Immunological Control of Viral Infections in Bats and the Pathogenic to Humans

Frontiers in Immunology

8,1098

DOI: 10.3389/fimmu.2017.01098

Citation Report

#	Article	IF	CITATIONS
1	Tools to study pathogen-host interactions in bats. Virus Research, 2018, 248, 5-12.	1.1	29
2	Immune response biomarkers in human and veterinary research. Comparative Immunology, Microbiology and Infectious Diseases, 2018, 59, 57-62.	0.7	8
3	Mammalia: Chiroptera: Immunology of Bats. , 2018, , 839-862.		4
4	Monitoring and redirecting virus evolution. PLoS Pathogens, 2018, 14, e1006979.	2.1	13
5	Changing resource landscapes and spillover of henipaviruses. Annals of the New York Academy of Sciences, 2018, 1429, 78-99.	1.8	97
6	What is stirring in the reservoir? Modelling mechanisms of henipavirus circulation in fruit bat hosts. Philosophical Transactions of the Royal Society B: Biological Sciences, 2019, 374, 20190021.	1.8	29
7	Divergent Evolution of TRC Genes in Mammalian Niche Adaptation. Frontiers in Immunology, 2019, 10, 871.	2.2	3
8	A metaanalysis of bat phylogenetics and positive selection based on genomes and transcriptomes from 18 species. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 11351-11360.	3.3	57
9	Studies on B Cells in the Fruit-Eating Black Flying Fox (Pteropus alecto). Frontiers in Immunology, 2019, 10, 489.	2.2	20
10	Bat tolerance to viral infections. Nature Microbiology, 2019, 4, 728-729.	5.9	45
11	Nipah virus: epidemiology, pathology, immunobiology and advances in diagnosis, vaccine designing and control strategies – a comprehensive review. Veterinary Quarterly, 2019, 39, 26-55.	3.0	124
12	The spleen morphophysiology of fruit bats. Journal of Veterinary Medicine Series C: Anatomia Histologia Embryologia, 2019, 48, 315-324.	0.3	9
13	Enhanced Autophagy Contributes to Reduced Viral Infection in Black Flying Fox Cells. Viruses, 2019, 11, 260.	1.5	34
14	Arousal from hibernation and reactivation of <i>Eptesicus fuscus</i> gammaherpesvirus (<i>Ef</i> <scp>HV</scp>) in big brown bats. Transboundary and Emerging Diseases, 2019, 66, 1054-1062.	1.3	14
15	Immune System Modulation and Viral Persistence in Bats: Understanding Viral Spillover. Viruses, 2019, 11, 192.	1.5	104
16	Bat Research Networks and Viral Surveillance: Gaps and Opportunities in Western Asia. Viruses, 2019, 11, 240.	1.5	29
17	Dampened NLRP3-mediated inflammation in bats and implications for a special viral reservoir host. Nature Microbiology, 2019, 4, 789-799.	5.9	245
18	Handling Stress and Sample Storage Are Associated with Weaker Complement-Mediated Bactericidal Ability in Birds but Not Bats. Physiological and Biochemical Zoology, 2019, 92, 37-48.	0.6	20

TION RE

	CITATION	ion Report	
#	Article	IF	CITATIONS
19	Novel Insights Into Immune Systems of Bats. Frontiers in Immunology, 2020, 11, 26.	2.2	212
20	Zoonotic evolution and implications of microbiome in viral transmission and infection. Virus Research, 2020, 290, 198175.	1.1	12
21	A review of mechanistic models of viral dynamics in bat reservoirs for zoonotic disease. Pathogens and Global Health, 2020, 114, 407-425.	1.0	13
22	SARS-CoV-2 in fruit bats, ferrets, pigs, and chickens: an experimental transmission study. Lancet Microbe, The, 2020, 1, e218-e225.	3.4	434
23	High COVIDâ€19 virus replication rates, the creation of antigen–antibody immune complexes and indirect haemagglutination resulting in thrombosis. Transboundary and Emerging Diseases, 2020, 67, 1418-1421.	1.3	10
24	The Potential Role of Endogenous Viral Elements in the Evolution of Bats as Reservoirs for Zoonotic Viruses. Annual Review of Virology, 2020, 7, 103-119.	3.0	34
25	Bat-borne virus diversity, spillover and emergence. Nature Reviews Microbiology, 2020, 18, 461-471.	13.6	298
26	Positive Selection of a Serine Residue in Bat IRF3 Confers Enhanced Antiviral Protection. IScience, 2020, 23, 100958.	1.9	34
27	Characterization of Experimental Oro-Nasal Inoculation of Seba's Short-Tailed Bats (Carollia) Tj ETQq0 0 () rgBT /Overla 1.5	ock_10 Tf 50 4
28	Batâ€borne viruses in Africa: a critical review. Journal of Zoology, 2020, 311, 77-98.	0.8	40
29	Role of pattern recognition receptors and interferon-beta in protecting bat cell lines from encephalomyocarditis virus and Japanese encephalitis virus infection. Biochemical and Biophysical Research Communications, 2020, 527, 1-7.	1.0	10
30	Asymptomatic Infection of Marburg Virus Reservoir Bats Is Explained by a Strategy of Immunoprotective Disease Tolerance. Current Biology, 2021, 31, 257-270.e5.	1.8	51
31	High Body Temperature is an Unlikely Cause of High Viral Tolerance in Bats. Journal of Wildlife Diseases, 2021, 57, 238-241.	0.3	2
32	Bat-Borne Influenza A Viruses: An Awakening. Cold Spring Harbor Perspectives in Medicine, 2021, 11, a038612.	2.9	6
33	Bats as Reservoirs of Viral Zoonoses. Fascinating Life Sciences, 2021, , 313-330.	0.5	0
34	SARS-CoV-2 Pandemic: Not the First, Not the Last. Microorganisms, 2021, 9, 433.	1.6	6
35	Surveying the Vampire Bat (<i>Desmodus rotundus</i>) Serum Proteome: A Resource for Identifying Immunological Proteins and Detecting Pathogens. Journal of Proteome Research, 2021, 20, 2547-2559.	1.8	15
36	Bats are key hosts in the radiation of mammal-associated Bartonella bacteria. Infection, Genetics and Evolution, 2021, 89, 104719	1.0	23

CITATION REPORT

#	Article	IF	CITATIONS
37	Genomic features of humoral immunity support tolerance model in Egyptian rousette bats. Cell Reports, 2021, 35, 109140.	2.9	19
38	Heparan sulfates from bat and human lung and their binding to the spike protein of SARS-CoV-2 virus. Carbohydrate Polymers, 2021, 260, 117797.	5.1	21
39	Largeâ€scale genome sampling reveals unique immunity and metabolic adaptations in bats. Molecular Ecology, 2021, 30, 6449-6467.	2.0	40
40	Full-Genome Sequences of Alphacoronaviruses and Astroviruses from Myotis and Pipistrelle Bats in Denmark. Viruses, 2021, 13, 1073.	1.5	15
42	Common Themes in Zoonotic Spillover and Disease Emergence: Lessons Learned from Bat- and Rodent-Borne RNA Viruses. Viruses, 2021, 13, 1509.	1.5	18
43	Bats and viruses: a death-defying friendship. VirusDisease, 2021, 32, 467-479.	1.0	8
44	MR1-Restricted T Cells with MAIT-like Characteristics Are Functionally Conserved in the Pteropid Bat Pteropus alecto. IScience, 2020, 23, 101876.	1.9	13
45	The zoonotic potential of bat-borne coronaviruses. Emerging Topics in Life Sciences, 2020, 4, 365-381.	1.1	8
46	Coronaviruses and Australian bats: a review in the midst of a pandemic. Australian Journal of Zoology, 2019, 67, 346.	0.6	9
47	Evolutionary medical insights into the SARS-CoV-2 pandemic. Evolution, Medicine and Public Health, 2020, 2020, 314-322.	1.1	15
50	Bats Oxidative Stress Defense. Jurnal Riset Veteriner Indonesia (Journal of the Indonesian Veterinary) Tj ETQq0 0	0 rgBT /O	verlock 10 Tf 2
51	Bat IFITM3 restriction depends on S-palmitoylation and a polymorphic site within the CD225 domain. Life Science Alliance, 2020, 3, e201900542.	1.3	32
52	Accelerated viral dynamics in bat cell lines, with implications for zoonotic emergence. ELife, 2020, 9, .	2.8	91
53	Excessive G–U transversions in novel allele variants in SARS-CoV-2 genomes. PeerJ, 2020, 8, e9648.	0.9	17
54	Viral and Host Attributes Underlying the Origins of Zoonotic Coronaviruses in Bats. Comparative Medicine, 2021, 71, 442-450.	0.4	6
56	Natural and Experimental SARS-CoV-2 Infection in Domestic and Wild Animals. Viruses, 2021, 13, 1993.	1.5	70
57	Ecological Factors of Transmission, Persistence and Circulation of Pathogens In Bat Populations. Folia Veterinaria, 2019, 63, 32-40.	0.2	2
60	Constitutive IFNα Protein Production in Bats. Frontiers in Immunology, 2021, 12, 735866.	2.2	11

#	Article	IF	CITATIONS
61	Proposed classifications of immunogenomic editing by cancers and pathogens. Infection, Genetics and Evolution, 2021, 96, 105126.	1.0	0
63	Implications of Glycosaminoglycans on Viral Zoonotic Diseases. Diseases (Basel, Switzerland), 2021, 9, 85.	1.0	10
65	Emergence of epidemic diseases: zoonoses and other origins. Faculty Reviews, 2022, 11, 2.	1.7	12
66	Different but Not Unique: Deciphering the Immunity of the Jamaican Fruit Bat by Studying Its Viriome. Viruses, 2022, 14, 238.	1.5	3
67	Optimal immune specificity at the intersection of host life history and parasite epidemiology. PLoS Computational Biology, 2021, 17, e1009714.	1.5	2
80	From bats to pangolins: new insights into species differences in the structure and function of the immune system. Innate Immunity, 2022, 28, 107-121.	1.1	4
81	Fruit bats as natural reservoir of highly pathogenic henipaviruses: balance between antiviral defense and viral tolerance. Current Opinion in Virology, 2022, 54, 101228.	2.6	11
82	Gene prediction in the immunoglobulin loci. Genome Research, 2022, 32, 1152-1169.	2.4	7
83	Bat Red Blood Cells Express Nucleic Acid–Sensing Receptors and Bind RNA and DNA. ImmunoHorizons, 2022, 6, 299-306.	0.8	0
84	The Immunobiology of Nipah Virus. Microorganisms, 2022, 10, 1162.	1.6	15
85	SARS-CoV-2 and the central nervous system: Emerging insights into hemorrhage-associated neurological consequences and therapeutic considerations. Ageing Research Reviews, 2022, 80, 101687.	5.0	9
86	Coronavirus y murciélagos. Ambiociencias, 0, , 37-48.	0.0	0
87	Molecular, ecological, and behavioral drivers of the bat-virus relationship. IScience, 2022, 25, 104779.	1.9	16
88	Characterization of Pipistrellus pygmaeus Bat Virome from Sweden. Viruses, 2022, 14, 1654.	1.5	2
89	SARS-CoV-2 Omicron variant emerged under immune selection. Nature Microbiology, 2022, 7, 1756-1761.	5.9	21
90	Traits, phylogeny and host cell receptors predict Ebolavirus host status among African mammals. PLoS Neglected Tropical Diseases, 2022, 16, e0010993.	1.3	2
93	Comparison of the Single-Cell Immune Landscape of Testudines from Different Habitats. Cells, 2022, 11, 4023.	1.8	1
94	Adaptive Evolution of the Spike Protein in Coronaviruses. Molecular Biology and Evolution, 2023, 40, .	3.5	6

CITATION REPORT

IF ARTICLE CITATIONS # Novel Chaphamaparvovirus in Insectivorous Molossus molossus Bats, from the Brazilian Amazon Region. Viruses, 2023, 15, 606. 95 1.5 3 Host-vector and multihost systems. , 2023, , 121-149. 98 Chiropterans: the bats. , 2023, , 281-295. 0 Trends in Bacterial Pathogens of Bats: Global Distribution and Knowledge Gaps. Transboundary and Emerging Diseases, 2023, 2023, 1-17. The Diversity, Evolution and Emergence of Rabies Virus in the Americas. Fascinating Life Sciences, 2023, 100 0.5 0 , 43-59.

CITATION REPORT