A New Remotely Operated Sensor Platform for Interdis

Frontiers in Marine Science 4,

DOI: 10.3389/fmars.2017.00281

Citation Report

#	Article	IF	CITATIONS
1	Contrasting Ice Algae and Snowâ€Dependent Irradiance Relationships Between First‥ear and Multiyear Sea Ice. Geophysical Research Letters, 2019, 46, 10834-10843.	4.0	29
2	Sensitivity of Phytoplankton Primary Production Estimates to Available Irradiance Under Heterogeneous Sea Ice Conditions. Journal of Geophysical Research: Oceans, 2019, 124, 5436-5450.	2.6	31
3	The unique methodological challenges of winter limnology. Limnology and Oceanography: Methods, 2019, 17, 42-57.	2.0	47
4	Under-Ice Phytoplankton Blooms: Shedding Light on the "Invisible―Part of Arctic Primary Production. Frontiers in Marine Science, 2020, 7, .	2.5	60
5	Large-Scale Variability of Physical and Biological Sea-Ice Properties in Polar Oceans. Frontiers in Marine Science, 2020, 7, .	2.5	26
6	Scientific Challenges and Present Capabilities in Underwater Robotic Vehicle Design and Navigation for Oceanographic Exploration Under-Ice. Remote Sensing, 2020, 12, 2588.	4.0	30
7	Catenary-based visual servoing for tether shape control between underwater vehicles. Ocean Engineering, 2020, 200, 107018.	4.3	24
8	New insights into radiative transfer within sea ice derived from autonomous optical propagation measurements. Cryosphere, 2021, 15, 183-198.	3.9	13
9	Dense mesopelagic sound scattering layer and vertical segregation of pelagic organisms at the Arctic-Atlantic gateway during the midnight sun. Progress in Oceanography, 2021, 196, 102611.	3.2	8
10	Biogeochemical and ecological variability during the late summer–early autumn transition at an iceâ€floe drift station in the Central Arctic Ocean. Limnology and Oceanography, 2021, 66, S363.	3.1	5
11	New observations of the distribution, morphology and dissolution dynamics of cryogenic gypsum in the Arctic Ocean. Cryosphere, 2020, 14, 1795-1808.	3.9	11
12	Monitoring a changing Arctic: Recent advancements in the study of sea ice microbial communities. Ambio, 2022, 51, 318-332.	5.5	12
13	From Bright Windows to Dark Spots: Snow Cover Controls Melt Pond Optical Properties During Refreezing. Geophysical Research Letters, 2021, 48, e2021GL095369.	4.0	5
14	Net heterotrophy in High Arctic first-year and multi-year spring sea ice. Elementa, 2022, 10, .	3.2	1
15	Overview of the MOSAiC expedition: Snow and sea ice. Elementa, 2022, 10, .	3.2	91
16	Snow Depth Retrieval on Arctic Sea Ice Using Under-Ice Hyperspectral Radiation Measurements. Frontiers in Earth Science, 2021, 9, .	1.8	1
18	Enabling Under-Ice Geochemical Observations with a Size, Weight, and Power-Constrained Robot. , 2022, , .		0
19	Temporal evolution of under-ice meltwater layers and false bottoms and their impact on summer Arctic sea ice mass balance. Elementa, 2023, 11, .	3.2	5

#	Article	IF	CITATIONS
20	Challenges and alternatives for unmanned underwater vehicular research in the Amazon basin: Towards a more sustainable management of water resources and the environment. Water and Environment Journal, 2023, 37, 644-656.	2.2	1
21	Sea-ice decline could keep zooplankton deeper for longer. Nature Climate Change, 2023, 13, 1122-1130.	18.8	2
22	Thin and transient meltwater layers and false bottoms in the Arctic sea ice pack—Recent insights on these historically overlooked features. Elementa, 2023, 11, .	3.2	0
23	Observations of preferential summer melt of Arctic sea-ice ridge keels from repeated multibeam sonar surveys. Cryosphere, 2023, 17, 4873-4887.	3.9	1
24	Essential omegaâ€3 fatty acids are depleted in sea ice and pelagic algae of the Central Arctic Ocean. Global Change Biology, 2024, 30, .	9.5	1

CITATION REPORT