Cliques of Neurons Bound into Cavities Provide a Missi Function

Frontiers in Computational Neuroscience

11, 48

DOI: 10.3389/fncom.2017.00048

Citation Report

#	Article	IF	CITATIONS
1	Sparse Parallel Algorithms for Recognizing Touch Topology on Curved Interactive Screens. IEEE Access, 2017, 5, 14889-14897.	2.6	0
2	Brain projective reality: Novel clothes for the emperor. Physics of Life Reviews, 2017, 21, 46-55.	1.5	2
3	Challenges in the analysis of complex systems: introduction and overview. European Physical Journal: Special Topics, 2017, 226, 3185-3197.	1.2	3
4	Benefits and Risks of Machine Learning Decision Support Systems. JAMA - Journal of the American Medical Association, 2017, 318, 2355.	3.8	2
5	What Is the Evidence for Inter-laminar Integration in a Prefrontal Cortical Minicolumn?. Frontiers in Neuroanatomy, 2017, 11, 116.	0.9	7
6	Generative Design of Electromagnetic Structures Through Bayesian Learning. IEEE Transactions on Magnetics, 2018, 54, 1-4.	1.2	2
7	Topological percolation on hyperbolic simplicial complexes. Physical Review E, 2018, 98, .	0.8	40
8	Simplicial Activity Driven Model. Physical Review Letters, 2018, 121, 228301.	2.9	100
9	Storing and retrieving long-term memories: cooperation and competition in synaptic dynamics. Advances in Physics: X, 2018, 3, 1480415.	1.5	2
10	Features of a Simple Psychophysiological Reaction. Human Physiology, 2018, 44, 412-417.	0.1	3
11	Modeling driver cells in developing neuronal networks. PLoS Computational Biology, 2018, 14, e1006551.	1.5	13
12	A Process for Digitizing and Simulating Biologically Realistic Oligocellular Networks Demonstrated for the Neuro-Glio-Vascular Ensemble. Frontiers in Neuroscience, 2018, 12, 664.	1.4	25
13	Reconceptualizing delirium as a disorder of complex system failure. Medical Hypotheses, 2018, 118, 121-126.	0.8	4
14	Coordinated neuronal ensembles in primary auditory cortical columns. ELife, 2018, 7, .	2.8	38
16	Complex Network Geometry and Frustrated Synchronization. Scientific Reports, 2018, 8, 9910.	1.6	52
17	On the nature and use of models in network neuroscience. Nature Reviews Neuroscience, 2018, 19, 566-578.	4.9	277
18	Dense power-law networks and simplicial complexes. Physical Review E, 2018, 97, 052303.	0.8	31
19	Prenatal inflammation and risk for schizophrenia: A role for immune proteins in neurodevelopment. Development and Psychopathology, 2018, 30, 1157-1178.	1.4	29

#	Article	IF	CITATIONS
20	A theory on the role of π-electrons of docosahexaenoic acid in brain function. OCL - Oilseeds and Fats, Crops and Lipids, 2018, 25, A403.	0.6	2
21	Cortical reliability amid noise and chaos. Nature Communications, 2019, 10, 3792.	5.8	34
22	Intrinsic temporal tuning of neurons in the optic tectum is shaped by multisensory experience. Journal of Neurophysiology, 2019, 122, 1084-1096.	0.9	3
23	Rips filtrations for quasimetric spaces and asymmetric functions with stability results. Algebraic and Geometric Topology, 2019, 19, 1135-1170.	0.1	10
24	Tracing patterns and shapes in remittance and migration networks via persistent homology. EPJ Data Science, 2019, 8, .	1.5	18
25	Theoretical neuroscience. , 2019, , 9-19.		1
26	Relating network connectivity to dynamics: opportunities and challenges for theoretical neuroscience. Current Opinion in Neurobiology, 2019, 58, 11-20.	2.0	16
27	A Game-Theoretical Network Formation Model for C. elegans Neural Network. Frontiers in Computational Neuroscience, 2019, 13, 45.	1.2	3
28	Topology highlights mesoscopic functional equivalence between imagery and perception: The case of hypnotizability. Neurolmage, 2019, 200, 437-449.	2.1	45
29	Stochastic homology of Gaussian vs. non-Gaussian random fields: graphs towards Betti numbers and persistence diagrams. Journal of Cosmology and Astroparticle Physics, 2019, 2019, 052-052.	1.9	23
30	Topological phase transitions in functional brain networks. Physical Review E, 2019, 100, 032414.	0.8	50
31	The case for emulating insect brains using anatomical "wiring diagrams―equipped with biophysical models of neuronal activity. Biological Cybernetics, 2019, 113, 465-474.	0.6	5
32	On a Simple General Principle of Brain Organization. Frontiers in Neuroscience, 2019, 13, 1106.	1.4	18
33	Scale-variant topological information for characterizing the structure of complex networks. Physical Review E, 2019, 100, 032308.	0.8	6
34	CoreNEURON : An Optimized Compute Engine for the NEURON Simulator. Frontiers in Neuroinformatics, 2019, 13, 63.	1.3	58
35	Topological Information Data Analysis. Entropy, 2019, 21, 869.	1.1	38
36	Dynamics of Reaction-Diffusion Oscillators in Star and other Networks with Cyclic Symmetries Exhibiting Multiple Clusters. Physical Review Letters, 2019, 123, 148301.	2.9	18
37	Topological exploration of artificial neuronal network dynamics. Network Neuroscience, 2019, 3, 725-743.	1.4	15

#	Article	IF	CITATIONS
38	Nervous-Like Circuits in the Ribosome Facts, Hypotheses and Perspectives. International Journal of Molecular Sciences, 2019, 20, 2911.	1.8	7
39	Abrupt Desynchronization and Extensive Multistability in Globally Coupled Oscillator Simplexes. Physical Review Letters, 2019, 122, 248301.	2.9	161
40	A Brief History of Simulation Neuroscience. Frontiers in Neuroinformatics, 2019, 13, 32.	1.3	47
41	Spiking Neural Network Modelling Approach Reveals How Mindfulness Training Rewires the Brain. Scientific Reports, 2019, 9, 6367.	1.6	32
42	A geometric framework for modeling dynamic decisions among arbitrarily many alternatives. Journal of Mathematical Psychology, 2019, 91, 14-37.	1.0	16
43	The physics of brain network structure, function and control. Nature Reviews Physics, 2019, 1, 318-332.	11.9	233
44	"Brainland―vs. "flatland― How many dimensions do we need in brain dynamics?. Physics of Life Reviews, 2019, 29, 108-110.	1.5	2
45	Standard Laterality Models. , 2019, , 147-179.		0
46	Beyond the clustering coefficient: A topological analysis of node neighbourhoods in complex networks. Chaos, Solitons and Fractals: X, 2019, 1, 100004.	1.0	48
47	Synchronization in network geometries with finite spectral dimension. Physical Review E, 2019, 99, 022307.	0.8	51
48	Consciousness and topologically structured phenomenal spaces. Consciousness and Cognition, 2019, 70, 25-38.	0.8	25
49	Mapping meditative states and stages with electrophysiology: concepts, classifications, and methods. Current Opinion in Psychology, 2019, 28, 211-217.	2.5	24
50	The importance of the whole: Topological data analysis for the network neuroscientist. Network Neuroscience, 2019, 3, 656-673.	1.4	122
51	Channel Model for Spiking Neural Networks Inspired by Impulse Radio MIMO Transmission. , 2019, , .		0
52	Path Homologies of Deep Feedforward Networks. , 2019, , .		5
53	A Notion of Harmonic Clustering in Simplicial Complexes. , 2019, , .		5
54	Stability of spontaneous, correlated activity in mouse auditory cortex. PLoS Computational Biology, 2019, 15, e1007360.	1.5	21
55	The multidimensional brain. Physics of Life Reviews, 2019, 31, 86-103.	1.5	23

#	Article	IF	CITATIONS
56	Evaluating performance of neural codes in model neural communication networks. Neural Networks, 2019, 109, 90-102.	3.3	9
57	Simplicial complexes and complex systems. European Journal of Physics, 2019, 40, 014001.	0.3	96
58	High-Dimensional Brain: A Tool for Encoding and Rapid Learning of Memories by Single Neurons. Bulletin of Mathematical Biology, 2019, 81, 4856-4888.	0.9	32
59	A roadmap to integrate astrocytes into Systems Neuroscience. Glia, 2020, 68, 5-26.	2.5	52
60	Deep learning and deep knowledge representation in Spiking Neural Networks for Brain-Computer Interfaces. Neural Networks, 2020, 121, 169-185.	3.3	39
61	On the topology of complexes of injective words. Journal of Applied and Computational Topology, 2020, 4, 29-44.	1.0	1
62	Impact of higher order network structure on emergent cortical activity. Network Neuroscience, 2020, 4, 292-314.	1.4	14
63	Towards Strong Al with Analog Neural Chips. , 2020, , .		5
64	The topology of higher-order complexes associated with brain hubs in human connectomes. Scientific Reports, 2020, 10, 17320.	1.6	28
65	Renormalization group theory of percolation on pseudofractal simplicial and cell complexes. Physical Review E, 2020, 102, 012308.	0.8	8
66	A topological data analysis based classification method for multiple measurements. BMC Bioinformatics, 2020, 21, 336.	1.2	13
67	Network topology of the marmoset connectome. Network Neuroscience, 2020, 4, 1181-1196.	1.4	12
68	A Potential Mechanism of Sodium Channel Mediating the General Anesthesia Induced by Propofol. Frontiers in Cellular Neuroscience, 2020, 14, 593050.	1.8	4
69	From Trees to Barcodes and Back Again: Theoretical and Statistical Perspectives. Algorithms, 2020, 13, 335.	1.2	8
70	A Self-Operating Time Crystal Model of the Human Brain: Can We Replace Entire Brain Hardware with a 3D Fractal Architecture of Clocks Alone?. Information (Switzerland), 2020, 11, 238.	1.7	36
71	Explosive Higher-Order Kuramoto Dynamics on Simplicial Complexes. Physical Review Letters, 2020, 124, 218301.	2.9	146
72	Reorderability of node-filtered order complexes. Physical Review E, 2020, 101, 052311.	0.8	11
73	Networks beyond pairwise interactions: Structure and dynamics. Physics Reports, 2020, 874, 1-92.	10.3	661

#	Article	IF	Citations
74	Magnetisation Processes in Geometrically Frustrated Spin Networks with Self-Assembled Cliques. Entropy, 2020, 22, 336.	1.1	7
75	Multibody interactions and nonlinear consensus dynamics on networked systems. Physical Review E, 2020, 101, 032310.	0.8	74
76	Astroglial Isopotentiality and Calcium-Associated Biomagnetic Field Effects on Cortical Neuronal Coupling. Cells, 2020, 9, 439.	1.8	16
77	Simplicial complexes: higher-order spectral dimension and dynamics. Journal of Physics Complexity, 2020, 1, 015002.	0.9	47
78	Computing Persistent Homology of Directed Flag Complexes. Algorithms, 2020, 13, 19.	1.2	14
79	Reconfigurations within resonating communities of brain regions following TMS reveal different scales of processing. Network Neuroscience, 2020, 4, 611-636.	1.4	5
80	Spike Train Coactivity Encodes Learned Natural Stimulus Invariances in Songbird Auditory Cortex. Journal of Neuroscience, 2021, 41, 73-88.	1.7	5
81	The Why, How, and When of Representations for Complex Systems. SIAM Review, 2021, 63, 435-485.	4.2	111
82	Spectrum of extensive multiclusters in the Kuramoto model with higher-order interactions. Physical Review Research, 2021, 3, .	1.3	23
83	The Open Mind: A Phenomenology. Open Journal of Philosophy, 2021, 11, 249-291.	0.1	0
84	Topological Model of Neural Information Networks. Lecture Notes in Computer Science, 2021, , 623-633.	1.0	1
85	Modelling non-linear consensus dynamics on hypergraphs. Journal of Physics Complexity, 2021, 2, 025006.	0.9	21
86	Phase transition and scaling in Kuramoto model with high-order coupling. Nonlinear Dynamics, 2021, 103, 2721-2732.	2.7	10
87	A persistent homology method with modified filtration to characterize the phase trajectory of a turbulent wake flow. Physics of Fluids, 2021, 33, .	1.6	2
89	Nervous Activity of the Brain in Five Dimensions. Biophysica, 2021, 1, 38-47.	0.6	1
90	Using Topological Data Analysis (TDA) and Persistent Homology to Analyze the Stock Markets in Singapore and Taiwan. Frontiers in Physics, 2021, 9, .	1.0	14
91	How Blue is the Sky?. ENeuro, 2021, 8, ENEURO.0130-21.2021.	0.9	8
92	Complexes of tournaments, directionality filtrations and persistent homology. Journal of Applied and Computational Topology, 2021, 5, 313-337.	1.0	4

#	Article	IF	CITATIONS
93	Engram cell connectivity: an evolving substrate for information storage. Current Opinion in Neurobiology, 2021, 67, 215-225.	2.0	17
94	Opportunities and challenges in partitioning the graph measure space of real-world networks. Journal of Complex Networks, 2021, 9, .	1.1	0
95	Topological data analysis of task-based fMRI data from experiments on schizophrenia. Journal of Physics Complexity, 2021, 2, 035006.	0.9	17
96	Simplicial and topological descriptions of human brain dynamics. Network Neuroscience, 2021, 5, 1-20.	1.4	12
97	D-dimensional oscillators in simplicial structures: Odd and even dimensions display different synchronization scenarios. Chaos, Solitons and Fractals, 2021, 146, 110888.	2.5	22
98	Principles and open questions in functional brain network reconstruction. Human Brain Mapping, 2021, 42, 3680-3711.	1.9	33
99	Hyperscroll dynamics: Vortices in four-dimensional networks. Chaos, 2021, 31, 053132.	1.0	0
100	Coexistence holes fill a gap in community assembly theory. Nature Ecology and Evolution, 2021, 5, 1062-1063.	3.4	1
101	Modeling Higher-Order Interactions in Complex Networks by Edge Product of Graphs. Computer Journal, 2022, 65, 2347-2359.	1.5	5
102	Higher-order simplicial synchronization of coupled topological signals. Communications Physics, 2021, 4, .	2.0	64
104	An Adaptive Resonance Theory-based Neural Network for Autonomous Learning via Iterative Knowledge Redescription. , 2021, , .		0
105	Topological measurement of deep neural networks using persistent homology. Annals of Mathematics and Artificial Intelligence, 2022, 90, 75-92.	0.9	11
106	Nodes with the highest control power play an important role at the final level of cooperation in directed networks. Scientific Reports, 2021, 11, 13668.	1.6	3
107	The Middle Science: Traversing Scale In Complex Many-Body Systems. ACS Central Science, 2021, 7, 1271-1287.	5.3	16
109	Dynamics of majority rule on hypergraphs. Physical Review E, 2021, 104, 024316.	0.8	18
110	Unified treatment of synchronization patterns in generalized networks with higher-order, multilayer, and temporal interactions. Communications Physics, 2021, 4, .	2.0	33
111	Persistent homology of the cosmic web – I. Hierarchical topology in ĥCDM cosmologies. Monthly Notices of the Royal Astronomical Society, 2021, 507, 2968-2990.	1.6	14
112	Understanding Changes in the Topology and Geometry of Financial Market Correlations during a Market Crash. Entropy, 2021, 23, 1211.	1.1	8

#	Article	IF	CITATIONS
114	Hysteresis and synchronization processes of Kuramoto oscillators on high-dimensional simplicial complexes with competing simplex-encoded couplings. Physical Review E, 2021, 104, 034206.	0.8	16
115	High-level cognition during story listening is reflected in high-order dynamic correlations in neural activity patterns. Nature Communications, 2021, 12, 5728.	5.8	15
116	Promises and pitfalls of topological data analysis for brain connectivity analysis. NeuroImage, 2021, 238, 118245.	2.1	15
117	Brain-inspired spiking neural networks for decoding and understanding muscle activity and kinematics from electroencephalography signals during hand movements. Scientific Reports, 2021, 11, 2486.	1.6	34
119	Forman's Ricci Curvature - From Networks to Hypernetworks. Studies in Computational Intelligence, 2019, , 706-717.	0.7	8
120	Same But Different: Distance Correlations Between Topological Summaries. Abel Symposia, 2020, , 459-490.	0.3	9
121	A social communication model based on simplicial complexes. Physics Letters, Section A: General, Atomic and Solid State Physics, 2020, 384, 126895.	0.9	23
122	Phase transition in random distance graphs on the torus. Journal of Applied Probability, 2017, 54, 1278-1294.	0.4	3
123	Network structure of cascading neural systems predicts stimulus propagation and recovery. Journal of Neural Engineering, 2020, 17, 056045.	1.8	6
124	Memory selection and information switching in oscillator networks with higher-order interactions. Journal of Physics Complexity, 2021, 2, 015003.	0.9	14
135	Abrupt phase transition of epidemic spreading in simplicial complexes. Physical Review Research, 2020, 2, .	1.3	90
136	Bifurcation analysis and structural stability of simplicial oscillator populations. Physical Review Research, 2020, 2, .	1.3	36
137	On the Nature of Explanations Offered by Network Science: A Perspective From and for Practicing Neuroscientists. Topics in Cognitive Science, 2020, 12, 1272-1293.	1.1	25
138	Cyclic transitions between higher order motifs underlie sustained asynchronous spiking in sparse recurrent networks. PLoS Computational Biology, 2020, 16, e1007409.	1.5	16
139	Conscious Perception as Integrated Information Patterns in Human Electrocorticography. ENeuro, 2017, 4, ENEURO.0085-17.2017.	0.9	28
141	High-throughput microcircuit analysis of individual human brains through next-generation multineuron patch-clamp. ELife, 2019, 8, .	2.8	41
142	Self-Organised Critical Dynamics as a Key to Fundamental Features of Complexity in Physical, Biological, and Social Networks. Dynamics, 2021, 1, 181-197.	0.5	24
143	Lithium Quantum Consciousness. Journal of Quantum Information Science, 2017, 07, 125-139.	0.2	2

#	Article	IF	CITATIONS
144	Agency of Life, Entropic Gravity and Phenomena Attributed to "Dark Matter― Journal of Quantum Information Science, 2017, 07, 67-75.	0.2	3
145	Tensor-Centric Warfare I: Tensor Lanchester Equations. Intelligent Control and Automation, 2018, 09, 11-29.	1.0	4
146	Tensor-Centric Warfare II: Entropic Uncertainty Modeling. Intelligent Control and Automation, 2018, 09, 30-51.	1.0	4
149	From Brain-Inspired AI to a Symbiosis of Human Intelligence and Artificial Intelligence. Springer Series on Bio- and Neurosystems, 2019, , 701-714.	0.2	0
150	Tensor-Centric Warfare V: Topology of Systems Confrontation. Intelligent Control and Automation, 2019, 10, 13-45.	1.0	1
151	Network Models in Neuroscience. , 2019, , 121-136.		0
157	The Social Brain Paradigm. , 2020, , 101-121.		0
158	Structural Transformations in Neural Clusters of the Cerebral and Cerebellar Cortex in Children. Journal of Anatomy and Histopathology, 2019, 8, 42-48.	0.1	1
159	Topological graph persistence. Communications in Applied and Industrial Mathematics, 2020, 11, 72-87.	0.6	1
160	Modelos Dinâmicos Aplicados à Aprendizagem de Valores em Inteligência Artificial. VÉritas, 2020, 65, e37439.	0.0	0
163	Linear and Nonlinear EEG-Based Functional Networks in Anxiety Disorders. Advances in Experimental Medicine and Biology, 2020, 1191, 35-59.	0.8	9
164	Topological Adventures in Neuroscience. Abel Symposia, 2020, , 277-305.	0.3	4
165	Plurality: The End of Singularity?. World-systems Evolution and Global Futures, 2020, , 163-184.	0.1	8
167	Evolving Spiking Neural Networks for Robot Sensory-motor Decision Tasks of Varying Difficulty. , 2020, , .		4
168	Memristive Concept of a High-Dimensional Neuron. , 2021, , .		2
169	A Space-Time-Topology-Prime, stTS Metric for a Self-operating Mathematical Universe Uses Dodecanion Geometric Algebra of 2-20 D Complex Vectors. Lecture Notes in Networks and Systems, 2021, , 1-31.	0.5	12
172	Collective dynamics of phase oscillator populations with three-body interactions. Physical Review E, 2021, 104, 054208.	0.8	12
174	Explosive synchronization: From synthetic to real-world networks. Chinese Physics B, 2022, 31, 020504.	0.7	4

#	Article	IF	CITATIONS
175	Computing cliques and cavities in networks. Communications Physics, 2021, 4, .	2.0	17
176	Local topological moves determine global diffusion properties of hyperbolic higher-order networks. Physical Review E, 2021, 104, 054302.	0.8	15
178	HybridSNN: Combining Bio-Machine Strengths by Boosting Adaptive Spiking Neural Networks. IEEE Transactions on Neural Networks and Learning Systems, 2023, 34, 5841-5855.	7.2	4
180	An application of neighbourhoods in digraphs to the classification of binary dynamics. Network Neuroscience, 0, , 1-108.	1.4	2
181	Topology of synaptic connectivity constrains neuronal stimulus representation, predicting two complementary coding strategies. PLoS ONE, 2022, 17, e0261702.	1.1	7
182	Controllability Robustness of Henneberg-Growth Complex Networks. IEEE Access, 2022, 10, 5103-5114.	2.6	7
183	Path homologies of motifs and temporal network representations. Applied Network Science, 2022, 7, .	0.8	3
184	Distributed Phase Oscillatory Excitation Efficiently Produces Attractors Using Spike-Timing-Dependent Plasticity. Neural Computation, 2022, 34, 415-436.	1.3	2
185	Learning orientations: a discrete geometry model. Journal of Applied and Computational Topology, 2022, 6, 193-220.	1.0	3
186	A system model of three-body interactions in complex networks: consensus and conservation. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2022, 478, .	1.0	10
188	Topological Conditions for Propagation of Spatially-Distributed Neural Activity. SSRN Electronic Journal, O, , .	0.4	0
189	Balanced Hodge Laplacians optimize consensus dynamics over simplicial complexes. Chaos, 2022, 32, 023128.	1.0	16
191	Integration of machine learning and first principles models. AICHE Journal, 2022, 68, .	1.8	23
192	Higher-order interactions can better optimize network synchronization. Physical Review Research, 2021, 3, .	1.3	32
194	The Euler characteristic and topological phase transitions in complex systems. Journal of Physics Complexity, 2022, 3, 025003.	0.9	3
195	Optimizing higher-order network topology for synchronization of coupled phase oscillators. Communications Physics, 2022, 5, .	2.0	15
201	Characterizing Brain Network Dynamics using Persistent Homology in Patients with Refractory Epilepsy AMIA Annual Symposium proceedings, 2021, 2021, 1244-1253.	0.2	0
205	Consensus Dynamics andÂOpinion Formation onÂHypergraphs. Understanding Complex Systems, 2022, , 347-376.	0.3	7

#	Article	IF	CITATIONS
206	Epidemics on multilayer simplicial complexes. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2022, 478, .	1.0	33
207	On The Biophysical Complexity of Brain Dynamics: An Outlook. Dynamics, 2022, 2, 114-148.	0.5	5
208	Tiered synchronization in coupled oscillator populations with interaction delays and higher-order interactions. Chaos, 2022, 32, .	1.0	6
210	Multiscale topology characterizes dynamic tumor vascular networks. Science Advances, 2022, 8, .	4.7	12
211	From calcium imaging to graph topology. Network Neuroscience, 2022, 6, 1125-1147.	1.4	6
212	Modernizing the NEURON Simulator for Sustainability, Portability, and Performance. Frontiers in Neuroinformatics, 0, 16, .	1.3	16
213	Emergent hypernetworks in weakly coupled oscillators. Nature Communications, 2022, 13, .	5.8	10
217	Effects of memory on spreading processes in non-Markovian temporal networks based on simplicial complex. Physica A: Statistical Mechanics and Its Applications, 2022, 606, 128073.	1.2	3
218	Simplex closing probabilities in directed graphs. Computational Geometry: Theory and Applications, 2023, 109, 101941.	0.3	1
219	Large-scale biophysically detailed model of somatosensory thalamocortical circuits in NetPyNE. Frontiers in Neuroinformatics, 0, 16, .	1.3	12
220	AIT Foundations of Structured Experience. Journal of Artificial Intelligence and Consciousness, 2022, 09, 153-191.	0.6	1
221	Weighted simplicial complexes and their representation power of higher-order network data and topology. Physical Review E, 2022, 106, .	0.8	22
222	Steady and ranging sets in graph persistence. Journal of Applied and Computational Topology, 2023, 7, 33-56.	1.0	2
223	Discrete Morse theory, persistent homology and Forman–Ricci curvature. Mathematics, Computation and Geometry of Data, 2021, 1, 131-164.	0.3	0
224	Topological Data Analysis in Time Series: Temporal Filtration and Application to Single-Cell Genomics. Algorithms, 2022, 15, 371.	1.2	3
225	Simplicial cascades are orchestrated by the multidimensional geometry of neuronal complexes. Communications Physics, 2022, 5, .	2.0	6
226	Coupled spreading between information and epidemics on multiplex networks with simplicial complexes. Chaos, 2022, 32, .	1.0	13
227	Identifying partial topology of simplicial complexes. Chaos, 2022, 32, .	1.0	4

#	Article	IF	CITATIONS
228	An Efficient Algorithm for 1-Dimensional (Persistent) Path Homology. Discrete and Computational Geometry, 2022, 68, 1102-1132.	0.4	3
229	First Betti number of the path homology of random directed graphs. Journal of Applied and Computational Topology, 0, , .	1.0	1
230	Stratifying the space of barcodes using Coxeter complexes. Journal of Applied and Computational Topology, 0, , .	1.0	2
231	Hodge Laplacian of Brain Networks. IEEE Transactions on Medical Imaging, 2023, 42, 1563-1573.	5.4	3
232	Emergent stability dynamics in the human brain connectome through the inclusion of high order interactions between coupled oscillators. , 2022, , .		1
233	Clique Network-Based Statistics for Detecting Altered Topological Structures in the Brain Network. , 2022, , .		1
234	Single-Cell Topological Simplicial Analysis Reveals Higher-Order Cellular Complexity. , 2022, , .		0
235	Spatio-temporal patterns of non-autonomous systems on hypergraphs: Turing and Benjamin–Feir mechanisms. New Journal of Physics, 2023, 25, 023008.	1.2	0
236	Multistability in coupled oscillator systems with higher-order interactions and community structure. Chaos, 2023, 33, .	1.0	6
238	Topological data analysis of human brain networks through order statistics. PLoS ONE, 2023, 18, e0276419.	1.1	2
239	COMBINATORIAL PROPERTIES FOR A CLASS OF SIMPLICIAL COMPLEXES EXTENDED FROM PSEUDO-FRACTAL SCALE-FREE WEB. Fractals, 0, , .	1.8	0
240	Hochschild homology, and a persistent approach via connectivity digraphs. Journal of Applied and Computational Topology, 0, , .	1.0	1
241	1D to 20D Tensors Like Dodecanions and Icosanions to Model Human Cognition as Morphogenesis in the Density of Primes. Lecture Notes in Networks and Systems, 2023, , 449-467.	0.5	3
242	Quantum similarity description of a unique classical and quantum QSPR algorithm in molecular spaces: the connection with Boolean hypercubes, algorithmic intelligence, and GA¶del's incompleteness theorems. , 2023, , 505-572.		0
265	Topological Dynamics ofÂFunctional Neural Network Graphs During Reinforcement Learning. Communications in Computer and Information Science, 2024, , 190-204.	0.4	0