scPOST. Cell Reports Methods, 2021, 1, 100120.	1.4	2
944	Scaling Up Single-Cell Proteomics. Molecular and Cellular Proteomics, 2022, 21, 100179.	2.5	37
946	The Human Proteoform Project: Defining the human proteome. Science Advances, 2021, 7, eabk0734.	4.7	106
947	scPower accelerates and optimizes the design of multi-sample single cell transcriptomic studies. Nature Communications, 2021, 12, 6625.	5.8	38
949	How a cell decides its own fate: a single-cell view of molecular mechanisms and dynamics of cell-type specification. Biochemical Society Transactions, 2021, 49, 2509-2525.	1.6	3
950	Oligodendroglia heterogeneity in the human central nervous system. Acta Neuropathologica, 2022, 143, 143-157.	3.9	22
951	Multi-omic insights into Parkinson's Disease: From genetic associations to functional mechanisms. Neurobiology of Disease, 2022, 163, 105580.	2.1	20

#	Article	IF	CITATIONS
952	A robust and scalable graph neural network for accurate single-cell classification. Briefings in Bioinformatics, 2022, 23, .	3.2	15
956	Feature Selection inÂSingle-Cell RNA-seq Data viaÂaÂGenetic Algorithm. Lecture Notes in Computer Science, 2021, , 66-79.	1.0	6
957	Sensei: how many samples to tell a change in cell type abundance?. BMC Bioinformatics, 2022, 23, 2.	1.2	2
959	Biomarkers for respiratory diseases: Present applications and future discoveries. Clinical and Translational Discovery, 2021, 1, .	0.2	3
960	A subspace clustering method for satisfying stoimetric constraints in scRNA -seq. , 2021, , .		0
961	Single-cell immunology of SARS-CoV-2 infection. Nature Biotechnology, 2022, 40, 30-41.	9.4	78
962	Future of biomedical, agricultural, and biological systems research using domesticated animals. Biology of Reproduction, 2022, 106, 629-638.	1.2	2
963	Dualâ€kayered hydrogels allow complete genome recovery with nucleic acid cytometry. Biotechnology Journal, 2022, 17, e2100483.	1.8	0
964	A neural network-based method for exhaustive cell label assignment using single cell RNA-seq data. Scientific Reports, 2022, 12, 910.	1.6	8
965	Data Integration Challenges for Machine Learning in Precision Medicine. Frontiers in Medicine, 2021, 8, 784455.	1.2	18
966	Revisiting hematopoiesis: applications of the bulk and single-cell transcriptomics dissecting transcriptional heterogeneity in hematopoietic stem cells. Briefings in Functional Genomics, 2022, 21, 159-176.	1.3	15
967	Genome-wide annotation of protein-coding genes in pig. BMC Biology, 2022, 20, 25.	1.7	14
968	Towards Tabula Gallus. International Journal of Molecular Sciences, 2022, 23, 613.	1.8	3
969	Challenges and Opportunities for the Translation of Single-Cell RNA Sequencing Technologies to Dermatology. Life, 2022, 12, 67.	1.1	4
971	Single-cell profiling of tumour evolution in multiple myeloma — opportunities for precision medicine. Nature Reviews Clinical Oncology, 2022, 19, 223-236.	12.5	58
973	scJoint integrates atlas-scale single-cell RNA-seq and ATAC-seq data with transfer learning. Nature Biotechnology, 2022, 40, 703-710.	9.4	70
974	Squidpy: a scalable framework for spatial omics analysis. Nature Methods, 2022, 19, 171-178.	9.0	308
975	Natural Barcodes for Longitudinal Single Cell Tracking of Leukemic and Immune Cell Dynamics. Frontiers in Immunology, 2021, 12, 788891.	2.2	12

#	Article	IF	CITATIONS
976	Advances in mixed cell deconvolution enable quantification of cell types in spatial transcriptomic data. Nature Communications, 2022, 13, 385.	5.8	100
977	Complexity against current cancer research: Are we on the wrong track?. International Journal of Cancer, 2022, 150, 1569-1578.	2.3	7
978	Learning self-driven collective dynamics with graph networks. Scientific Reports, 2022, 12, 500.	1.6	5
979	Metabolic Sex Dimorphism of the Brain at the Gene, Cell, and Tissue Level. Journal of Immunology, 2022, 208, 212-220.	0.4	11
980	A decade of molecular cell atlases. Trends in Genetics, 2022, 38, 805-810.	2.9	21
981	ATACing single cells with phages. Molecular Cell, 2022, 82, 234-236.	4.5	0
982	IBEX: an iterative immunolabeling and chemical bleaching method for high-content imaging of diverse tissues. Nature Protocols, 2022, 17, 378-401.	5.5	38
984	Single-Cell RNA-Seq Technologies and Computational Analysis Tools: Application in Cancer Research. Methods in Molecular Biology, 2022, 2413, 245-255.	0.4	2
986	The discovAIR project: a roadmap towards the Human Lung Cell Atlas. European Respiratory Journal, 2022, 60, 2102057.	3.1	15
987	SkewC: Identifying cells with skewed gene body coverage in single-cell RNA sequencing data. IScience, 2022, 25, 103777.	1.9	4
988	DNA-encoded library versus RNA-encoded library selection enables design of an oncogenic noncoding RNA inhibitor. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	24
989	Single-Cell Sequencing Facilitates Elucidation of HIV Immunopathogenesis: A Review of Current Literature. Frontiers in Immunology, 2022, 13, 828860.	2.2	5
990	A clinician's guide to omics resources in dermatology. Clinical and Experimental Dermatology, 2022, , .	0.6	1
991	Single-Cell Technologies to Decipher the Immune Microenvironment in Myeloid Neoplasms: Perspectives and Opportunities. Frontiers in Oncology, 2021, 11, 796477.	1.3	0
992	High-content CRISPR screening. Nature Reviews Methods Primers, 2022, 2, .	11.8	155
994	High-content CRISPR screening. Nature Reviews Methods Primers, 2022, 2, .	11.8	24
996	Benchmarking Single-Cell mRNA–Sequencing Technologies Uncovers Differences in Sensitivity and Reproducibility in Cell Types With Low RNA Content. , 2021, 32, .		0
997	Benchmarking atlas-level data integration in single-cell genomics. Nature Methods, 2022, 19, 41-50.	9.0	403

#	Article	IF	CITATIONS
998	Single-cell quantification of a broad RNA spectrum reveals unique noncoding patterns associated with cell types and states. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	34
999	Adult mouse and human organoids derived from thyroid follicular cells and modeling of Graves' hyperthyroidism. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	27
1002	Benchmarking UMI-based single-cell RNA-seq preprocessing workflows. Genome Biology, 2021, 22, 339.	3.8	25
1003	Recent Progress in Cardiovascular Research Involving Single-Cell Omics Approaches. Frontiers in Cardiovascular Medicine, 2021, 8, 783398.	1.1	2
1004	Picking a nucleosome lock: Sequence- and structure-specific recognition of the nucleosome. Journal of Biosciences, 2020, 45, .	0.5	2
1005	Artificial intelligence and machine learning in precision medicine: A paradigm shift in big data analysis. Progress in Molecular Biology and Translational Science, 2022, , 57-100.	0.9	15
1006	Comparative Analysis of Packages and Algorithms for the Analysis of Spatially Resolved Transcriptomics Data., 2022,, 165-186.		2
1007	Multi-Omics Profiling of the Tumor Microenvironment. Advances in Experimental Medicine and Biology, 2022, 1361, 283-326.	0.8	6
1008	Single-cell RNA Sequencing Uncovered the Involvement of an Endothelial Subset in Neutrophil Recruitment in Chemically Induced Rat Pulmonary Inflammation. International Journal of Medical Sciences, 2022, 19, 669-680.	1.1	1
1010	Ultraâ€high sensitivity mass spectrometry quantifies singleâ€cell proteome changes upon perturbation. Molecular Systems Biology, 2022, 18, e10798.	3.2	261
1011	TOWARDS TRANSCRIPTOMICS AS A PRIMARY TOOL FOR RARE DISEASE INVESTIGATION. Journal of Physical Education and Sports Management, 2022, , mcs.a006198.	0.5	9
1012	Perspectives on Bulk-Tissue RNA Sequencing and Single-Cell RNA Sequencing for Cardiac Transcriptomics. Frontiers in Molecular Medicine, 2022, 2, .	0.6	14
1013	Cell-type heterogeneity: Why we should adjust for it in epigenome and biomarker studies. Clinical Epigenetics, 2022, 14, 31.	1.8	18
1014	<i>ACTIVA</i> : realistic single-cell RNA-seq generation with automatic cell-type identification using introspective variational autoencoders. Bioinformatics, 2022, 38, 2194-2201.	1.8	13
1015	Deciphering endothelial heterogeneity in health and disease at single-cell resolution: progress and perspectives. Cardiovascular Research, 2023, 119, 6-27.	1.8	19
1016	Single-cell atlases: shared and tissue-specific cell types across human organs. Nature Reviews Genetics, 2022, 23, 395-410.	7.7	71
1018	Alzheimer's Disease: An Update and Insights Into Pathophysiology. Frontiers in Aging Neuroscience, 2022, 14, 742408.	1.7	65
1019	The Neuron Phenotype Ontology: A FAIR Approach to Proposing and Classifying Neuronal Types. Neuroinformatics, 2022, 20, 793-809.	1.5	3

#	Article	IF	CITATIONS
1020	Guidelines for bioinformatics of single-cell sequencing data analysis in Alzheimer's disease: review, recommendation, implementation and application. Molecular Neurodegeneration, 2022, 17, 17.	4.4	40
1021	Single-cell immunology: Past, present, and future. Immunity, 2022, 55, 393-404.	6.6	47
1022	Uncovering Pharmacological Opportunities for Cancer Stem Cellsâ€"A Systems Biology View. Frontiers in Cell and Developmental Biology, 2022, 10, 752326.	1.8	9
1023	JIND: joint integration and discrimination for automated single-cell annotation. Bioinformatics, 2022, 38, 2488-2495.	1.8	3
1024	CUT& Tag2for1: a modified method for simultaneous profiling of the accessible and silenced regulome in singleÂcells. Genome Biology, 2022, 23, 81.	3.8	30
1025	Human distal lung maps and lineage hierarchies reveal a bipotent progenitor. Nature, 2022, 604, 111-119.	13.7	137
1026	The Power of Single-Cell RNA Sequencing in eQTL Discovery. Genes, 2022, 13, 502.	1.0	6
1027	Behavioral Neuroscience in the Era of Genomics: Tools and Lessons for Analyzing High-Dimensional Datasets. International Journal of Molecular Sciences, 2022, 23, 3811.	1.8	2
1028	Spatial charting of single-cell transcriptomes in tissues. Nature Biotechnology, 2022, 40, 1190-1199.	9.4	72
1029	Comprehensive generation, visualization, and reporting of quality control metrics for single-cell RNA sequencing data. Nature Communications, 2022, 13, 1688.	5.8	23
1030	Multicellular modules as clinical diagnostic and therapeutic targets. Trends in Cancer, 2022, 8, 164-173.	3.8	10
1033	Naturally occurring combinations of receptors from single cell transcriptomics in endothelial cells. Scientific Reports, 2022, 12, 5807.	1.6	2
1034	Analyzing Spatial Transcriptomics Data Using Giotto. Current Protocols, 2022, 2, e405.	1.3	10
1036	Challenges and opportunities of integrating imaging and mathematical modelling to interrogate biological processes. International Journal of Biochemistry and Cell Biology, 2022, 146, 106195.	1.2	5
1037	MultiMAP: dimensionality reduction and integration of multimodal data. Genome Biology, 2021, 22, 346.	3.8	27
1038	Understanding immunity in a tissueâ€centric context: Combining novel imaging methods and mathematics to extract new insights into function and dysfunction*. Immunological Reviews, 2022, 306, 8-24.	2.8	11
1039	tascCODA: Bayesian Tree-Aggregated Analysis of Compositional Amplicon and Single-Cell Data. Frontiers in Genetics, 2021, 12, 766405.	1.1	4
1040	Dissecting the Landscape of Activated CMV-Stimulated CD4+ T Cells in Humans by Linking Single-Cell RNA-Seq With T-Cell Receptor Sequencing. Frontiers in Immunology, 2021, 12, 779961.	2.2	12

#	Article	IF	CITATIONS
1041	Deep learning tackles single-cell analysisâ€"a survey of deep learning for scRNA-seq analysis. Briefings in Bioinformatics, 2022, 23, .	3.2	19
1042	Cellular and molecular interrogation of kidney biopsy specimens. Current Opinion in Nephrology and Hypertension, 2022, 31, 160-167.	1.0	2
1043	Advances in singleâ€cell sequencing and its application to musculoskeletal system research. Cell Proliferation, 2022, 55, e13161.	2.4	3
1044	MarkovHC: Markov hierarchical clustering for the topological structure of high-dimensional single-cell omics data with transition pathway and critical point detection. Nucleic Acids Research, 2022, 50, 46-56.	6.5	9
1045	Conceptual Molecular Communication Solution for Developing Digital Twin to Enable Precision Medicine Implementation. , 2021, , .		2
1048	Transcriptomic Crosstalk between Gliomas and Telencephalic Neural Stem and Progenitor Cells for Defining Heterogeneity and Targeted Signaling Pathways. International Journal of Molecular Sciences, 2021, 22, 13211.	1.8	3
1051	Self-supervised learning of cell type specificity from immunohistochemical images. Bioinformatics, 2022, 38, i395-i403.	1.8	5
1052	FIRM: Flexible integration of single-cell RNA-sequencing data for large-scale multi-tissue cell atlas datasets. Briefings in Bioinformatics, 2022, 23, .	3.2	10
1053	Generation and characterization of hair-bearing skin organoids from human pluripotent stem cells. Nature Protocols, 2022, 17, 1266-1305.	5.5	28
1055	Mapping the Proteoform Landscape of Five Human Tissues. Journal of Proteome Research, 2022, 21, 1299-1310.	1.8	19
1056	Predicting causal genes from psychiatric genome-wide association studies using high-level etiological knowledge. Molecular Psychiatry, 2022, 27, 3095-3106.	4.1	4
1057	Privacy-preserving federated neural network learning for disease-associated cell classification. Patterns, 2022, 3, 100487.	3.1	8
1058	Role of Disease Progression Models in Drug Development. Pharmaceutical Research, 2022, 39, 1803-1815.	1.7	13
1059	Leveraging single cell sequencing to unravel intraâ€ŧumour heterogeneity and tumour evolution in human cancers. Journal of Pathology, 2022, , .	2.1	6
1061	Connecting past and present: single-cell lineage tracing. Protein and Cell, 2022, 13, 790-807.	4.8	30
1072	<i>deCS</i> : A Tool for Systematic Cell Type Annotations of Single-Cell RNA Sequencing Data Among Human Tissues. Genomics, Proteomics and Bioinformatics, 2023, 21, 370-384.	3.0	11
1073	WebCSEA: web-based cell-type-specific enrichment analysis of genes. Nucleic Acids Research, 2022, 50, W782-W790.	6.5	29
1074	Tissue Immunity in the Bladder. Annual Review of Immunology, 2022, 40, 499-523.	9.5	7

#	Article	IF	CITATIONS
1075	Cellular Heterogeneity of the Heart. Frontiers in Cardiovascular Medicine, 2022, 9, 868466.	1.1	7
1076	Organoids and Commercialization. , 0, , .		2
1077	From genes to modules, from cells to ecosystems. Molecular Systems Biology, 2022, 18, e10726.	3.2	4
1078	Direct RNA targeted in situ sequencing for transcriptomic profiling in tissue. Scientific Reports, 2022, 12, 7976.	1.6	26
1079	Single-cell profiling of human dura and meningioma reveals cellular meningeal landscape and insights into meningioma immune response. Genome Medicine, 2022, 14, 49.	3.6	37
1081	Pollock: Fishing for Cell States. Bioinformatics Advances, 0, , .	0.9	O
1082	The Tabula Sapiens: A multiple-organ, single-cell transcriptomic atlas of humans. Science, 2022, 376, eabl4896.	6.0	289
1083	Into the multiverse: advances in single-cell multiomic profiling. Trends in Genetics, 2022, 38, 831-843.	2.9	46
1084	DeepSTARR predicts enhancer activity from DNA sequence and enables the de novo design of synthetic enhancers. Nature Genetics, 2022, 54, 613-624.	9.4	97
1085	Perspectives on rigor and reproducibility in single cell genomics. PLoS Genetics, 2022, 18, e1010210.	1.5	17
1086	hECA: The cell-centric assembly of a cell atlas. IScience, 2022, 25, 104318.	1.9	21
1087	Listening in on Multicellular Communication in Human Tissue Immunology. Frontiers in Immunology, 2022, 13, .	2.2	2
1088	Reconstructing physical cell interaction networks from single-cell data using Neighbor-seq. Nucleic Acids Research, 2022, 50, e82-e82.	6.5	6
1089	Mapping Human Reproduction with Single-Cell Genomics. Annual Review of Genomics and Human Genetics, 2022, 23, 523-547.	2.5	5
1090	Understanding Human Epidermal Stem Cells at Single-Cell Resolution. Journal of Investigative Dermatology, 2022, 142, 2061-2067.	0.3	8
1091	Enabling Precision Medicine via Contemporary and Future Communication Technologies: A Survey. IEEE Access, 2023, 11, 21210-21240.	2.6	2
1092	The Cell Physiome: What Do We Need in a Computational Physiology Framework for Predicting Single-Cell Biology?. Annual Review of Biomedical Data Science, 2022, 5, 341-366.	2.8	4
1093	Approaching deconvolution with Fermi's mindset. Cell Systems, 2022, 13, 351-352.	2.9	0

#	Article	IF	Citations
1094	Time to evolve: predicting engineered T cell-associated toxicity with next-generation models., 2022, 10, e003486.		21
1095	Single-cell RNA-sequencing of mammalian brain development: insights and future directions. Development (Cambridge), 2022, 149, .	1.2	12
1096	The case for increasing diversity in tissue-based functional genomics datasets to understand human disease susceptibility. Nature Communications, 2022, 13, .	5.8	8
1098	Molecular analysis of vascular gene expression. Research and Practice in Thrombosis and Haemostasis, 2022, 6, e12718.	1.0	3
1099	ALTEN: A Highâ€Fidelity Primary Tissueâ€Engineering Platform to Assess Cellular Responses Ex Vivo. Advanced Science, 0, , 2103332.	5.6	3
1100	Immune disease risk variants regulate gene expression dynamics during CD4+ T cell activation. Nature Genetics, 2022, 54, 817-826.	9.4	57
1102	Droplet Microfluidics for High-Resolution Virology. Analytical Chemistry, 2022, 94, 8085-8100.	3.2	6
1104	Human organoids in basic research and clinical applications. Signal Transduction and Targeted Therapy, 2022, 7, .	7.1	83
1105	Integration of single-cell RNA-Seq and CyTOF data characterises heterogeneity of rare cell subpopulations. F1000Research, 0, 11, 560.	0.8	0
1109	Global characterization of megakaryocytes in bone marrow, peripheral blood, and cord blood by single-cell RNA sequencing. Cancer Gene Therapy, 2022, 29, 1636-1647.	2.2	8
1110	Applying transcriptomics to study glycosylation at the cell type level. IScience, 2022, 25, 104419.	1.9	20
1112	Inference of cell state transitions and cell fate plasticity from single-cell with MARGARET. Nucleic Acids Research, 2022, 50, e86-e86.	6.5	6
1113	Single-Nucleus RNA-seq of Normal-Appearing Brain Regions in Relapsing-Remitting vs. Secondary Progressive Multiple Sclerosis: Implications for the Efficacy of Fingolimod. Frontiers in Cellular Neuroscience, 0, 16, .	1.8	14
1115	EPIC: Inferring relevant cell types for complex traits by integrating genome-wide association studies and single-cell RNA sequencing. PLoS Genetics, 2022, 18, e1010251.	1.5	10
1116	Phase 2 of extracellular RNA communication consortium charts next-generation approaches for extracellular RNA research. IScience, 2022, 25, 104653.	1.9	12
1117	Unbiased spatial proteomics with single-cell resolution in tissues. Molecular Cell, 2022, 82, 2335-2349.	4.5	85
1118	Machine-learning-optimized Cas12a barcoding enables the recovery of single-cell lineages and transcriptional profiles. Molecular Cell, 2022, 82, 3103-3118.e8.	4.5	14
1119	Cell type matching in single-cell RNA-sequencing data using FR-Match. Scientific Reports, 2022, 12, .	1.6	12

#	Article	IF	CITATIONS
1120	Gut mucosa dissociation protocols influence cell type proportions and single-cell gene expression levels. Scientific Reports, 2022, 12, .	1.6	23
1121	Single-cell RNA-sequencing of peripheral blood mononuclear cells reveals widespread, context-specific gene expression regulation upon pathogenic exposure. Nature Communications, 2022, 13, .	5.8	39
1122	Understanding the cellular interactome of non-alcoholic fatty liver disease. JHEP Reports, 2022, 4, 100524.	2.6	35
1123	Microfluidics for Cancer Biomarker Discovery, Research, and Clinical Application. Advances in Experimental Medicine and Biology, 2022, , 499-524.	0.8	5
1124	Molecular Modelling Hurdle in the Next-Generation Sequencing Era. International Journal of Molecular Sciences, 2022, 23, 7176.	1.8	0
1125	TAS-Seq is a robust and sensitive amplification method for bead-based scRNA-seq. Communications Biology, 2022, 5, .	2.0	18
1127	细èfžç"Ÿç‰©ä¿¡æ•å¦å§ĕŠ€æœ⁻. Scientia Sinica Chimica, 2022, , .	0.2	0
1128	ResPAN: a powerful batch correction model for scRNA-seq data through residual adversarial networks. Bioinformatics, 2022, 38, 3942-3949.	1.8	4
1130	An introduction to spatial transcriptomics for biomedical research. Genome Medicine, 2022, 14, .	3.6	187
1131	A Mechanistic Cellular Atlas of the Rheumatic Joint. Frontiers in Systems Biology, 0, 2, .	0.5	8
1132	The Roads We Take: Cellular Targets and Pathways Leading Biologics Across the Blood–Brain Barrier. Frontiers in Drug Delivery, 0, 2, .	0.4	0
1133	Multi-Cell-Type Openness-Weighted Association Studies for Trait-Associated Genomic Segments Prioritization. Genes, 2022, 13, 1220.	1.0	0
1134	Characterizing cis-regulatory elements using single-cell epigenomics. Nature Reviews Genetics, 2023, 24, 21-43.	7.7	72
1135	Applications of singleâ€cell multiâ€omics sequencing in deep understanding of brain diseases. Clinical and Translational Discovery, 2022, 2, .	0.2	0
1137	Unified classification of mouse retinal ganglion cells using function, morphology, and gene expression. Cell Reports, 2022, 40, 111040.	2.9	68
1139	Opportunities and Challenges in Understanding Atherosclerosis by Human Biospecimen Studies. Frontiers in Cardiovascular Medicine, 0, 9, .	1.1	1
1140	New insights from the single-cell level: Tumor associated macrophages heterogeneity and personalized therapy. Biomedicine and Pharmacotherapy, 2022, 153, 113343.	2.5	12
1141	What is a cell type and how to define it?. Cell, 2022, 185, 2739-2755.	13.5	144

#	Article	IF	CITATIONS
1142	Unfolding the genotype-to-phenotype black box of cardiovascular diseases through cross-scale modeling. IScience, 2022, 25, 104790.	1.9	1
1143	A pulmonologist's guide to perform and analyse cross-species single lung cell transcriptomics. European Respiratory Review, 2022, 31, 220056.	3.0	6
1144	Next-Generation Pathology Using Multiplexed Immunohistochemistry: Mapping Tissue Architecture at Single-Cell Level. Frontiers in Oncology, 0 , 12 , .	1.3	18
1145	The emerging landscape of spatial profiling technologies. Nature Reviews Genetics, 2022, 23, 741-759.	7.7	149
1146	Community-driven ELIXIR activities in single-cell omics. F1000Research, 0, 11, 869.	0.8	1
1147	High-dimensional investigation of the cerebrospinal fluid to explore and monitor CNS immune responses. Genome Medicine, 2022, 14, .	3.6	9
1148	Practical Considerations for Singleâ€Cell Genomics. Current Protocols, 2022, 2, .	1.3	4
1149	Lipopolysaccharide-induced interferon response networks at birth are predictive of severe viral lower respiratory infections in the first year of life. Frontiers in Immunology, 0, 13, .	2.2	4
1151	Metacells untangle large and complex single-cell transcriptome networks. BMC Bioinformatics, 2022, 23, .	1.2	14
1152	Fibroblasts: Immunomodulatory factors in refractory diabetic wound healing. Frontiers in Immunology, 0, 13, .	2.2	27
1153	Laser Microdissection-Mediated Isolation of Butterfly Wing Tissue for Spatial Transcriptomics. Methods and Protocols, 2022, 5, 67.	0.9	1
1154	Sample-multiplexing approaches for single-cell sequencing. Cellular and Molecular Life Sciences, 2022, 79, .	2.4	12
1155	scVAEBGM: Clustering Analysis of Single-Cell ATAC-seq Data Using a Deep Generative Model. Interdisciplinary Sciences, Computational Life Sciences, 2022, 14, 917-928.	2.2	1
1156	Resolution of the curse of dimensionality in single-cell RNA sequencing data analysis. Life Science Alliance, 2022, 5, e202201591.	1.3	7
1157	Scalable batch-correction approach for integrating large-scale single-cell transcriptomes. Briefings in Bioinformatics, 2022, 23, .	3.2	0
1158	Predicting cross-tissue hormone–gene relations using balanced word embeddings. Bioinformatics, 2022, 38, 4771-4781.	1.8	3
1159	Stitching and registering highly multiplexed whole-slide images of tissues and tumors using ASHLAR. Bioinformatics, 2022, 38, 4613-4621.	1.8	37
1160	Accurate inference of genome-wide spatial expression with iSpatial. Science Advances, 2022, 8, .	4.7	5

#	Article	IF	CITATIONS
1161	Multi-target integration and annotation of single-cell RNA-sequencing data., 2022,,.		0
1163	scMTD: a statistical multidimensional imputation method for single-cell RNA-seq data leveraging transcriptome dynamic information. Cell and Bioscience, 2022, 12, .	2.1	3
1164	Cell type-specific inference of differential expression in spatial transcriptomics. Nature Methods, 2022, 19, 1076-1087.	9.0	40
1165	Point2Mask: A Weakly Supervised Approach forÂCell Segmentation Using Point Annotation. Lecture Notes in Computer Science, 2022, , 139-153.	1.0	5
1166	TEx-MST: tissue expression profiles of MANE select transcripts. Database: the Journal of Biological Databases and Curation, 2022, 2022, .	1.4	0
1167	Joint Analysis of Transcriptome and Proteome Measurements in Single Cells with totalVI. Neuromethods, 2022, , 63-85.	0.2	0
1168	Polyphony: an Interactive Transfer Learning Framework for Single-Cell Data Analysis. IEEE Transactions on Visualization and Computer Graphics, 2023, 29, 591-601.	2.9	2
1169	Bridging the European Data Sharing Divide in Genomic Science. Journal of Medical Internet Research, 2022, 24, e37236.	2.1	4
1170	WhichTF is functionally important in your open chromatin data?. PLoS Computational Biology, 2022, 18, e1010378.	1.5	33
1171	High-throughput methods to help understand heart disease. , 2022, 1, 798-799.		0
1172	Decoding brain memory formation by single-cell RNA sequencing. Briefings in Bioinformatics, 2022, 23,	3.2	6
1173	Comparison of scRNA-seq data analysis method combinations. Briefings in Functional Genomics, 0, , .	1.3	0
1174	Cell Taxonomy: a curated repository of cell types with multifaceted characterization. Nucleic Acids Research, 2023, 51, D853-D860.	6.5	12
1175	A Roadmap for the Human Oral and Craniofacial Cell Atlas. Journal of Dental Research, 2022, 101, 1274-1288.	2.5	11
1177	A guide to systems-level immunomics. Nature Immunology, 2022, 23, 1412-1423.	7.0	27
1178	Scalable Functional Assays for the Interpretation of Human Genetic Variation. Annual Review of Genetics, 2022, 56, 441-465.	3.2	18
1179	Analysis of the Human Protein Atlas Weakly Supervised Single-Cell Classification competition. Nature Methods, 2022, 19, 1221-1229.	9.0	9
1180	Insights from multi-omics integration in complex disease primary tissues. Trends in Genetics, 2023, 39, 46-58.	2.9	37

#	Article	IF	CITATIONS
1181	Time-resolved single-cell RNA-seq using metabolic RNA labelling. Nature Reviews Methods Primers, 2022, 2, .	11.8	21
1182	HTCA: a database with an in-depth characterization of the single-cell human transcriptome. Nucleic Acids Research, 2023, 51, D1019-D1028.	6.5	11
1183	Polygenic enrichment distinguishes disease associations of individual cells in single-cell RNA-seq data. Nature Genetics, 2022, 54, 1572-1580.	9.4	42
1184	Machine actionable metadata models. Scientific Data, 2022, 9, .	2.4	10
1185	Semibulk RNA-seq analysis as a convenient method for measuring gene expression statuses in a local cellular environment. Scientific Reports, 2022, 12, .	1.6	1
1186	CCPLS reveals cell-type-specific spatial dependence of transcriptomes in single cells. Bioinformatics, 2022, 38, 4868-4877.	1.8	1
1187	Local data commons: the sleeping beauty in the community of data commons. BMC Bioinformatics, 2022, 23, .	1.2	1
1188	Identification and single-base gene-editing functional validation of a cis-EPO variant as a genetic predictor for EPO-increasing therapies. American Journal of Human Genetics, 2022, 109, 1638-1652.	2.6	5
1190	Mostly natural sequencing-by-synthesis for scRNA-seq using Ultima sequencing. Nature Biotechnology, 2023, 41, 204-211.	9.4	17
1191	P2X7 is expressed on human innateâ€like T lymphocytes and mediates susceptibility to ATPâ€induced cell death. European Journal of Immunology, 2022, 52, 1805-1818.	1.6	7
1192	Single-Cell RNA Sequencing Reveals New Basic and Translational Insights in the Cystic Fibrosis Lung. American Journal of Respiratory Cell and Molecular Biology, 2023, 68, 131-139.	1.4	3
1193	From multitude to singularity: An up-to-date overview of scRNA-seq data generation and analysis. Frontiers in Genetics, 0, 13, .	1.1	9
1195	Programmable RNA sensing for cell monitoring and manipulation. Nature, 2022, 610, 713-721.	13.7	37
1196	Harnessing Al and Genomics to Accelerate Drug Discovery. Future of Business and Finance, 2022, , 89-106.	0.3	1
1198	Characterizing the composition of iPSC derived cells from bulk transcriptomics data with CellMap. Scientific Reports, 2022, 12, .	1.6	1
1200	Single-cell transcriptomics to understand the cellular heterogeneity in toxicology. Molecular and Cellular Toxicology, 0, , .	0.8	0
1201	Development of Single-Cell Transcriptomics and Its Application in COVID-19. Viruses, 2022, 14, 2271.	1.5	1
1202	Single Cell Transcriptomics to Understand HSC Heterogeneity and Its Evolution upon Aging. Cells, 2022, 11, 3125.	1.8	2

#	Article	IF	CITATIONS
1204	SPEED: Single-cell Pan-species atlas in the light of Ecology and Evolution for Development and Diseases. Nucleic Acids Research, 2023, 51, D1150-D1159.	6.5	12
1205	Establishment of inclusive single-cell transcriptome atlases from mouse and human tooth as powerful resource for dental research. Frontiers in Cell and Developmental Biology, 0, 10, .	1.8	5
1206	Annotation of spatially resolved single-cell data with STELLAR. Nature Methods, 2022, 19, 1411-1418.	9.0	33
1207	TransCluster: A Cell-Type Identification Method for single-cell RNA-Seq data using deep learning based on transformer. Frontiers in Genetics, 0, 13, .	1.1	6
1208	Fluorescence lifetime image microscopy prediction with convolutional neural networks for cell detection and classification in tissues. , 2022, 1 , .		2
1209	Online single-cell data integration through projecting heterogeneous datasets into a common cell-embedding space. Nature Communications, $2022,13,.$	5.8	29
1210	Endothelial cell diversity: the many facets of the crystal. FEBS Journal, 0, , .	2.2	4
1211	Single-cell and single-nuclei RNA sequencing as powerful tools to decipher cellular heterogeneity and dysregulation in neurodegenerative diseases. Frontiers in Cell and Developmental Biology, 0, 10, .	1.8	15
1213	Unsupervised discovery of tissue architecture in multiplexed imaging. Nature Methods, 2022, 19, 1653-1661.	9.0	25
1214	Single-cell technologies: From research to application. Innovation(China), 2022, 3, 100342.	5. 2	13
1215	The industrial genomic revolution: A new era in neuroimmunology. Neuron, 2022, 110, 3429-3443.	3.8	2
1216	HUSCH: an integrated single-cell transcriptome atlas for human tissue gene expression visualization and analyses. Nucleic Acids Research, 2023, 51, D1029-D1037.	6.5	11
1217	Unravelling the landscape of skin cancer through single-cell transcriptomics. Translational Oncology, 2023, 27, 101557.	1.7	5
1218	Recent advances in the field of single-cell proteomics. Translational Oncology, 2023, 27, 101556.	1.7	26
1219	Single cell-asymmetrical flow field-flow fractionation/ICP-time of flight-mass spectrometry (sc-AF4/ICP-ToF-MS): an efficient alternative for the cleaning and multielemental analysis of individual cells. Journal of Analytical Atomic Spectrometry, 2022, 37, 2691-2700.	1.6	5
1220	layerUMAP: A tool for visualizing and understanding deep learning models in biological sequence classification using UMAP. IScience, 2022, 25, 105530.	1.9	4
1221	Single-cell immune profiling reveals thymus-seeding populations, T cell commitment, and multilineage development in the human thymus. Science Immunology, 2022, 7, .	5.6	20
1222	Graph deep learning for the characterization of tumour microenvironments from spatial protein profiles in tissue specimens. Nature Biomedical Engineering, 2022, 6, 1435-1448.	11.6	33

#	Article	IF	CITATIONS
1223	A flexible cross-platform single-cell data processing pipeline. Nature Communications, 2022, 13, .	5.8	10
1224	Multiset multicover methods for discriminative marker selection. Cell Reports Methods, 2022, , 100332.	1.4	0
1226	TEDD: a database of temporal gene expression patterns during multiple developmental periods in human and model organisms. Nucleic Acids Research, 2023, 51, D1168-D1178.	6.5	7
1227	Integration of single-cell RNA-Seq and CyTOF data characterises heterogeneity of rare cell subpopulations. F1000Research, 0, 11, 560.	0.8	0
1228	Editorial: Multiplexed image analysis for translational research project applications. Frontiers in Oncology, $0,12,.$	1.3	1
1229	Lung Cell Atlases in Health and Disease. Annual Review of Physiology, 2023, 85, 47-69.	5.6	10
1230	Deep learning approaches for noncoding variant prioritization in neurodegenerative diseases. Frontiers in Aging Neuroscience, 0, 14 , .	1.7	3
1231	Estimation of Tumor Immune Signatures from Transcriptomics Data. Springer Handbooks of Computational Statistics, 2022, , 311-338.	0.2	0
1232	Pre-processing, Dimension Reduction, and Clustering for Single-Cell RNA-seq Data. Springer Handbooks of Computational Statistics, 2022, , 37-51.	0.2	2
1233	Human lung cell models to study aerosol delivery – considerations for model design and development. European Journal of Pharmaceutical Sciences, 2023, 180, 106337.	1.9	6
1234	Integrative Analyses of Single-Cell Multi-Omics Data: A Review from a Statistical Perspective. Springer Handbooks of Computational Statistics, 2022, , 53-69.	0.2	0
1236	Advances in Single-Cell Sequencing Technology and Its Application in Poultry Science. Genes, 2022, 13, 2211.	1.0	2
1237	Highly multiplexed spatial profiling with CODEX: bioinformatic analysis and application in human disease. Seminars in Immunopathology, 2023, 45, 145-157.	2.8	11
1238	Computer simulation of molecular recognition in biomolecular system: from in silico screening to generalized ensembles. Biophysical Reviews, 2022, 14, 1423-1447.	1.5	9
1240	Neurodevelopmental disorders—high-resolution rethinking of disease modeling. Molecular Psychiatry, 2023, 28, 34-43.	4.1	9
1242	Database Resources of the National Genomics Data Center, China National Center for Bioinformation in 2023. Nucleic Acids Research, 2023, 51, D18-D28.	6.5	86
1244	Practical Considerations for Complex Tissue Dissociation for Single-Cell Transcriptomics. Methods in Molecular Biology, 2023, , 371-387.	0.4	3
1245	AtlasGrabber: a software facilitating the high throughput analysis of the human protein atlas online database. BMC Bioinformatics, 2022, 23, .	1.2	2

#	Article	IF	Citations
1247	Spatial-ID: a cell typing method for spatially resolved transcriptomics via transfer learning and spatial embedding. Nature Communications, 2022, 13, .	5.8	19
1248	Efficient combinatorial targeting of RNA transcripts in single cells with Cas13 RNA Perturb-seq. Nature Methods, 2023, 20, 86-94.	9.0	20
1250	SCIBER: a simple method for removing batch effects from single-cell RNA-sequencing data. Bioinformatics, 2023, 39, .	1.8	1
1252	Impact of the Human Cell Atlas on medicine. Nature Medicine, 2022, 28, 2486-2496.	15.2	59
1253	Common Markers and Small Molecule Inhibitors in Golgi Studies. Methods in Molecular Biology, 2023, , 453-493.	0.4	1
1254	Overview of gene expression techniques with an emphasis on vitamin D related studies. Current Medical Research and Opinion, 2023, 39, 205-217.	0.9	0
1255	Privacy-preserving integration of multiple institutional data for single-cell type identification with scPrivacy. Science China Life Sciences, 2023, 66, 1183-1195.	2.3	6
1256	The sound of silence: Transgene silencing in mammalian cell engineering. Cell Systems, 2022, 13, 950-973.	2.9	26
1257	Exploring functional protein covariation across single cells using nPOP. Genome Biology, 2022, 23, .	3.8	55
1259	Ten simple rules for using public biological data for your research. PLoS Computational Biology, 2023, 19, e1010749.	1.5	3
1260	15 years of GWAS discovery: Realizing the promise. American Journal of Human Genetics, 2023, 110, 179-194.	2.6	73
1261	Deep learning models will shape the future of stem cell research. Stem Cell Reports, 2023, 18, 6-12.	2.3	3
1262	The landscape of expression and alternative splicing variation across human traits. Cell Genomics, 2023, 3, 100244.	3.0	9
1264	A multi-view latent variable model reveals cellular heterogeneity in complex tissues for paired multimodal single-cell data. Bioinformatics, 2023, 39, .	1.8	7
1265	The human protein atlasâ€"Integrated omics for single cell mapping of the human proteome. Protein Science, 2023, 32, .	3.1	7
1267	A novel Bayesian framework for harmonizing information across tissues and studies to increase cell type deconvolution accuracy. Briefings in Bioinformatics, 0, , .	3.2	0
1269	MARVEL: an integrated alternative splicing analysis platform for single-cell RNA sequencing data. Nucleic Acids Research, 2023, 51, e29-e29.	6.5	6
1270	Graph embedding and Gaussian mixture variational autoencoder network for end-to-end analysis of single-cell RNA sequencing data. Cell Reports Methods, 2023, 3, 100382.	1.4	21

#	Article	IF	CITATIONS
1271	A guidebook of spatial transcriptomic technologies, data resources and analysis approaches. Computational and Structural Biotechnology Journal, 2023, 21, 940-955.	1.9	7
1272	Single-cell omics: A new direction for functional genetic research in human diseases and animal models. Frontiers in Genetics, 0, 13, .	1.1	9
1273	BayesImpute: a Bayesian imputation method for single-cell RNA-seq data. , 2022, , .		0
1274	Benchmarking full-length transcript single cell mRNA sequencing protocols. BMC Genomics, 2022, 23, .	1.2	4
1275	Preclinical Cancer Models for the Evaluation of Immunotherapies: From Cell Lines to Animal Models. , 2023, , 1-21.		0
1277	Single-cell analysis of myeloid cells in HPV+ tonsillar cancer. Frontiers in Immunology, 0, 13, .	2.2	1
1278	Multimodal human thymic profiling reveals trajectories and cellular milieu for T agonist selection. Frontiers in Immunology, $0,13,13$	2.2	5
1279	Cross center single-cell RNA sequencing study of the immune microenvironment in rapid progressing multiple myeloma. Npj Genomic Medicine, 2023, 8, .	1.7	7
1280	Emergent properties of collective gene-expression patterns in multicellular systems. Cell Reports Physical Science, 2023, 4, 101247.	2.8	5
1281	Bacterial droplet-based single-cell RNA-seq reveals antibiotic-associated heterogeneous cellular states. Cell, 2023, 186, 877-891.e14.	13.5	45
1282	A cell markerâ€based clustering strategy (cmCluster) for precise cell type identification of scRNAâ€seq data. Quantitative Biology, 2023, 11, 163-174.	0.3	1
1283	Quantitative analysis of highâ€throughput biological data. Wiley Interdisciplinary Reviews: Computational Molecular Science, 2023, 13, .	6.2	2
1284	Industry Adoption of Organoids and Organsâ€onâ€Chip Technology: Toward a Paradox of Choice. Advanced Biology, 2023, 7, .	1.4	4
1286	Aberrant activation of TCL1A promotes stem cell expansion in clonal haematopoiesis. Nature, 2023, 616, 755-763.	13.7	19
1287	Expression Microdissection for the Analysis of miRNA in a Single-Cell Type. Laboratory Investigation, 2023, 103, 100133.	1.7	0
1288	Integrating human singleâ€cell data from multiple sources. Quantitative Biology, 2022, 10, 299-300.	0.3	O
1289	Biologically informed deep learning to query gene programs in single-cell atlases. Nature Cell Biology, 0, , .	4.6	10
1290	scBGEDA: deep single-cell clustering analysis via a dual denoising autoencoder with bipartite graph ensemble clustering. Bioinformatics, 2023, 39, .	1.8	4

#	Article	IF	CITATIONS
1291	Human-specific genetics: new tools to explore the molecular and cellular basis of human evolution. Nature Reviews Genetics, 2023, 24, 687-711.	7.7	21
1294	Mapping the lymphatic system across body scales and expertise domains: A report from the 2021 National Heart, Lung, and Blood Institute workshop at the Boston Lymphatic Symposium. Frontiers in Physiology, 0, 14, .	1.3	7
1295	Deep learning in spatial transcriptomics: Learning from the next next-generation sequencing. Biophysics Reviews, 2023, 4, .	1.0	6
1297	Single-cell transcriptomics is revolutionizing the improvement of plant biotechnology research: recent advances and future opportunities. Critical Reviews in Biotechnology, 2024, 44, 202-217.	5.1	1
1298	Towards a clinically-based common coordinate framework for the human gut cell atlas: the gut models. BMC Medical Informatics and Decision Making, 2023, 23, .	1.5	4
1300	Phenotype-specific estimation of metabolic fluxes using gene expression data. IScience, 2023, 26, 106201.	1.9	1
1301	Evolution of homology: From archetype towards a holistic concept of cell type. Journal of Morphology, 2023, 284, .	0.6	2
1302	The human periconceptional maternal-embryonic space in health and disease. Physiological Reviews, 2023, 103, 1965-2038.	13.1	3
1303	Conundrums of choice of â€~normal' kidney tissue for single cell studies. Current Opinion in Nephrology and Hypertension, 2023, 32, 249-256.	1.0	1
1304	Hacking hematopoiesis $\hat{a} \in ``emerging tools for examining variant effects. DMM Disease Models and Mechanisms, 2023, 16, .$	1.2	0
1305	Largeâ€scale singleâ€cell RNA sequencing atlases of human immune cells across lifespan: Possibilities and challenges. European Journal of Immunology, 2023, 53, .	1.6	1
1306	IBRAP: integrated benchmarking single-cell RNA-sequencing analytical pipeline. Briefings in Bioinformatics, 2023, 24, .	3.2	2
1307	Integration of Single-Cell RNA-Seq Datasets: A Review of Computational Methods. Molecules and Cells, 2023, 46, 106-119.	1.0	8
1308	Single-Cell Genomics for Investigating Pathogenesis of Inflammatory Diseases. Molecules and Cells, 2023, 46, 120-129.	1.0	1
1309	Methods and applications for single-cell and spatial multi-omics. Nature Reviews Genetics, 2023, 24, 494-515.	7.7	192
1310	Single-cell gene set enrichment analysis and transfer learning for functional annotation of scRNA-seq data. NAR Genomics and Bioinformatics, 2023, 5, .	1.5	7
1312	Single cell genomics as a transformative approach for aquaculture research and innovation. Reviews in Aquaculture, 2023, 15, 1618-1637.	4.6	6
1313	Comparison of the Illumina NextSeq 2000 and GeneMind Genolab M sequencing platforms for spatial transcriptomics. BMC Genomics, 2023, 24, .	1.2	3

#	Article	IF	CITATIONS
1314	Insights into Neurodegeneration in Parkinson's Disease from Single ell and Spatial Genomics. Movement Disorders, 2023, 38, 518-525.	2.2	1
1316	<scp>IL</scp> â€4 drastically decreases deuterosomal and multiciliated cells via alteration in progenitor cell differentiation. Allergy: European Journal of Allergy and Clinical Immunology, 2023, 78, 1866-1877.	2.7	4
1319	Middle-out methods for spatiotemporal tissue engineering of organoids. , 2023, 1, 329-345.		10
1321	A single-cell transcriptome atlas profiles early organogenesis in human embryos. Nature Cell Biology, 2023, 25, 604-615.	4.6	24
1322	EuniceScope: Low-Cost Imaging Platform for Studying Microgravity Cell Biology. IEEE Open Journal of Engineering in Medicine and Biology, 2023, 4, 204-211.	1.7	0
1323	Analysis of Single-Cell RNA-seq Data. Methods in Molecular Biology, 2023, , 95-114.	0.4	0
1324	Comment on "Scarâ€Degrading Endothelial Cells as a Treatment for Advanced Liver Fibrosis― Advanced Science, 2023, 10, .	5.6	0
1325	Single-cell transcriptome analysis uncovers underlying mechanisms of acute liver injury induced by tripterygium glycosides tablet in mice. Journal of Pharmaceutical Analysis, 2023, 13, 908-925.	2.4	2
1326	Pan-cancer classification of single cells in the tumour microenvironment. Nature Communications, 2023, 14, .	5.8	6
1327	Single-cell profiling to explore pancreatic cancer heterogeneity, plasticity and response to therapy. Nature Cancer, 2023, 4, 454-467.	5.7	15
1328	SEACells infers transcriptional and epigenomic cellular states from single-cell genomics data. Nature Biotechnology, 2023, 41, 1746-1757.	9.4	30
1329	FishSCT: a zebrafish-centric database for exploration and visualization of fish single-cell transcriptome. Science China Life Sciences, 2023, 66, 2185-2188.	2.3	1
1332	It is better to light a candle than to curse the darkness: single-cell transcriptomics sheds new light on pancreas biology and disease. Gut, 2023, 72, 1211-1219.	6.1	6
1333	Recent advances in single-cell subcellular sampling. Chemical Communications, 2023, 59, 5312-5328.	2.2	5
1334	Padlock Probe–Based Targeted In Situ Sequencing: Overview of Methods and Applications. Annual Review of Genomics and Human Genetics, 2023, 24, 133-150.	2.5	1
1335	Gene expression and regulation relative to specific tissues and functions. , 2023, , 41-65.		0
1337	Standardization and Interpretation of RNA-sequencing for Transplantation. Transplantation, 2023, 107, 2155-2167.	0.5	3
1339	Research Progress of Single Cell Transcriptome Sequencing Technology in Cutaneous Malignant Melanoma. Hans Journal of Biomedicine, 2023, 13, 199-210.	0.0	O

#	Article	IF	CITATIONS
1340	Accelerating the understanding of cancer biology through the lens of genomics. Cell, 2023, 186, 1755-1771.	13.5	9
1341	Sequence-Based Platforms for Discovering Biomarkers in Liquid Biopsy of Non-Small-Cell Lung Cancer. Cancers, 2023, 15, 2275.	1.7	3
1342	Approaches for single-cell RNA sequencing across tissues and cell types. Transcription, 2023, 14, 127-145.	1.7	6
1343	Multimodal charting of molecular and functional cell states via in situ electro-sequencing. Cell, 2023, 186, 2002-2017.e21.	13.5	2
1344	Generative pretraining from large-scale transcriptomes for single-cell deciphering. IScience, 2023, 26, 106536.	1.9	4
1345	ICAT: a novel algorithm to robustly identify cell states following perturbations in single-cell transcriptomes. Bioinformatics, 2023, 39, .	1.8	1
1350	Target Validation for Medicinal Chemists. , 2023, , 653-681.		1
1359	Editorial: Molecular mechanisms regulating phenotypic heterogeneity in human inflammatory diseases. Frontiers in Immunology, 0, 14 , .	2.2	0
1367	The technological landscape and applications of single-cell multi-omics. Nature Reviews Molecular Cell Biology, 2023, 24, 695-713.	16.1	73
1371	Next Generation Biorepository Informatics: Supporting Genomics, Imaging, and Innovations in Spatial Biology. Computers in Health Care, 2023, , 69-90.	0.2	0
1373	Evaluation of Stem-Cell Embryo Models by Integration with a Human Embryo Single-Cell Transcriptome Atlas. Methods in Molecular Biology, 2023, , 213-250.	0.4	0
1374	Cancer as a Disease of Defective Cell Cycle Checkpoint Function. , 2023, , 45-63.		O
1376	Applications of single-cell RNA sequencing in drug discovery and development. Nature Reviews Drug Discovery, 2023, 22, 496-520.	21.5	31
1385	Gene regulatory network inference in the era of single-cell multi-omics. Nature Reviews Genetics, 2023, 24, 739-754.	7.7	40
1394	Roles of macrophages in tumor development: a spatiotemporal perspective., 2023, 20, 983-992.		16
1398	Progress in single-cell multimodal sequencing and multi-omics data integration. Biophysical Reviews, 0, , .	1.5	6
1400	The heterocellular heart: identities, interactions, and implications for cardiology. Basic Research in Cardiology, 2023, 118, .	2.5	13
1416	Bioinformatics in urology â€" molecular characterization of pathophysiology and response to treatment. Nature Reviews Urology, 0, , .	1.9	O

#	Article	IF	CITATIONS
1417	Spatial transcriptomics in neuroscience. Experimental and Molecular Medicine, 0, , .	3.2	0
1424	Cell-Level Pathway Scoring Comparison withÂaÂBiologically Constrained Variational Autoencoder. Lecture Notes in Computer Science, 2023, , 62-77.	1.0	O
1427	ESR: Optimizing Gene Feature Selection for scRNA-seq Data. , 2023, , .		0
1442	Unraveling the stereoscopic gene transcriptional landscape of zebrafish using FishSED, a fish spatial expression database with multispecies scalability. Science China Life Sciences, 0, , .	2.3	0
1445	Recent advances and future developments in ultrasensitive omics. Analytical and Bioanalytical Chemistry, $0, , .$	1.9	0
1466	Single Cell RNA-Sequencing and Its Application in Livestock Animals. , 2023, , 226-242.		0
1472	Roles of Skeletal Muscle in Development: A Bioinformatics and Systems Biology Overview. Advances in Anatomy, Embryology and Cell Biology, 2023, , 21-55.	1.0	0
1482	How developmental cell atlases inform stem cell embryo models. Nature Methods, 2023, 20, 1849-1851.	9.0	1
1488	Drug targeting in psychiatric disorders â€" how to overcome the loss in translation?. Nature Reviews Drug Discovery, 2024, 23, 218-231.	21.5	0
1516	Plant genomic resources at National Genomics Data Center: assisting in data-driven breeding applications. ABIOTECH, 2024, 5, 94-106.	1.8	O
1541	Artificial intelligence in cancer research and precision medicine. , 2024, , 1-23.		0