Effects of Copper Addition on Copper Resistance, Antib during Swine Manure Composting

Frontiers in Microbiology 8, 344 DOI: 10.3389/fmicb.2017.00344

Citation Report

#	Article	IF	CITATIONS
1	The behavior of antibiotic resistance genes and arsenic influenced by biochar during different manure composting. Environmental Science and Pollution Research, 2017, 24, 14484-14490.	2.7	41
2	Behavior of antibiotic resistance genes during co-composting of swine manure with Chinese medicinal herbal residues. Bioresource Technology, 2017, 244, 252-260.	4.8	107
3	Effects of superabsorbent polymers on the abundances of antibiotic resistance genes, mobile genetic elements, and the bacterial community during swine manure composting. Bioresource Technology, 2017, 244, 658-663.	4.8	80
4	Dynamics of bacterial composition and the fate of antibiotic resistance genes and mobile genetic elements during the co-composting with gentamicin fermentation residue and lovastatin fermentation residue. Bioresource Technology, 2018, 261, 249-256.	4.8	65
5	Prevalence of quinolone resistance genes, copper resistance genes, and the bacterial communities in a soil-ryegrass system co-polluted with copper and ciprofloxacin. Chemosphere, 2018, 197, 643-650.	4.2	17
6	Impact of copper on the diazotroph abundance and community composition during swine manure composting. Bioresource Technology, 2018, 255, 257-265.	4.8	34
7	Effects of copper on the composition and diversity of microbial communities in laboratory-scale swine manure composting. Canadian Journal of Microbiology, 2018, 64, 409-419.	0.8	16
8	Bacterial community succession during pig manure and wheat straw aerobic composting covered with a semi-permeable membrane under slight positive pressure. Bioresource Technology, 2018, 259, 221-227.	4.8	154
9	Effects of genetically modified cotton stalks on antibiotic resistance genes, intl1, and intl2 during pig manure composting. Ecotoxicology and Environmental Safety, 2018, 147, 637-642.	2.9	44
10	Hyperthermophilic Composting Accelerates the Removal of Antibiotic Resistance Genes and Mobile Genetic Elements in Sewage Sludge. Environmental Science & Technology, 2018, 52, 266-276.	4.6	321
11	Biofilms as a sink for antibiotic resistance genes (ARGs) in the Yangtze Estuary. Water Research, 2018, 129, 277-286.	5.3	193
12	Bacterial resistance to antibiotic alternatives: a wolf in sheep's clothing?1. Animal Frontiers, 2018, 8, 39-47.	0.8	25
13	Contributions of the microbial community and environmental variables to antibiotic resistance genes during co-composting with swine manure and cotton stalks. Journal of Hazardous Materials, 2018, 358, 82-91.	6.5	118
14	Human and veterinary antibiotics during composting of sludge or manure: Global perspectives on persistence, degradation, and resistance genes. Journal of Hazardous Materials, 2018, 359, 465-481.	6.5	282
15	Seasonal and spatial distribution of antibiotic resistance genes in the sediments along the Yangtze Estuary, China. Environmental Pollution, 2018, 242, 576-584.	3.7	93
16	Changes of quinolone resistance genes and their relations with microbial profiles during vermicomposting of municipal excess sludge. Science of the Total Environment, 2018, 644, 494-502.	3.9	58
17	Short-term copper exposure as a selection pressure for antibiotic resistance and metal resistance in an agricultural soil. Environmental Science and Pollution Research, 2018, 25, 29314-29324.	2.7	20
18	Removal of intl1 and associated antibiotics resistant genes in water, sewage sludge and livestock manure treatments. Reviews in Environmental Science and Biotechnology, 2018, 17, 471-500.	3.9	46

#	Article	IF	CITATIONS
19	Effects of metal and metalloid pollutants on the microbiota composition of feces obtained from twelve commercial pig farms across China. Science of the Total Environment, 2019, 647, 577-586.	3.9	15
20	The correlation between antibiotic resistance gene abundance and microbial community resistance in pig farm wastewater and surrounding rivers. Ecotoxicology and Environmental Safety, 2019, 182, 109452.	2.9	34
21	Effects of nano-zerovalent iron on antibiotic resistance genes during the anaerobic digestion of cattle manure. Bioresource Technology, 2019, 289, 121688.	4.8	67
22	Dynamics of oxytetracycline and resistance genes in soil under long-term intensive compost fertilization in Northern China. Environmental Science and Pollution Research, 2019, 26, 21381-21393.	2.7	17
23	Responses of antibiotic and heavy metal resistance genes to bamboo charcoal and bamboo vinegar during aerobic composting. Environmental Pollution, 2019, 252, 1097-1105.	3.7	69
24	Effects of inoculation with lignocellulose-degrading microorganisms on antibiotic resistance genes and the bacterial community during co-composting of swine manure with spent mushroom substrate. Environmental Pollution, 2019, 252, 110-118.	3.7	74
25	Evaluating the net effect of sulfadimidine on nitrogen removal in an aquatic microcosm environment. Environmental Pollution, 2019, 248, 1010-1019.	3.7	27
26	The behavior of antibiotic resistance genes and their associations with bacterial community during poultry manure composting. Bioresource Technology, 2019, 280, 70-78.	4.8	77
27	Effects of amoxicillin on nitrogen transformation and bacterial community succession during aerobic composting. Journal of Hazardous Materials, 2019, 362, 258-265.	6.5	131
28	Field-based evidence for enrichment of antibiotic resistance genes and mobile genetic elements in manure-amended vegetable soils. Science of the Total Environment, 2019, 654, 906-913.	3.9	60
29	Effects of macroporous adsorption resin on antibiotic resistance genes and the bacterial community during composting. Bioresource Technology, 2020, 295, 121997.	4.8	52
30	Variation of antibiotic resistome during commercial livestock manure composting. Environment International, 2020, 136, 105458.	4.8	115
31	The conversion of organic nitrogen by functional bacteria determines the end-result of ammonia in compost. Bioresource Technology, 2020, 299, 122599.	4.8	32
32	Contribution of antibiotics to the fate of antibiotic resistance genes in anaerobic treatment processes of swine wastewater: A review. Bioresource Technology, 2020, 299, 122654.	4.8	57
33	The fate of antibiotic resistance genes during co-composting of swine manure with cauliflower and corn straw. Bioresource Technology, 2020, 300, 122669.	4.8	47
34	Roles of nxrA-like oxidizers and nirS-like reducers in nitrite conversion during swine manure composting. Bioresource Technology, 2020, 297, 122426.	4.8	24
35	Effects of nano-zerovalent iron on antibiotic resistance genes and mobile genetic elements during swine manure composting. Environmental Pollution, 2020, 258, 113654.	3.7	63
36	Behaviors and related mechanisms of Zn resistance and antibiotic resistance genes during co-composting of erythromycin manufacturing wastes and pig manure. Bioresource Technology, 2020, 318, 124048.	4.8	15

CITATION REPORT

#	Article	IF	CITATIONS
37	Antibiotic resistance genes in sediments of the Yangtze Estuary: From 2007 to 2019. Science of the Total Environment, 2020, 744, 140713.	3.9	37
38	Antibiotic resistance gene transfer during anaerobic digestion with added copper: Important roles of mobile genetic elements. Science of the Total Environment, 2020, 743, 140759.	3.9	27
39	Critical insight into the fate of antibiotic resistance genes during biological treatment of typical biowastes. Bioresource Technology, 2020, 317, 123974.	4.8	39
40	Changes in sediment microbial diversity following chronic copper-exposure induce community copper-tolerance without increasing sensitivity to arsenic. Journal of Hazardous Materials, 2020, 391, 122197.	6.5	13
41	Deciphering the role of calcium peroxide on the fate of antibiotic resistance genes and mobile genetic elements during bioelectrochemically-assisted anaerobic composting of excess dewatered sludge. Chemical Engineering Journal, 2020, 397, 125355.	6.6	20
42	Microbial insights into the biogeochemical features of thallium occurrence: A case study from polluted river sediments. Science of the Total Environment, 2020, 739, 139957.	3.9	58
43	Exploring the microbial mechanisms of organic matter transformation during pig manure composting amended with bean dregs and biochar. Bioresource Technology, 2020, 313, 123647.	4.8	92
44	Elucidating the effect of microbial inoculum and ferric chloride as additives on the removal of antibiotic resistance genes from chicken manure during aerobic composting. Bioresource Technology, 2020, 309, 122802.	4.8	47
45	Reducing the Consumption of Antibiotics: Would That Be Enough to Slow Down the Dissemination of Resistances in the Downstream Environment?. Frontiers in Microbiology, 2020, 11, 33.	1.5	25
46	Struvite-supported biochar composite effectively lowers Cu bio-availability and the abundance of antibiotic-resistance genes in soil. Science of the Total Environment, 2020, 724, 138294.	3.9	27
47	Insight into the fate of antibiotic resistance genes and bacterial community in co-composting green tea residues with swine manure. Journal of Environmental Management, 2020, 266, 110581.	3.8	37
48	Microbiological safety and antibiotic resistance risks at a sustainable farm under large-scale open-air composting and composting toilet systems. Journal of Hazardous Materials, 2021, 401, 123391.	6.5	25
49	Coexistence between antibiotic resistance genes and metal resistance genes in manure-fertilized soils. Geoderma, 2021, 382, 114760.	2.3	38
50	Variation of heavy metal speciation, antibiotic degradation, and potential horizontal gene transfer during pig manure composting under different chlortetracycline concentration. Environmental Science and Pollution Research, 2021, 28, 1224-1234.	2.7	5
51	Novel PVDF-PVP Hollow Fiber Membrane Augmented with TiO2 Nanoparticles: Preparation, Characterization and Application for Copper Removal from Leachate. Nanomaterials, 2021, 11, 399.	1.9	23
52	Environmental effects and risk control of antibiotic resistance genes in the organic solid waste aerobic composting system: A review. Frontiers of Environmental Science and Engineering, 2021, 15, 1.	3.3	32
53	Chemical Removal of Cu and Zn from Swine Feces before Soil Application. Agriculture (Switzerland), 2021, 11, 377.	1.4	3
54	Distribution of genetic elements associated with antibiotic resistance in treated and untreated animal husbandry waste and wastewater. Environmental Science and Pollution Research, 2021, 28, 26380-26403	2.7	19

#	Article	IF	CITATIONS
55	Evaluation of nitrogen conversion pathway during composting under amoxicillin stress: Mainly driven by core microbial community. Bioresource Technology, 2021, 325, 124701.	4.8	22
56	Chicken Manure and Mushroom Residues Affect Soil Bacterial Community Structure but Not the Bacterial Resistome When Applied at the Same Rate of Nitrogen for 3 Years. Frontiers in Microbiology, 2021, 12, 618693.	1.5	9
57	Microbial community dynamics during composting of animal manures contaminated with arsenic, copper, and oxytetracycline. Journal of Integrative Agriculture, 2021, 20, 1649-1659.	1.7	23
58	Biochar reinforced the populations of cbbL-containing autotrophic microbes and humic substance formation via sequestrating CO2 in composting process. Journal of Biotechnology, 2021, 333, 39-48.	1.9	30
59	Proliferation of antibiotic-resistant microorganisms and associated genes during composting: An overview of the potential impacts on public health, management and future. Science of the Total Environment, 2021, 784, 147191.	3.9	53
60	Additive quality influences the reservoir of antibiotic resistance genes during chicken manure composting. Ecotoxicology and Environmental Safety, 2021, 220, 112413.	2.9	22
61	Antibiotic resistance genes in layer farms and their correlation with environmental samples. Poultry Science, 2021, 100, 101485.	1.5	21
62	Reductive soil disinfestation attenuates antibiotic resistance genes in greenhouse vegetable soils. Journal of Hazardous Materials, 2021, 420, 126632.	6.5	9
63	Key factors driving the fate of antibiotic resistance genes and controlling strategies during aerobic composting of animal manure: A review. Science of the Total Environment, 2021, 791, 148372.	3.9	73
64	A review of the bioelectrochemical system as an emerging versatile technology for reduction of antibiotic resistance genes. Environment International, 2021, 156, 106689.	4.8	36
65	Effects of biocontrol Bacillus and fermentation bacteria additions on the microbial community, functions and antibiotic resistance genes of prickly ash seed oil meal-biochar compost. Bioresource Technology, 2021, 340, 125668.	4.8	38
66	Insights into the beneficial effects of woody peat for reducing abundances of antibiotic resistance genes during composting. Bioresource Technology, 2021, 342, 125903.	4.8	11
67	Response of antibiotic resistance to the co-exposure of sulfamethoxazole and copper during swine manure composting. Science of the Total Environment, 2022, 805, 150086.	3.9	28
68	Co-composting of sewage sludge and Phragmites australis using different insulating strategies. Waste Management, 2020, 108, 1-12.	3.7	19
69	Different Effects of Thermophilic Microbiological Inoculation With and Without Biochar on Physicochemical Characteristics and Bacterial Communities in Pig Manure Composting. Frontiers in Microbiology, 2021, 12, 746718.	1.5	9
70	Impact of bamboo sphere amendment on composting performance and microbial community succession in food waste composting. Journal of Environmental Management, 2022, 303, 114144.	3.8	18
71	Effects of multiple antibiotics residues in broiler manure on composting process. Science of the Total Environment, 2022, 817, 152808.	3.9	18
72	Temperature impacts fate of antibiotic resistance genes during vermicomposting of domestic excess activated sludge. Environmental Research, 2022, 207, 112654.	3.7	18

CITATION REPORT

CITATION REPORT

#	Article	IF	CITATIONS
73	The fate of antibiotic resistance genes and their influential factors in swine manure composting with sepiolite as additive. Bioresource Technology, 2022, 347, 126727.	4.8	15
74	Fe(II) Addition Drives Soil Bacterial Co-Ocurrence Patterns and Functions Mediated by Anaerobic and Chemoautotrophic Taxa. Microorganisms, 2022, 10, 547.	1.6	6
75	Clarifying the beneficial effects of plant growth-promoting rhizobacteria for reducing abundances of antibiotic resistance genes during swine manure composting. Bioresource Technology, 2022, 353, 127117.	4.8	3
76	Joint effects of bacterium and biochar in remediation of antibiotic-heavy metal contaminated soil and responses of resistance gene and microbial community. Chemosphere, 2022, 299, 134333.	4.2	27
77	Effects of heavy metals pollution on the co-selection of metal and antibiotic resistance in urban rivers in UK and India. Environmental Pollution, 2022, 306, 119326.	3.7	34
78	Biochar induced inhibitory effects on intracellular and extracellular antibiotic resistance genes in anaerobic digestion of swine manure. Environmental Research, 2022, 212, 113530.	3.7	14
79	Effects of Pilot-Scale Co-composting of Gentamicin Mycelial Residue with Rice Chaff on Gentamicin Degradation, Compost Maturity and Microbial Community Dynamics. Waste and Biomass Valorization, 2022, 13, 4797-4812.	1.8	2
80	Effects of heavy metals on the development and proliferation of antibiotic resistance in urban sewage treatment plants. Environmental Pollution, 2022, 308, 119649.	3.7	14
81	Effect of biochar on antibiotics and antibiotic resistance genes variations during co-composting of pig manure and corn straw. Frontiers in Bioengineering and Biotechnology, 0, 10, .	2.0	11
82	Characterization of keystone taxa and microbial metabolic potentials in copper tailing soils. Environmental Science and Pollution Research, 2023, 30, 1216-1230.	2.7	4
83	Performance exploration and microbial dynamics of urine diverting composting toilets in rural China. Journal of Environmental Management, 2022, 321, 115964.	3.8	6
84	Zero-valent iron drives the passivation of Zn and Cu during composting: Fate of heavy metal resistant bacteria and genes. Chemical Engineering Journal, 2023, 452, 139136.	6.6	11
85	Heavy metal and antibiotic resistance in four Indian and UK rivers with different levels and types of water pollution. Science of the Total Environment, 2023, 857, 159059.	3.9	26
87	Differential impacts of salinity on antibiotic resistance genes during cattle manure stockpiling are linked to mobility potentials revealed by metagenomic sequencing. Journal of Hazardous Materials, 2023, 445, 130590.	6.5	3
88	Effects of Exogenous Bacterial Agents on Material Transformation and Microbial Community Composition during Composting of Tomato Stalks. Sustainability, 2022, 14, 16284.	1.6	4
89	Environmental drivers and interaction mechanisms of heavy metal and antibiotic resistome exposed to amoxicillin during aerobic composting. Frontiers in Microbiology, 0, 13, .	1.5	1
90	Bacterial dynamics and functions driven by biomass wastes to promote rural toilet blackwater absorption and recycling in an ectopic fermentation system. Chemosphere, 2023, 316, 137804.	4.2	2
91	Metagenomic insights into dietary remodeling of gut microbiota and antibiotic resistome in meat rabbits. Science of the Total Environment, 2023, 874, 162006.	3.9	2

		CITATION REPORT	
#	Article	IF	CITATIONS
92	Microbial Community in the Composting Process and Its Positive Impact on the Soil Biota in Sustainable Agriculture. Agronomy, 2023, 13, 542.	1.3	26
107	Critical influencing factors for decreasing the antibiotic resistance genes during anaerobic digestio of organic wastes. , 2024, , 181-195.	n	0